CN111799458A - A kind of tin element composite tungsten disulfide/reduced graphene oxide composite electrode material and its preparation method and application - Google Patents
A kind of tin element composite tungsten disulfide/reduced graphene oxide composite electrode material and its preparation method and application Download PDFInfo
- Publication number
- CN111799458A CN111799458A CN202010762955.6A CN202010762955A CN111799458A CN 111799458 A CN111799458 A CN 111799458A CN 202010762955 A CN202010762955 A CN 202010762955A CN 111799458 A CN111799458 A CN 111799458A
- Authority
- CN
- China
- Prior art keywords
- graphene oxide
- reduced graphene
- tungsten disulfide
- electrode material
- oxide composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 139
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 title claims abstract description 55
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 239000007772 electrode material Substances 0.000 title claims abstract description 54
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 53
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 230000014759 maintenance of location Effects 0.000 claims abstract description 6
- FWPIDFUJEMBDLS-UHFFFAOYSA-L tin(II) chloride dihydrate Chemical compound O.O.Cl[Sn]Cl FWPIDFUJEMBDLS-UHFFFAOYSA-L 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 18
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 18
- 239000012279 sodium borohydride Substances 0.000 claims description 18
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 18
- 238000005406 washing Methods 0.000 claims description 18
- 238000000137 annealing Methods 0.000 claims description 11
- 239000002243 precursor Substances 0.000 claims description 11
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 claims description 11
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims description 11
- KPGXUAIFQMJJFB-UHFFFAOYSA-H tungsten hexachloride Chemical compound Cl[W](Cl)(Cl)(Cl)(Cl)Cl KPGXUAIFQMJJFB-UHFFFAOYSA-H 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 230000035484 reaction time Effects 0.000 claims description 9
- 238000004108 freeze drying Methods 0.000 claims description 8
- 238000001354 calcination Methods 0.000 claims description 7
- -1 compound tungsten disulfide Chemical class 0.000 claims description 6
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 239000007773 negative electrode material Substances 0.000 claims description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 150000001408 amides Chemical class 0.000 claims 1
- 125000004014 thioethyl group Chemical group [H]SC([H])([H])C([H])([H])* 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 8
- 239000002135 nanosheet Substances 0.000 abstract description 6
- 239000007791 liquid phase Substances 0.000 abstract description 4
- 239000002105 nanoparticle Substances 0.000 abstract description 4
- 238000011946 reduction process Methods 0.000 abstract description 4
- 230000009471 action Effects 0.000 abstract description 2
- 239000010405 anode material Substances 0.000 abstract description 2
- 239000002086 nanomaterial Substances 0.000 abstract description 2
- 238000003756 stirring Methods 0.000 description 49
- 239000000243 solution Substances 0.000 description 41
- 239000008367 deionised water Substances 0.000 description 21
- 229910021641 deionized water Inorganic materials 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000012300 argon atmosphere Substances 0.000 description 7
- 238000011049 filling Methods 0.000 description 7
- 239000012456 homogeneous solution Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 229910001415 sodium ion Inorganic materials 0.000 description 6
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000004729 solvothermal method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005518 electrochemistry Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/626—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种锡单质复合二硫化钨/还原氧化石墨烯复合电极材料及其制备方法和应用,属于二硫化钨纳米材料制备领域。本发明提供了一种简单可控制备锡单质复合二硫化钨/还原氧化石墨烯复合电极材料的方法:利用溶剂热和常温液相还原工艺,在模板剂的辅助作用下,在二硫化钨/还原氧化石墨烯复合材料的二硫化钨纳米片上还原生长锡纳米颗粒,利用锡单质有效增强最终所得锡单质复合二硫化钨/还原氧化石墨烯复合电极材料的导电性,从而提升材料电化学性能。本发明所制备的锡单质复合二硫化钨/还原氧化石墨烯复合电极材料分散性好,尺寸均匀,形貌均一,在200mA·g‑1的电流密度下循环200圈后,其容量保持率为92%,因此能够应用于电池负极材料。
The invention discloses a tin element composite tungsten disulfide/reduced graphene oxide composite electrode material, a preparation method and application thereof, and belongs to the field of preparation of tungsten disulfide nanomaterials. The invention provides a simple and controllable method for preparing tin element composite tungsten disulfide/reduced graphene oxide composite electrode material: using solvothermal and normal temperature liquid phase reduction process, under the auxiliary action of template agent, in tungsten disulfide/reduced graphene oxide composite electrode material. Tin nanoparticles are grown on the tungsten disulfide nanosheets of the reduced graphene oxide composite material, and the electrical conductivity of the final tin element composite tungsten disulfide/reduced graphene oxide composite electrode material is effectively enhanced by tin element, thereby improving the electrochemical performance of the material. The tin element composite tungsten disulfide/reduced graphene oxide composite electrode material prepared by the present invention has good dispersibility, uniform size and uniform morphology, and after circulating for 200 cycles at a current density of 200 mA g -1 , its capacity retention rate is 92%, so it can be applied to battery anode materials.
Description
技术领域technical field
本发明属于二硫化钨纳米材料制备领域,涉及一种锡单质复合二硫化钨/还原氧化石墨烯复合电极材料及其制备方法和应用。The invention belongs to the field of preparation of tungsten disulfide nanomaterials, and relates to a tin element composite tungsten disulfide/reduced graphene oxide composite electrode material and a preparation method and application thereof.
背景技术Background technique
由于钠离子电池存在较高的能量密度、较大的循环寿命、绿色清洁等特性,其为目前能源领域最为主要的储能设备中的一种。近十年间,科学家对于钠离子电池性能提升以及改善的研究不断地发展,通过不断的实验调整改良使得钠离子电池的性能越来越优异。过渡金属硫化物凭借着其较高的理论容量以及其优异的循环特性和倍率性能逐步成为电化学研究领域中关注的重心。相对比较传统的嵌入型钠离子电池活性材料通常以块体的形式存在,但是块体是由纳米层状结构堆叠起来的,二硫化钨(WS2)作为一种过渡金属硫族化物,资源充足,理论容量较高,电极电位高,是具有类石墨烯结构的层状化合物,这种独特的层状结构和其较大的层间距(6.12nm)利于充放电过程中钠离子的脱嵌。然而二硫化钨在充放电过程中会发生较大形变,循环性能不够理想。作为半导体材料,具有导电性不好的缺点,导致其电子传输较慢,倍率性能较差。Due to the high energy density, long cycle life, green cleaning and other characteristics of sodium-ion batteries, it is one of the most important energy storage devices in the energy field. In the past ten years, scientists have continuously developed research on the performance improvement and improvement of sodium-ion batteries. Through continuous experimental adjustment and improvement, the performance of sodium-ion batteries has become more and more excellent. Transition metal sulfides have gradually become the focus of attention in the field of electrochemical research due to their high theoretical capacity and their excellent cycle characteristics and rate capability. Relatively traditional active materials for intercalation Na-ion batteries usually exist in the form of bulk, but the bulk is stacked by nano-layered structures. As a transition metal chalcogenide, tungsten disulfide (WS2) has abundant resources. The theoretical capacity is high and the electrode potential is high. It is a layered compound with a graphene-like structure. This unique layered structure and its large interlayer spacing (6.12nm) are conducive to the de-intercalation of sodium ions during charge and discharge. However, tungsten disulfide will deform greatly during the charging and discharging process, and the cycle performance is not ideal. As a semiconductor material, it has the disadvantage of poor electrical conductivity, resulting in slow electron transport and poor rate performance.
据文献报道,以碳材料作为基体,有利于电子的传输,可有效的提高复合材料电化学稳定性。例如Jing Ren等人将二硫化钨与三维单壁碳纳米管复合材料作为锂离子电池负极材料(Ren J,Wang Z,Yang F,et al.Freestanding 3D single-wall carbonnanotubes/WS2,nanosheets foams as ultra-long-life anodes for rechargeablelithium ion batteries[J].Electrochimica Acta,2018.),大幅提升了材料的循环稳定性,其在1A/g的电流密度下循环1000圈,容量稳定在688.9mAh/g。但是,二硫化钨本身导电性差的问题,导致其倍率性能较差。According to literature reports, the use of carbon materials as the matrix is conducive to the transport of electrons and can effectively improve the electrochemical stability of composite materials. For example, Jing Ren et al. used tungsten disulfide and three-dimensional single-wall carbon nanotube composites as anode materials for lithium-ion batteries (Ren J, Wang Z, Yang F, et al. Freestanding 3D single-wall carbon nanotubes/WS 2 , nanosheets foams as ultra-long-life anodes for rechargeablelithium ion batteries[J].Electrochimica Acta, 2018.), which greatly improves the cycle stability of the material. It can cycle for 1000 cycles at a current density of 1A/g, and the capacity is stable at 688.9mAh/g . However, the poor conductivity of tungsten disulfide itself results in poor rate performance.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的缺点,本发明的目的在于提供一种锡单质复合二硫化钨/还原氧化石墨烯复合电极材料及其制备方法和应用。本发明通过简单的制备方法,制得了锡单质复合二硫化钨/还原氧化石墨烯复合电极材料。本发明所制备的锡单质复合二硫化钨/还原氧化石墨烯复合电极材料具有较好的容量保持率,在电池负极应用上具有较大的潜能。In order to overcome the above-mentioned shortcomings of the prior art, the object of the present invention is to provide a tin elemental composite tungsten disulfide/reduced graphene oxide composite electrode material and a preparation method and application thereof. The present invention prepares the tin element composite tungsten disulfide/reduced graphene oxide composite electrode material through a simple preparation method. The tin simple substance composite tungsten disulfide/reduced graphene oxide composite electrode material prepared by the invention has good capacity retention rate and has great potential in the application of battery negative electrode.
为了达到上述目的,本发明采用以下技术方案予以实现:In order to achieve the above object, the present invention adopts the following technical solutions to be realized:
本发明公开了一种锡单质复合二硫化钨/还原氧化石墨烯复合电极材料的制备方法,包括以下步骤:The invention discloses a preparation method of tin element composite tungsten disulfide/reduced graphene oxide composite electrode material, comprising the following steps:
1)将还原氧化石墨烯、六氯化钨和硫代乙酰胺均匀分散于水中,得到反应液;将反应液经水热反应后冷却,得到产物,将产物离心洗涤后经冷冻干燥收集粉体,得到二硫化钨/还原氧化石墨烯复合材料;1) uniformly dispersing reduced graphene oxide, tungsten hexachloride and thioacetamide in water to obtain a reaction solution; cooling the reaction solution after hydrothermal reaction to obtain a product, and after centrifugal washing of the product, the powder is collected by freeze-drying , to obtain tungsten disulfide/reduced graphene oxide composite material;
2)向水中加入聚乙烯吡咯烷酮、二水合氯化亚锡、二硫化钨/还原氧化石墨烯复合材料和硼氢化钠并均匀分散,得到前驱液;前驱液离心洗涤后经冷冻干燥收集粉体,得到锡单质复合二硫化钨/还原氧化石墨烯复合材料;2) adding polyvinylpyrrolidone, stannous chloride dihydrate, tungsten disulfide/reduced graphene oxide composite material and sodium borohydride to the water and uniformly dispersing to obtain a precursor liquid; after the centrifugal washing of the precursor liquid, the powder is collected by freeze-drying, A tin elemental composite tungsten disulfide/reduced graphene oxide composite material is obtained;
3)将锡单质复合二硫化钨/还原氧化石墨烯复合材料经煅烧退火处理,得到锡单质复合二硫化钨/还原氧化石墨烯复合电极材料。3) calcining and annealing the tin element composite tungsten disulfide/reduced graphene oxide composite material to obtain a tin element compound tungsten disulfide/reduced graphene oxide composite electrode material.
优选地,步骤1)中,还原氧化石墨烯、水、六氯化钨和硫代乙酰胺的反应投料比为(30~60)mg:(30~60)mL:(0.295~0.59)g:(0.5625~1.125)g。Preferably, in step 1), the reaction feed ratio of reduced graphene oxide, water, tungsten hexachloride and thioacetamide is (30-60) mg: (30-60) mL: (0.295-0.59) g: (0.5625~1.125) g.
优选地,步骤1)中,水热反应温度为200~240℃,反应时间为12~48h。Preferably, in step 1), the hydrothermal reaction temperature is 200-240° C., and the reaction time is 12-48 h.
优选地,步骤2)中,聚乙烯吡咯烷酮、二水合氯化亚锡、二硫化钨/还原氧化石墨烯复合材料、硼氢化钠和水的反应投料比为(1~4)mg:(1~4)mg:(1~4)mg:(0.2~1)mg:(10~30)mL。Preferably, in step 2), the reaction feed ratio of polyvinylpyrrolidone, stannous chloride dihydrate, tungsten disulfide/reduced graphene oxide composite material, sodium borohydride and water is (1~4) mg: (1~4) mg 4) mg: (1 to 4) mg: (0.2 to 1) mg: (10 to 30) mL.
优选地,步骤1)和步骤2)中,冷冻干燥的温度为-40~-70℃,时间为8~12h,冷冻干燥环境的真空度为10~40Pa。Preferably, in step 1) and step 2), the freeze-drying temperature is -40--70°C, the time is 8-12h, and the vacuum degree of the freeze-drying environment is 10-40Pa.
优选地,步骤3)中的煅烧退火处理,具体包括:在惰性气氛保护下,煅烧温度为400~600℃,升温速率为5~20℃/min,保温1~3h。Preferably, the calcination and annealing treatment in step 3) specifically includes: under the protection of an inert atmosphere, the calcination temperature is 400-600° C., the heating rate is 5-20° C./min, and the temperature is kept for 1-3 hours.
本发明还公开了采用上述制备方法制得的锡单质复合二硫化钨/还原氧化石墨烯复合电极材料。The invention also discloses a tin element composite tungsten disulfide/reduced graphene oxide composite electrode material prepared by the above preparation method.
优选地,所述锡单质复合二硫化钨/还原氧化石墨烯复合电极材料在200mA·g-1的电流密度下循环200圈后,其容量保持率为92%。Preferably, the capacity retention rate of the tin element composite tungsten disulfide/reduced graphene oxide composite electrode material is 92% after being cycled for 200 cycles at a current density of 200 mA·g −1 .
本发明还公开了采用上述锡单质复合二硫化钨/还原氧化石墨烯复合电极材料作为电池负极材料的应用。The invention also discloses the application of using the above-mentioned tin simple substance composite tungsten disulfide/reduced graphene oxide composite electrode material as a battery negative electrode material.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明公开了一种锡单质复合二硫化钨/还原氧化石墨烯复合电极材料的制备方法,该制备方法利用溶剂热法和常温液相还原工艺,以硫代乙酰胺作为模板剂的辅助作用下制备了锡单质复合二硫化钨/还原氧化石墨烯(Sn@WS2/rGO)复合材料,然后将该复合材料经过煅烧退火,成功制得了锡单质复合二硫化钨/还原氧化石墨烯(Sn@WS2/rGO)复合电极材料。该制备方法中,通过操作简单的溶剂热法,将二硫化钨纳米片生长于还原氧化石墨烯结构上,通过采用常温液相还原工艺和模板剂的辅助,使用参数易控、工艺温和的方法,在二硫化钨/还原氧化石墨烯(WS2/rGO)复合材料的二硫化钨纳米片上还原生长锡单质纳米颗粒,利用了锡金属单质具有较强的导电性使复合材料具有较高的理论容量,进而能够有效增强最终所得复合电极材料的导电性,从而提升电化学性能。该制备方法工艺简单,重复性高,有利于制备方法的推广和使用。The invention discloses a preparation method of a tin element composite tungsten disulfide/reduced graphene oxide composite electrode material. The preparation method utilizes a solvothermal method and a normal temperature liquid phase reduction process, and uses thioacetamide as a template under the auxiliary action of a template agent. The tin element composite tungsten disulfide/reduced graphene oxide (Sn@WS 2 /rGO) composite material was prepared, and then the composite material was calcined and annealed, and the tin element composite tungsten disulfide/reduced graphene oxide (Sn@WS 2 /rGO) composite was successfully prepared. WS 2 /rGO) composite electrode material. In the preparation method, tungsten disulfide nanosheets are grown on the reduced graphene oxide structure by a simple solvothermal method, and a method with easily controllable parameters and mild process is used by adopting a normal temperature liquid phase reduction process and the assistance of a template agent. , on the tungsten disulfide nanosheets of tungsten disulfide/reduced graphene oxide (WS 2 /rGO) composite material, tin nano-particles are reduced and grown, using the strong electrical conductivity of tin metal to make the composite material have a higher theoretical basis capacity, which can effectively enhance the conductivity of the final composite electrode material, thereby improving the electrochemical performance. The preparation method has the advantages of simple process and high repeatability, and is beneficial to the popularization and use of the preparation method.
本发明还公开了采用上述制备方法制得的锡单质复合二硫化钨/还原氧化石墨烯复合电极材料。该材料中,通过在二硫化钨纳米片上还原生长锡单质纳米颗粒,且经过扫描电镜测试可知,锡单质纳米颗粒能够均匀分散于WS2/rGO复合材料的表面,因此在该材料中,能够利用导电性能优异的锡单质,提高了锡单质复合二硫化钨/还原氧化石墨烯复合电极材料的整体电化学性能。The invention also discloses a tin element composite tungsten disulfide/reduced graphene oxide composite electrode material prepared by the above preparation method. In this material, simple tin nanoparticles are grown on tungsten disulfide nanosheets by reduction, and the scanning electron microscope test shows that the simple tin nanoparticles can be uniformly dispersed on the surface of the WS 2 /rGO composite material. Therefore, in this material, it is possible to use The tin element with excellent electrical conductivity improves the overall electrochemical performance of the tin element composite tungsten disulfide/reduced graphene oxide composite electrode material.
进一步地,通过循环性能测试可知,本发明制得的锡单质复合二硫化钨/还原氧化石墨烯复合电极材料,在200mA·g-1的电流密度下循环200圈后,其容量保持率为92%,因此具有优异的循环稳定性。Further, through the cycle performance test, it can be known that the tin simple substance composite tungsten disulfide/reduced graphene oxide composite electrode material obtained by the present invention has a capacity retention rate of 92 after being cycled for 200 cycles at a current density of 200mA g -1 . %, so it has excellent cycle stability.
本发明还公开了上述锡单质复合二硫化钨/还原氧化石墨烯复合电极材料作为电池负极材料的应用。使用本方法制得的Sn@WS2/rGO复合电极材料在电化学领域中有广阔的研究价值和应用价值。The invention also discloses the application of the above-mentioned tin element composite tungsten disulfide/reduced graphene oxide composite electrode material as a battery negative electrode material. The Sn@WS 2 /rGO composite electrode material prepared by this method has broad research value and application value in the field of electrochemistry.
附图说明Description of drawings
图1为本发明实施例3所制备的Sn@WS2/rGO复合电极材料的X-射线衍射(XRD)图谱;1 is an X-ray diffraction (XRD) pattern of the Sn@WS 2 /rGO composite electrode material prepared in Example 3 of the present invention;
图2为本发明实施例3所制备的Sn@WS2/rGO复合电极材料的扫描电镜(SEM)照片;其中,(a)为低倍图,(b)为高倍图;2 is a scanning electron microscope (SEM) photograph of the Sn@WS 2 /rGO composite electrode material prepared in Example 3 of the present invention; wherein (a) is a low-magnification image, and (b) is a high-magnification image;
图3为本发明实施例3所制备的Sn@WS2/rGO复合电极材料的循环性能图;Fig. 3 is a cycle performance diagram of the Sn@WS 2 /rGO composite electrode material prepared in Example 3 of the present invention;
图4为本发明实施例3所制备的Sn@WS2/rGO复合电极材料的倍率性能图。4 is a graph of the rate performance of the Sn@WS 2 /rGO composite electrode material prepared in Example 3 of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only Embodiments are part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first", "second" and the like in the description and claims of the present invention and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used may be interchanged under appropriate circumstances such that the embodiments of the invention described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having" and any variations thereof, are intended to cover non-exclusive inclusion, for example, a process, method, system, product or device comprising a series of steps or units is not necessarily limited to those expressly listed Rather, those steps or units may include other steps or units not expressly listed or inherent to these processes, methods, products or devices.
具体技术方案如下:一种制备锡单质复合二硫化钨/还原氧化石墨烯(Sn@WS2/rGO)复合产物的方法,包括以下步骤:The specific technical scheme is as follows: a method for preparing a composite product of tin elemental composite tungsten disulfide/reduced graphene oxide (Sn@WS 2 /rGO), comprising the following steps:
步骤一:室温条件下,将30~60mg rGO加入30~60mL去离子水中超声2~6h至形成均一溶液A,控制其浓度为0.5~2mol/L。超声功率为300-1000W;Step 1: At room temperature, add 30-60 mg of rGO to 30-60 mL of deionized water and sonicate for 2-6 h to form a homogeneous solution A, and control its concentration to be 0.5-2 mol/L. Ultrasonic power is 300-1000W;
步骤二:取0.295~0.59g六氯化钨,0.5625~1.125g硫代乙酰胺加入溶液A中,搅拌速度为500~800r/min,搅拌0.5~3h,所得溶液为溶液B。Step 2: Take 0.295-0.59 g of tungsten hexachloride and 0.5625-1.125 g of thioacetamide into solution A, stir at a speed of 500-800 r/min, and stir for 0.5-3 h, the obtained solution is solution B.
步骤三:将上述溶液C转移至水热釜中,填充比控制在30%~60%,然后密封水热釜,均相反应仪器中,控制水热温度为200~240℃,反应时间为12~48h,反应结束后自然冷却至室温。Step 3: transfer the above solution C to the hydrothermal kettle, control the filling ratio at 30% to 60%, then seal the hydrothermal kettle, and in the homogeneous reaction apparatus, control the hydrothermal temperature to be 200 to 240 ° C, and the reaction time to be 12 ~48h, after the reaction was completed, it was naturally cooled to room temperature.
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤4~6次后置于温度为-40~-70℃,真空度为10~40Pa冷冻干燥机内干燥8~12h,得到黑色的WS2/rGO复合材料。Step 4: Open the reaction kettle, take out the product and wash it with absolute ethanol and deionized water and centrifuge in turn, repeat the washing for 4 to 6 times and then place it in a freeze dryer with a temperature of -40 to -70°C and a vacuum of 10 to 40Pa. After drying for 8-12 hours, a black WS 2 /rGO composite material was obtained.
步骤五:取PVP和二水合氯化亚锡完全溶解于10~30mL水溶液中,搅拌10~60min,搅拌速度为500~800r/min。加入上述WS2/rGO复合材料,搅拌0.5~2h,搅拌速度为500~800r/min。混合均匀后加入硼氢化钠,控制m(PVP):m(二水合氯化亚锡):m(WS2/rGO):(硼氢化钠)=(1~4):(1~4):(1~4):(0.2~1)。搅拌0.5~1h,搅拌速度为500~800r/min。Step 5: Dissolve PVP and stannous chloride dihydrate completely in 10-30 mL aqueous solution, stir for 10-60 min, and the stirring speed is 500-800 r/min. The above-mentioned WS 2 /rGO composite material is added, and the mixture is stirred for 0.5 to 2 hours, and the stirring speed is 500 to 800 r/min. After mixing evenly, add sodium borohydride to control m(PVP):m(stannous chloride dihydrate):m(WS 2 /rGO):(sodium borohydride)=(1~4):(1~4): (1 to 4): (0.2 to 1). Stir for 0.5 to 1 h, and the stirring speed is 500 to 800 r/min.
步骤六:将上述前驱液用无水乙醇和去离子水洗涤并离心分离,重复洗涤4~6次后置于温度为-40~-70℃,真空度为10~40Pa冷冻干燥机内干燥8~12h,得到黑色的Sn@WS2/rGO复合材料。Step 6: Wash the above-mentioned precursor solution with absolute ethanol and deionized water and centrifuge, repeat the washing for 4 to 6 times, and then place it in a freeze dryer with a temperature of -40 to -70°C and a vacuum of 10 to 40 Pa to dry for 8 ~12h, a black Sn@WS 2 /rGO composite was obtained.
步骤七:取上述Sn@WS2/rGO复合材料于低温管式炉中进行退火处理,在氩气气氛保护下,煅烧400~600℃,升温速率为5~20℃/min,保温1~3h,所得产物为Sn@WS2/rGO复合电极材料。Step 7: Take the above-mentioned Sn@WS 2 /rGO composite material for annealing treatment in a low temperature tube furnace, calcined at 400-600°C under the protection of argon atmosphere, the heating rate is 5-20°C/min, and the temperature is kept for 1-3h , the obtained product is Sn@WS 2 /rGO composite electrode material.
下面结合具体实施例对本发明做进一步详细描述:Below in conjunction with specific embodiment, the present invention is described in further detail:
实施例1Example 1
步骤一:室温条件下,将30mg rGO加入60mL去离子水中超声2h至形成均一溶液A,控制其浓度为0.5mol/L。超声功率为1000W;Step 1: At room temperature, add 30 mg of rGO to 60 mL of deionized water for 2 h to form a homogeneous solution A, and control its concentration to 0.5 mol/L. Ultrasonic power is 1000W;
步骤二:取0.295g六氯化钨,0.5625g硫代乙酰胺加入溶液A中,搅拌速度为800r/min,搅拌3h,所得溶液为溶液B。Step 2: Take 0.295g of tungsten hexachloride and 0.5625g of thioacetamide into solution A, stir at a speed of 800r/min, stir for 3h, and the obtained solution is solution B.
步骤三:将上述溶液C转移至水热釜中,填充比控制在60%,然后密封水热釜,均相反应仪器中,控制水热温度为240℃,反应时间为12h,反应结束后自然冷却至室温。Step 3: Transfer the above solution C to the hydrothermal kettle, control the filling ratio at 60%, then seal the hydrothermal kettle, and in the homogeneous reaction apparatus, control the hydrothermal temperature to be 240°C, and the reaction time to be 12h. Cool to room temperature.
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤6次后置于温度为-70℃,真空度为40Pa的冷冻干燥机内干燥8h,得到黑色的WS2/rGO复合材料。Step 4: Open the reaction kettle, take out the product, wash it with absolute ethanol and deionized water in turn and centrifuge, repeat the washing for 6 times and place it in a freeze dryer with a temperature of -70°C and a vacuum of 40Pa for 8h to obtain a black color. WS 2 /rGO composites.
步骤五:取PVP和二水合氯化亚锡完全溶解于15mL水溶液中,搅拌20min,搅拌速度为800r/min。加入上述WS2/rGO复合材料,搅拌0.5h,搅拌速度为800r/min。混合均匀后加入硼氢化钠,控制m(PVP):m(二水合氯化亚锡):m(WS2/rGO):(硼氢化钠)=4:4:4:1。搅拌1h,搅拌速度为800r/min。Step 5: Dissolve PVP and stannous chloride dihydrate completely in 15 mL of aqueous solution, stir for 20 min, and the stirring speed is 800 r/min. The above WS 2 /rGO composite material was added and stirred for 0.5 h at a stirring speed of 800 r/min. After mixing evenly, sodium borohydride was added to control m(PVP):m(stannous chloride dihydrate):m(WS 2 /rGO):(sodium borohydride)=4:4:4:1. Stir for 1 h at a stirring speed of 800 r/min.
步骤六:将上述前驱液用无水乙醇和去离子水洗涤并离心分离,重复洗涤4次后置于温度为-40℃,真空度为10Pa的冷冻干燥机内干燥8h,得到黑色的Sn@WS2/rGO复合材料。Step 6: Wash the above precursor solution with absolute ethanol and deionized water and centrifuge, repeat the washing for 4 times, and then place it in a freeze dryer with a temperature of -40°C and a vacuum of 10Pa for 8h to obtain black Sn@ WS 2 /rGO composites.
步骤七:取上述Sn@WS2/rGO复合材料于低温管式炉中进行退火处理,在氩气气氛保护下,煅烧600℃,升温速率为20℃/min,保温1h,所得产物为Sn@WS2/rGO复合电极材料。Step 7: Take the above Sn@WS 2 /rGO composite material for annealing treatment in a low temperature tube furnace, under the protection of argon atmosphere, calcined at 600 °C, the heating rate is 20 °C/min, and the temperature is kept for 1 h, the obtained product is Sn@ WS 2 /rGO composite electrode material.
实施例2Example 2
步骤一:室温条件下,将50mg rGO加入60mL去离子水中超声5h至形成均一溶液A,控制其浓度为1.2g/L。超声功率为800W;Step 1: At room temperature, add 50 mg of rGO to 60 mL of deionized water for 5 h to form a homogeneous solution A, and control its concentration to 1.2 g/L. Ultrasonic power is 800W;
步骤二:取0.59g六氯化钨,1.125g硫代乙酰胺加入溶液A中,搅拌速度为600r/min,搅拌3h,所得溶液为溶液B。Step 2: Take 0.59g of tungsten hexachloride and 1.125g of thioacetamide into solution A, stir at a speed of 600r/min, and stir for 3h, and the obtained solution is solution B.
步骤三:将上述溶液C转移至水热釜中,填充比控制在60%,然后密封水热釜,均相反应仪器中,控制水热温度为240℃,反应时间为48h,反应结束后自然冷却至室温。Step 3: Transfer the above solution C to a hydrothermal kettle, control the filling ratio at 60%, then seal the hydrothermal kettle, and in a homogeneous reaction apparatus, control the hydrothermal temperature to be 240°C, and the reaction time to be 48h. Cool to room temperature.
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤6次后置于温度为-70℃,真空度为10Pa的冷冻干燥机内干燥10h,得到黑色的WS2/rGO复合材料。Step 4: Open the reaction kettle, take out the product, wash it with absolute ethanol and deionized water in turn and centrifuge, repeat the washing for 6 times and then place it in a freeze dryer with a temperature of -70°C and a vacuum of 10Pa for 10h to obtain a black color. WS 2 /rGO composites.
步骤五:取PVP和二水合氯化亚锡完全溶解于25mL水溶液中,搅拌60min,搅拌速度为500r/min。加入上述WS2/rGO复合材料,搅拌0.5h,搅拌速度为500r/min。混合均匀后加入硼氢化钠,控制m(PVP):m(二水合氯化亚锡):m(WS2/rGO):(硼氢化钠)=3:2:1:0.5。搅拌1h,搅拌速度为800r/min。Step 5: Dissolve PVP and stannous chloride dihydrate completely in 25 mL of aqueous solution, stir for 60 min, and the stirring speed is 500 r/min. The above-mentioned WS 2 /rGO composite material was added and stirred for 0.5 h at a stirring speed of 500 r/min. After mixing uniformly, add sodium borohydride to control m(PVP):m(stannous chloride dihydrate):m(WS 2 /rGO):(sodium borohydride)=3:2:1:0.5. Stir for 1 h at a stirring speed of 800 r/min.
步骤六:将上述前驱液用无水乙醇和去离子水洗涤并离心分离,重复洗涤5次后置于温度为-40℃,真空度为10Pa的冷冻干燥机内干燥12h,得到黑色的Sn@WS2/rGO复合材料。Step 6: Wash the above precursor solution with absolute ethanol and deionized water and centrifuge, repeat the washing for 5 times, and then place it in a freeze dryer with a temperature of -40°C and a vacuum of 10Pa for 12h to obtain black Sn@ WS 2 /rGO composites.
步骤七:取上述Sn@WS2/rGO复合材料于低温管式炉中进行退火处理,在氩气气氛保护下,煅烧500℃,升温速率为10℃/min,保温3h,所得产物为Sn@WS2/rGO复合电极材料。Step 7: Take the above Sn@WS 2 /rGO composite material for annealing treatment in a low temperature tube furnace, under the protection of argon atmosphere, calcined at 500 °C, the heating rate is 10 °C/min, and the temperature is kept for 3 h, the obtained product is Sn@ WS 2 /rGO composite electrode material.
实施例3Example 3
步骤一:室温条件下,将60mg rGO加入60mL去离子水中超声6h至形成均一溶液A,控制其浓度为1mol/L。超声功率为500W;Step 1: At room temperature, add 60 mg of rGO to 60 mL of deionized water for 6 h to form a homogeneous solution A, and control its concentration to 1 mol/L. Ultrasonic power is 500W;
步骤二:取0.59g六氯化钨,1.125g硫代乙酰胺加入溶液A中,搅拌速度为800r/min,搅拌2h,所得溶液为溶液B。Step 2: Take 0.59g of tungsten hexachloride and 1.125g of thioacetamide into solution A, stir at a speed of 800r/min, and stir for 2h, and the obtained solution is solution B.
步骤三:将上述溶液C转移至水热釜中,填充比控制在60%,然后密封水热釜,均相反应仪器中,控制水热温度为200℃,反应时间为24h,反应结束后自然冷却至室温。Step 3: Transfer the above solution C to the hydrothermal kettle, the filling ratio is controlled at 60%, and then the hydrothermal kettle is sealed, and in the homogeneous reaction apparatus, the hydrothermal temperature is controlled to be 200°C, and the reaction time is 24h. Cool to room temperature.
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤4~6次后置于温度为-60℃,真空度为25Pa的冷冻干燥机内干燥10h,得到黑色的WS2/rGO复合材料。Step 4: Open the reaction kettle, take out the product, wash it with absolute ethanol and deionized water and centrifuge in turn, repeat the washing for 4 to 6 times, and then place it in a freeze dryer with a temperature of -60 ° C and a vacuum of 25 Pa for 10 hours, A black WS 2 /rGO composite was obtained.
步骤五:取PVP和二水合氯化亚锡完全溶解于10mL水溶液中,搅拌30min,搅拌速度为800r/min。加入上述WS2/rGO复合材料,搅拌0.5h,搅拌速度为800r/min。混合均匀后加入硼氢化钠,控制m(PVP):m(二水合氯化亚锡):m(WS2/rGO):(硼氢化钠)=4:4:4:1。搅拌1h,搅拌速度为800r/min。Step 5: Dissolve PVP and stannous chloride dihydrate completely in 10 mL of aqueous solution, stir for 30 min, and the stirring speed is 800 r/min. The above WS 2 /rGO composite material was added and stirred for 0.5 h at a stirring speed of 800 r/min. After mixing evenly, sodium borohydride was added to control m(PVP):m(stannous chloride dihydrate):m(WS 2 /rGO):(sodium borohydride)=4:4:4:1. Stir for 1 h at a stirring speed of 800 r/min.
步骤六:将上述前驱液用无水乙醇和去离子水洗涤并离心分离,重复洗涤6次后置于温度为-70℃,真空度为40Pa的冷冻干燥机内干燥12h,得到黑色的Sn@WS2/rGO复合材料。Step 6: Wash the above precursor solution with absolute ethanol and deionized water and centrifuge, repeat the washing for 6 times and then place it in a freeze dryer with a temperature of -70°C and a vacuum of 40Pa for 12h to obtain black Sn@ WS 2 /rGO composites.
步骤七:取上述Sn@WS2/rGO复合材料于低温管式炉中进行退火处理,在氩气气氛保护下,煅烧500℃,升温速率为10℃/min,保温2h,所得产物为Sn@WS2/rGO复合电极材料。Step 7: Take the above Sn@WS 2 /rGO composite material for annealing treatment in a low temperature tube furnace, under the protection of argon atmosphere, calcined at 500 °C, the heating rate is 10 °C/min, and the temperature is kept for 2 h, the obtained product is Sn@ WS 2 /rGO composite electrode material.
实施例4Example 4
步骤一:室温条件下,将40mg rGO加入60mL去离子水中超声2~6h至形成均一溶液A,控制其浓度为0.67g/L。超声功率为1000W;Step 1: At room temperature, add 40 mg of rGO to 60 mL of deionized water and sonicate for 2 to 6 h to form a homogeneous solution A, with a concentration of 0.67 g/L. Ultrasonic power is 1000W;
步骤二:取0.358g六氯化钨,1.08g硫代乙酰胺加入溶液A中,搅拌速度为500r/min,搅拌3h,所得溶液为溶液B。Step 2: Take 0.358g of tungsten hexachloride and 1.08g of thioacetamide into solution A, stir at a speed of 500r/min, and stir for 3h, and the obtained solution is solution B.
步骤三:将上述溶液C转移至水热釜中,填充比控制在60%,然后密封水热釜,均相反应仪器中,控制水热温度为210℃,反应时间为36h,反应结束后自然冷却至室温。Step 3: Transfer the above solution C to the hydrothermal kettle, control the filling ratio at 60%, then seal the hydrothermal kettle, and in the homogeneous reaction apparatus, control the hydrothermal temperature to be 210°C, and the reaction time to be 36h. Cool to room temperature.
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤6次后置于温度为-40℃,真空度为10Pa的冷冻干燥机内干燥9h,得到黑色的WS2/rGO复合材料。Step 4: Open the reaction kettle, take out the product, wash it with absolute ethanol and deionized water in turn and centrifuge, repeat the washing for 6 times, and then place it in a freeze dryer with a temperature of -40 ° C and a vacuum of 10 Pa for 9 hours to dry to obtain a black color. WS 2 /rGO composites.
步骤五:取PVP和二水合氯化亚锡完全溶解于20mL水溶液中,搅拌25min,搅拌速度为500r/min。加入上述WS2/rGO复合材料,搅拌1h,搅拌速度为500r/min。混合均匀后加入硼氢化钠,控制m(PVP):m(二水合氯化亚锡):m(WS2/rGO):(硼氢化钠)=3:3:1:0.5。搅拌1h,搅拌速度为800r/min。Step 5: Dissolve PVP and stannous chloride dihydrate completely in 20 mL of aqueous solution, stir for 25 min, and the stirring speed is 500 r/min. The above-mentioned WS 2 /rGO composite material was added and stirred for 1 h at a stirring speed of 500 r/min. After mixing uniformly, sodium borohydride was added to control m(PVP):m(stannous chloride dihydrate):m(WS 2 /rGO):(sodium borohydride)=3:3:1:0.5. Stir for 1 h at a stirring speed of 800 r/min.
步骤六:将上述前驱液用无水乙醇和去离子水洗涤并离心分离,重复洗涤6次后置于温度为-70℃,真空度为40Pa的冷冻干燥机内干燥12h,得到黑色的Sn@WS2/rGO复合材料。Step 6: Wash the above precursor solution with absolute ethanol and deionized water and centrifuge, repeat the washing for 6 times and then place it in a freeze dryer with a temperature of -70°C and a vacuum of 40Pa for 12h to obtain black Sn@ WS 2 /rGO composites.
步骤七:取上述Sn@WS2/rGO复合材料于低温管式炉中进行退火处理,在氩气气氛保护下,煅烧550℃,升温速率15℃/min,保温3h,所得产物为Sn@WS2/rGO复合电极材料。Step 7: Take the above-mentioned Sn@WS 2 /rGO composite material for annealing treatment in a low temperature tube furnace, under the protection of argon atmosphere, calcining at 550 ° C, heating rate of 15 ° C/min, and holding for 3 h, the obtained product is Sn@WS 2 /rGO composite electrode material.
实施例5Example 5
步骤一:室温条件下,将60mg rGO加入30mL去离子水中超声2~6h至形成均一溶液A,控制其浓度为2g/L。超声功率为800W;Step 1: At room temperature, add 60 mg of rGO to 30 mL of deionized water and sonicate for 2 to 6 h to form a homogeneous solution A, with a concentration of 2 g/L. Ultrasonic power is 800W;
步骤二:取0.298g六氯化钨,0.875g硫代乙酰胺加入溶液A中,搅拌速度为500r/min,搅拌3h,所得溶液为溶液B。Step 2: Take 0.298g of tungsten hexachloride and 0.875g of thioacetamide into solution A, stir at a speed of 500r/min, stir for 3h, and the obtained solution is solution B.
步骤三:将上述溶液C转移至水热釜中,填充比控制在30%,然后密封水热釜,均相反应仪器中,控制水热温度为240℃,反应时间为12h,反应结束后自然冷却至室温。Step 3: Transfer the above solution C to the hydrothermal kettle, the filling ratio is controlled at 30%, then seal the hydrothermal kettle, and in the homogeneous reaction apparatus, control the hydrothermal temperature to be 240°C, and the reaction time to be 12h. Cool to room temperature.
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤4次后置于温度为-40℃,真空度为10Pa的冷冻干燥机内干燥8h,得到黑色的WS2/rGO复合材料。Step 4: Open the reaction kettle, take out the product, wash it with absolute ethanol and deionized water and centrifuge in turn, repeat the washing for 4 times and place it in a freeze dryer with a temperature of -40°C and a vacuum of 10Pa for 8h to obtain a black color. WS 2 /rGO composites.
步骤五:取PVP和二水合氯化亚锡完全溶解于30mL水溶液中,搅拌60min,搅拌速度为800r/min。加入上述WS2/rGO复合材料,搅拌2h,搅拌速度为800r/min。混合均匀后加入硼氢化钠,控制m(PVP):m(二水合氯化亚锡):m(WS2/rGO):(硼氢化钠)=1:2:4:1。搅拌1h,搅拌速度为800r/min。Step 5: Dissolve PVP and stannous chloride dihydrate completely in 30 mL of aqueous solution, stir for 60 min, and the stirring speed is 800 r/min. The above WS 2 /rGO composite material was added and stirred for 2 h at a stirring speed of 800 r/min. After mixing uniformly, add sodium borohydride to control m(PVP):m(stannous chloride dihydrate):m(WS 2 /rGO):(sodium borohydride)=1:2:4:1. Stir for 1 h at a stirring speed of 800 r/min.
步骤六:将上述前驱液用无水乙醇和去离子水洗涤并离心分离,重复洗涤6次后置于温度为-70℃,真空度为40Pa的冷冻干燥机内干燥12h,得到黑色的Sn@WS2/rGO复合材料。Step 6: Wash the above precursor solution with absolute ethanol and deionized water and centrifuge, repeat the washing for 6 times and then place it in a freeze dryer with a temperature of -70°C and a vacuum of 40Pa for 12h to obtain black Sn@ WS 2 /rGO composites.
步骤七:取上述Sn@WS2/rGO复合材料于低温管式炉中进行退火处理,在氩气气氛保护下,煅烧400℃,升温速率为5℃/min,保温3h,所得产物为Sn@WS2/rGO复合电极材料。Step 7: Take the above Sn@WS 2 /rGO composite material for annealing treatment in a low temperature tube furnace, under the protection of argon atmosphere, calcined at 400 °C, the heating rate is 5 °C/min, and the temperature is kept for 3 h, the obtained product is Sn@ WS 2 /rGO composite electrode material.
实施例6Example 6
步骤一:室温条件下,将40mg rGO加入40mL去离子水中超声2~6h至形成均一溶液A,控制其浓度为1g/L。超声功率为800W;Step 1: At room temperature, add 40 mg of rGO to 40 mL of deionized water and sonicate for 2 to 6 h to form a homogeneous solution A, and control its concentration to 1 g/L. Ultrasonic power is 800W;
步骤二:取0.295g六氯化钨,0.5625g硫代乙酰胺加入溶液A中,搅拌速度为500r/min,搅拌3h,所得溶液为溶液B。Step 2: Take 0.295g of tungsten hexachloride and 0.5625g of thioacetamide into solution A, stir at a speed of 500r/min, stir for 3h, and the obtained solution is solution B.
步骤三:将上述溶液C转移至水热釜中,填充比控制在30%,然后密封水热釜,均相反应仪器中,控制水热温度为200℃,反应时间为12h,反应结束后自然冷却至室温。Step 3: Transfer the above solution C to the hydrothermal kettle, the filling ratio is controlled at 30%, then seal the hydrothermal kettle, and in the homogeneous reaction apparatus, control the hydrothermal temperature to be 200°C, and the reaction time to be 12h. Cool to room temperature.
步骤四:打开反应釜,取出产物依次采用无水乙醇和去离子水洗涤并离心分离,重复洗涤4次后置于温度为-40℃,真空度为10Pa的冷冻干燥机内干燥8h,得到黑色的WS2/rGO复合材料。Step 4: Open the reaction kettle, take out the product, wash it with absolute ethanol and deionized water and centrifuge in turn, repeat the washing for 4 times and place it in a freeze dryer with a temperature of -40°C and a vacuum of 10Pa for 8h to obtain a black color. WS 2 /rGO composites.
步骤五:取PVP和二水合氯化亚锡完全溶解于30mL水溶液中,搅拌60min,搅拌速度为800r/min。加入上述WS2/rGO复合材料,搅拌2h,搅拌速度为800r/min。混合均匀后加入硼氢化钠,控制m(PVP):m(二水合氯化亚锡):m(WS2/rGO):(硼氢化钠)=1:1:2:0.2。搅拌1h,搅拌速度为800r/min。Step 5: Dissolve PVP and stannous chloride dihydrate completely in 30 mL of aqueous solution, stir for 60 min, and the stirring speed is 800 r/min. The above WS 2 /rGO composite material was added and stirred for 2 h at a stirring speed of 800 r/min. After mixing evenly, sodium borohydride was added to control m(PVP):m(stannous chloride dihydrate):m(WS 2 /rGO):(sodium borohydride)=1:1:2:0.2. Stir for 1 h at a stirring speed of 800 r/min.
步骤六:将上述前驱液用无水乙醇和去离子水洗涤并离心分离,重复洗涤6次后置于温度为-70℃,真空度为40Pa的冷冻干燥机内干燥12h,得到黑色的Sn@WS2/rGO复合材料。Step 6: Wash the above precursor solution with absolute ethanol and deionized water and centrifuge, repeat the washing for 6 times and then place it in a freeze dryer with a temperature of -70°C and a vacuum of 40Pa for 12h to obtain black Sn@ WS 2 /rGO composites.
步骤七:取上述Sn@WS2/rGO复合材料于低温管式炉中进行退火处理,在氩气气氛保护下,煅烧400℃,升温速率为5℃/min,保温2h,所得产物为Sn@WS2/rGO复合电极材料。Step 7: Take the above Sn@WS 2 /rGO composite material for annealing treatment in a low temperature tube furnace, under the protection of argon atmosphere, calcined at 400 °C, the heating rate is 5 °C/min, and the temperature is kept for 2 h, the obtained product is Sn@ WS 2 /rGO composite electrode material.
总之,本发明利用溶剂热法和常温液相还原工艺,在模板剂的辅助作用下制备了Sn@WS2/rGO复合材料,在WS2/rGO复合材料的二硫化钨纳米片上还原生长Sn纳米颗粒,有效增强材料的导电性,从而提升材料电化学性能。该制备工艺简单,工艺参数易控制,重复性高,使用本方法制得的Sn@WS2/rGO复合材料在电化学领域中有广阔的研究价值和应用价值。In conclusion, the present invention utilizes solvothermal method and normal temperature liquid phase reduction process to prepare Sn@WS 2 /rGO composite material with the aid of template agent, and grow Sn nanometers on tungsten disulfide nanosheets of WS 2 /rGO composite material by reduction. The particles can effectively enhance the conductivity of the material, thereby improving the electrochemical performance of the material. The preparation process is simple, the process parameters are easy to control, and the repeatability is high. The Sn@WS 2 /rGO composite material prepared by this method has broad research value and application value in the field of electrochemistry.
下面结合附图对本发明做进一步详细描述:Below in conjunction with accompanying drawing, the present invention is described in further detail:
参见图1,为实施例3所制备的Sn@WS2/rGO复合电极材料的X-射线衍射(XRD)图谱。可以明显看见Sn和WS2的特征峰,而没有其他杂相的存在,说明本发明成功的制备了Sn@WS2/rGO复合电极材料。Referring to FIG. 1 , it is an X-ray diffraction (XRD) pattern of the Sn@WS 2 /rGO composite electrode material prepared in Example 3. The characteristic peaks of Sn and WS 2 can be clearly seen without the existence of other impurity phases, indicating that the Sn@WS 2 /rGO composite electrode material has been successfully prepared by the present invention.
参见图2,为实施例3所制备的Sn@WS2/rGO复合电极材料的扫描电镜(SEM)照片。可以看出Sn颗粒较为均匀的分布在WS2/rGO复合材料的表面,因此能够利用导电性能优异的锡单质,最终提高了锡单质复合二硫化钨/还原氧化石墨烯复合电极材料的整体电化学性能。Referring to FIG. 2 , it is a scanning electron microscope (SEM) photograph of the Sn@WS 2 /rGO composite electrode material prepared in Example 3. It can be seen that the Sn particles are relatively uniformly distributed on the surface of the WS 2 /rGO composite material, so the tin element with excellent electrical conductivity can be used, and finally the overall electrochemical performance of the tin element composite tungsten disulfide/reduced graphene oxide composite electrode material can be improved. performance.
参见图3,为实施例3所制备的Sn@WS2/rGO复合电极材料的循环性能图。可知在200mA·g-1的电流密度下循环200圈后,其容量保持率为92%,可见其循环稳定性较好。Referring to FIG. 3 , it is a cycle performance diagram of the Sn@WS 2 /rGO composite electrode material prepared in Example 3. It can be seen that after 200 cycles at a current density of 200 mA·g -1 , the capacity retention rate is 92%, which shows that the cycle stability is good.
参见图4,为本发明实施例3所制备的Sn@WS2/rGO复合电极材料的倍率性能图,可知在20A·g-1的电流密度下其容量依然能够达到100mAh·g-1。因此,结合图3和图4可知,利用金属单质具有较好的导电性,即Sn单质做钠离子电池负极材料能够具有较高的理论容量,因此在保持高容量的前提下,利用金属单质Sn复合提升材料的导电性,使本发明最终制得的锡单质复合二硫化钨/还原氧化石墨烯复合电极材料表现出优异的循环稳定性和倍率性能。Referring to FIG. 4 , which is the rate performance diagram of the Sn@WS 2 /rGO composite electrode material prepared in Example 3 of the present invention, it can be seen that its capacity can still reach 100mAh·g -1 at a current density of 20A·g -1 . Therefore, according to Figure 3 and Figure 4, it can be seen that the use of metal element has better conductivity, that is, Sn element as the negative electrode material of sodium ion battery can have a higher theoretical capacity, so on the premise of maintaining high capacity, the use of metal element Sn The composite enhances the conductivity of the material, so that the tin element composite tungsten disulfide/reduced graphene oxide composite electrode material finally prepared by the present invention exhibits excellent cycle stability and rate performance.
具体地,上述实验测试图对应于:用日本理学D/max2000PCX-射线衍射仪分析样品(Sn@WS2/rGO复合电极材料),发现样品与JCPDS编号为08-0237的六方晶系的WS2结构一致,说明该方法可制得高纯度的二硫化钨。将该样品用场发射扫描电子显微镜(FESEM)进行观察,可以看出所制备的Sn@WS2/rGO复合电极材料产物分散性较好。Specifically, the above experimental test chart corresponds to: the sample (Sn@WS 2 /rGO composite electrode material) was analyzed with Rigaku D/max2000PC X-ray diffractometer, and it was found that the sample was similar to the WS 2 of the hexagonal crystal system with the JCPDS number of 08-0237. The structures are consistent, indicating that this method can produce high-purity tungsten disulfide. The sample was observed with a field emission scanning electron microscope (FESEM), and it can be seen that the prepared Sn@WS 2 /rGO composite electrode material has good product dispersion.
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。The above content is only to illustrate the technical idea of the present invention, and cannot limit the protection scope of the present invention. Any modification made on the basis of the technical solution proposed in accordance with the technical idea of the present invention falls within the scope of the claims of the present invention. within the scope of protection.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010762955.6A CN111799458B (en) | 2020-07-31 | 2020-07-31 | Tin elemental composite tungsten disulfide/reduced graphene oxide composite electrode material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010762955.6A CN111799458B (en) | 2020-07-31 | 2020-07-31 | Tin elemental composite tungsten disulfide/reduced graphene oxide composite electrode material and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111799458A true CN111799458A (en) | 2020-10-20 |
CN111799458B CN111799458B (en) | 2022-02-11 |
Family
ID=72827503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010762955.6A Active CN111799458B (en) | 2020-07-31 | 2020-07-31 | Tin elemental composite tungsten disulfide/reduced graphene oxide composite electrode material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111799458B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115112737A (en) * | 2022-06-27 | 2022-09-27 | 天津大学 | Preparation and application of nitrogen-doped reduced graphene oxide-based composite tungsten disulfide nanosheet electrochemical sensor |
CN115974054A (en) * | 2023-02-15 | 2023-04-18 | 蜂巢能源科技股份有限公司 | Carbon sheet-carbon nanotube material and preparation method and application thereof |
CN115974054B (en) * | 2023-02-15 | 2025-02-18 | 蜂巢能源科技股份有限公司 | A carbon sheet-carbon nanotube material and its preparation method and application |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009062848A2 (en) * | 2007-11-12 | 2009-05-22 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Methods of preparing, optionally supported, ordered intermetallic palladium gallium compounds, the compounds as such, and their use in catalysis |
CN103441243A (en) * | 2013-07-04 | 2013-12-11 | 天津大学 | Preparation method and application of hollow tin alloy nanoparticles with a particle size of less than 50 nm |
CN103956470A (en) * | 2014-04-28 | 2014-07-30 | 浙江大学 | Two-dimensional layered composite film and preparation method and application thereof |
CN104009218A (en) * | 2014-05-07 | 2014-08-27 | 上海应用技术学院 | Preparation method of tin/lithium titanate composite electrode material as lithium ion battery negative electrode material |
CN104752730A (en) * | 2015-03-09 | 2015-07-01 | 同济大学 | Preparation method of bell structured Sn/C composite material for anode of lithium ion battery |
CN108428565A (en) * | 2017-02-13 | 2018-08-21 | 中国科学院宁波材料技术与工程研究所 | Tungsten disulfide/graphene oxide composite material, preparation method and application |
CN108609612A (en) * | 2018-05-18 | 2018-10-02 | 合肥工业大学 | A kind of solvent heat co-reducing process preparing tin/graphene nanocomposite material |
CN108899496A (en) * | 2018-06-20 | 2018-11-27 | 电子科技大学 | Graphene adulterates WS2Preparation method and the application in lithium/sodium-ion battery |
CN109860555A (en) * | 2019-01-30 | 2019-06-07 | 陕西科技大学 | A kind of preparation method of growing elemental tin on carbon cloth as negative electrode material of sodium ion battery |
KR20190074382A (en) * | 2017-12-20 | 2019-06-28 | 한국세라믹기술원 | Manufacturing method of tin-potassium titanate composite |
CN110600682A (en) * | 2018-06-12 | 2019-12-20 | 天津大学 | Sandwich-shaped hollow spherical lithium ion battery cathode material and preparation method thereof |
-
2020
- 2020-07-31 CN CN202010762955.6A patent/CN111799458B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009062848A2 (en) * | 2007-11-12 | 2009-05-22 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Methods of preparing, optionally supported, ordered intermetallic palladium gallium compounds, the compounds as such, and their use in catalysis |
CN103441243A (en) * | 2013-07-04 | 2013-12-11 | 天津大学 | Preparation method and application of hollow tin alloy nanoparticles with a particle size of less than 50 nm |
CN103956470A (en) * | 2014-04-28 | 2014-07-30 | 浙江大学 | Two-dimensional layered composite film and preparation method and application thereof |
CN104009218A (en) * | 2014-05-07 | 2014-08-27 | 上海应用技术学院 | Preparation method of tin/lithium titanate composite electrode material as lithium ion battery negative electrode material |
CN104752730A (en) * | 2015-03-09 | 2015-07-01 | 同济大学 | Preparation method of bell structured Sn/C composite material for anode of lithium ion battery |
CN108428565A (en) * | 2017-02-13 | 2018-08-21 | 中国科学院宁波材料技术与工程研究所 | Tungsten disulfide/graphene oxide composite material, preparation method and application |
KR20190074382A (en) * | 2017-12-20 | 2019-06-28 | 한국세라믹기술원 | Manufacturing method of tin-potassium titanate composite |
CN108609612A (en) * | 2018-05-18 | 2018-10-02 | 合肥工业大学 | A kind of solvent heat co-reducing process preparing tin/graphene nanocomposite material |
CN110600682A (en) * | 2018-06-12 | 2019-12-20 | 天津大学 | Sandwich-shaped hollow spherical lithium ion battery cathode material and preparation method thereof |
CN108899496A (en) * | 2018-06-20 | 2018-11-27 | 电子科技大学 | Graphene adulterates WS2Preparation method and the application in lithium/sodium-ion battery |
CN109860555A (en) * | 2019-01-30 | 2019-06-07 | 陕西科技大学 | A kind of preparation method of growing elemental tin on carbon cloth as negative electrode material of sodium ion battery |
Non-Patent Citations (3)
Title |
---|
LIYAN ZHOU等: "In situ reduction of WS2 nanosheets for WS2/reduced graphene oxide composite with superior Li-ion storage", 《MATERIALS CHEMISTRY AND PHYSICS》 * |
XIAODONG XU等: "Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials", 《J. MATER. CHEM. A》 * |
YAYI CHENG等: "Enhanced cycling performances of hollow Sn compared to solid Sn in Na-ion battery", 《ELECTROCHIMICA ACTA》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115112737A (en) * | 2022-06-27 | 2022-09-27 | 天津大学 | Preparation and application of nitrogen-doped reduced graphene oxide-based composite tungsten disulfide nanosheet electrochemical sensor |
CN115112737B (en) * | 2022-06-27 | 2024-05-07 | 天津大学 | Preparation and application of electrochemical sensor based on nitrogen-doped reduced graphene oxide composite tungsten disulfide nanosheets |
CN115974054A (en) * | 2023-02-15 | 2023-04-18 | 蜂巢能源科技股份有限公司 | Carbon sheet-carbon nanotube material and preparation method and application thereof |
CN115974054B (en) * | 2023-02-15 | 2025-02-18 | 蜂巢能源科技股份有限公司 | A carbon sheet-carbon nanotube material and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN111799458B (en) | 2022-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105702933B (en) | A kind of used as negative electrode of Li-ion battery SnO2/SnS2The preparation method of/CNTs electrode materials | |
CN106356525B (en) | A kind of preparation method of graphene growth in situ FeOOH nano-array lithium ion battery negative materials | |
CN107068994B (en) | A kind of preparation method of nitrogen-doped carbon-loaded iron nitride composite sodium-ion battery negative electrode material | |
CN109817932B (en) | One-step method for preparing N-doped porous carbon-coated SnO2-Co3O4Method for producing composite material and use thereof | |
CN107863522B (en) | Preparation method of tin/reduced graphene oxide nanocomposite material, negative electrode of lithium ion battery, lithium ion battery | |
CN107275578A (en) | A kind of method that use nitrogen-doped porous carbon material makes kalium ion battery negative pole | |
Wang et al. | A Li 3 VO 4 micro/nanoscale anode with fast ion transportation for advanced lithium-ion batteries: a mini-review | |
CN111769272A (en) | A kind of Bi@C hollow nanosphere composite material and its preparation method and application | |
CN105742597B (en) | A kind of preparation method of lithium ion battery negative material | |
CN110880597A (en) | Tungsten sulfide/CNTs @ C composite electrode material and preparation method thereof | |
CN107123794A (en) | A kind of preparation method of carbon coating manganese monoxide/N doping redox graphene lithium ion battery negative material | |
CN109449411B (en) | A method for confined synthesis of tungsten disulfide@C composite electrode material | |
CN107742701A (en) | Graphene-titania airgel composites and their preparation and application | |
CN108598403B (en) | Method for forming binary transition metal oxide cathode material of lithium ion battery | |
CN110745861A (en) | A kind of tin sulfide-nickel sulfide heterogeneous nanosheet array structure and preparation method thereof | |
CN113178571B (en) | Hierarchical porous Fe3Se4@ NC @ CNTs composite material and preparation method and application thereof | |
CN107342404B (en) | A kind of carbon modified MoS2/MoO2 dual-phase composite material and preparation method thereof | |
CN114613952A (en) | Electrostatic self-assembly SnO2@ NDPC/MXene nano composite material and preparation method and application thereof | |
CN108963237A (en) | A kind of preparation method of anode material of lithium-ion battery | |
CN108539170A (en) | Method for forming lithium-ion battery nanosheet negative electrode material | |
CN111799458A (en) | A kind of tin element composite tungsten disulfide/reduced graphene oxide composite electrode material and its preparation method and application | |
CN109817899B (en) | Preparation method and application of hetero-element-doped carbon nanotube-packaged metal sulfide composite negative electrode material | |
CN106981626A (en) | A kind of preparation method of tungsten disulfide/SuperP sodium-ion battery self-supporting negative poles | |
CN111874950B (en) | Vanadium-doped tungsten disulfide/graphene oxide composite electrode material and preparation method and application thereof | |
CN114784244A (en) | A three-dimensional hollow WS2/C composite electrode material and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |