CN111879999A - A Low Temperature Coefficient Fast Voltage Detection Circuit - Google Patents
A Low Temperature Coefficient Fast Voltage Detection Circuit Download PDFInfo
- Publication number
- CN111879999A CN111879999A CN202010762532.4A CN202010762532A CN111879999A CN 111879999 A CN111879999 A CN 111879999A CN 202010762532 A CN202010762532 A CN 202010762532A CN 111879999 A CN111879999 A CN 111879999A
- Authority
- CN
- China
- Prior art keywords
- transistor
- circuit
- voltage
- voltage detection
- detection circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 88
- 238000003306 harvesting Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/32—Compensating for temperature change
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
本发明公开了应用于能量采集领域的一种低温度系数快速电压检测电路,该电压检测电路包括CTAT偏置电路、正反馈偏置电路和电压检测电路;供电电压即输入信号端(Vin),电路整体输出信号端(Vout);CTAT偏置电路的输出端(Vbias)接电压检测电路的输入端,电压检测电路的输出端即电路整体输出信号端(Vout)与正反馈偏置电路的输入端相连。电压检测电路由两个cascode MOS管构成,当上拉网络电流和下拉网络电流相等时,达到检测电压。通过CTAT基准电路为电压检测电路的上检测管提供偏置,从而降低了温度对检测电压值的影响。通过正反馈偏置电路为电压检测电路的下检测管提供偏置,当达到检测电压时通过反馈网络减小下拉网络的电流,从而加快输出端触发信号的建立。
The invention discloses a low temperature coefficient fast voltage detection circuit applied in the field of energy collection. The voltage detection circuit includes a CTAT bias circuit, a positive feedback bias circuit and a voltage detection circuit; the power supply voltage is the input signal terminal (V in ) , the overall output signal terminal (V out ) of the circuit; the output terminal (V bias ) of the CTAT bias circuit is connected to the input terminal of the voltage detection circuit, and the output terminal of the voltage detection circuit is the overall output signal terminal (V out ) of the circuit and the positive feedback bias connected to the input of the circuit. The voltage detection circuit is composed of two cascode MOS tubes. When the pull-up network current and the pull-down network current are equal, the detection voltage is reached. The upper detection tube of the voltage detection circuit is biased by the CTAT reference circuit, thereby reducing the influence of temperature on the detection voltage value. The lower detection tube of the voltage detection circuit is biased by the positive feedback bias circuit, and when the detection voltage is reached, the current of the pull-down network is reduced through the feedback network, thereby accelerating the establishment of the trigger signal at the output end.
Description
技术领域technical field
本发明属于能量采集领域,特别涉及一种能够实现低温度系数快速的电压检测电路。The invention belongs to the field of energy collection, and particularly relates to a voltage detection circuit capable of realizing low temperature coefficient and fast speed.
背景技术Background technique
随着物联网技术的发展,从环境中获得能量为设备供电是当前的一个重要的研究方向,能量采集电路通过转换电路将能量源产生的电压转换到系统所需要的电压值。由于环境的变化会使得能量源产生的电压值发生波动,为实现能量采集系统输出电压的稳定,需要对输入或者输出电压进行检测。由于能量源产生的功率一般比较低,因此能量采集电路中各个模块的功耗需要最小化。并且物联网节点的工作环境比较复杂,因此电压检测电路需要由良好的温度隔离性,使检测电压不受温度影响。另外,电压检测电路的快速响应有利于保持能量采集系统输出电压的稳定,因此本发明提出一种低温度系数快速的电压检测电路。With the development of Internet of Things technology, obtaining energy from the environment to power devices is an important research direction at present. The energy harvesting circuit converts the voltage generated by the energy source to the voltage value required by the system through the conversion circuit. Since changes in the environment will cause the voltage value generated by the energy source to fluctuate, in order to stabilize the output voltage of the energy harvesting system, it is necessary to detect the input or output voltage. Since the power generated by the energy source is generally low, the power consumption of each module in the energy harvesting circuit needs to be minimized. In addition, the working environment of IoT nodes is complex, so the voltage detection circuit needs to have good temperature isolation, so that the detection voltage is not affected by temperature. In addition, the fast response of the voltage detection circuit is conducive to maintaining the stability of the output voltage of the energy harvesting system, so the present invention provides a low temperature coefficient and fast voltage detection circuit.
通常使用带隙基准(BGR)和比较器来检测电压,由于带隙基准电路工作电压比较高,并且使用直流偏置电阻,因此它功耗会比较大。而能量采集电路一般需要在低电压低功耗下工作,有人提出一种由两个cascode结构的MOS管构成电压检测电路,通过比较上拉网络的电流和下拉网络的电流来确定检测电压,其中上拉网络电流随输入电压增大而增大,下拉网络的电流保持不变,通过设置MOS管的宽长比可以实现不同的检测电压。但是这种方法需要非常大的宽长比,并且检测电压值会随温度升高而增大,导致在不同环境下电压检测的结果会出现较大偏差,而且在输入电压与检测电压比较接近时,输出端的触发信号建立速度非常慢。所以本发明提出一种低温度系数快速的电压检测电路,设计的主要思想是通过给上检测管提供具有温度系数的偏置来实现检测电压的低温度系数;通过反馈降低下拉网络的电流,加快触发信号的建立。Usually, a bandgap reference (BGR) and a comparator are used to detect the voltage. Because the bandgap reference circuit operates at a relatively high voltage and uses a DC bias resistor, it consumes a lot of power. The energy harvesting circuit generally needs to work at low voltage and low power consumption. Some people propose a voltage detection circuit composed of two MOS tubes with a cascode structure. The detection voltage is determined by comparing the current of the pull-up network and the current of the pull-down network. The current of the pull-up network increases with the increase of the input voltage, and the current of the pull-down network remains unchanged. Different detection voltages can be achieved by setting the width to length ratio of the MOS tube. However, this method requires a very large aspect ratio, and the detection voltage value will increase with the increase of temperature, resulting in a large deviation of the voltage detection results in different environments, and when the input voltage is relatively close to the detection voltage , the trigger signal at the output is very slow to build up. Therefore, the present invention proposes a low temperature coefficient and fast voltage detection circuit. The main idea of the design is to realize the low temperature coefficient of the detection voltage by providing the upper detection tube with a bias with a temperature coefficient; to reduce the current of the pull-down network through feedback, and to speed up the Trigger the establishment of the signal.
发明内容SUMMARY OF THE INVENTION
技术问题:本发明的目的是提出一种应用于能量采集电路的低温度系数快速电压检测电路,该电路作为模拟电路的基本单元,可以实现在不同环境下对电压进行检测。Technical problem: The purpose of the present invention is to propose a low temperature coefficient fast voltage detection circuit applied to an energy harvesting circuit. As the basic unit of an analog circuit, the circuit can realize voltage detection in different environments.
技术方案:为解决上述技术问题,本发明的一种低温度系数快速电压检测电路采用如下技术方案:Technical solution: In order to solve the above technical problems, a low temperature coefficient fast voltage detection circuit of the present invention adopts the following technical solutions:
该电压检测电路包括CTAT偏置电路、正反馈偏置电路和电压检测电路;供电电压即输入信号端,电路整体输出信号端;CTAT(负温度系数(complementary to absolutetemperature,CTAT))偏置电路的输出端接电压检测电路的输入端,电压检测电路的输出端即电路整体输出信号端与正反馈偏置电路的输入端相连。The voltage detection circuit includes a CTAT bias circuit, a positive feedback bias circuit and a voltage detection circuit; the power supply voltage is the input signal terminal, the overall output signal terminal of the circuit; the CTAT (complementary to absolute temperature, CTAT) bias circuit The output terminal is connected to the input terminal of the voltage detection circuit, and the output terminal of the voltage detection circuit, that is, the overall output signal terminal of the circuit, is connected to the input terminal of the positive feedback bias circuit.
所述的CTAT偏置电路部分由第一晶体管、第二晶体管、第三晶体管、第四晶体管、第五晶体管组成;正反馈偏置电路由第六晶体管和第七晶体管组成;电压检测电路部分由级联的第八晶体管和第九晶体管组成。The CTAT bias circuit part consists of a first transistor, a second transistor, a third transistor, a fourth transistor and a fifth transistor; the positive feedback bias circuit consists of a sixth transistor and a seventh transistor; the voltage detection circuit part consists of The cascaded eighth transistor and the ninth transistor are formed.
所述的第一晶体管、第二晶体管、第八晶体管为PMOS晶体管,第三晶体管、第四晶体管、第五晶体管、第六晶体管、第七晶体管、第九晶体管为NMOS晶体管。The first transistor, the second transistor, and the eighth transistor are PMOS transistors, and the third transistor, the fourth transistor, the fifth transistor, the sixth transistor, the seventh transistor, and the ninth transistor are NMOS transistors.
所述的其中第五晶体管为厚栅NMOS管,具有较高的阈值电压。The fifth transistor is a thick-gate NMOS transistor with a higher threshold voltage.
所述的CTAT偏置电路中,第一晶体管源级连供电电压即输入信号端,第一晶体管的栅极分别与第一晶体管的漏极和第二晶体管的栅极相连,第一晶体管的漏极与第三晶体管的漏极相连;第二晶体管的源级接供电电压即输入信号端,第二晶体管的漏极与第四晶体管的漏极相连构成CTAT偏置电路的输出端;第四晶体管的栅极与第四晶体管的漏极以及第五晶体管的栅极相连,第四晶体管的源级与第五晶体管的漏极相连接入第三晶体管的栅极,为第三晶体管的栅极提供偏置;第五晶体管和第三晶体管的漏极接地。In the CTAT bias circuit, the source of the first transistor is connected to the power supply voltage, that is, the input signal terminal, the gate of the first transistor is respectively connected to the drain of the first transistor and the gate of the second transistor, and the drain of the first transistor is connected to the gate of the second transistor. The electrode of the second transistor is connected to the drain of the third transistor; the source of the second transistor is connected to the power supply voltage, that is, the input signal terminal, and the drain of the second transistor is connected to the drain of the fourth transistor to form the output end of the CTAT bias circuit; the fourth transistor The gate of the fourth transistor is connected to the drain of the fourth transistor and the gate of the fifth transistor, the source of the fourth transistor is connected to the drain of the fifth transistor and connected to the gate of the third transistor to provide the gate of the third transistor Bias; the drains of the fifth and third transistors are grounded.
所述的正反馈偏置电路中,第六晶体管漏极与供电电压即输入信号端相连,第六晶体管的栅极与源级相连,第六晶体管的源级与第七晶体管的栅极相连;第七晶体管的源级接地。In the described positive feedback bias circuit, the drain of the sixth transistor is connected to the power supply voltage, that is, the input signal terminal, the gate of the sixth transistor is connected to the source stage, and the source stage of the sixth transistor is connected to the gate of the seventh transistor; The source of the seventh transistor is grounded.
所述的电压检测电路部分由第八晶体管和第九晶体管组成,第八晶体管的源级接供电电压即输入信号端,第八晶体管的栅极与CTAT偏置电路的输出端;相连,第八晶体管的漏极和第九晶体管的漏极相连构成电路整体输出信号端,同时该电路整体输出信号端与正反馈偏置电路中第七晶体管的栅极相连;第九晶体管的栅极与正反馈偏置电路中第六晶体管的栅极相连,构成正反馈回路,第九晶体管的源级接地。The voltage detection circuit part is composed of an eighth transistor and a ninth transistor, the source stage of the eighth transistor is connected to the power supply voltage, that is, the input signal terminal, and the gate of the eighth transistor is connected to the output terminal of the CTAT bias circuit; The drain of the transistor and the drain of the ninth transistor are connected to form the overall output signal end of the circuit, and the overall output signal end of the circuit is connected to the gate of the seventh transistor in the positive feedback bias circuit; the gate of the ninth transistor is connected to the positive feedback The gates of the sixth transistor in the bias circuit are connected to form a positive feedback loop, and the source stage of the ninth transistor is grounded.
有益效果:与现有的技术相比,本发明具有以下优点:Beneficial effect: Compared with the existing technology, the present invention has the following advantages:
通过CTAT基准电路为电压检测电路的上检测管提供偏置,从而降低了温度对检测电压值的影响,来实现检测电压的低温度系数。通过正反馈偏置电路为电压检测电路的下检测管提供偏置,当达到检测电压时通过反馈网络减小下拉网络的电流,从而加快输出端触发信号的建立。The CTAT reference circuit provides a bias for the upper detection tube of the voltage detection circuit, thereby reducing the influence of temperature on the detection voltage value and realizing a low temperature coefficient of the detection voltage. The lower detection tube of the voltage detection circuit is biased by the positive feedback bias circuit, and when the detection voltage is reached, the current of the pull-down network is reduced through the feedback network, thereby accelerating the establishment of the trigger signal at the output end.
附图说明Description of drawings
图1为本发明的电路拓扑图;1 is a circuit topology diagram of the present invention;
图2为采用本发明实现的低温度系数快速电压检测电路在不同温度(-20℃-80℃)下的输入电压与输出电压的关系曲线。FIG. 2 is a graph showing the relationship between the input voltage and the output voltage of the low temperature coefficient fast voltage detection circuit realized by the present invention at different temperatures (-20°C-80°C).
图3为采用本发明实现的低温度系数快速电压检测电路在不同温度(-20℃-80℃)下的输入电压与输出电压的关系曲线局部放大图。3 is a partial enlarged view of the relationship between the input voltage and the output voltage of the low temperature coefficient fast voltage detection circuit realized by the present invention at different temperatures (-20°C-80°C).
图4为采用本发明实现的低温度系数快速电压检测电路的检测电压Vdetect与温度的关系曲线。FIG. 4 is the relationship curve between the detection voltage V detect and the temperature of the low temperature coefficient fast voltage detection circuit realized by the present invention.
图5为采用本发明实现的低温度系数快速电压检测电路的瞬态特性曲线。FIG. 5 is the transient characteristic curve of the low temperature coefficient fast voltage detection circuit realized by the present invention.
图中有:第一晶体管M1、第二晶体管M2、第三晶体管M3、第四晶体管M4、第五晶体管M5、第六晶体管M6、第七晶体管M7、第八晶体管M8、第九晶体管M9;供电电压即输入信号端Vin、CTAT偏置电路的输出端Vbias、电路整体输出信号端Vout。There are: first transistor M1, second transistor M2, third transistor M3, fourth transistor M4, fifth transistor M5, sixth transistor M6, seventh transistor M7, eighth transistor M8, ninth transistor M9; power supply The voltage is the input signal terminal V in , the output terminal V bias of the CTAT bias circuit, and the overall output signal terminal V out of the circuit.
具体实施方式Detailed ways
下面结合附图对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings.
本发明的低温度系数快速电压检测电路由CTAT偏置电路、正反馈偏置电路和电压检测电路构成。The low temperature coefficient fast voltage detection circuit of the present invention is composed of a CTAT bias circuit, a positive feedback bias circuit and a voltage detection circuit.
电路供电电压以及输入信号为Vin,电路整体输出信号为Vout。The power supply voltage and input signal of the circuit are V in , and the overall output signal of the circuit is V out .
电压检测电路部分由级联的第八晶体管M8、第九晶体管M9组成,CTAT偏置电路部分由第一晶体管M1、第二晶体管M2、第三晶体管M3、第四晶体管M4、第五晶体管M5组成,正反馈偏置电路由第六晶体管M6、第七晶体管M7组成,其中第一晶体管M1、第二晶体管M2、第八晶体管M8为PMOS,第三晶体管M3、第四晶体管M4、第五晶体管M5、第六晶体管M6、第七晶体管M7、第九晶体管M9为NMOS,其中第五晶体管M5为厚栅NMOS管,具有较高的阈值电压。The voltage detection circuit part consists of the cascaded eighth transistor M8 and the ninth transistor M9, and the CTAT bias circuit part consists of the first transistor M1, the second transistor M2, the third transistor M3, the fourth transistor M4, and the fifth transistor M5. , the positive feedback bias circuit is composed of the sixth transistor M6 and the seventh transistor M7, wherein the first transistor M1, the second transistor M2 and the eighth transistor M8 are PMOS, the third transistor M3, the fourth transistor M4 and the fifth transistor M5 , the sixth transistor M6, the seventh transistor M7, and the ninth transistor M9 are NMOS, wherein the fifth transistor M5 is a thick-gate NMOS transistor with a higher threshold voltage.
CTAT偏置电路由第一晶体管M1、第二晶体管M2、第三晶体管M3、第四晶体管M4、第五晶体管M5组成,将第一晶体管M1管源级连供电电压即输入信号端Vin,第一晶体管M1的栅极分别与第一晶体管M1的漏极和第二晶体管M2的栅极相连,第一晶体管M1的漏极与第三晶体管M3的漏极相连;第二晶体管M2的源级连供电电压即输入信号端Vin,第二晶体管M2的漏极与第四晶体管M4的漏极相连构成CTAT偏置电路的输出端Vbias;第四晶体管M4的栅极与第四晶体管M4的漏极以及第五晶体管M5的栅极相连,第四晶体管M4的源级与第五晶体管M5的漏极相连,为第三晶体管M3的栅极提供偏置,接入第三晶体管的栅极;第三晶体管M5和第三晶体管M3的漏极接地。The CTAT bias circuit is composed of a first transistor M1, a second transistor M2, a third transistor M3, a fourth transistor M4, and a fifth transistor M5. The gate of a transistor M1 is connected to the drain of the first transistor M1 and the gate of the second transistor M2 respectively, the drain of the first transistor M1 is connected to the drain of the third transistor M3; the source of the second transistor M2 is connected to The power supply voltage is the input signal terminal V in , the drain of the second transistor M2 is connected to the drain of the fourth transistor M4 to form the output terminal V bias of the CTAT bias circuit; the gate of the fourth transistor M4 is connected to the drain of the fourth transistor M4 and the gate of the fifth transistor M5, the source stage of the fourth transistor M4 is connected to the drain of the fifth transistor M5, and provides a bias for the gate of the third transistor M3, and is connected to the gate of the third transistor; The drains of the three transistors M5 and the third transistor M3 are grounded.
正反馈偏置电路由第六晶体管M6和第七晶体管M7组成,第六晶体管M6漏极与连供电电压即输入信号端Vin相连,第六晶体管M6的栅极与源级相连,第六晶体管M6的源级与第七晶体管M7的栅极相连;第七晶体管M7的源级接地。电压检测电路部分由第八晶体管M8和第九晶体管M9组成,第八晶体管M8的源级接供电电压即输入信号端Vin,第八晶体管M8的栅极与CTAT偏置的输出Vbias相连,第八晶体管M8的漏极和第九晶体管M9的漏极相连构成整体电路的输出端Vout,同时该输出端与正反馈偏置电路中第七晶体管M7的栅极相连;第九晶体管M9的栅极与正反馈偏置电路中第六晶体管M6的栅极相连,构成正反馈回路,第九晶体管M9的源级接地。The positive feedback bias circuit is composed of a sixth transistor M6 and a seventh transistor M7. The drain of the sixth transistor M6 is connected to the supply voltage, that is, the input signal terminal V in , the gate of the sixth transistor M6 is connected to the source, and the sixth transistor M6 is connected to the source stage. The source stage of M6 is connected to the gate of the seventh transistor M7; the source stage of the seventh transistor M7 is grounded. The voltage detection circuit part is composed of an eighth transistor M8 and a ninth transistor M9. The source stage of the eighth transistor M8 is connected to the power supply voltage, that is, the input signal terminal V in , and the gate of the eighth transistor M8 is connected to the CTAT bias output V bias , The drain of the eighth transistor M8 and the drain of the ninth transistor M9 are connected to form the output terminal V out of the overall circuit, and at the same time the output terminal is connected to the gate of the seventh transistor M7 in the positive feedback bias circuit; The gate is connected to the gate of the sixth transistor M6 in the positive feedback bias circuit to form a positive feedback loop, and the source of the ninth transistor M9 is grounded.
本发明提出的通过CTAT基准电路为电压检测电路的上检测管提供偏置,从而降低了温度对检测电压值的影响,来实现检测电压的低温度系数。通过正反馈偏置电路为电压检测电路的下检测管提供偏置,当达到检测电压时通过反馈网络减小下拉网络的电流,从而加快输出端触发信号的建立。下面结合具体电路和仿真结果对其工作原理进行详细说明。The invention proposes that the CTAT reference circuit provides bias for the upper detection tube of the voltage detection circuit, thereby reducing the influence of temperature on the detection voltage value and realizing a low temperature coefficient of the detection voltage. The lower detection tube of the voltage detection circuit is biased by the positive feedback bias circuit, and when the detection voltage is reached, the current of the pull-down network is reduced through the feedback network, thereby accelerating the establishment of the trigger signal at the output end. The working principle is described in detail below in conjunction with the specific circuit and simulation results.
如图1所示,在本发明提出的结构中,电压检测电路由PMOS第八晶体管M8和NMOS第九晶体管M9级联组成,第八晶体管M8的栅极与CTAT偏置电路的输出端Vbias相连,第九晶体管M9的栅极与正反馈偏置电路的Vx节点相连。检测电压值Vdetect定义为使电压检测电路输出端Vout电压从低变高的输入供电电压即输入信号端Vin值,此时上拉网络的电流即流经第八晶体管M8的电流IM8与下拉网络的电流IM9相等,第八晶体管M8和第九晶体管M9工作在亚阈值区,假设Vds>100mV,根据亚阈值区电流的表达式,可以得到公式1:As shown in FIG. 1, in the structure proposed by the present invention, the voltage detection circuit is composed of a PMOS eighth transistor M8 and an NMOS ninth transistor M9 in cascade connection, and the gate of the eighth transistor M8 is connected to the output terminal V bias of the CTAT bias circuit. The gate of the ninth transistor M9 is connected to the Vx node of the positive feedback bias circuit. The detection voltage value V detect is defined as the input power supply voltage that changes the voltage of the output terminal V out of the voltage detection circuit from low to high, that is, the value of the input signal terminal V in . At this time, the current of the pull-up network is the current I M8 flowing through the eighth transistor M8. Equal to the current I M9 of the pull-down network, the eighth transistor M8 and the ninth transistor M9 work in the sub-threshold region. Assuming that V ds >100mV, according to the expression of the current in the sub-threshold region,
其中μ8,μ9表示第八晶体管M8,第九晶体管M9的迁移率,Cox表示单位面积的氧化物电容,m8,m9表示第八晶体管M8,第九晶体管M9的亚阈值斜率因子,VT表示热电压,其值与绝对温度成正比,(W/L)8,(W/L)9表示M8,M9的宽长比,Vth8,Vth9表示第八晶体管M8,第九晶体管M9的阈值电压,Vdetect表示检测电压值,Vbias表示CTAT偏置电路输出为第八晶体管M8栅极提供的偏置电压,Vx表示正反馈偏置电路为第九晶体管M9栅极提供的偏置电压。where μ 8 , μ 9 represent the mobility of the eighth transistor M8 and the ninth transistor M9 , C ox represents the oxide capacitance per unit area, m 8 , m 9 represent the sub-threshold slope factor of the eighth transistor M8 and the ninth transistor M9 , V T represents the thermal voltage, its value is proportional to the absolute temperature, (W/L) 8 , (W/L) 9 represents the aspect ratio of M8, M9, V th8 , V th9 represent the eighth transistor M8, the ninth The threshold voltage of the transistor M9, V detect represents the detection voltage value, V bias represents the bias voltage provided by the CTAT bias circuit output for the gate of the eighth transistor M8, and V x represents the positive feedback bias circuit provided for the gate of the ninth transistor M9 the bias voltage.
假设第八晶体管M8和第九晶体管M9的亚阈值斜率因子和阈值电压近似相等,即m=m8=m9,Vth8=Vth9,化简可以得到检测电压值Vdetect的表达式为公式2:Assuming that the sub-threshold slope factors and the threshold voltages of the eighth transistor M8 and the ninth transistor M9 are approximately equal, that is, m=m 8 =m 9 , V th8 =V th9 , the expression of the detection voltage value V detect can be obtained by simplification as the formula 2:
其中Vdetect表达式中包括与温度相关的项,其中与绝对温度成正比,通过调整Vbias和Vx来实现正负温度系数相抵消,可以实现Vdetect的低温度系数。where a temperature-dependent term is included in the V detect expression, where It is proportional to the absolute temperature. By adjusting V bias and V x to realize the cancellation of the positive and negative temperature coefficients, a low temperature coefficient of V detect can be achieved.
正反馈偏置电路由第六晶体管M6、第七晶体管M7组成,当Vin<Vdetect时,Vout接近为0,此时第六晶体管M6、第七晶体管M7的Vgs=0,因此Vx点电压为第六晶体管M6、第七晶体管M7管分压,通过设置第六晶体管M6、第七晶体管M7管的宽长比,可以设定Vx点的分压值。当Vin>Vdetect时,Vout电压会逐渐抬升到Vin,使得第七晶体管M7管的Vgs增大,使Vx点电位降低,减小第九晶体管M9管的Vgs,使得电压检测支路下拉网络电流减小,加快输出端Vout电压抬升的速度,加快触发信号的建立。The positive feedback bias circuit is composed of the sixth transistor M6 and the seventh transistor M7. When V in <V detect , V out is close to 0. At this time, the sixth transistor M6 and the seventh transistor M7 have V gs =0, so V The voltage at point x is divided by the sixth transistor M6 and the seventh transistor M7. By setting the width to length ratio of the sixth transistor M6 and the seventh transistor M7, the divided voltage value of the V x point can be set. When V in >V detect , the voltage of V out will gradually rise to V in , so that the V gs of the seventh transistor M7 increases, the potential of the V x point decreases, and the V gs of the ninth transistor M9 is reduced, so that the voltage The current of the pull-down network of the detection branch is reduced, the speed of the voltage rise of the output terminal V out is accelerated, and the establishment of the trigger signal is accelerated.
CTAT偏置电路由第一晶体管M1、第二晶体管M2、第三晶体管M3、第四晶体管M4、第五晶体管M5组成,第四晶体管M4、第五晶体管M5工作在亚阈值区,其中第五晶体管M5为高阈值电压的MOS管,为了使电路在尽可能低的电流下工作,偏置电流由输出电压Vy通过反馈路径,为第三晶体管M3管提供偏置,形成自偏置结构。Vy点偏置电压如公式3所示:The CTAT bias circuit is composed of a first transistor M1, a second transistor M2, a third transistor M3, a fourth transistor M4, and a fifth transistor M5. The fourth transistor M4 and the fifth transistor M5 work in the sub-threshold region, wherein the fifth transistor M5 is a MOS transistor with a high threshold voltage. In order to make the circuit work at the lowest possible current, the bias current passes through the feedback path from the output voltage V y to provide bias for the third transistor M3 to form a self-bias structure. The V y point bias voltage is shown in Equation 3:
其中Vgs4,Vgs5分别表示第四晶体管M4、第五晶体管M5的栅源电压,Vth4,Vth5分别表示第四晶体管M4、第五晶体管M5的阈值电压,m表示亚阈值斜率因子,μ4,μ5分别表示第四晶体管M4、第五晶体管M5的迁移率,(W/L)4,(W/L)5分别表示第四晶体管M4、第五晶体管M5的宽长比。Wherein V gs4 , V gs5 represent the gate-source voltages of the fourth transistor M4 and the fifth transistor M5 respectively, V th4 , V th5 represent the threshold voltages of the fourth transistor M4 and the fifth transistor M5 respectively, m represents the sub-threshold slope factor, μ 4 and μ 5 respectively represent the mobility of the fourth transistor M4 and the fifth transistor M5, and (W/L) 4 and (W/L) 5 respectively represent the width to length ratio of the fourth transistor M4 and the fifth transistor M5.
第一晶体管M1、第二晶体管M2构成电流镜,将自偏置确定的电流复制到、第二晶体管M2支路,偏置输出电压Vbias即为第四晶体管M4、第五晶体管M5的栅极电压,如公式4所示:The first transistor M1 and the second transistor M2 form a current mirror, copy the current determined by the self-bias to the branch of the second transistor M2, and the bias output voltage V bias is the gate of the fourth transistor M4 and the fifth transistor M5 voltage, as shown in Equation 4:
其中IM5表示流经第五晶体管M5的电流。第五晶体管M5的阈值电压Vth5随温度升高而降低,为负温度系数,公式4的第二项中可以通过调整第五晶体管M5的宽长比实现正温度系数或负温度系数,在本次应用中,通过调整第五晶体管M5管的宽长比,可以得到需要的CTAT偏置电压。使其与检测电压Vdetect表达式中与温度相关的项的温度系数相互抵消,来实现检测电压的低温度系数。CTAT偏置电路工作在亚阈值区,可以在低电压下正常工作。Wherein I M5 represents the current flowing through the fifth transistor M5. The threshold voltage V th5 of the fifth transistor M5 decreases as the temperature increases, which is a negative temperature coefficient. In the second term of formula 4, a positive temperature coefficient or a negative temperature coefficient can be achieved by adjusting the width-length ratio of the fifth transistor M5. In this application, the required CTAT bias voltage can be obtained by adjusting the aspect ratio of the fifth transistor M5. The temperature coefficient of the temperature-related term in the expression of the detection voltage V detect is cancelled out to achieve a low temperature coefficient of the detection voltage. The CTAT bias circuit works in the sub-threshold region and can work normally at low voltages.
图2为采用本发明实现的低温度系数快速电压检测电路在不同温度(-20℃-80℃)下的输入电压与输出电压的关系曲线,从图中可以明显的看出在不同温度下检测电压随温度变化很小。Fig. 2 is the relation curve between the input voltage and the output voltage of the low temperature coefficient fast voltage detection circuit realized by the present invention at different temperatures (-20°C-80°C). The voltage varies little with temperature.
图3为采用本发明实现的低温度系数快速电压检测电路在不同温度(-20℃-80℃)下的输入电压与输出电压的关系曲线局部放大图,在此温度范围内,检测电压变化范围在546.5mV-548.5mV之间。3 is a partial enlarged view of the relationship between the input voltage and the output voltage of the low temperature coefficient fast voltage detection circuit realized by the present invention at different temperatures (-20°C-80°C). Between 546.5mV-548.5mV.
图4为采用本发明实现的低温度系数快速电压检测电路的检测电压Vdetect与温度的关系曲线,本发明实现检测电压的温度系数为0.016mV/℃。FIG. 4 is the relationship curve between the detection voltage V detect and the temperature of the low temperature coefficient fast voltage detection circuit realized by the present invention, and the temperature coefficient of the detection voltage realized by the present invention is 0.016mV/°C.
图5为采用本发明实现的低温度系数快速电压检测电路的瞬态特性曲线,当检测电压Vdetect为547.5mV,供电电压即输入信号端Vin为550mV时,经过0.2ms输出电压Vout抬升到Vin。Fig. 5 is the transient characteristic curve of the low temperature coefficient fast voltage detection circuit realized by the present invention, when the detection voltage V detect is 547.5mV, and the power supply voltage, that is, the input signal terminal V in is 550mV, the output voltage V out rises after 0.2ms to V in .
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。The above descriptions are only the preferred embodiments of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, but any equivalent modifications or changes made by those of ordinary skill in the art based on the contents disclosed in the present invention should be included in the within the scope of protection described in the claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010762532.4A CN111879999B (en) | 2020-07-31 | 2020-07-31 | Low-temperature coefficient rapid voltage detection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010762532.4A CN111879999B (en) | 2020-07-31 | 2020-07-31 | Low-temperature coefficient rapid voltage detection circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111879999A true CN111879999A (en) | 2020-11-03 |
CN111879999B CN111879999B (en) | 2023-03-14 |
Family
ID=73204361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010762532.4A Active CN111879999B (en) | 2020-07-31 | 2020-07-31 | Low-temperature coefficient rapid voltage detection circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111879999B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114184829A (en) * | 2021-11-18 | 2022-03-15 | 华中科技大学 | Output overvoltage detection circuit |
CN114689934A (en) * | 2022-06-01 | 2022-07-01 | 苏州贝克微电子股份有限公司 | Modular voltage detection circuit |
CN116243048A (en) * | 2023-01-04 | 2023-06-09 | 广州致远电子股份有限公司 | Voltage detection method, circuit, equipment and storage medium |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040105033A1 (en) * | 2002-12-02 | 2004-06-03 | Broadcom Corporation | Amplifier assembly including variable gain amplifier, parallel programmable amplifiers, and AGC |
CN101001078A (en) * | 2007-01-12 | 2007-07-18 | 清华大学 | Low voltage negative feedback transconductance amplifier |
CN101013331A (en) * | 2006-12-28 | 2007-08-08 | 东南大学 | CMOS reference voltage source with adjustable output voltage |
CN101800542A (en) * | 2010-03-11 | 2010-08-11 | 复旦大学 | CMOS ultra-wideband prescaler |
CN101924553A (en) * | 2010-09-15 | 2010-12-22 | 复旦大学 | A CMOS Ultra-Wideband Two-Frequency Divider Structure |
CN102053198A (en) * | 2009-10-28 | 2011-05-11 | 凹凸电子(武汉)有限公司 | Voltage detection circuit and method and electronic system |
US20110193544A1 (en) * | 2010-02-11 | 2011-08-11 | Iacob Radu H | Circuits and methods of producing a reference current or voltage |
CN103050940A (en) * | 2012-12-14 | 2013-04-17 | 东南大学 | Sub-threshold value MOS (metal oxide semiconductor) tube-based overheat protection circuit |
CN103529892A (en) * | 2013-09-22 | 2014-01-22 | 江苏芯创意电子科技有限公司 | Class-AB output level biasing circuit |
JP2014241462A (en) * | 2013-06-11 | 2014-12-25 | 新日本無線株式会社 | Voltage detection circuit |
CN104579263A (en) * | 2013-10-14 | 2015-04-29 | 北京同方微电子有限公司 | Reset circuit with high response speed and low temperature coefficient |
US9519304B1 (en) * | 2014-07-10 | 2016-12-13 | Ali Tasdighi Far | Ultra-low power bias current generation and utilization in current and voltage source and regulator devices |
US20170033687A1 (en) * | 2015-07-28 | 2017-02-02 | Synopsys, Inc. | Low Power Voltage Regulator |
CN106527572A (en) * | 2016-12-08 | 2017-03-22 | 电子科技大学 | CMOS subthreshold reference circuit with low power dissipation and low temperature drift |
CN106771519A (en) * | 2016-12-14 | 2017-05-31 | 上海贝岭股份有限公司 | Voltage detection circuit |
CN107340796A (en) * | 2017-08-22 | 2017-11-10 | 成都信息工程大学 | A kind of non-resistance formula high-precision low-power consumption a reference source |
CN107992158A (en) * | 2017-12-27 | 2018-05-04 | 湖南国科微电子股份有限公司 | A kind of reference current source of second compensation Low Drift Temperature |
CN107992156A (en) * | 2017-12-06 | 2018-05-04 | 电子科技大学 | A kind of subthreshold value low-power consumption non-resistance formula reference circuit |
CN108508957A (en) * | 2018-04-12 | 2018-09-07 | 淮安信息职业技术学院 | A kind of low-temperature coefficient generating circuit from reference voltage and detection device |
-
2020
- 2020-07-31 CN CN202010762532.4A patent/CN111879999B/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040105033A1 (en) * | 2002-12-02 | 2004-06-03 | Broadcom Corporation | Amplifier assembly including variable gain amplifier, parallel programmable amplifiers, and AGC |
CN101013331A (en) * | 2006-12-28 | 2007-08-08 | 东南大学 | CMOS reference voltage source with adjustable output voltage |
CN101001078A (en) * | 2007-01-12 | 2007-07-18 | 清华大学 | Low voltage negative feedback transconductance amplifier |
CN102053198A (en) * | 2009-10-28 | 2011-05-11 | 凹凸电子(武汉)有限公司 | Voltage detection circuit and method and electronic system |
US20110193544A1 (en) * | 2010-02-11 | 2011-08-11 | Iacob Radu H | Circuits and methods of producing a reference current or voltage |
CN101800542A (en) * | 2010-03-11 | 2010-08-11 | 复旦大学 | CMOS ultra-wideband prescaler |
CN101924553A (en) * | 2010-09-15 | 2010-12-22 | 复旦大学 | A CMOS Ultra-Wideband Two-Frequency Divider Structure |
CN103050940A (en) * | 2012-12-14 | 2013-04-17 | 东南大学 | Sub-threshold value MOS (metal oxide semiconductor) tube-based overheat protection circuit |
JP2014241462A (en) * | 2013-06-11 | 2014-12-25 | 新日本無線株式会社 | Voltage detection circuit |
CN103529892A (en) * | 2013-09-22 | 2014-01-22 | 江苏芯创意电子科技有限公司 | Class-AB output level biasing circuit |
CN104579263A (en) * | 2013-10-14 | 2015-04-29 | 北京同方微电子有限公司 | Reset circuit with high response speed and low temperature coefficient |
US9519304B1 (en) * | 2014-07-10 | 2016-12-13 | Ali Tasdighi Far | Ultra-low power bias current generation and utilization in current and voltage source and regulator devices |
US20170033687A1 (en) * | 2015-07-28 | 2017-02-02 | Synopsys, Inc. | Low Power Voltage Regulator |
CN106527572A (en) * | 2016-12-08 | 2017-03-22 | 电子科技大学 | CMOS subthreshold reference circuit with low power dissipation and low temperature drift |
US20180164842A1 (en) * | 2016-12-08 | 2018-06-14 | University Of Electronic Science And Technology Of China | Cmos subthreshold reference circuit with low power consumption and low temperature drift |
CN106771519A (en) * | 2016-12-14 | 2017-05-31 | 上海贝岭股份有限公司 | Voltage detection circuit |
CN107340796A (en) * | 2017-08-22 | 2017-11-10 | 成都信息工程大学 | A kind of non-resistance formula high-precision low-power consumption a reference source |
CN107992156A (en) * | 2017-12-06 | 2018-05-04 | 电子科技大学 | A kind of subthreshold value low-power consumption non-resistance formula reference circuit |
CN107992158A (en) * | 2017-12-27 | 2018-05-04 | 湖南国科微电子股份有限公司 | A kind of reference current source of second compensation Low Drift Temperature |
CN108508957A (en) * | 2018-04-12 | 2018-09-07 | 淮安信息职业技术学院 | A kind of low-temperature coefficient generating circuit from reference voltage and detection device |
Non-Patent Citations (2)
Title |
---|
刘锡锋: "一款全CMOS结构低功耗亚阈带隙基准源", 《半导体技术》 * |
范兵: "一种高速低功耗电荷分配型动态比较器", 《全国第二届信号处理与应用学术会议专刊》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114184829A (en) * | 2021-11-18 | 2022-03-15 | 华中科技大学 | Output overvoltage detection circuit |
CN114184829B (en) * | 2021-11-18 | 2022-08-30 | 华中科技大学 | Output overvoltage detection circuit |
CN114689934A (en) * | 2022-06-01 | 2022-07-01 | 苏州贝克微电子股份有限公司 | Modular voltage detection circuit |
CN116243048A (en) * | 2023-01-04 | 2023-06-09 | 广州致远电子股份有限公司 | Voltage detection method, circuit, equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN111879999B (en) | 2023-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107256062B (en) | A kind of non-resistance formula a reference source | |
CN111879999B (en) | Low-temperature coefficient rapid voltage detection circuit | |
CN107340796A (en) | A kind of non-resistance formula high-precision low-power consumption a reference source | |
CN101561689B (en) | Low voltage CMOS current source | |
CN113093855B (en) | Low-power-consumption wide-voltage-range ultra-low-voltage reference source circuit | |
CN107390767A (en) | A kind of full MOS voltage-references of wide temperature with temperature-compensating | |
CN114690831B (en) | Current self-biased series CMOS band-gap reference source | |
CN107861558A (en) | A kind of digital high-order compensation band gap a reference source | |
CN106020323A (en) | Low-power-consumption CMOS reference source circuit | |
KR920013881A (en) | CMOS Transconductance Amplifier with Floating Operating Point | |
CN106020322B (en) | A kind of Low-Power CMOS reference source circuit | |
CN108415503A (en) | A kind of low-voltage and low-power dissipation reference circuit | |
CN207352505U (en) | A kind of non-resistance formula high-precision low-power consumption a reference source | |
CN115543000A (en) | Over-temperature protection circuit suitable for ultra-low power consumption linear voltage stabilizer | |
CN108227809B (en) | A kind of high PSRR reference circuit based on subthreshold region MOS partial pressure | |
WO2023103748A1 (en) | Low-voltage detection circuit | |
CN114441842B (en) | Zero-crossing detection circuit for peak current mode control Buck converter | |
CN113867468B (en) | A low power consumption, high power supply rejection temperature sensor based on MOS tube | |
KR102542290B1 (en) | nA level reference current generation circuit with zero temperature coefficient | |
CN105138063A (en) | Band-gap reference circuit | |
CN111796624A (en) | A CMOS Voltage Reference Circuit with Ultra High Power Supply Ripple Rejection Ratio | |
CN111953330A (en) | Low-power-consumption power-on reset circuit irrelevant to temperature | |
CN108181968B (en) | Reference voltage generating circuit | |
CN115357085B (en) | A self-biased CMOS voltage reference source and a method for determining linearity sensitivity and power supply rejection ratio | |
CN114397037B (en) | CMOS temperature sensing circuit and temperature sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |