[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111825104A - Preparation of High Silica Y Molecular Sieve by Seed Crystal Method - Google Patents

Preparation of High Silica Y Molecular Sieve by Seed Crystal Method Download PDF

Info

Publication number
CN111825104A
CN111825104A CN201910312333.0A CN201910312333A CN111825104A CN 111825104 A CN111825104 A CN 111825104A CN 201910312333 A CN201910312333 A CN 201910312333A CN 111825104 A CN111825104 A CN 111825104A
Authority
CN
China
Prior art keywords
silicon
aluminum
hydroxide
molecular sieve
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910312333.0A
Other languages
Chinese (zh)
Other versions
CN111825104B (en
Inventor
田鹏
朱大丽
王林英
刘中民
张建明
刘琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201910312333.0A priority Critical patent/CN111825104B/en
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to PCT/CN2019/106165 priority patent/WO2020211281A1/en
Priority to AU2019441814A priority patent/AU2019441814B2/en
Priority to JP2021558687A priority patent/JP7261316B2/en
Priority to US17/604,377 priority patent/US20220306481A1/en
Priority to EP19925079.6A priority patent/EP3957603A4/en
Priority to KR1020217033741A priority patent/KR102622825B1/en
Publication of CN111825104A publication Critical patent/CN111825104A/en
Application granted granted Critical
Publication of CN111825104B publication Critical patent/CN111825104B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/205Faujasite type, e.g. type X or Y using at least one organic template directing agent; Hexagonal faujasite; Intergrowth products of cubic and hexagonal faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J2029/081Increasing the silica/alumina ratio; Desalumination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本申请公开了一种高硅Y分子筛的制备方法,以及通过该方法所制备的高硅Y分子筛,属于催化剂制备领域。所述方法包括:a)将含有铝源、硅源、碱金属源、含氮杂环类模板剂R和水的原料混合,得到初始凝胶;b)将具有FAU或EMT结构的硅铝分子筛晶种加入步骤a)所得到的初始凝胶中,搅拌,得到合成凝胶;c)将步骤b)所得到的合成凝胶晶化。所述高硅Y分子筛的无水化学组成为kM·mR·(SixAly)O2,其硅铝氧化物比为7~30。根据本申请的方法可在避免过程繁琐、能耗高、污染重的后处理过程情况下合成高硅铝比的Y分子筛,且所合成分子筛的水热/热稳定性好,可应用于流化催化裂化(FCC),具有良好的催化反应活性。The present application discloses a preparation method of a high-silicon Y molecular sieve, and a high-silicon Y molecular sieve prepared by the method, belonging to the field of catalyst preparation. The method includes: a) mixing raw materials containing aluminum source, silicon source, alkali metal source, nitrogen-containing heterocyclic template R and water to obtain an initial gel; b) mixing a silica-alumina molecular sieve with FAU or EMT structure The seed crystals are added to the initial gel obtained in step a) and stirred to obtain a synthetic gel; c) the synthetic gel obtained in step b) is crystallized. The anhydrous chemical composition of the high-silicon Y molecular sieve is kM·mR·(Six Aly)O 2 , and the silicon-aluminum oxide ratio thereof is 7-30. The method according to the present application can synthesize Y molecular sieves with high silicon-to-aluminum ratio while avoiding post-processing processes with complicated processes, high energy consumption and heavy pollution, and the synthesized molecular sieves have good hydrothermal/thermal stability, and can be applied to fluidization Catalytic Cracking (FCC), with good catalytic activity.

Description

晶种法制备高硅Y分子筛Preparation of High Silica Y Molecular Sieve by Seed Crystal Method

技术领域technical field

本申请涉及一种高硅Y分子筛的制备方法,更具体地涉及一种通过向合成凝胶体系中引入含氮杂环类模板剂并加入具有FAU或EMT结构的硅铝分子筛晶种合成高硅Y分子筛的方法,以及通过该方法得到的具有FAU结构的高硅Y分子筛,属于催化剂制备领域。The present application relates to a method for preparing a high-silicon Y molecular sieve, and more particularly, to a method for synthesizing high-silica by introducing a nitrogen-containing heterocyclic template into a synthetic gel system and adding a silicon-aluminum molecular sieve crystal having an FAU or EMT structure. The method for Y molecular sieve and the high silicon Y molecular sieve with FAU structure obtained by the method belong to the field of catalyst preparation.

背景技术Background technique

Y分子筛是具有FAU拓扑结构的硅铝分子筛,主要被应用于流化催化裂化(FCC),是目前用量最大的分子筛材料。Y分子筛的骨架硅铝比,对其催化性能起决定性作用,其中硅铝比越高,催化活性以及稳定性越好。目前,在工业上使用的高硅Y分子筛主要是通过化学/物理法脱铝等得到,这种后处理法的过程繁琐、能耗高、污染重,通过直接水热法合成可在有效避免上述缺点的同时保持晶体结构的完整性和铝分布的均匀性。因此探索直接法合成高硅铝比Y分子筛对催化裂化过程具有非常重要的意义。Y molecular sieve is a silica-alumina molecular sieve with FAU topology, which is mainly used in fluid catalytic cracking (FCC) and is currently the most widely used molecular sieve material. The framework Si-Al ratio of Y molecular sieve plays a decisive role in its catalytic performance. The higher the Si-Al ratio, the better the catalytic activity and stability. At present, the high-silicon Y molecular sieves used in industry are mainly obtained by chemical/physical methods such as dealumination. This post-processing method is cumbersome, energy-intensive, and polluting. Direct hydrothermal synthesis can effectively avoid the above-mentioned problems. shortcomings while maintaining the integrity of the crystal structure and the uniformity of aluminum distribution. Therefore, it is very important to explore the direct synthesis of high silica-alumina ratio Y molecular sieves for the catalytic cracking process.

对于直接法合成高硅Y分子筛,人们最初是在非模板剂体系中合成,即反应凝胶中不加入任何有机模板剂,仅通过调整凝胶配比以及调整晶化时间、晶种或无机导向剂的制备方法等来达到提高Y分子筛硅铝比的目的,但收效甚微,硅铝比很难达到6。For the direct synthesis of high-silicon Y molecular sieves, it was initially synthesized in a non-template system, that is, no organic template was added to the reaction gel, and only by adjusting the gel ratio and adjusting the crystallization time, seeds or inorganic guides The preparation method of the agent is used to achieve the purpose of improving the silicon-aluminum ratio of the Y molecular sieve, but the effect is very small, and the silicon-aluminum ratio is difficult to reach 6.

有机结构导向剂的使用将Y分子筛的合成带入了崭新领域,1987年,美国专利US4,714,601公开了一种硅铝比大于6的名为ECR-4的FAU同质多晶型体,它是以烷基或羟基烷基季铵盐为模板剂,在晶种的存在下于70~120℃水热晶化得到。The use of organic structure directing agents brought the synthesis of Y molecular sieves into a new field. In 1987, US Patent No. 4,714,601 disclosed a FAU homogeneous polymorph named ECR-4 with a silicon-to-aluminum ratio greater than 6. It is obtained by hydrothermal crystallization at 70-120 DEG C in the presence of crystal seed by using alkyl or hydroxyalkyl quaternary ammonium salt as template agent.

1990年,美国专利US 4,931,267公开一种硅铝比大于6的名为ECR-32的FAU同质多晶型体,它是以四丙基和/或四丁基氢氧化铵为结构导向剂于90~120℃水热晶化得到,具有很高的热稳定性。In 1990, U.S. Patent No. 4,931,267 disclosed a FAU homogeneous polymorph named ECR-32 with a silicon-aluminum ratio greater than 6, which was based on tetrapropyl and/or tetrabutylammonium It is obtained by hydrothermal crystallization at 120°C and has high thermal stability.

1990年,法国Delprato等人(Zeolites,1990,10(6):546-552)首次用冠醚作为模板剂合成了具有立方结构的FAU分子筛,骨架硅铝比接近9.0,是目前文献报道的一步法能够实现的最高值,但是冠醚的昂贵和剧毒限制了其工业应用。之后,美国专利US 5,385,717利用聚氧化乙烯作为模板剂合成了硅铝比大于6的Y分子筛。In 1990, French Delprato et al. (Zeolites, 1990, 10(6): 546-552) used crown ethers as templates to synthesize FAU molecular sieves with cubic structure for the first time. However, the expensive and highly toxic crown ethers limit its industrial application. After that, US Pat. No. 5,385,717 used polyethylene oxide as a template to synthesize a Y molecular sieve with a silicon-alumina ratio greater than 6.

发明内容SUMMARY OF THE INVENTION

根据本申请的一个方面,提供了一种高硅Y分子筛的制备方法,该方法通过向合成凝胶体系中添加硅铝分子筛晶种并向合成凝胶体系中引入含氮杂环类模板剂而促进合成高硅(硅铝氧化物比为7~30)Y分子筛。According to one aspect of the present application, there is provided a method for preparing a high-silicon Y molecular sieve, which is prepared by adding a silica-alumina molecular sieve crystal seed to a synthetic gel system and introducing a nitrogen-containing heterocyclic template into the synthetic gel system. Promote the synthesis of high-silicon (silicon-aluminum oxide ratio of 7 to 30) Y molecular sieves.

所述高硅Y分子筛的制备方法,其特征在于,包括以下步骤:The preparation method of the high-silicon Y molecular sieve is characterized in that, comprises the following steps:

a)将含有铝源、硅源、碱金属源、含氮杂环类模板剂R和水的原料混合,得到初始凝胶;a) mixing raw materials containing aluminum source, silicon source, alkali metal source, nitrogen-containing heterocyclic template R and water to obtain an initial gel;

b)将具有FAU或EMT结构的硅铝分子筛晶种加入步骤a)得到的初始凝胶中,搅拌,得到合成凝胶;b) adding the silica-alumina molecular sieve crystal seeds with FAU or EMT structure to the initial gel obtained in step a) and stirring to obtain a synthetic gel;

c)将步骤b)得到的合成凝胶晶化,得到所述高硅Y分子筛。c) Crystallizing the synthetic gel obtained in step b) to obtain the high-silicon Y molecular sieve.

可选地,所述硅源选自正硅酸甲酯、正硅酸乙酯、硅溶胶、固体硅胶、白炭黑和硅酸钠中的至少一种。Optionally, the silicon source is selected from at least one of methyl orthosilicate, ethyl orthosilicate, silica sol, solid silica gel, silica and sodium silicate.

可选地,所述铝源选自偏铝酸钠、氧化铝、氢氧化铝、异丙醇铝、2-丁醇铝、氯化铝、硫酸铝和硝酸铝中的至少一种。Optionally, the aluminum source is selected from at least one of sodium metaaluminate, aluminum oxide, aluminum hydroxide, aluminum isopropoxide, aluminum 2-butoxide, aluminum chloride, aluminum sulfate, and aluminum nitrate.

可选地,所述碱金属源选自氢氧化钠、氢氧化钾和氢氧化铯中的至少一种。Optionally, the alkali metal source is selected from at least one of sodium hydroxide, potassium hydroxide and cesium hydroxide.

可选地,所述含氮杂环类模板剂R选自含氮杂环化合物及其衍生物中的至少一种。Optionally, the nitrogen-containing heterocyclic template R is selected from at least one of nitrogen-containing heterocyclic compounds and derivatives thereof.

优选地,所述含氮杂环类模板剂R选自吡啶、N-甲基吡啶、N-乙基吡啶、N-丙基吡啶、N-丁基吡啶、N-乙基-3-丁基吡啶、氢氧化1-乙基-2-丙基吡啶、哌啶、N,N-二甲基哌啶、氢氧化N,N-二甲基-3,5-二乙基哌啶、氢氧化N,N-二甲基-3,5-二丙基哌啶、氢氧化N,N-二乙基-3,5-二丙基哌啶、氢氧化N,N-二乙基-2,6-二甲基哌啶、氢氧化N,N-二甲基-2,6-二乙基哌啶、咪唑、氢氧化1-乙基-3-丁基咪唑、氢氧化1-乙基-3-丁基-4-丙基咪唑、氢氧化1-苄基-3-甲基咪唑、氢氧化1-苄基-3-乙基咪唑、氢氧化1-苄基-3-丁基咪唑、哌嗪、N-甲基哌嗪、1,4-二丙基哌嗪、1-甲基-4-乙基哌嗪、1-乙基-4-丁基-5-甲基哌嗪中的至少一种。Preferably, the nitrogen-containing heterocyclic template R is selected from pyridine, N-methylpyridine, N-ethylpyridine, N-propylpyridine, N-butylpyridine, N-ethyl-3-butylpyridine Pyridine, 1-ethyl-2-propylpyridine hydroxide, piperidine, N,N-dimethylpiperidine, N,N-dimethyl-3,5-diethylpiperidine hydroxide, hydroxide N,N-Dimethyl-3,5-dipropylpiperidine, N,N-diethyl-3,5-dipropylpiperidine Hydroxide, N,N-Diethyl-2, Hydroxide Hydroxide 6-Dimethylpiperidine, N,N-Dimethyl-2,6-diethylpiperidine Hydroxide, Imidazole, 1-Ethyl-3-butylimidazole Hydroxide, 1-Ethyl Hydroxide- 3-butyl-4-propylimidazole, 1-benzyl-3-methylimidazole hydroxide, 1-benzyl-3-ethylimidazole hydroxide, 1-benzyl-3-butylimidazole hydroxide, Of piperazine, N-methylpiperazine, 1,4-dipropylpiperazine, 1-methyl-4-ethylpiperazine, 1-ethyl-4-butyl-5-methylpiperazine at least one.

可选地,步骤a)中,所述铝源、硅源、碱金属源、含氮杂环类模板剂R和水按照以下摩尔比混合:Optionally, in step a), the aluminum source, silicon source, alkali metal source, nitrogen-containing heterocyclic template R and water are mixed according to the following molar ratio:

1Al2O3:(10~200)SiO2:(0~30)M2O:(1~45)R:(50~6000)H2O;1Al 2 O 3 :(10~200)SiO 2 :(0~30)M 2 O:(1~45)R:(50~6000)H 2 O;

其中,硅源的摩尔数以SiO2计;铝源的摩尔数以Al2O3计;含氮杂环类模板剂R的摩尔数以R本身的摩尔数计;碱金属源的摩尔数以其对应的碱金属M所对应的金属氧化物M2O的摩尔数计。Among them, the mole number of silicon source is in SiO 2 ; the mole number of aluminum source is in Al 2 O 3 ; the mole number of nitrogen-containing heterocyclic template R is in the mole number of R itself; the mole number of alkali metal source is in Its corresponding alkali metal M corresponds to the number of moles of metal oxide M 2 O.

优选地,步骤a)中,所述铝源、硅源、碱金属源、含氮杂环类模板剂R和水按照以下摩尔比混合:Preferably, in step a), the aluminum source, silicon source, alkali metal source, nitrogen-containing heterocyclic template R and water are mixed according to the following molar ratio:

1Al2O3:(10~200)SiO2:(0.1~25)M2O:(1~45)R:(50~6000)H2O;1Al 2 O 3 :(10~200)SiO 2 :(0.1~25)M 2 O:(1~45)R:(50~6000)H 2 O;

其中,硅源的摩尔数以SiO2计;铝源的摩尔数以Al2O3计;含氮杂环类模板剂R的摩尔数以R本身的摩尔数计;碱金属源的摩尔数以其对应的碱金属M所对应的金属氧化物M2O的摩尔数计。Among them, the mole number of silicon source is in SiO 2 ; the mole number of aluminum source is in Al 2 O 3 ; the mole number of nitrogen-containing heterocyclic template R is in the mole number of R itself; the mole number of alkali metal source is in Its corresponding alkali metal M corresponds to the number of moles of metal oxide M 2 O.

可选地,所述具有FAU或EMT结构的硅铝分子筛晶种的硅铝氧化物比≥2。Optionally, the silicon-alumina-oxide ratio of the silicon-alumina molecular sieve seeds having the FAU or EMT structure is greater than or equal to 2.

可选地,所述具有FAU或EMT结构的硅铝分子筛晶种的硅铝氧化物比为2.5~200。Optionally, the silicon-alumina-oxide ratio of the silicon-alumina molecular sieve seed crystal having the FAU or EMT structure is 2.5-200.

优选地,所述具有FAU或EMT结构的硅铝分子筛晶种的硅铝氧化物比的上限选自200、180、150、120、100、80、50、20、10、6、5,下限选自2、2.5、3、5、10、20。Preferably, the upper limit of the silicon-alumina oxide ratio of the silicon-alumina molecular sieve seed crystal with FAU or EMT structure is selected from 200, 180, 150, 120, 100, 80, 50, 20, 10, 6, 5, and the lower limit is selected from From 2, 2.5, 3, 5, 10, 20.

可选地,所述具有FAU或EMT结构的硅铝分子筛晶种选自Na型、NH4型和H型沸石分子筛中的至少一种。Optionally, the silica-alumina molecular sieve seed crystal having the FAU or EMT structure is selected from at least one of Na-type, NH4 -type and H-type zeolite molecular sieves.

可选地,步骤b)中,所述具有FAU或EMT结构的硅铝分子筛晶种的加入量为所述初始凝胶中的硅源以SiO2计的质量的5~30wt%。Optionally, in step b), the added amount of the silica-alumina molecular sieve crystal seeds with FAU or EMT structure is 5-30 wt% of the mass of the silicon source in the initial gel calculated as SiO 2 .

可选地,步骤b)中,晶种的加入量(质量)占初始凝胶中SiO2含量的5~20%。Optionally, in step b), the added amount (mass) of the seed crystals accounts for 5-20% of the SiO 2 content in the initial gel.

优选地,步骤b)中,所述具有FAU或EMT结构的硅铝分子筛晶种的加入量相对于所述初始凝胶中的硅源以SiO2计的质量百分比的上限选自30wt%、29wt%、28wt%、27wt%、26wt%、25wt%、24wt%、23wt%、22wt%、21wt%、20wt%、19wt%、18wt%、17wt%、16wt%、15wt%、14wt%、13wt%、12wt%、11wt%、10wt%、9wt%、8wt%、7wt%、6wt%,下限选自5wt%、6wt%、7wt%、8wt%、9wt%、10wt%、11wt%、12wt%、13wt%、14wt%、15wt%、16wt%、17wt%、18wt%、19wt%、20wt%、21wt%、22wt%、23wt%、24wt%、25wt%、26wt%、27wt%、28wt%、29wt%。Preferably, in step b), the upper limit of the amount of the silica-alumina molecular sieve seed crystals with FAU or EMT structure added relative to the mass percentage of the silicon source in the initial gel in terms of SiO 2 is selected from 30wt%, 29wt% %, 28wt%, 27wt%, 26wt%, 25wt%, 24wt%, 23wt%, 22wt%, 21wt%, 20wt%, 19wt%, 18wt%, 17wt%, 16wt%, 15wt%, 14wt%, 13wt%, 12wt%, 11wt%, 10wt%, 9wt%, 8wt%, 7wt%, 6wt%, the lower limit is selected from 5wt%, 6wt%, 7wt%, 8wt%, 9wt%, 10wt%, 11wt%, 12wt%, 13wt% , 14wt%, 15wt%, 16wt%, 17wt%, 18wt%, 19wt%, 20wt%, 21wt%, 22wt%, 23wt%, 24wt%, 25wt%, 26wt%, 27wt%, 28wt%, 29wt%.

可选地,步骤b)中,所述搅拌进行1~48小时。Optionally, in step b), the stirring is performed for 1 to 48 hours.

优选地,步骤b)中,所述搅拌的时间的上限选自48小时、44小时、40小时、36小时、32小时、28小时、24小时、20小时、16小时、12小时、8小时、4小时、2小时,下限选自1小时、2小时、4小时、8小时、12小时、16小时、20小时、24小时、28小时、32小时、36小时、40小时、44小时。Preferably, in step b), the upper limit of the stirring time is selected from 48 hours, 44 hours, 40 hours, 36 hours, 32 hours, 28 hours, 24 hours, 20 hours, 16 hours, 12 hours, 8 hours, 4 hours, 2 hours, the lower limit is selected from 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, 16 hours, 20 hours, 24 hours, 28 hours, 32 hours, 36 hours, 40 hours, 44 hours.

在一个实施方案中,步骤b)中,向所述初始凝胶中加入所述具有FAU或EMT结构的硅铝分子筛晶种并搅拌1~4小时,得到所述合成凝胶。In one embodiment, in step b), the silica-alumina molecular sieve crystals having the FAU or EMT structure are added to the initial gel and stirred for 1-4 hours to obtain the synthetic gel.

可选地,步骤c)中,所述晶化在90~180℃下进行0.1~15天。Optionally, in step c), the crystallization is performed at 90-180° C. for 0.1-15 days.

优选地,步骤c)中,所述晶化的温度的上限选自180℃、170℃、160℃、150℃、140℃、135℃、130℃、125℃、120℃、115℃、110℃、105℃、100℃、95℃,下限选自90℃、95℃、100℃、105℃、110℃、115℃、120℃、125℃、130℃、135℃、145℃、160℃。Preferably, in step c), the upper limit of the crystallization temperature is selected from 180°C, 170°C, 160°C, 150°C, 140°C, 135°C, 130°C, 125°C, 120°C, 115°C, 110°C , 105°C, 100°C, 95°C, the lower limit is selected from 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 145°C, 160°C.

优选地,步骤c)中,所述晶化的时间上限选自15天、14天、13天、12天、11天、10天、8天、6天、4天、2天、1天、0.5天、0.3天,下限选自0.1天、0.2天、0.3天、0.5天、1天、2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天、13天、14天。Preferably, in step c), the upper limit of the crystallization time is selected from 15 days, 14 days, 13 days, 12 days, 11 days, 10 days, 8 days, 6 days, 4 days, 2 days, 1 day, 0.5 days, 0.3 days, the lower limit is selected from 0.1 days, 0.2 days, 0.3 days, 0.5 days, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days , 11 days, 12 days, 13 days, 14 days.

可选地,步骤c)中,所述晶化在自生压力下进行。Optionally, in step c), the crystallization is performed under autogenous pressure.

在所述方法中,步骤c)中的晶化方式可为动态晶化也可为静态晶化,还可以是两种晶化方式的结合。In the method, the crystallization mode in step c) may be dynamic crystallization or static crystallization, and may also be a combination of the two crystallization modes.

可选地,步骤c)中,所述晶化以动态或静态的方式进行。Optionally, in step c), the crystallization is performed in a dynamic or static manner.

可选地,步骤c)中,所述晶化以动态和静态结合的方式进行,例如以先静态后动态的方式进行。Optionally, in step c), the crystallization is performed in a dynamic and static manner, for example, in a static manner and then a dynamic manner.

在本申请中,动态晶化是指晶化釜内的浆料处于非静置状态,静态晶化是指晶化釜内的浆料处于静置状态。In this application, dynamic crystallization means that the slurry in the crystallization kettle is in a non-stationary state, and static crystallization means that the slurry in the crystallization kettle is in a stationary state.

可选地,步骤c)中,在所述晶化后,将固体产物过滤,洗涤,干燥,得到所述高硅Y分子筛。Optionally, in step c), after the crystallization, the solid product is filtered, washed and dried to obtain the high silicon Y molecular sieve.

在所述方法中,将所得Y分子筛洗涤、过滤、分离和干燥均为常规操作,其中,所述干燥可通过在100~110℃下放置12小时来进行。In the method, washing, filtering, separating and drying the obtained Y molecular sieve are all conventional operations, wherein the drying can be performed by placing at 100-110° C. for 12 hours.

在一个具体的实施方案中,所述高硅Y分子筛的合成过程如下:In a specific embodiment, the synthesis process of the high-silicon Y molecular sieve is as follows:

a1)制备合成凝胶:铝源、硅源、碱金属源(M)、含氮杂环类模板剂R和去离子水按1Al2O3:(10~200)SiO2:(0.1~25)M2O:(1~45)R:(50~6000)H2O的摩尔比于室温混合搅拌均匀制得初始凝胶,再加入一定量的晶种,搅拌1~48小时,制得合成凝胶;a1) Preparation of synthetic gel: aluminum source, silicon source, alkali metal source (M), nitrogen-containing heterocyclic template R and deionized water according to 1Al 2 O 3 : (10~200) SiO 2 : (0.1~25 ) M 2 O: (1~45) R: (50~6000) mole ratio of H 2 O at room temperature by mixing and stirring to obtain the initial gel, then adding a certain amount of seed crystals and stirring for 1~48 hours to obtain the synthetic gel;

b1)合成高硅Y分子筛:将上述合成凝胶在90~180℃自生压力下晶化0.2~15天,待晶化完成后将固体产物过滤分离,用去离子水洗涤至中性,干燥可得高硅Y分子筛。b1) Synthesis of high-silicon Y molecular sieve: the above-mentioned synthetic gel is crystallized under autogenous pressure at 90-180°C for 0.2-15 days, after the crystallization is completed, the solid product is filtered and separated, washed with deionized water until neutral, and dried. Obtain high silica Y molecular sieve.

根据本申请的另一个方面,提供了通过所述方法制备的高硅Y分子筛,该分子筛的硅铝氧化物比高达7~30,水热/热稳定性好,可用于流化催化裂化(FCC),具有良好的催化反应活性。According to another aspect of the present application, there is provided a high-silicon Y molecular sieve prepared by the method, the molecular sieve has a silicon-alumina oxide ratio as high as 7-30, good hydrothermal/thermal stability, and can be used for fluidized catalytic cracking (FCC) ) with good catalytic activity.

所述高硅Y分子筛的无水化学组成如式I所示:The anhydrous chemical composition of described high silicon Y molecular sieve is as shown in formula I:

kM·mR·(SixAly)O2 式I kM ·mR·( SixAly )O 2 formula I

其中,M选自碱金属元素钠、钾、铯中的至少一种;Wherein, M is selected from at least one in alkali metal element sodium, potassium, cesium;

R代表含氮杂环类模板剂;R represents nitrogen-containing heterocyclic template agent;

k代表每摩尔(SixAly)O2对应的碱金属元素的摩尔数,k=0~0.2;k represents the number of moles of alkali metal elements corresponding to each mole of ( SixAly )O 2 , k = 0~0.2;

m代表每摩尔(SixAly)O2对应的含氮杂环类模板剂R的摩尔数,m=0.01~0.2;m represents the number of moles of nitrogen-containing heterocyclic template R corresponding to each mole of ( SixAly )O 2 , m = 0.01-0.2;

x、y分别代表Si、Al的摩尔分数,2x/y=7~30,x+y=1。x and y represent the mole fractions of Si and Al, respectively, 2x/y=7-30, and x+y=1.

可选地,M为Na和/或K,优选为Na。Optionally, M is Na and/or K, preferably Na.

可选地,k=0.01~0.15;m=0.03~0.15。Optionally, k=0.01-0.15; m=0.03-0.15.

优选地,k=0.02~0.13;m=0.04~0.12。Preferably, k=0.02~0.13; m=0.04~0.12.

可选地,在x+y=1的条件下,2x/y的上限选自30、29、28、27、26、25、24、23、22、21、20、19、18、17、16、15、14、13、12、11、10、9或8,下限选自7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28或29。Optionally, under the condition of x+y=1, the upper limit of 2x/y is selected from 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16 , 15, 14, 13, 12, 11, 10, 9 or 8, the lower limit is selected from 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 or 29.

根据本申请的又一个方面,提供了一种催化剂,根据本申请所述的方法制备的具有FAU拓扑结构的高硅Y分子筛可用于流化催化裂化催化剂以及双功能催化例如加氢裂化、加氢脱硫等反应的载体和催化剂。According to yet another aspect of the present application, a catalyst is provided, and the high-silicon Y molecular sieve with FAU topology prepared according to the method described in the present application can be used for fluidized catalytic cracking catalysts and bifunctional catalysis such as hydrocracking, hydrogenation Supports and catalysts for reactions such as desulfurization.

在本申请的上下文中,术语“硅铝比”意指在分子筛中以SiO2和Al2O3计的硅与铝的摩尔比,其与本申请中所述的“2x/y”以及“硅铝氧化物比”具有相同的含义。In the context of this application, the term "silicon-aluminum ratio" means the molar ratio of silicon to aluminum in molecular sieves, calculated as SiO2 and Al2O3 , which is in contrast to the " 2x /y" and "2x/y" described in this application. "Silicon aluminum oxide ratio" has the same meaning.

本申请能够产生的有益效果包括但不限于:The beneficial effects that this application can produce include but are not limited to:

1)本申请所提供的高硅Y分子筛的制备方法,其通过向合成凝胶中引入含氮杂环类模板剂并加入硅铝分子筛晶种而合成硅铝比高达7~30的Y分子筛,且所合成产物的结晶度和纯度高,水热/热稳定性好,可应用于流化催化裂化(FCC),具有良好的催化反应活性。1) The preparation method of the high-silicon Y molecular sieve provided by the present application, which is to synthesize a Y molecular sieve with a silicon-aluminum ratio up to 7-30 by introducing a nitrogen-containing heterocyclic template agent into a synthetic gel and adding a silicon-aluminum molecular sieve crystal seed, And the synthesized product has high crystallinity and purity, good hydrothermal/thermal stability, can be applied to fluid catalytic cracking (FCC), and has good catalytic reaction activity.

2)本申请所提供的高硅Y分子筛的制备方法,其可避免过程繁琐、能耗高、污染重的后处理过程,在实际化工生产领域具有重要意义。2) The preparation method of the high-silicon Y molecular sieve provided by the present application can avoid the post-processing process with complicated process, high energy consumption and heavy pollution, and has great significance in the field of actual chemical production.

附图说明Description of drawings

图1为样品X1的X射线衍射(XRD)谱图。FIG. 1 is an X-ray diffraction (XRD) spectrum of sample X1.

图2为样品X1的扫描电镜(SEM)照片。FIG. 2 is a scanning electron microscope (SEM) photograph of sample X1.

图3为样品X1的硅核磁(29Si-NMR)图谱。FIG. 3 is a silicon nuclear magnetic resonance ( 29 Si-NMR) spectrum of sample X1.

图4为对比样品V1的X射线衍射(XRD)谱图。FIG. 4 is an X-ray diffraction (XRD) spectrum of the comparative sample V1.

具体实施方式Detailed ways

如前所述,本申请涉及一种具有FAU拓扑结构的高硅Y分子筛及其合成方法,所述分子筛的无水化学组成为kM·mR·(SixAly)O2,其中M为碱金属,k代表每摩尔(SixAly)O2对应碱金属离子M的摩尔数,R代表含氮杂环类模板剂,m代表每摩尔(SixAly)O2对应模板剂R的摩尔数,硅铝氧化物比(2x/y)为7~30;所述方法通过向合成凝胶体系中引入含氮杂环类模板剂并加入晶种而合成了高硅Y分子筛。As mentioned above, the present application relates to a high-silicon Y molecular sieve with FAU topology and a method for synthesizing the same. The anhydrous chemical composition of the molecular sieve is kM ·mR·( SixAly ) O2 , wherein M is a base Metal, k represents the number of moles of alkali metal ions M corresponding to each mole of ( Six Aly )O 2 , R represents the nitrogen-containing heterocyclic template, and m represents the number of moles of the template R corresponding to each mole of ( Six A y )O 2 The number of moles, the ratio of silicon to aluminum oxide (2x/y) is 7-30; the method is to synthesize high-silicon Y molecular sieve by introducing nitrogen-containing heterocyclic template into the synthetic gel system and adding seed crystals.

下面结合实施例详述本申请,但本申请并不局限于这些实施例。The present application will be described in detail below with reference to the examples, but the present application is not limited to these examples.

如无特别说明,本申请的实施例中的原料和试剂均通过商业途径购买。Unless otherwise specified, the raw materials and reagents in the examples of this application are purchased through commercial channels.

本申请的实施例中的分析方法如下:The analytical method in the embodiment of the present application is as follows:

X射线粉末衍射物相分析(XRD)采用荷兰帕纳科公司(PANalytical)的X'Pert PROX射线衍射仪,Cu靶,Kα辐射源(λ=0.15418nm),电压40kV,电流40mA。X-ray powder diffraction phase analysis (XRD) used X'Pert PRO X-ray diffractometer from PANalytical, the Netherlands, Cu target, Kα radiation source (λ=0.15418nm), voltage 40kV, current 40mA.

扫描电子显微镜(SEM)测试采用Hitachi SU8020场发射扫描电镜,加速电压2kV。Scanning electron microscope (SEM) test was performed using a Hitachi SU8020 field emission scanning electron microscope with an accelerating voltage of 2kV.

元素组成采用Philips公司的Magix 2424X型射线荧光分析仪(XRF)测定。The elemental composition was determined using a Magix 2424 X-ray fluorescence analyzer (XRF) from Philips.

硅核磁(29Si-NMR)实验在Bruker Avance III 600(14.1Tesla)谱仪上进行,采用7mm双共振探头,转速6kHz,采用高功率质子去偶程序,采样次数为1024,π/4脉冲宽度为2.5μs,采样延迟为10s,以4,4-二甲基-4-丙磺酸钠(DSS)为化学位移参考,校正至0ppm。Silicon nuclear magnetic ( 29 Si-NMR) experiments were carried out on a Bruker Avance III 600 (14.1 Tesla) spectrometer with a 7mm dual-resonance probe, a rotational speed of 6 kHz, a high-power proton decoupling program, a sampling number of 1024, and a π/4 pulse width. is 2.5 μs, the sampling delay is 10 s, and the chemical shift reference is 4,4-dimethyl-4-propanesulfonate (DSS), corrected to 0 ppm.

碳核磁(13C MAS NMR)实验在Bruker Avance III 600(14.1Tesla)谱仪上进行,采用4mm三共振探头,转速12kHz,以金刚烷胺为化学位移参考,校正至0ppm。Carbon nuclear magnetic resonance ( 13 C MAS NMR) experiments were carried out on a Bruker Avance III 600 (14.1 Tesla) spectrometer with a 4 mm triple-resonance probe at a rotational speed of 12 kHz, with amantadine as the chemical shift reference, calibrated to 0 ppm.

实施例1:样品X1的制备Example 1: Preparation of sample X1

制备合成凝胶:将0.7g铝酸钠(Al2O3:48.3wt%,Na2O:36.3wt%,中国医药(集团)上海化学试剂公司)、0.20g氢氧化钠、13.74g氢氧化N,N-二甲基-3,5-二丙基哌啶(25wt%)溶于1.82g去离子水中搅拌至澄清,并滴加13.3g硅溶胶(SiO2:30wt%,沈阳化工股份有限公司)搅拌2h,再加入0.4g硅铝氧化物比为3的Y沸石作为晶种,继续搅拌2h。Preparation of synthetic gel: 0.7 g of sodium aluminate (Al 2 O 3 : 48.3 wt %, Na 2 O: 36.3 wt %, China Pharmaceutical (Group) Shanghai Chemical Reagent Co., Ltd.), 0.20 g of sodium hydroxide, 13.74 g of hydroxide N,N-dimethyl-3,5-dipropylpiperidine (25wt%) was dissolved in 1.82g deionized water and stirred until clear, and 13.3g of silica sol (SiO 2 : 30wt%, Shenyang Chemical Co., Ltd. was added dropwise) company) and stirred for 2 hours, then added 0.4 g of Y zeolite with a silicon-alumina oxide ratio of 3 as a seed crystal, and continued stirring for 2 hours.

合成高硅Y分子筛:将上述合成凝胶转入不锈钢反应釜中,于130℃在自生压力下转动晶化5d,晶化结束后将固液分离并洗涤至中性,于100℃下干燥12h,记为样品X1。Synthesis of high-silicon Y molecular sieve: transfer the above-mentioned synthetic gel into a stainless steel reaction kettle, rotate and crystallize at 130 °C for 5d under autogenous pressure, after crystallization, separate solid-liquid and wash to neutrality, and dry at 100 °C for 12h , denoted as sample X1.

样品X1的X射线粉末衍射图(XRD)如图1所示,表明该样品为具有FAU骨架结构的分子筛。样品X1的扫描电镜照片(SEM)如图2所示,显示该样品的颗粒为小片状,尺寸在50nm~200nm。样品X1的29Si MAS NMR图谱如图3所示,经拟合计算得到的骨架硅铝比和通过XRF计算一致,根据XRF和13C MAS NMR分析归一化,得到样品X1的元素组成为:0.07Na·0.07R1·(Si0.86Al0.14)O2,其中,R1为氢氧化N,N-二甲基-3,5-二丙基哌啶。The X-ray powder diffraction pattern (XRD) of the sample X1 is shown in FIG. 1 , which indicates that the sample is a molecular sieve with a FAU framework structure. The scanning electron microscope (SEM) of the sample X1 is shown in FIG. 2 , which shows that the particles of the sample are small flakes with a size of 50 nm to 200 nm. The 29 Si MAS NMR spectrum of sample X1 is shown in Figure 3. The framework silicon-aluminum ratio calculated by fitting is consistent with that calculated by XRF. According to the normalization of XRF and 13 C MAS NMR analysis, the elemental composition of sample X1 is obtained: 0.07Na·0.07R 1 ·(Si 0.86 Al 0.14 )O 2 , wherein R 1 is N,N-dimethyl-3,5-dipropylpiperidine hydroxide.

实施例2:样品X2~X30的制备Example 2: Preparation of samples X2 to X30

样品X2~X30的配胶过程同实施例1,其原料种类、摩尔配比、晶种加入量(以晶种质量与初始凝胶中SiO2的质量比表示)、晶化条件、产物结构和硅铝比(产物硅铝比通过X型射线荧光分析仪(XRF)测定)以及样品组成见表1。The rubber compounding process of samples X2-X30 is the same as that of Example 1. The raw material types, molar ratio, seed crystal addition amount (represented by the mass ratio of seed crystal mass to SiO2 in the initial gel), crystallization conditions, product structure and The silicon-aluminum ratio (the product silicon-aluminum ratio was determined by X-ray fluorescence analyzer (XRF)) and the sample composition are shown in Table 1.

其中样品X1~X20制备中分别使用硅铝氧化物比3、2.8、3.5、40、5、6、6、6、6、7、92、10、3.5、4、6、8、4、35、12和20的具有FAU结构的硅铝分子筛作为晶种,该分子筛晶种从淄博润鑫化工科技有限公司购买。样品X21~X30制备中分别使用硅铝氧化物比7、7、8.5、7、8、10、21、32、8和7的具有EMT结构的硅铝分子筛作为晶种,该分子筛晶种从河南环宇分子筛有限公司购买。Among them, in the preparation of samples X1~X20, the ratio of silicon to aluminum oxide was 3, 2.8, 3.5, 40, 5, 6, 6, 6, 6, 7, 92, 10, 3.5, 4, 6, 8, 4, 35, Silica-alumina molecular sieves with FAU structure of 12 and 20 were used as seeds, and the molecular sieve seeds were purchased from Zibo Runxin Chemical Technology Co., Ltd. In the preparation of samples X21~X30, silicon-alumina molecular sieves with EMT structure with a silicon-alumina oxide ratio of 7, 7, 8.5, 7, 8, 10, 21, 32, 8 and 7 were used as seeds, and the molecular sieve seeds were obtained from Henan. Huanyu Molecular Sieve Co., Ltd. purchased.

对比例1:对比样品V1~V30的制备Comparative Example 1: Preparation of Comparative Samples V1 to V30

具体配料过程同实施例1中样品X1的制备,区别在于:无晶种添加步骤。合成各产物的原料种类、摩尔配比、晶化条件以及产物结构详见表2。所得样品记为对比样品V1~V30。The specific batching process is the same as the preparation of sample X1 in Example 1, the difference is that there is no seed crystal addition step. See Table 2 for details of the raw material types, molar ratio, crystallization conditions and product structures for synthesizing each product. The obtained samples were recorded as comparative samples V1 to V30.

实施例3:样品X1~X30及对比样品V1~V30的表征分析Example 3: Characterization analysis of samples X1-X30 and comparative samples V1-V30

采用X射线衍射方法对样品X1~X30及对比样品V1~V30的物相进行分析。The phases of samples X1-X30 and comparative samples V1-V30 were analyzed by X-ray diffraction method.

结果表明,实施例1和2中制备的样品X1~X30均为高纯度和高结晶度的Y分子筛,典型代表为如图1中样品X1的XRD谱图,图2为样品X1的SEM照片,图3为样品X1的硅核磁图谱。样品X2~X30的XRD谱图结果与图1接近,即衍射峰位置和形状基本相同,依合成条件的变化相对峰强度在±5%范围内波动,表明样品X1~X30具有Y分子筛的结构特征且无杂晶,并且其硅铝比远高于常规Y沸石。可见,在根据本申请的高硅Y分子筛的合成中,含氮杂环类模板剂的引入是合成根据本申请的高硅Y分子筛的关键。The results show that the samples X1 to X30 prepared in Examples 1 and 2 are all Y molecular sieves with high purity and high crystallinity. The typical representative is the XRD pattern of the sample X1 in Figure 1, and the SEM photo of the sample X1 in Figure 2. Figure 3 is the silicon NMR spectrum of sample X1. The XRD patterns of samples X2-X30 are close to those in Figure 1, that is, the position and shape of the diffraction peaks are basically the same, and the relative peak intensity fluctuates within a range of ±5% depending on the synthesis conditions, indicating that samples X1-X30 have the structural characteristics of Y molecular sieves And no impurity crystals, and its silicon-alumina ratio is much higher than conventional Y zeolite. It can be seen that in the synthesis of the high silicon Y molecular sieve according to the present application, the introduction of a nitrogen-containing heterocyclic template is the key to the synthesis of the high silicon Y molecular sieve according to the present application.

表2中,对比样品V1~V30均为无定形,典型代表为如图4中对比样品V1的XRD谱图。可见在根据本申请的高硅Y分子筛的合成中,除了含氮杂环类模板剂的引入,晶种的加入也是必需的。In Table 2, the comparative samples V1 to V30 are all amorphous, and the typical representative is the XRD spectrum of the comparative sample V1 as shown in FIG. 4 . It can be seen that in the synthesis of the high silicon Y molecular sieve according to the present application, in addition to the introduction of the nitrogen-containing heterocyclic template, the addition of seed crystals is also necessary.

Figure BDA0002031932030000101
Figure BDA0002031932030000101

Figure BDA0002031932030000111
Figure BDA0002031932030000111

Figure BDA0002031932030000121
Figure BDA0002031932030000121

Figure BDA0002031932030000131
Figure BDA0002031932030000131

以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。The above are only a few embodiments of the present application, and are not intended to limit the present application in any form. Although the present application is disclosed as above with preferred embodiments, it is not intended to limit the present application. Without departing from the scope of the technical solution of the present application, any changes or modifications made by using the technical content disclosed above are equivalent to equivalent implementation cases and fall within the scope of the technical solution.

Claims (8)

1. A preparation method of a high-silicon Y molecular sieve is characterized by comprising the following steps:
a) mixing raw materials containing an aluminum source, a silicon source, an alkali metal source, a nitrogen-containing heterocyclic template agent R and water to obtain initial gel;
b) adding a silicon-aluminum molecular sieve seed crystal with an FAU or EMT structure into the initial gel obtained in the step a), and stirring to obtain a synthetic gel;
c) crystallizing the synthesized gel obtained in the step b) to obtain the high-silicon Y molecular sieve.
2. The method according to claim 1, wherein the silicon source is selected from at least one of methyl orthosilicate, ethyl orthosilicate, silica sol, solid silica gel, white carbon black and sodium silicate;
the aluminum source is at least one selected from sodium metaaluminate, aluminum oxide, aluminum hydroxide, aluminum isopropoxide, aluminum 2-butoxide, aluminum chloride, aluminum sulfate and aluminum nitrate;
the alkali metal source is selected from at least one of sodium hydroxide, potassium hydroxide and cesium hydroxide.
3. The method according to claim 1, wherein the nitrogen-containing heterocyclic template agent R is selected from at least one of nitrogen-containing heterocyclic compounds and derivatives thereof;
preferably, the nitrogen-containing heterocyclic template R is selected from pyridine, N-methylpyridine, N-ethylpyridine, N-propylpyridine, N-butylpyridine, N-ethyl-3-butylpyridine, 1-ethyl-2-propylpyridine hydroxide, piperidine, N-dimethylpiperidine, N-dimethyl-3, 5-diethylpiperidine hydroxide, N-dimethyl-3, 5-dipropylpiperidine hydroxide, N-diethyl-2, 6-dimethylpiperidine hydroxide, N-dimethyl-2, 6-diethylpiperidine hydroxide, imidazole, 1-ethyl-3-butylimidazole hydroxide, N-propylpyridine, N-butylpyridinium hydroxide, N-dimethyl-3, 5-diethylpiperidine hydroxide, N-diethyl-2, 6-dimethylpiperidine hydroxide, N-dimethyl-2, 1-ethyl-3-butyl-4-propylimidazole hydroxide, 1-benzyl-3-methylimidazole hydroxide, 1-benzyl-3-ethylimidazole hydroxide, 1-benzyl-3-butylimidazole hydroxide, piperazine, N-methylpiperazine, 1, 4-dipropylpiperazine, 1-methyl-4-ethylpiperazine, and 1-ethyl-4-butyl-5-methylpiperazine.
4. The method of claim 1, wherein in step a), the aluminum source, the silicon source, the alkali metal source, the nitrogen-containing heterocyclic templating agent R, and the water are mixed in the following molar ratios:
1Al2O3:(10~200)SiO2:(0~30)M2O:(1~45)R:(50~6000)H2O;
preferably, in step a), the aluminum source, the silicon source, the alkali metal source, the nitrogen-containing heterocyclic templating agent R and water are mixed in the following molar ratios:
1Al2O3:(10~200)SiO2:(0.1~25)M2O:(1~45)R:(50~6000)H2O;
wherein the mole number of the silicon source is SiO2Counting; the mole number of the aluminum source is Al2O3Counting; the mole number of the nitrogen-containing heterocyclic template agent R is calculated by the mole number of R per se; the molar number of the alkali metal source is equal to the metal oxide M corresponding to the corresponding alkali metal M2And the mole number of O.
5. The method of claim 1, wherein the silicoaluminophosphate molecular sieve seed crystal having the FAU or EMT structure has a silica alumina ratio of 2 or more;
preferably, the silicon-aluminum oxide ratio of the silicon-aluminum molecular sieve seed crystal with the FAU or EMT structure is 2.5-200;
preferably, the seeds of the silicoaluminophosphate molecular sieve with FAU or EMT structure are selected from Na type, NH type4At least one of type and H zeolite molecular sieves;
preferably, in step b), the amount of the silicon source of the silicon-aluminum molecular sieve seeds with FAU or EMT structure added in the initial gel is SiO25-30 wt% of the mass;
preferably, in the step b), the stirring is performed for 1 to 48 hours.
6. The method according to claim 1, wherein in step c), the crystallization is performed at 90 to 180 ℃ for 0.1 to 15 days;
preferably, in step c), the crystallization is carried out in a dynamic or static manner;
preferably, in step c), the crystallization is carried out in a combination of dynamic and static.
7. The method of any one of claims 1 to 6, wherein the high silicon Y molecular sieve has an anhydrous chemical composition as shown in formula I:
kM·mR·(SixAly)O2formula I
Wherein M is at least one of alkali metal elements of sodium, potassium and cesium;
r represents a nitrogen-containing heterocyclic template;
k represents (Si) per molexAly)O2The molar number of the corresponding alkali metal element, k is 0.0-0.2;
m represents (Si) per molexAly)O2The mole number of the corresponding nitrogen-containing heterocyclic template agent R, wherein m is 0.01-0.2;
x and y represent the mole fractions of Si and Al, 2x/y is 7-30, and x + y is 1.
8. The method according to claim 7, wherein M is Na and/or K;
preferably, k is 0.01 to 0.15; m is 0.03-0.15;
more preferably, k is 0.02 to 0.13; m is 0.04 to 0.12.
CN201910312333.0A 2019-04-18 2019-04-18 Method for preparing high-silicon Y molecular sieve by seed crystal method Active CN111825104B (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201910312333.0A CN111825104B (en) 2019-04-18 2019-04-18 Method for preparing high-silicon Y molecular sieve by seed crystal method
AU2019441814A AU2019441814B2 (en) 2019-04-18 2019-09-17 High-silica Y molecular sieve having FAU topology and preparation method therefor
JP2021558687A JP7261316B2 (en) 2019-04-18 2019-09-17 High silica Y molecular sieve with FAU topology structure and its preparation method
US17/604,377 US20220306481A1 (en) 2019-04-18 2019-09-17 High-silica y molecular sieve having fau topology and preparation method therefor
PCT/CN2019/106165 WO2020211281A1 (en) 2019-04-18 2019-09-17 High-silica y molecular sieve having fau topology and preparation method therefor
EP19925079.6A EP3957603A4 (en) 2019-04-18 2019-09-17 High-silica y molecular sieve having fau topology and preparation method therefor
KR1020217033741A KR102622825B1 (en) 2019-04-18 2019-09-17 High-silica Y molecular sieve with FAU topological structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910312333.0A CN111825104B (en) 2019-04-18 2019-04-18 Method for preparing high-silicon Y molecular sieve by seed crystal method

Publications (2)

Publication Number Publication Date
CN111825104A true CN111825104A (en) 2020-10-27
CN111825104B CN111825104B (en) 2022-08-19

Family

ID=72915499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910312333.0A Active CN111825104B (en) 2019-04-18 2019-04-18 Method for preparing high-silicon Y molecular sieve by seed crystal method

Country Status (1)

Country Link
CN (1) CN111825104B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210363A (en) * 2022-01-18 2022-03-22 天津派森新材料技术有限责任公司 Preparation method of SSZ-16 copper-containing catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733391A (en) * 1971-11-01 1973-05-15 Nl Industries Inc Process of preparing high silica faujasite
CN1145278A (en) * 1996-06-28 1997-03-19 太原工业大学 Synthesis of hypersilicon zeolit and hetero-atom isomorphism substituted derivative
CN102039150A (en) * 2009-10-13 2011-05-04 中国石油化工股份有限公司 Preparation method of binderless Y zeolite catalyst
WO2016110534A1 (en) * 2015-01-08 2016-07-14 IFP Energies Nouvelles Method for preparing a nanometric zeolite y
CN106145155A (en) * 2015-04-23 2016-11-23 中国科学院大连化学物理研究所 A kind of prepare the method for high silica alumina ratio Y type molecular sieve, product and application thereof
CN108408737A (en) * 2018-05-29 2018-08-17 王子韩 A method of quickly preparing Y type molecular sieve
CN108529644A (en) * 2017-03-01 2018-09-14 中国石油天然气集团公司 A kind of NaY molecular sieve and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733391A (en) * 1971-11-01 1973-05-15 Nl Industries Inc Process of preparing high silica faujasite
CN1145278A (en) * 1996-06-28 1997-03-19 太原工业大学 Synthesis of hypersilicon zeolit and hetero-atom isomorphism substituted derivative
CN102039150A (en) * 2009-10-13 2011-05-04 中国石油化工股份有限公司 Preparation method of binderless Y zeolite catalyst
WO2016110534A1 (en) * 2015-01-08 2016-07-14 IFP Energies Nouvelles Method for preparing a nanometric zeolite y
CN106145155A (en) * 2015-04-23 2016-11-23 中国科学院大连化学物理研究所 A kind of prepare the method for high silica alumina ratio Y type molecular sieve, product and application thereof
CN108529644A (en) * 2017-03-01 2018-09-14 中国石油天然气集团公司 A kind of NaY molecular sieve and preparation method thereof
CN108408737A (en) * 2018-05-29 2018-08-17 王子韩 A method of quickly preparing Y type molecular sieve

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张继光: "《催化剂制备过程技术》", 30 June 2004, 中国石化出版社 *
戚蕴石: "《固体催化剂设计》", 30 November 1994 *
王林英 等: "以哌啶碱为新型模板剂合成高硅FAU分子筛", 《第18届全国分子筛学术大会论文集(下)》 *
陈冠荣 等: "《化工百科全书 第4卷》", 30 September 1993 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210363A (en) * 2022-01-18 2022-03-22 天津派森新材料技术有限责任公司 Preparation method of SSZ-16 copper-containing catalyst

Also Published As

Publication number Publication date
CN111825104B (en) 2022-08-19

Similar Documents

Publication Publication Date Title
US6821502B2 (en) Method of making aluminum-containing zeolite with IFR structure
CN102602957A (en) Preparation method for mordenite with high Si/Al ratio and small crystal particle
CN102659134B (en) Method for preparing mordenite molecular sieve
CN105439168B (en) A kind of method for preparing high silica alumina ratio Y type molecular sieve
CN112645349B (en) Preparation method and application of mordenite molecular sieve
CN102718231B (en) Preparation method of layered nano-mordenite molecular sieve
CN112645351A (en) SCM-30 molecular sieve and preparation method and application thereof
CN111825104B (en) Method for preparing high-silicon Y molecular sieve by seed crystal method
CN111825100B (en) A high-silica Y molecular sieve with FAU topology and its preparation method
CN111825102B (en) A kind of dry rubber conversion synthesis method of high silicon Y molecular sieve
CN111825103B (en) A kind of fluorine-containing high silicon Y molecular sieve and preparation method thereof
CN111825101B (en) High-silicon Y molecular sieve and preparation method thereof
CN111825105B (en) Preparation of Y molecular sieve with FAU structure by guide agent method
JP7261316B2 (en) High silica Y molecular sieve with FAU topology structure and its preparation method
CN103508466A (en) Synthesis method of MCM (Mobil Composition of Matter)-22 molecular sieve
CN114506854B (en) Method for synthesizing pure silicon and high silicon SSZ-39 molecular sieve by fluorine-free hydrothermal system
CN113548676B (en) Preparation method of hydrogen type silicon-aluminum ZSM-48 molecular sieve
CN114573002B (en) Mordenite molecular sieve and preparation method and application thereof
CN114516640B (en) Mordenite, preparation method and application thereof
WO2019051774A1 (en) Method for preparing y-type molecular sieve with high silicon-to-aluminum ratio
CN114516641B (en) A kind of mordenite molecular sieve and its preparation method and application
CN119490197A (en) A high-silicon EMT molecular sieve and its synthesis method and application
CN119490198A (en) A high-silicon EMT molecular sieve with EMT topological structure and its synthesis method and application
CN112624148A (en) SCM-29 molecular sieve and preparation method and application thereof
CN114516642A (en) MOR molecular sieve, and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant