[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111884532B - 适用于三相高频链矩阵变换器的无窄脉冲调制方法 - Google Patents

适用于三相高频链矩阵变换器的无窄脉冲调制方法 Download PDF

Info

Publication number
CN111884532B
CN111884532B CN202010723468.9A CN202010723468A CN111884532B CN 111884532 B CN111884532 B CN 111884532B CN 202010723468 A CN202010723468 A CN 202010723468A CN 111884532 B CN111884532 B CN 111884532B
Authority
CN
China
Prior art keywords
phase
matrix converter
voltage
power switch
duty ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010723468.9A
Other languages
English (en)
Other versions
CN111884532A (zh
Inventor
王秀云
魏天园
王汝田
赵艳峰
贾松达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202010723468.9A priority Critical patent/CN111884532B/zh
Publication of CN111884532A publication Critical patent/CN111884532A/zh
Application granted granted Critical
Publication of CN111884532B publication Critical patent/CN111884532B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/225Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode comprising two stages of AC-AC conversion, e.g. having a high frequency intermediate link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
  • Inverter Devices (AREA)

Abstract

本发明是一种适用于三相高频链矩阵变换器的无窄脉冲调制方法,其特点是,根据输入电压极性的正负,将矩阵变换器等效成两个三相逆变电路,利用功率开关两端电压的变化规律推导出两个三相逆变电路各个桥臂的占空比并进行配合,生成矩阵变换器在整个周期的占空比;根据占空比函数构造出两条相互关联的调制波;两条调制波分别与载波进行调制,将调制结果经过逻辑计算和触发器,生成占空比始终为0.5的功率开关驱动信号,不含有窄脉冲;用该驱动信号控制高频链矩阵变换器中各个功率开关的通断,最终得到三相对称的输出电压、电流波形。本发明的方法有效的解决了现有技术不能消除驱动信号的窄脉冲的问题。具有科学合理、适用性强、效果佳等优点。

Description

适用于三相高频链矩阵变换器的无窄脉冲调制方法
技术领域
本发明涉及电力电子领域,是一种适用于三相高频链矩阵变换器的无窄脉冲调制方法。
背景技术
逆变器是一种把直流电直接转换成交流电的变换器,进而供给交流负载。随着负载种类的增多和容量的增大,对逆变器的要求也越来越高,小型化和高频化成为逆变器的发展趋势。因此,现有技术采用高频变压器替代传统的工频变压器,具有体积小、重量轻、效率高等优点,克服了工频变压器的缺点,显著改善了逆变器的工作特性。虽然采用高频变压器替代传统的工频变压器是电能变换的整体趋势,但是传统的桥式逆变器在高频工况下效率低、运行不灵活、只能实现能量的单向流动等短板更加明显,在以电动汽车和超级电容为代表的储能系统快速发展的今天,具有更高的灵活性并且实现能量双向流动是对变换器提出的新要求。因此,电能变换的最新技术就是将高频逆变技术和矩阵变换器相结合,构成高频链矩阵变换器,不仅具有体积小、重量轻、效率高等优点,而且控制自由度大并且能够实现能量双向流动。
现阶段对于高频链矩阵变换器的相关研究较少,并且整体的研究内容为采用载波调制或者空间矢量调制实现矩阵变换器的稳定运行。但是按照传统的控制方法,驱动信号的脉冲宽度会随着矩阵变换器在各个时刻的工作点的变化而变化。因此,窄脉冲这一现象无法从根本上得到解决,尤其是在矩阵变换器和高频链逆变技术相结合的情况下,窄脉冲现象会更加严重。这一现象恶化了矩阵变换器的工作环境,束缚了矩阵变换器开关频率的进一步提高。
发明内容
本发明的目的是,提出一种科学合理,适用性强,效果佳,适用于三相高频链矩阵变换器的无窄脉冲调制方法,旨在解决现有的控制方法不能消除驱动信号的窄脉冲的问题。
实现本发明的目的采用的技术方案是,一种适用于三相高频链矩阵变换器的无窄脉冲调制方法,三相高频链矩阵变换器包括前级H桥逆变电路、高频变压器和后级单相输入三相输出型矩阵变换器;前级H桥逆变电路由4个带有反并联二极管的功率开关Sl(l∈{1,2,3,4})组成;高频变压器的变比为1,仅仅起能量传输和电气隔离的作用;后级单相输入三相输出型矩阵变换器由6个双向功率开关组成,每个双向功率开关由两个功率开关共发射极串联组成,12个功率开关标记为Sijk(i∈{a,b,c},j∈{p,n},k∈{1,2});在工作过程中,前级H桥逆变电路将输入的直流电压变换成占空比为0.5的高频交流方波,经过高频变压器,高频交流方波成为后级矩阵变换器的输入电压,其特征是,具体包括以下内容:
1)根据功率开关两端电压的变化规律计算三相桥臂的占空比,不需要扇区划分;根据矩阵变换器的输入电压upn极性的不同,将矩阵变换器等效成两个结构相同、方向相反的三相逆变电路,分别定义为正组三相逆变电路和负组三相逆变电路;正组、负组三相逆变电路的功率开关分别为Sij1和Sij2
①当upn>0时,正组三相逆变电路工作,其上桥臂的功率开关Sip1两端的电压为:
Figure GDA0003021095920000021
其中,upO为直流母线p和三相负载的中性点O之间的电压,uiO为矩阵变换器i相的输出电压;
②为了使输出的三相电压幅值最大,必须提高直流母线上的电压upO;因此,当输出侧i相电压幅值处于三相最大时,闭合功率开关Sip1;得出在一个周期内,直流母线上的电压upO始终与输出侧最大相电压相等,即:
upO=max{uaO,ubO,ucO}
进一步,功率开关Sip1两端的电压表达式为:
Figure GDA0003021095920000022
③将矩阵变换器的输入电压Ud等效成两个幅值为
Figure GDA0003021095920000023
的电压源串联,设中点为O′,当开关Sip1导通Sin1关断时,i相桥臂和O′之间的电压
Figure GDA0003021095920000024
当开关Sip1关断、Sin1导通时,
Figure GDA0003021095920000025
因此,uiO′的平均电压
Figure GDA0003021095920000026
为:
Figure GDA0003021095920000027
其中,di为i相上桥臂的占空比;
直流母线p和O′之间的电压为常数
Figure GDA0003021095920000031
功率开关Sip1两端的电压为:
Figure GDA0003021095920000032
与②求得的
Figure GDA0003021095920000033
进行联立,即得到上桥臂的占空比di,表达式为:
Figure GDA0003021095920000034
式中,i∈{a,b,c};uiO为矩阵变换器i相桥臂的输出电压;根据电路原理,正组三相逆变电路下桥臂的占空比
Figure GDA0003021095920000035
的表达式为:
Figure GDA0003021095920000036
④当upn<0时,负组三相逆变电路工作,其下桥臂的功率开关Sin2与正组逆变电路上桥臂的功率开关Sip1具有相同的作用;为了实现i相负载Zi在整个周期TS内与正极性直流母线相连接的时间为
Figure GDA0003021095920000037
当upn<0时,负组三相逆变电路下桥臂的占空比为
Figure GDA0003021095920000038
根据电路原理,负组三相逆变电路上桥臂的占空比为di
⑤当upn>0时,负组三相逆变电路功率开关Sij2的通断不影响矩阵变换器的输出,当upn<0时,正组三相逆变电路功率开关Sij1同样不影响矩阵变换器的输出,为了减少功率开关的动作次数,在upn整个周期内,矩阵变换器上桥臂的占空比均为di,下桥臂均为
Figure GDA0003021095920000039
2)载波ucarr是周期为TS,幅值为0到1的等腰三角波,表达式为:
Figure GDA00030210959200000310
进一步,由于PWM波形是一种占空比改变的脉冲方波,占空比的变化规律和调制波幅值的变化规律相同;根据此原理,采用幅值为1,利用占空比函数等效表示的调制波,表达式为:
Figure GDA0003021095920000041
构造与uri相关联的调制波u′ri,表达式为:
uri+u′ri=1
3)两条调制波uri和u′ri与载波ucarr进行调制的过程中,uri与ucarr在正斜率,即上升段交点到u′ri与ucarr在负斜率,即下降段交点的时长为0.5TS,且该时长不受调制波幅值变化的影响;uri和u′ri分别与ucarr进行调制,得出的调制结果为gi和g′i,表达式为:
Figure GDA0003021095920000042
Figure GDA0003021095920000043
将调制结果gi和g′i进行异或运算,并将运算结果作为同步RS触发器的时钟脉冲cpi
Figure GDA0003021095920000044
同步RS触发器的R和S两个端子输入周期为TS、占空比为0.5并且反相的方波信号,在cpi控制下,最终得到各功率开关的驱动信号;
4)得到占空比始终为0.5的功率开关驱动信号,不含有窄脉冲;用该信号控制高频链矩阵变换器中各个功率开关的通断,最终得到三相对称的输出电压、电流波形。
本发明的适用于三相高频链矩阵变换器的无窄脉冲调制方法与现有技术相比,能够实现包括前级H桥逆变电路在内,所有功率开关的驱动信号不含窄脉冲,无论调制比或三相对称负载是否发生变化,驱动信号的占空比始终稳定在0.5;由于理论计算出的驱动信号不含窄脉冲,因此实际的驱动信号与理论驱动信号几乎没有差别,使得输出电压幅值更加接近理论值,电压传输比更高;从仿真结果也充分证实了该调制方法具有科学合理、适用性强、效果佳等优点。
附图说明
图1为三相高频链矩阵变换器拓扑示意图;
图2为正组三相逆变电路示意图;
图3为负组三相逆变电路示意图;
图4为正组三相逆变电路的等效电路图;
图5为载波调制的原理图;
图6为双调制波载波PWM调制过程图;
图7为逻辑计算电路;
图8为三相输出电压仿真图;
图9为输出电压谐波分析图;
图10为功率开关驱动信号仿真图;
图11为与传统SVPWM方法的电压转换效率对比图。
具体实施方式
下面结合附图和具体实施方法对本发明做进一步详细阐述。
图1为三相高频链矩阵变换器的拓扑示意图,其中高频变压器T的原边为H桥逆变电路,由4个带有反并联二极管的功率开关Sl(l∈{1,2,3,4})组成,用于将输入的直流电压逆变成高频交流方波。高频变压器T的副边为矩阵变换器,其中6个双向功率开关由12个功率开关组成,标记为Sijk(i∈{a,b,c},j∈{p,n},k∈{1,2})。
根据矩阵变换器的输入电压upn极性的不同,将矩阵变换器等效成两个结构相同、方向相反的三相逆变电路,分别定义为正组三相逆变电路和负组三相逆变电路。正组、负组三相逆变电路的功率开关分别为Sij1和Sij2,如图2、图3所示。
当upn>0时,矩阵变换器等效成正组三相逆变电路,如图4所示。其中,LC滤波器和负载以综合负载Zi(i∈{a,b,c})来表示,为方便分析,将幅值为Ud的输入电压等效成两个幅值为
Figure GDA0003021095920000051
的电压源串联,设中点为O′。
针对正组三相逆变电路,列写基尔霍夫电压方程:
Figure GDA0003021095920000061
其中,uiO(i∈{a,b,c})为矩阵变换器i相的输出电压。规定
Figure GDA0003021095920000062
为开关Sij1承受的电压,并且同一桥臂中的两个功率开关满足的约束条件为:
Figure GDA0003021095920000063
联立(1)、(2)两式得出功率开关两端的电压表达式为:
Figure GDA0003021095920000064
功率开关Sap1存在的固有电压表达式:
Figure GDA0003021095920000065
联立(3)、(4)两式得出,功率开关Sip1两端的电压和i相的输出电压之和保持不变,即:
Figure GDA0003021095920000066
其中,upO为直流母线p和中性点O之间的电压。
期望得到的输出电压波形为对称的三相正弦波,表达式为:
Figure GDA0003021095920000067
其中,Uom和ωo分别为输出电压的幅值和角频率。
为了使输出的三相电压幅值最大,必须提高直流母线上的电压upO。当输出侧i相电压幅值处于三相最大时闭合功率开关Sip1。因此在一个周期内,直流母线上的电压upO始终与输出侧最大相电压相等,即:
upO=max{uaO,ubO,ucO} (7)
联立(5)、(7)两式得出,功率开关Sip1两端的电压表达式为:
Figure GDA0003021095920000068
进一步,当开关Sip1导通、Sin1关断时,i相桥臂和设中点O′之间的电压
Figure GDA0003021095920000071
当开关Sip1关断、Sin1导通时,
Figure GDA0003021095920000072
因此,uiO′的平均电压
Figure GDA0003021095920000073
为:
Figure GDA0003021095920000074
其中,di为i相上桥臂的占空比。
此外,直流母线p和假想中点O′之间的电压为常数:
Figure GDA0003021095920000075
联立(9)、(10)两式得出,直流母线p和i相桥臂之间的电压upi为:
Figure GDA0003021095920000076
从图4中看出,功率开关Sip1两端的电压和upi为同一电压,因此联立(8)、(11)两式得出,i相上桥臂的占空比表达式:
Figure GDA0003021095920000077
根据电路的基本原则,正组三相逆变电路下桥臂的占空比
Figure GDA0003021095920000078
的表达式为:
Figure GDA0003021095920000079
当upn<0时,矩阵变换器等效成负组三相逆变电路,其下桥臂的功率开关Sin2与正组三相逆变电路上桥臂的功率开关Sip1具有相同的作用。为了实现i相负载Zi在整个周期TS内与正极性直流母线相连接的时间为
Figure GDA00030210959200000710
当upn<0时,负组三相逆变电路下桥臂的占空比为
Figure GDA00030210959200000711
根据电路原理,负组三相逆变电路上桥臂的占空比为di
不难发现,尽管处于不同的半周期,i相上桥臂的两个功率开关Sip1和Sip2的占空比都是di,i相下桥臂的两个功率开关Sin1和Sin2的占空比都是
Figure GDA00030210959200000712
此外,当upn>0时,负组三相逆变电路功率开关Sij2的通断不影响矩阵变换器的输出,当upn<0时,正组三相逆变电路功率开关Sij1的通断同样不影响矩阵变换器的输出,为了减少功率开关的动作次数,在upn整个周期内,矩阵变换器上桥臂的占空比均为di,下桥臂均为
Figure GDA0003021095920000081
所述载波ucarr是周期为TS,幅值为0到1的等腰三角波,表达式为:
Figure GDA0003021095920000082
进一步,由于PWM波形是一种占空比改变的脉冲方波,占空比的变化规律和调制波幅值的变化规律相同;根据这样的原理,可以采用幅值为1,利用占空比函数等效表示的调制波,表达式为:
Figure GDA0003021095920000087
构造与uri相关联的调制波u′ri,表达式为:
uri+u′ri=1 (16)
图5为调制原理图,uri与ucarr在正斜率(上升段)的交点、u′ri与ucarr在负斜率(下降段)的交点和ucarr的中点将载波的一个周期划分成4段,第2段和第3段正好组成宽度为
Figure GDA0003021095920000083
的导通信号,第4段和下个周期的第1段组成关断信号,且导通信号的时长不受调制波幅值变化的影响。基于此分析,矩阵变换器上桥臂的功率开关Sip1和Sip2的驱动信号在正半周期为Si1,在负半周期为Si2,表达式为:
Figure GDA0003021095920000084
在两个半周期的驱动信号Si1和Si2共同组成了宽度为
Figure GDA0003021095920000085
的导通信号。
图6为实际的双调制波载波PWM调制过程,uri和u′ri分别与载波ucarr调制,调制输出为gi和g′i,表达式为:
Figure GDA0003021095920000086
将gi和g′i进行异或运算,并将运算结果作为同步RS触发器的时钟脉冲cpi:
Figure GDA0003021095920000093
图7为逻辑计算电路,除了时钟控制端,其他两个输入端的信号互补,保证同步RS触发器运行于输出状态。信号S1(S4)为前级H桥逆变电路中功率开关S1和S4的驱动信号,该信号为占空比0.5、周期TS的方波。因此,当cpi为高电平时,同步RS触发器的输出端Q=S1(S4);当cpi为低电平时,
Figure GDA0003021095920000091
最终得出矩阵变换器i相桥臂功率开关的驱动信号Si
Figure GDA0003021095920000092
在整个周期都不会产生窄脉冲。
为了说明本发明调制方法的有效性,用Matlab软件做了仿真。仿真参数如下:输入直流电压幅值200V;开关频率为10kHz;输出电压频率为50Hz,理论最大值115V;滤波电感0.5mH,滤波电容20μF;三相对称负载取12Ω电阻。图8是滤波后的三相输出电压,波形三相对称并且幅值接近理论最大值。图9为输出电压的谐波分析图,其中基波分量的幅值接近理论值并且只含有高次谐波;图10为包括前级在内各个桥臂功率开关的驱动信号,所有功率开关的驱动信号都是规则的方波,占空比大约为0.5;将本发明方法和SVPWM方法进行对比,结果如图11所示。其中纵坐标为实际输出电压和理论电压的比值,设置窄脉冲的门槛值为2μs和3μs,结果曲线为II和III,随着调制比的增大,SVPWM方法产生更多实际无法实现的窄脉冲,导致输出的电压幅值陡降并且窄脉冲的门槛值越大,降幅越大,曲线I为本发明方法,在调制比变化过程中,实际电压值与理论值始终非常接近。仿真结果验证了本发明的适用于三相高频链矩阵变换器的无窄脉冲调制方法的正确性,能够保证良好的输出性能。
本发明实施例是对本发明作进一步的说明,并非穷举,并不构成对权利要求保护范围的限定,本领域技术人员根据本发明实施例获得的启示,不经过创造性劳动就能够想到其它实质上等同的替代,均在本发明保护范围内。

Claims (1)

1.一种适用于三相高频链矩阵变换器的无窄脉冲调制方法,三相高频链矩阵变换器包括前级H桥逆变电路、高频变压器和后级单相输入三相输出型矩阵变换器;前级H桥逆变电路由4个带有反并联二极管的功率开关Sl组成,其中,l∈{1,2,3,4};高频变压器的变比为1,仅仅起能量传输和电气隔离的作用;后级单相输入三相输出型矩阵变换器由6个双向功率开关组成,每个双向功率开关由两个功率开关共发射极串联组成,12个功率开关标记为Sijk,其中,i∈{a,b,c},j∈{p,n},k∈{1,2};在工作过程中,前级H桥逆变电路将输入的直流电压变换成占空比为0.5的高频交流方波,经过高频变压器,高频交流方波成为后级矩阵变换器的输入电压,其特征是,具体包括以下内容:
1)根据功率开关两端电压的变化规律计算三相桥臂的占空比,不需要扇区划分;根据矩阵变换器的输入电压upn极性的不同,将矩阵变换器等效成两个结构相同、方向相反的三相逆变电路,分别定义为正组三相逆变电路和负组三相逆变电路;正组、负组三相逆变电路的功率开关分别为Sij1和Sij2
①当upn>0时,正组三相逆变电路工作,其上桥臂的功率开关Sip1两端的电压为:
Figure FDA0003021095910000011
其中,upO为直流母线p和三相负载的中性点O之间的电压,uiO为矩阵变换器i相的输出电压;
②为了使输出的三相电压幅值最大,必须提高直流母线上的电压upO;因此,当输出侧i相电压幅值处于三相最大时,闭合功率开关Sip1;得出在一个周期内,直流母线上的电压upO始终与输出侧最大相电压相等,即:
upO=max{uaO,ubO,ucO}
进一步,功率开关Sip1两端的电压表达式为:
Figure FDA0003021095910000012
③将矩阵变换器的输入电压Ud等效成两个幅值为
Figure FDA0003021095910000013
的电压源串联,设中点为O′,当开关Sip1导通Sin1关断时,i相桥臂和O′之间的电压
Figure FDA0003021095910000014
当开关Sip1关断、Sin1导通时,
Figure FDA0003021095910000021
因此,uiO′的平均电压
Figure FDA0003021095910000022
为:
Figure FDA0003021095910000023
其中,di为i相上桥臂的占空比;
直流母线p和O′之间的电压为常数
Figure FDA0003021095910000024
功率开关Sip1两端的电压为:
Figure FDA0003021095910000025
与②求得的
Figure FDA0003021095910000026
进行联立,即得到上桥臂的占空比di,表达式为:
Figure FDA0003021095910000027
式中,i∈{a,b,c};uiO为矩阵变换器i相桥臂的输出电压;根据电路原理,正组三相逆变电路下桥臂的占空比
Figure FDA0003021095910000028
的表达式为:
Figure FDA0003021095910000029
④当upn<0时,负组三相逆变电路工作,其下桥臂的功率开关Sin2与正组逆变电路上桥臂的功率开关Sip1具有相同的作用;为了实现i相负载Zi在整个周期TS内与正极性直流母线相连接的时间为
Figure FDA00030210959100000210
当upn<0时,负组三相逆变电路下桥臂的占空比为
Figure FDA00030210959100000211
根据电路原理,负组三相逆变电路上桥臂的占空比为di
⑤当upn>0时,负组三相逆变电路功率开关Sij2的通断不影响矩阵变换器的输出,当upn<0时,正组三相逆变电路功率开关Sij1同样不影响矩阵变换器的输出,为了减少功率开关的动作次数,在upn整个周期内,矩阵变换器上桥臂的占空比均为di,下桥臂均为
Figure FDA00030210959100000212
2)载波ucarr是周期为TS,幅值为0到1的等腰三角波,表达式为:
Figure FDA00030210959100000213
进一步,由于PWM波形是一种占空比改变的脉冲方波,占空比的变化规律和调制波幅值的变化规律相同;根据此原理,采用幅值为1,利用占空比函数等效表示的调制波,表达式为:
Figure FDA0003021095910000031
构造与uri相关联的调制波u′ri,表达式为:
uri+u′ri=1
3)两条调制波uri和u′ri与载波ucarr进行调制的过程中,uri与ucarr在正斜率,即上升段交点到u′ri与ucarr在负斜率,即下降段交点的时长为0.5TS,且该时长不受调制波幅值变化的影响;uri和u′ri分别与ucarr进行调制,得出的调制结果为gi和g′i,表达式为:
Figure FDA0003021095910000032
Figure FDA0003021095910000033
将调制结果gi和g′i进行异或运算,并将运算结果作为同步RS触发器的时钟脉冲cpi
Figure FDA0003021095910000034
同步RS触发器的R和S两个端子输入周期为TS、占空比为0.5并且反相的方波信号,在cpi控制下,最终得到各功率开关的驱动信号;
4)得到占空比始终为0.5的功率开关驱动信号,不含有窄脉冲;用该信号控制高频链矩阵变换器中各个功率开关的通断,最终得到三相对称的输出电压、电流波形。
CN202010723468.9A 2020-07-24 2020-07-24 适用于三相高频链矩阵变换器的无窄脉冲调制方法 Active CN111884532B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010723468.9A CN111884532B (zh) 2020-07-24 2020-07-24 适用于三相高频链矩阵变换器的无窄脉冲调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010723468.9A CN111884532B (zh) 2020-07-24 2020-07-24 适用于三相高频链矩阵变换器的无窄脉冲调制方法

Publications (2)

Publication Number Publication Date
CN111884532A CN111884532A (zh) 2020-11-03
CN111884532B true CN111884532B (zh) 2021-06-18

Family

ID=73201527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010723468.9A Active CN111884532B (zh) 2020-07-24 2020-07-24 适用于三相高频链矩阵变换器的无窄脉冲调制方法

Country Status (1)

Country Link
CN (1) CN111884532B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600454B (zh) * 2020-12-21 2022-03-11 东南大学 一种电流源输入高频隔离矩阵变换器及其调控方法
CN114825973B (zh) * 2022-06-29 2022-10-28 天津大学 一种矩阵变换器载波频率调制方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599704A (zh) * 2009-07-07 2009-12-09 华中科技大学 一种减小矩阵变换器窄脉冲现象的空间矢量调制方法
CN103427666A (zh) * 2013-07-23 2013-12-04 南京航空航天大学 一种双级矩阵变换器的载波调制方法
CN105915095A (zh) * 2016-05-06 2016-08-31 燕山大学 Lc串联谐振高频链矩阵式逆变器拓扑及其谐振调制方法
CN109980761A (zh) * 2019-04-03 2019-07-05 湘潭大学 双向高频链ac-dc矩阵变换器及其控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3180849B1 (en) * 2014-08-13 2021-11-10 INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência Ac/dc converter with three to single phase matrix converter, full-bridge ac/dc converter and hf transformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599704A (zh) * 2009-07-07 2009-12-09 华中科技大学 一种减小矩阵变换器窄脉冲现象的空间矢量调制方法
CN103427666A (zh) * 2013-07-23 2013-12-04 南京航空航天大学 一种双级矩阵变换器的载波调制方法
CN105915095A (zh) * 2016-05-06 2016-08-31 燕山大学 Lc串联谐振高频链矩阵式逆变器拓扑及其谐振调制方法
CN109980761A (zh) * 2019-04-03 2019-07-05 湘潭大学 双向高频链ac-dc矩阵变换器及其控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An Integration SPWM Strategy for High-Frequency Link Matrix Converter With Adaptive Commutation in One Step Based on De-Re-Coupling Idea;Zhaoyang Yan et al.;《IEEE Transactions on Industrial Electronics 》;20120131;第59卷(第1期);第116-128页 *
矩阵变换器在窄脉冲作用下的性能改善;何必等;《中国电机工程学报》;20090925;第29卷(第27期);第42-47页 *

Also Published As

Publication number Publication date
CN111884532A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
CN104702140B (zh) T型三电平光伏并网逆变器并联环流抑制和中点平衡方法
CN107093954B (zh) 带boost升压的两级式三相四桥臂逆变系统及控制策略
CN102983771B (zh) 一种用于模块化多电平换流器的脉宽调制方法
CN103283135A (zh) 电力转换装置
Keyhani et al. A soft-switched three-phase AC–AC converter with a high-frequency AC link
CN105978388A (zh) 一种可抑制漏电流单相升降压型光伏逆变器及其控制方法
CN103326606A (zh) 一种单相五电平逆变器
CN111884532B (zh) 适用于三相高频链矩阵变换器的无窄脉冲调制方法
CN111953223A (zh) 一种三相四线制三电平变流器中点电压平衡方法
CN103475245B (zh) 双降压并网逆变器的过零畸变抑制方法
CN112072943B (zh) 一种消除奇数次开关谐波的h桥型逆变电源pwm调制方法
Kumar et al. Design and implementation of single-phase inverter without transformer for PV applications.
CN104158427B (zh) 单相无变压器隔离型z源光伏并网逆变器及调制方法
CN103560654B (zh) 全桥逆变器驱动方法及全桥逆变器
CN112803808B (zh) 降低模块化多电平换流器直流侧高频脉动电流控制方法
CN107196547B (zh) 一种三相双buck并网逆变器的对称全周期调制方法
CN111740624B (zh) 高增益多电平dc/ac变流拓扑及方法
CN105226986A (zh) 一种消除输入侧二次功率脉动的逆变器及其控制方法
CN202183738U (zh) 自生成级联电源的级联型多电平逆变电路
Zang et al. Comparison and analysis on common modulation strategies for the cascaded multilevel STATCOM
Ali et al. Z-Source inverter with a new space vector PWM algorithm for high voltage gain
CN108683345B (zh) 一种基于SiC二极管的三相改进型双Buck/Boost变流器
CN101783601A (zh) 一种基于混合开关的双可控整流桥的多相电流型pwm整流器
CN113241962B (zh) 一种基于三相四桥臂mmc的电力电子变压器及其控制方法
CN211046795U (zh) 一种并网逆变器拓扑结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant