[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111707204B - 一种基于螺旋布设光纤的套管应变监测的方法和装置 - Google Patents

一种基于螺旋布设光纤的套管应变监测的方法和装置 Download PDF

Info

Publication number
CN111707204B
CN111707204B CN202010341332.1A CN202010341332A CN111707204B CN 111707204 B CN111707204 B CN 111707204B CN 202010341332 A CN202010341332 A CN 202010341332A CN 111707204 B CN111707204 B CN 111707204B
Authority
CN
China
Prior art keywords
sleeve
monitoring
optical fiber
strain
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010341332.1A
Other languages
English (en)
Other versions
CN111707204A (zh
Inventor
毛翎
廖小满
连梓翔
王晋
徐翔
刘增武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Csic Dalian Coast Defense Environmental Protection Technology Co ltd
Original Assignee
Csic Dalian Coast Defense Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Csic Dalian Coast Defense Environmental Protection Technology Co ltd filed Critical Csic Dalian Coast Defense Environmental Protection Technology Co ltd
Priority to CN202010341332.1A priority Critical patent/CN111707204B/zh
Publication of CN111707204A publication Critical patent/CN111707204A/zh
Application granted granted Critical
Publication of CN111707204B publication Critical patent/CN111707204B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/243Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using means for applying force perpendicular to the fibre axis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明实施例公开了一种基于螺旋布设光纤的套管应变监测方法及装置,所述套管应变监测方法包括:S1、沿着待测套管轴向,在该套管表面以均匀圆柱螺旋布线形式布设分布式光纤传感器,以获取所述套管被施加载荷时所采集到的光纤数据;S2、通过应变解调仪将分布式光纤传感器获取的光纤数据转换为对应的应变;S3、基于预设的套管应变监测模型,计算出与所述应变对应的载荷数据,所述载荷数据包括但不限于拉伸载荷、内压载荷、集中载荷。本发明能够便捷准确地对套管形变及载荷进行监测。

Description

一种基于螺旋布设光纤的套管应变监测的方法和装置
技术领域
本发明涉及套管形变监测技术领域,尤其涉及一种基于螺旋布设光纤的套管应变监测的方法和装置。
背景技术
在石油开采领域,油井套管成片损坏的情况经常发生。通常情况下,根据损坏情况来调整开采条件以避免问题扩大化。对于损坏套管井,只能修复,修复不了的只能报废,每年损失巨大。
近年来,多个研究团队采用光纤应变传感技术对套损监测进行了有益的尝试,进行了实验室和现场试验,取得了有效的监测数据,发表了相关学术论文;其通常做法是:采用玻璃钢加强光纤光缆轴向布置做拉伸和压缩的感测,在重点横断面周向布置多个光纤光栅应变传感器进行侧向形变监测,或增加地层压力传感器感知地层压力垂直分布来预测变化趋势。但是此种方法存在的弊端是:如果需要在全井深范围对套管形变进行准确监测,则需要布置大量的横断面侧向传感器,其产生工程施工压力和成本压力将是难以想象的。
综上可知,在现有的套损监测技术中存在下述弊端:1、布置周向光栅工艺复杂且无法处处布置;2、只能监测设防断面的情况,实际应用中只能在重点区段设置且设防断面处于应变的极值区域的概率较低,难以掌握最大区域情况。
发明内容
基于此,为解决现有技术所存在的不足,特提出了一种基于螺旋布设光纤的套管应变监测方法。
一种基于螺旋布设光纤的套管应变监测方法,其特征在于,包括:S1、沿着待测套管轴向,在该套管表面以均匀圆柱螺旋布线形式布设分布式光纤传感器,以获取所述套管被施加载荷时所采集到的光纤数据;S2、通过应变解调仪将分布式光纤传感器获取的光纤数据转换为对应的应变;S3、基于预设的套管应变监测模型,计算出与所述应变对应的载荷数据,所述载荷数据包括但不限于拉伸载荷、内压载荷、集中载荷中的任意一种或者多种组合。
此外,为解决传统技术存在的不足,还提出了一种基于螺旋布设光纤的套管应变监测装置,其特征在于,包括:分布式光纤传感器,其被沿着待测套管轴向,以均匀圆柱螺旋布线形式布设于待测套管表面,用于获取在对所述待测套管施加载荷时所对应的光纤数据;应变解调仪,用于将分布式光纤传感器获取的光纤数据转换为相应的应变数据;以及监测计算单元,所述监测计算单元用于基于预设的套管应变监测模型,计算与应变数据所对应的载荷数据;所述载荷数据包括但不限于拉伸载荷、内压载荷、集中载荷中的任意一种或者多种组合。
实施本发明实施例,将具有如下有益效果:
采用了上述技术之后,解决了传统技术对应的工程施工工艺要求高且只能监测设防断面的情况,实际应用中只能在重点区段设置且设防断面处于应变的极值区域的概率较低,难以掌握最大区域情况的弊端;其通过分布式光纤传感器实时进行数据采样监测,并通过所设定的套管应变监测模型确定所获的应变数据对应的载荷数据,从而可以获得最危险处的应变及载荷情况;综上所述,本发明能够达到便捷准确的对套管形变及其载荷进行监测的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:图1为一个实施例中所述方法对应的技术流程图;
图2为一个实施例中所述方法对应的光纤布设图;
图3a为一个实施例中所述方法对应的螺旋光纤布置参数示意图;
图3b为一个实施例中所述方法对应的集中力受力示意图;
图4为一个实施例中所述方法对应的两组坐标系示意图;
图5为一个实施例中所述方法对应的径向力分解示意图;
图6为一个实施例中所述两端固支梁集中力求解模型图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。可以理解,本发明所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一元件称为第二元件,且类似地,可将第二元件为第一元件。第一元件和第二元件两者都是元件,但其不是同一元件。
解决在面对现有技术存在的不足,在本实施例中,特提出了一种基于螺旋布设光纤的套管应变监测方法,如图1~6所示,该方法包括:S1、沿着待测套管轴向,在该套管表面以均匀圆柱螺旋布线形式布设分布式光纤传感器,以获取所述套管被施加载荷时所采集到的光纤数据;S2、通过应变解调仪将分布式光纤传感器获取的光纤数据转换为对应的应变;S3、基于预设的套管应变监测模型,计算出与所述应变对应的载荷数据,所述载荷数据包括但不限于拉伸载荷、内压载荷、集中载荷中的任意一种或者多种组合。本发明所述方法是首先通过在套管表面布设的分布式光纤传感器检测实时传感器检测量,并记录分布式光纤传感器的输出值;同时,通过应变解调仪获取所对应的应变量;然后,基于套管应变监测模型计算出对应的载荷数据,所述模型所表达的是应变数据与套管载荷量(轴向及径向)之间的对应关系。
在一些具体的实施例中,如图2所示,为了能够测量石油套管的周向和径向应变,将光纤改为圆柱螺旋布线形式,即所述S1中依据测量需要设定对应的螺距、螺旋升角、螺旋方向以确定圆柱螺旋布线形式;由于在螺旋布线中,光纤的拉伸有一部分是由周向应变贡献的,因此可以从螺旋布线的数据中,得到周向应变的测量值,并以此为基础,推算出径向的作用力。同时为了方便分析,如图3a-图3b所示,预先对以下量进行定义,光纤沿着套管外表面螺旋上升,且光纤测量直径处形成的圆柱面为分析面。则套管外径表示为Do,套管内径表示为Di,光纤测量直径D=Do,套管长度表示为L;截面积表示为A=π(Do 2-Di 2)/4,
Figure GDA0002626067420000041
螺距为H光纤的螺旋升角
Figure GDA0002626067420000042
一个螺距内的螺旋线长度为
Figure GDA0002626067420000043
在一些具体的实施例中,基于预设的套管应变监测模型,计算出与所述应变对应的载荷数据的过程包括:
S31、建立分析坐标系C1和光纤测量局部直角坐标系C2以对套管应变监测模型对应的拉伸和弯曲工况进行分析;同时建立圆柱直角坐标系C3以对套管应变监测模型对应的内压工况进行分析;其中,所述分析坐标系即分析直角坐标系oxyz,该坐标系的原点OC1位于套管一侧的中心处,z轴为套管轴线,y轴与所述z轴垂直,使得z=0处光纤的圆心位于分析直角坐标系oxy的x轴上,所述光纤测量局部直角坐标系C2的原点为光纤上某一点Q(x,y,z),z轴方向为该处光纤的切线方向,y轴为从(0,0,z)指向Q点的射线,且x轴满足空间向量右手法则,同时使得上述C2坐标系坐标轴采用的坐标是分析坐标系C1下的坐标;所述圆柱直角坐标系C3是圆柱直角坐标系
Figure GDA0002626067420000044
该坐标系的Z轴为套管轴线,原点OC3与OC1重合,幅角零度为C1坐标系x轴;且所述C2坐标系中的原点Q与全局坐标系即分析坐标系C1中的坐标的空间关系为
x=rcosθ
y=rsinθ
z=Hθ/2π
Figure GDA0002626067420000051
其中,θ为螺旋线的转角,且分析面的半径r=D/2;
S32、设定所述套管应变监测模型对应的工况包含拉伸、内压以及弯曲工况,所述弯曲工况对应的径向集中力分解为平行于x轴的Px和平行于y轴的Py,即Px=Pcosβ,Py=Psinβ;同时设定集中载荷对应的边界类型为两端固支边界条件;所述载荷类型包括但不限于拉伸载荷、内压载荷、集中载荷中的任意一种或者多种组合,且所述集中载荷包括集中载荷位置已知以及集中载荷位置未知两种情况;则基于上述载荷类型,所述套管应变监测模型对应的计算公式包括:
拉伸载荷F对应的反演公式为:
Figure GDA0002626067420000052
其中,
Figure GDA0002626067420000053
为仅因拉伸载荷F引起的光纤应变测量值,μ是泊松比,A为套管的横截面积,A=π(Do 2-Di 2)/4,E为弹性模量,D为螺旋线基圆直径即套管外径Do,Do=D,H为螺距,S为一个螺距内的螺旋线长度,且
Figure GDA0002626067420000054
Figure GDA0002626067420000055
内压载荷q对应的反演公式
Figure GDA0002626067420000056
其中,
Figure GDA0002626067420000057
为仅因内压载荷q引起的光纤应变测量值,E为弹性模量,D为螺旋线基圆直径即套管外径Do,H为螺距,S为一个螺距内的螺旋线长度,且
Figure GDA0002626067420000058
K为套管外径与内径之比,即K=Do/Di,z为与套管轴向一致的坐标轴上的坐标值,μ为泊松比;距离b=L-a;a为任意监测位置i与起始监测位置的距离,且该监测位置i位于套管上起始端点与光纤所感应到的最大监测值对应的监测位置之间,L为套管长度;
集中载荷包括集中载荷位置已知以及集中载荷位置未知两种情况,则对应的反演公式为:
集中载荷位置已知的集中载荷反演公式为:
Figure GDA0002626067420000061
Figure GDA0002626067420000062
式中,Px表示平行于x轴的径向集中力;Py表示平行于y轴的径向集中力;ε1、ε2分别表示两个不同套管监测位置z1、z2通过应变解调仪所获取的应变数据;函数g1、g2、h1、h2各自对应的公式如下:
Figure GDA0002626067420000063
Figure GDA0002626067420000064
Figure GDA0002626067420000065
Figure GDA0002626067420000066
式中,m、n、w、u是与监测位置z1、z2有关的中间变量;进一步的若任意监测位置i位于套管上起始端点与光纤所感应到的最大监测值对应的监测位置之间且该位置与起始监测位置距离为a,则监测位置z1对应的g1中的中间变量m、w分别表示为
Figure GDA0002626067420000071
wa=cQ0aλsin2θ;则监测位置z1对应的h1中的中间变量n、u分别表示为
Figure GDA0002626067420000072
ua=cQ0aλcosθsinθ;进一步的若任意监测位置i位于套管上另一端端点与光纤所感应到的最大检测值对应的监测位置之间,即两者间的距离表示为b=L-a,则监测位置z2对应的g2中的中间变量m、w分别表示为
Figure GDA0002626067420000073
wb=cQ0bλsin2θ;则监测位置z2对应的h2中的中间变量n、u分别表示为
Figure GDA0002626067420000074
ub=cQ0bλcosθsinθ;
Figure GDA0002626067420000075
Figure GDA0002626067420000076
Figure GDA0002626067420000077
Figure GDA0002626067420000078
Figure GDA0002626067420000079
Figure GDA00026260674200000710
Figure GDA00026260674200000711
其中,Do为套管外径,Di为套管内径,I为截面惯性矩,相对长度η=a/L;
集中载荷位置未知(若不知道载荷位置,则需要引入更多测量值)的集中载荷反演公式为:
Figure GDA0002626067420000081
其中,旋转角θ=2πz/H;同时可得
cM0iPx=s1,cM1iPx=s2,cQ0iPx=s3
cM0iPy=s4,cM1iPy=s5,cQ0iPy=s6
将cQ0i、cM0i、cM1i、Px、Py是五个未知数,组成六个未知数cQ0iPx,cM0iPx,cM1iPx,cQ0iPy,cM0iPy,cM1iPy,以构造六元一次方程组求解,根据cQ0i,cM0i,cM1i的计算公式获取集中载荷位置,进而确定出Px、Py
在一些具体的实施例中,求解六元一次方程组并据cQ0i,cM0i,cM1i的计算公式获取集中载荷位置,进而确定出Px、Py的步骤包括:
(1)、创建六元一次方程组,所述六元一次方程组对应的公式为
Figure GDA0002626067420000091
(2)、根据载荷角度β建立方程组连等式,所述方程组连等式为
Figure GDA0002626067420000092
(3)、由于六元一次方程组中Px对应的三个方程实际上与Py对应的三个方程是一致的,因此可先求解Px对应的三个方程即首先若求解cQ0i,cM0i,cM1i,Px四个未知数,则可将所述六元一次方程组简化为四元一次方程组,所述四元一次方程组对应的公式为
cM0iPx=s1,cM1iPx=s2,cQ0iPx=s3
(4)、将cQ0i,cM0i,cM1i的表达式纳入方程组求解过程,同时由于cQ0i,cM0i,cM1i依据监测点位置确定;即基于由已知监测点位置所确定的cQ0i,cM0i,cM1i,将四元一次方程组简化为二元一次方程组,所述二元一次方程组对应的公式为
cM0iPx=s1,cM1iPx=s2;所述cQ0i,cM0i,cM1i对应的公式为
Figure GDA0002626067420000101
Figure GDA0002626067420000102
Figure GDA0002626067420000103
Figure GDA0002626067420000104
Figure GDA0002626067420000105
Figure GDA0002626067420000106
其中,η=a/L是相对长度;距离a表示若任意监测位置i位于套管上起始端点与光纤所感应到的最大检测值对应的监测位置之间,其表示为AC段,则a为该位置与起始监测位置间的距离;距离b为b=L-a,其表示若任意监测位置i位于套管上另一端端点与光纤所感应到的最大检测值对应的监测位置之间,其表示为BC段,则表示b两者间的距离;
(5)、依据各个监测位置位于AC段/BC段,求解方程组cM0iPx=s1,cM1iPx=s2;其中,cQ0a=cM1a,cQ0b=-cM1b
Figure GDA0002626067420000107
(6)、基于ηBCAC=2,确定出各个监测位置AC段或者BC段,即当当前监测位置位于AC段时,相应的ηAC∈(0,1)时,ηBC∈(1,2);当监测位置位于BC段时,相应的ηBC∈(0,1),ηAC∈(-2,-1);进而对方程组求解cM0iPx=s1,cM1iPx=s2以获得全部载荷信息Px、Py、P。
另,本例中,显然存在这样一种情况如果所取的六个数据点在集中力的两侧分布,那么显然有cQ0i,cM0i,cM1i不一致的情况,此时应当重新选取数据点。为了保证这样情况不出现,应当较密的选取数据点。
在一些具体的实施例中,为了便于分析,本例中给出了三组坐标系对上述基于螺旋布设光纤的套管应变监测方法进行坐标变化分析;其中为了便于进行对于拉伸和弯曲工况进行分析给出如下两组坐标系:分析坐标系C1和光纤测量局部直角坐标系C2,如图4所示,其中,所述分析坐标系即分析直角坐标系oxyz,该坐标系的z轴为套管轴线,原点OC1位于套管一侧中心,x轴为原点向光纤z=0的xoy平面上的圆心,设定C1坐标系的三个基矢量分别为i,j,k,则其上任意一点的矢量表示为r=xi+yj+zk。C1坐标系为全局坐标系,其用于对模型的拉伸和弯曲进行计算,也用于对其内压解进行转换;其中,所述光纤测量局部直角坐标系C2的原点为光纤上某一点Q(x,y,z),则z轴方向为该处光纤的切线方向,y轴为从(0,0,z)指向Q点的射线,且x轴满足右手法则,如图4所示,光纤上某一点Q(x,y,z)的三个坐标不是任意选取的,满足螺旋线的定义,即在C2坐标系中的原点Q在全局坐标系C1中的坐标可以表示为
x=rcosθ
y=rsinθ
z=Hθ/2π
Figure GDA0002626067420000111
上述公式中θ是螺旋线的转角,不是螺旋升角,其含义为螺旋线向C1坐标系的xoy平面投影后,OC1和投影线上的点的连线与x轴的夹角,r=D/2,是分析面的半径。
则根据上述公式以及定义,对应的C2坐标系的y轴向量在C1坐标系内的归一化矢量表示为
yC2={rcosθ rsinθ 0}={cosθ sinθ 0}
另,根据空间曲线的切线求法,C2坐标系的z轴向量表示为
Figure GDA0002626067420000112
其在C1坐标系内的归一化矢量表示为
Figure GDA0002626067420000121
由于两个向量互相垂直,即xC2·zC2=0,则x轴的向量表示为
Figure GDA0002626067420000122
因此C2坐标系三个坐标轴在C1坐标系内的归一化矢量可统一为
Figure GDA0002626067420000123
yC2=cosθi+sinθj+0k
Figure GDA0002626067420000124
则C2坐标系各轴与C1坐标系各轴夹角余弦为
Figure GDA0002626067420000125
Figure GDA0002626067420000126
Figure GDA0002626067420000127
Figure GDA0002626067420000128
Figure GDA0002626067420000129
Figure GDA00026260674200001210
Figure GDA00026260674200001211
Figure GDA00026260674200001212
Figure GDA00026260674200001213
因此可得C2坐标系向C1坐标系的转换矩阵,对应的矩阵形式为
Figure GDA00026260674200001214
上述转换矩阵的逆阵就是C1坐标系向C2坐标系转换的矩阵,对应的矩阵形式为
Figure GDA00026260674200001215
为了便于进行对于内压工况进行分析给出如下坐标系:圆柱直角坐标系C3,其是圆柱直角坐标系
Figure GDA0002626067420000131
该坐标系的Z轴为套管轴线,原点OC3与OC1重合,幅角零度为C1坐标系x轴。
对应的坐标变换关系为
Figure GDA0002626067420000132
坐标变换中三个拉梅系数分别为
Figure GDA0002626067420000133
Figure GDA0002626067420000134
Figure GDA0002626067420000135
对应的方向余弦为
Figure GDA0002626067420000136
Figure GDA0002626067420000137
Figure GDA0002626067420000138
Figure GDA0002626067420000139
Figure GDA00026260674200001310
Figure GDA0002626067420000141
Figure GDA0002626067420000142
Figure GDA0002626067420000143
Figure GDA0002626067420000144
因此可得从C3坐标系向C1坐标系转换的坐标转换矩阵,对应的矩阵形式为
Figure GDA0002626067420000145
上述矩阵对应的逆阵为从C1向C3的转化坐标系转换的坐标转换矩阵,对应的矩阵形式为
Figure GDA0002626067420000146
同时为了求得应变张量,需要创建与应变张量对应的坐标系转换形式,设定在原坐标系内求得的应变张量矩阵形式为
Figure GDA0002626067420000147
则根据二阶张量的坐标转换关系,得到新坐标系内的应变张量分量为
Figure GDA0002626067420000148
基于上述新坐标系,则对于内压工况,其求解过程为首先在坐标系C3内求解,之后根据C3到C1的转换矩阵T31以及C1到C2的转换矩阵T12获取应变张量进行坐标系转换形式。具体的公式为:
首先进行根据C3到C1的转换形式为T阵即T31,其简化记为TH
Figure GDA0002626067420000151
则对于拉伸和弯曲工况,其求解过程为首先要在C1坐标系内求解,然后根据C1到C2的转换矩阵T12,对应变张量进行坐标系转换,由于光纤测量坐标系C2的应变值仅关心
Figure GDA0002626067420000152
则可得
Figure GDA0002626067420000153
在更一步的实施例中,对本案的坐标变化方案进行验证:即在C1坐标系内,拉伸工况条件下,拉伸载荷对应的求解原理为:在拉伸载荷F作用下,套管截面应力为
Figure GDA0002626067420000154
其中A=π(Do 2-Di 2)/4是套管的横截面积;根据弹性力学的应力应变公式,仅考虑各项同性材质,则可获得
Figure GDA0002626067420000155
Figure GDA0002626067420000156
那么对于拉伸工况,则有
Figure GDA0002626067420000161
在拉伸工况条件下,C1向C2坐标系转化过程中,可得
Figure GDA0002626067420000162
另由于在拉伸载荷作用下,原长为H的套管变化为H+ΔH,因此轴向应变为
Figure GDA0002626067420000163
由于泊松比的存在,其横向应变为ε管,横=-με,则套管直径变为D′=D(1-μ);
那么在变形前,光纤长度为
Figure GDA0002626067420000164
变形后光纤长度变化为
Figure GDA0002626067420000165
基于应变定义并进行泰勒展开可得
Figure GDA0002626067420000166
由此可知两者是完全一致的,这就说明了本案所述的坐标变换法是正确的。
在坐标系C3,在内压工况下进行求解:在套管承受内压q的情况下,根据厚壁圆筒的既有分析结果,则应力结果表达式为
Figure GDA0002626067420000171
Figure GDA0002626067420000172
Figure GDA0002626067420000173
对应的应变结果表达式为
Figure GDA0002626067420000174
Figure GDA0002626067420000175
Figure GDA0002626067420000176
其中b为端部边界条件参数,当考虑为两端同时受刚性约束的筒体,即为无限长高压管道时,b=2,这也是石油套管实际的工作情况;当考虑为两端封闭筒体时,b=0,这也是实验室测量时的情况。
由于测量点为套筒外径,即r=Ro,那么以上两式进一步简化为
σr=0
Figure GDA0002626067420000177
Figure GDA0002626067420000178
Figure GDA0002626067420000179
Figure GDA00026260674200001710
Figure GDA00026260674200001711
在坐标系C1,在弯曲工况下进行求解:由于径向集中力P可以分解为平行于x轴的Px和平行于y轴的Py,如图5,即
Px=Pcosβ
Py=Psinβ
对于如图6所示的两端固支梁,光纤所感应到的最大值位置与起始点距离为a,另一端距离为b=L-a。
那么设定在螺旋布线的情况下,光纤上点可以仅由一个参数表示,此处以z轴坐标z作为光纤上点的表示参数,显然的,该点在直角坐标系C1内的坐标点为
Figure GDA0002626067420000181
Figure GDA0002626067420000182
z=z
Figure GDA0002626067420000183
其中sign是螺旋线的顺时针/逆时针标识符,当从C1坐标系原点沿着C1坐标系z轴看过去,为顺时针时,sign=-1,为逆时针时,sign=1;θ是螺旋转角;为了简化书写,也记为x(z),y(z),θ(z)。
在螺旋布线的情况下,为了引入合适的可扩展成其它边界类型,则集中载荷与边界条件关系即边界类型还包括:由于剪力与弯矩的计算取决于两个因素:一是计算点即监测点的位置,二是边界情况,定义如下符号
Figure GDA0002626067420000184
Figure GDA0002626067420000185
RA=cRAF
RB=cRBF
MA=cMAF
MB=cMBF
其中,边界和计算点的函数c#诸符号中cRA,cRB,cMA,cMB均仅是边界函数,分别称为A端/B端支反力系数,和A端/B端支反力矩系数;cQ0a和cQ0b是AC段和BC段的常剪力系数,cM0a和cM0b是AC段和BC段的常弯矩系数,cM1a和cM1b是AC段和BC段的一次弯矩系数。在仅考虑集中力的情况下,定义η=a/L为相对长度,即
a=ηL,b=(1-η)L
其中,
cRA=-cQ0a
cRB=-cQ0b
cMA=cM0a
cMB=cM0b+cM1bL
采用目前这种定义方式的好处在于对边界的包容性好。
另,弯曲正应力计算原理及过程为根据材料力学结果,弯曲正应力为z方向正应力,此时
σx=σy=0
Figure GDA0002626067420000191
Figure GDA0002626067420000192
Figure GDA0002626067420000193
其中My是由Px引起的弯矩,Mx是由Py引起的弯矩。
那么在任意段(如果在AC段,i=a,如果在BC段,i=b)
Mx=(cM0i+cM1iz)Psinβ
My=(cM0i+cM1iz)Pcosβ
进而
Figure GDA0002626067420000194
其中
Figure GDA0002626067420000195
其中,弯曲剪应力计算过程为:根据参考文献《黄万灼.用近似方法计算空心圆杆弯曲剪应力应注意的一个问题[J].工程力学,1990,7(2):128-131.》可知,薄壁圆环外边界处的应力为
Figure GDA0002626067420000201
Figure GDA0002626067420000202
将上述公式简化可得
Figure GDA0002626067420000203
Figure GDA0002626067420000204
其中由于Q是沿着y轴方向的剪应力,即Py引起的,因此还可以写为
τxz(Py)=-λcosθsinθ·Q(Py)
τyz(Py)=-λcos2θ·Q(Py)
其中,
Figure GDA0002626067420000205
则当剪力是由Px引起的时候,相当于转角顺时针旋转90度,即
Figure GDA0002626067420000206
Figure GDA0002626067420000207
那么在任意段(如果在AC段,i=a,如果在BC段,i=b)
Qx=cQ0iPcosβ
Qy=cQ0iPsinβ
τyz=τyz(Px)+τyz(Py)
=λcosθsinθ·Q(Px)-λcos2θ·Q(Py)
=λcosθsinθcQ0iPcosβ-λcos2θcQ0iPsinβ
=uiPcosβ-viPsinβ
τxz=τxz(Px)+τxz(Py)
=λsin2θ·cQ0iPcosβ-λcosθsinθ·cQ0iPsinβ
=wiPcosβ-uiPsinβ
其中
ui=cQ0iλcosθsinθ
vi=cQ0iλcos2θ
wi=cQ0iλsin2θ
基于上述弯曲正应力以及弯曲剪应力计算过程,可得在任意段(如果在AC段,i=a,如果在BC段,i=b)
Figure GDA0002626067420000211
其中
Figure GDA0002626067420000212
同时上述参数可通过下述表1-2获得:
表1两端固支梁的剪力与力矩的材料力学求解表
Figure GDA0002626067420000213
Figure GDA0002626067420000221
表2两端固支梁的剪力与力矩的系数表
Figure GDA0002626067420000222
此外,为解决传统技术存在的不足,还提出了一种基于螺旋布设光纤的套管应变监测装置,其特征在于,包括:
分布式光纤传感器,其被沿着待测套管轴向,以均匀圆柱螺旋布线形式布设于待测套管表面,用于获取在对所述待测套管施加载荷时所对应的光纤数据;;
应变解调仪,用于将分布式光纤传感器获取的光纤数据转换为相应的应变数据;
以及监测计算单元,所述监测计算单元用于基于预设的套管应变监测模型,计算与应变数据所对应的载荷数据;所述载荷数据包括但不限于拉伸载荷、内压载荷、集中载荷中的任意一种或者多种组合。
由于所述装置与上述方法采用同一设计原理进行设计,因此本处不再赘述具体过程,参看方法中的各个具体实例文字说明。
实施本发明实施例,将具有如下有益效果:
本发明解决了传统技术对应的工程施工工艺要求高且只能监测设防断面的情况,实际应用中只能在重点区段设置且设防断面处于应变的极值区域的概率较低,难以掌握最大区域情况的弊端。其通过分布式光纤传感器实时进行数据采样监测,并通过所设定的套管应变监测模型确定所获的应变数据对应的载荷数据,从而可以获得最危险处的应变及载荷情况;综上所述,本发明能够达到便捷准确的对套管形变及其载荷进行监测的目的。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种基于螺旋布设光纤的套管应变监测方法,其特征在于,包括:
S1、沿着待测套管轴向,在该套管表面以均匀圆柱螺旋布线形式布设分布式光纤传感器,以获取所述套管被施加载荷时所采集到的光纤数据;
S2、通过应变解调仪将分布式光纤传感器获取的光纤数据转换为对应的应变;
S3、基于预设的套管应变监测模型,计算出与所述应变对应的载荷数据,所述载荷数据包括但不限于拉伸载荷、内压载荷、集中载荷中的任意一种或者多种组合;基于预设的套管应变监测模型,计算出与所述应变对应的载荷数据的过程包括:
S31、建立分析坐标系C1和光纤测量局部直角坐标系C2以对套管应变监测模型对应的拉伸和弯曲工况进行分析;同时建立圆柱直角坐标系C3以对套管应变监测模型对应的内压工况进行分析;其中,所述分析坐标系即分析直角坐标系oxyz,该坐标系的原点OC1位于套管一侧的中心处,z轴为套管轴线,y轴与所述z轴垂直,并使得z=0处光纤的圆心位于分析直角坐标系oxyz的x轴上,所述光纤测量局部直角坐标系C2的原点为光纤上某一点Q(x,y,z),z轴方向为该处光纤的切线方向,y轴为从(0,0,z)指向Q点的射线,且x轴满足空间向量右手法则,同时使得上述C2坐标系坐标轴采用的坐标是分析坐标系C1下的坐标;所述圆柱直角坐标系C3是圆柱直角坐标系
Figure FDA0003317454250000011
该坐标系的Z轴为套管轴线,原点OC3与OC1重合,幅角零度为C1坐标系x轴;且所述C2坐标系中的原点Q与全局坐标系即分析坐标系C1中的坐标的空间关系为
x=r cosθ
y=r sinθ
z=Hθ/2π
Figure FDA0003317454250000012
其中,θ为螺旋线的转角,且分析面的半径r=D/2;
S32、设定所述套管应变监测模型对应的工况包含拉伸、内压以及弯曲工况,所述弯曲工况对应的径向集中力分解为平行于x轴的Px和平行于y轴的Py,即Px=P cosβ,Py=P sinβ;同时设定集中载荷对应的边界类型为两端固支边界条件;所述集中载荷包括集中载荷位置已知以及集中载荷位置未知两种情况;所述套管应变监测模型对应的计算公式包括:
拉伸载荷F对应的反演公式为:
Figure FDA0003317454250000021
其中,
Figure FDA0003317454250000022
为仅因拉伸载荷F引起的光纤应变测量值,μ是泊松比,A为套管的横截面积,
Figure FDA0003317454250000023
E为弹性模量,D为螺旋线基圆直径即套管外径Do,Do=D,H为螺距,S为一个螺距内的螺旋线长度,且
Figure FDA0003317454250000024
Figure FDA0003317454250000025
内压载荷q对应的反演公式
Figure FDA0003317454250000026
其中,
Figure FDA0003317454250000027
为仅因内压载荷q引起的光纤应变测量值,E为弹性模量,D为螺旋线基圆直径即套管外径Do,H为螺距,S为一个螺距内的螺旋线长度,且
Figure FDA0003317454250000028
K为套管外径与内径之比,即K=Do/Di,z为与套管轴向一致的坐标轴上的坐标值,μ为泊松比;距离b=L-a;a为任意监测位置i与起始监测位置的距离,且该监测位置i位于套管上起始端点与光纤所感应到的最大监测值对应的监测位置之间,L为套管长度;
集中载荷包括集中载荷位置已知以及集中载荷位置未知两种情况,则对应的反演公式为:
集中载荷位置已知的集中载荷反演公式为:
Figure FDA0003317454250000031
Figure FDA0003317454250000032
式中,Px表示平行于x轴的径向集中力;Py表示平行于y轴的径向集中力;ε1、ε2分别表示两个不同套管监测位置z1、z2通过应变解调仪所获取的应变数据;函数g1、g2、h1、h2各自对应的公式如下:
Figure FDA0003317454250000033
Figure FDA0003317454250000034
Figure FDA0003317454250000035
Figure FDA0003317454250000036
式中,m、n、w、u是与监测位置z1、z2有关的中间变量;若任意监测位置i位于套管上起始端点与光纤所感应到的最大监测值对应的监测位置之间且该位置与起始监测位置距离为a,则监测位置z1对应的g1中的中间变量m、w分别表示为
Figure FDA0003317454250000037
wa=cQ0aλsin2θ;则监测位置z1对应的h1中的中间变量n、u分别表示为
Figure FDA0003317454250000038
ua=cQ0aλcosθsinθ;若任意监测位置i位于套管上另一端端点与光纤所感应到的最大检测值对应的监测位置之间,即两者间的距离表示为b=L-a,则监测位置z2对应的g2中的中间变量m、w分别表示为
Figure FDA0003317454250000041
wb=cQ0bλsin2θ;则监测位置z2对应的h2中的中间变量n、u分别表示为
Figure FDA0003317454250000042
ub=cQ0bλcosθsinθ;
Figure FDA0003317454250000043
Figure FDA0003317454250000044
Figure FDA0003317454250000045
Figure FDA0003317454250000046
Figure FDA0003317454250000047
Figure FDA0003317454250000048
Figure FDA0003317454250000049
其中,Do为套管外径,Di为套管内径,I为截面惯性矩,相对长度η=a/L;
集中载荷位置未知的集中载荷反演公式为:
Figure FDA0003317454250000051
Figure FDA0003317454250000052
Figure FDA0003317454250000053
Figure FDA0003317454250000054
Figure FDA0003317454250000055
其中,旋转角θ=2πz/H;同时可得
cM0iPx=s1,cM1iPx=s2,cQ0iPx=s3
cM0iPy=s4,cM1iPy=s5,cQ0iPy=s6
将cQ0i、cM0i、cM1i、Px、Py五个未知数,组成六个未知数cQ0iPx,cM0iPx,cM1iPx,cQ0iPy,cM0iPy,cM1iPy,以构造六元一次方程组求解,根据cQ0i,cM0i,cM1i的计算公式获取集中载荷位置,进而确定出Px、Py
2.根据权利要求1所述的方法,其特征在于,依据测量需要设定对应的螺距、螺旋升角、螺旋方向以确定圆柱螺旋布线形式。
3.根据权利要求1所述的方法,其特征在于,求解六元一次方程组并据cQ0i,cM0i,cM1i的计算公式获取集中载荷位置,进而确定出Px、Py的步骤包括:
(1)、创建六元一次方程组,所述六元一次方程组对应的公式为
Figure FDA0003317454250000068
(2)、根据载荷角度β建立方程组连等式,所述方程组连等式为
Figure FDA0003317454250000061
(3)、将所述六元一次方程组简化为四元一次方程组,所述四元一次方程组对应的公式为
cM0iPx=s1,cM1iPx=s2,cQ0iPx=s3
(4)、基于由已知监测点位置所确定的cQ0i,cM0i,cM1i,将四元一次方程组简化为二元一次方程组,所述二元一次方程组对应的公式为cM0iPx=s1,cM1iPx=s2;所述cQ0i,cM0i,cM1i对应的公式为
Figure FDA0003317454250000062
Figure FDA0003317454250000063
Figure FDA0003317454250000064
Figure FDA0003317454250000065
Figure FDA0003317454250000066
Figure FDA0003317454250000067
其中,η=a/L是相对长度;距离a表示若任意监测位置i位于套管上起始端点与光纤所感应到的最大检测值对应的监测位置之间,其表示为AC段,则a为该位置与起始监测位置间的距离;距离b为b=L-a,其表示若任意监测位置i位于套管上另一端端点与光纤所感应到的最大检测值对应的监测位置之间,其表示为BC段,则表示b为两者间的距离;
(5)、依据各个监测位置位于AC段/BC段,求解方程组cM0iPx=s1,cM1iPx=s2;其中,cQ0a=cM1a,cQ0b=-cM1b
Figure FDA0003317454250000071
(6)、基于ηBCAC=2,确定出各个监测位置AC段或者BC段,即当当前监测位置位于AC段时,相应的ηAC∈(0,1)时,ηBC∈(1,2);当监测位置位于BC段时,相应的ηBC∈(0,1),ηAC∈(-2,-1);进而对方程组求解cM0iPx=s1,cM1iPx=s2以获得全部载荷信息Px、Py、P。
4.根据权利要求1所述的方法,其特征在于,在螺旋布线的情况下,集中载荷与边界条件关系即边界类型还包括:剪力Q、弯矩M各自与计算点的位置和边界条件的关系表达式为:
Figure FDA0003317454250000072
Figure FDA0003317454250000073
RA=cRAF
RB=cRBF
MA=cMAF
MB=cMBF
cRA=-cQ0a
cRB=-cQ0b
cMA=cM0a
cMB=cM0b+cM1bL
其中,边界和计算点的函数c#的诸符号中的cRA,cRB,cMA,cMB均仅是边界函数,即cRAA端支反力系数,cRB为B端支反力系数,cMA为A端/B支反力矩系数,cMB为B端支反力矩系数,cQ0a为AC段的常剪力系数,cQ0b为BC段的常剪力系数,cM0a为AC段的常弯矩系数,cM0b是BC段的常弯矩系数,cM1a为AC段的一次弯矩系数,cM1b为BC段的一次弯矩系数;同时在仅考虑集中力的情况下,定义相对长度η,η=a/L,即a=ηL,b=(1-η)L。
5.一种基于螺旋布设光纤的套管应变监测装置,其特征在于,包括:分布式光纤传感器,其被沿着待测套管轴向,以均匀圆柱螺旋布线形式布设于待测套管表面,用于获取在对所述待测套管施加载荷时所对应的光纤数据;应变解调仪,用于将分布式光纤传感器获取的光纤数据转换为相应的应变数据;以及监测计算单元,所述监测计算单元用于基于预设的套管应变监测模型,计算与应变数据所对应的载荷数据;所述载荷数据包括但不限于拉伸载荷、内压载荷、集中载荷中的任意一种或者多种组合;基于预设的套管应变监测模型,计算出与所述应变对应的载荷数据的过程包括:
S31、建立分析坐标系C1和光纤测量局部直角坐标系C2以对套管应变监测模型对应的拉伸和弯曲工况进行分析;同时建立圆柱直角坐标系C3以对套管应变监测模型对应的内压工况进行分析;其中,所述分析坐标系即分析直角坐标系oxyz,该坐标系的原点OC1位于套管一侧的中心处,z轴为套管轴线,y轴与所述z轴垂直,使得z=0处光纤的圆心位于分析直角坐标系oxyz的x轴上,所述光纤测量局部直角坐标系C2的原点为光纤上某一点Q(x,y,z),z轴方向为该处光纤的切线方向,y轴为从(0,0,z)指向Q点的射线,且x轴满足空间向量右手法则,同时使得上述C2坐标系坐标轴的定义中,采用的坐标是分析坐标系C1下的坐标;所述圆柱直角坐标系C3是圆柱直角坐标系
Figure FDA0003317454250000091
该坐标系的Z轴为套管轴线,原点OC3与OC1重合,幅角零度为C1坐标系x轴;且所述C2坐标系中的原点Q与全局坐标系即分析坐标系C1中的坐标的空间关系为
x=r cosθ
v=r sinθ
z=Hθ/2π
Figure FDA0003317454250000092
其中,θ为螺旋线的转角,且分析面的半径r=D/2;
S32、设定所述套管应变监测模型对应的工况包含拉伸、内压以及弯曲工况,所述弯曲工况对应的径向集中力分解为平行于x轴的Px和平行于y轴的Py,即Px=Pcosβ,Py=Psinβ;同时设定集中载荷对应的边界类型为两端固支边界条件;所述集中载荷包括集中载荷位置已知以及集中载荷位置未知两种情况;所述套管应变监测模型对应的计算公式包括:
拉伸载荷F对应的反演公式为:
Figure FDA0003317454250000093
其中,
Figure FDA0003317454250000094
为仅因拉伸载荷F引起的光纤应变测量值,μ是泊松比,A为套管的横截面积,
Figure FDA0003317454250000095
E为弹性模量,D为螺旋线基圆直径即套管外径Do,Do=D,H为螺距,S为一个螺距内的螺旋线长度,且
Figure FDA0003317454250000096
Figure FDA0003317454250000097
内压载荷q对应的反演公式
Figure FDA0003317454250000098
其中,
Figure FDA0003317454250000099
为仅因内压载荷q引起的光纤应变测量值,E为弹性模量,D为螺旋线基圆直径即套管外径Do,H为螺距,S为一个螺距内的螺旋线长度,且
Figure FDA0003317454250000101
K为套管外径与内径之比,即K=Do/Di,z为与套管轴向一致的坐标轴上的坐标值,μ为泊松比;距离b=L-a;a为任意监测位置i与起始监测位置的距离,且该监测位置i位于套管上起始端点与光纤所感应到的最大监测值对应的监测位置之间,L为套管长度;
集中载荷包括集中载荷位置已知以及集中载荷位置未知两种情况,则对应的反演公式为:
集中载荷位置已知的集中载荷反演公式为:
Figure FDA0003317454250000102
Figure FDA0003317454250000103
式中,Px表示平行于x轴的径向集中力;Py表示平行于y轴的径向集中力;ε1、ε2分别表示两个不同套管监测位置z1、z2通过应变解调仪所获取的应变数据;函数g1、g2、h1、h2各自对应的公式如下:
Figure FDA0003317454250000104
Figure FDA0003317454250000105
Figure FDA0003317454250000106
Figure FDA0003317454250000107
式中,m、n、w、u是与监测位置z1、z2有关的中间变量;进一步的若任意监测位置i位于套管上起始端点与光纤所感应到的最大监测值对应的监测位置之间且该位置与起始监测位置距离为a,则监测位置z1对应的g1中的中间变量m、w分别表示为
Figure FDA0003317454250000111
wa=co0aλsin2θ;则监测位置z1对应的h1中的中间变量n、u分别表示为
Figure FDA0003317454250000112
ua=cQ0aλcosθsinθ;进一步的若任意监测位置i位于套管上另一端端点与光纤所感应到的最大检测值对应的监测位置之间,即两者间的距离表示为b=L-a,则监测位置z2对应的g2中的中间变量m、w分别表示为
Figure FDA0003317454250000113
wb=cQ0bλsin2θ;则监测位置z2对应的h2中的中间变量n、u分别表示为
Figure FDA0003317454250000114
ub=cQ0bλcosθsinθ;
Figure FDA0003317454250000115
Figure FDA0003317454250000116
Figure FDA0003317454250000117
Figure FDA0003317454250000118
Figure FDA0003317454250000119
Figure FDA00033174542500001110
Figure FDA00033174542500001111
其中,Do为套管外径,Di为套管内径,I为截面惯性矩,相对长度η=a/L;
集中载荷位置未知的集中载荷反演公式为:
Figure FDA0003317454250000121
Figure FDA0003317454250000122
Figure FDA0003317454250000123
Figure FDA0003317454250000124
Figure FDA0003317454250000125
其中,旋转角θ=2πz/H;同时可得
cM0iPx=s1,cM1iPx=s2,cQ0iPx=s3
cM0iPy=s4,cM1iPy=s5,cQ0iPy=s6
将cQ0i、cM0i、cM1i、Px、Py五个未知数,组成六个未知数cQ0iPx,cM0iPx,cM1iPx,cQ0iPy,cM0iPy,cM1iPy,以构造六元一次方程组求解,根据cQ0i,cM0i,cM1i的计算公式获取集中载荷位置,进而确定出Px、Py
6.根据权利要求5所述的装置,其特征在于,分布式光纤传感器依据测量需要设定对应的螺距、螺旋升角、螺旋方向以确定圆柱螺旋布线形式。
7.根据权利要求5所述的装置,其特征在于,求解六元一次方程组并据cQ0i,cM0i,cM1i的计算公式获取集中载荷位置,进而确定出Px、Py的步骤包括:
(1)、创建六元一次方程组,所述六元一次方程组对应的公式为
Figure FDA0003317454250000132
(2)、根据载荷角度β建立方程组连等式,所述方程组连等式为
Figure FDA0003317454250000131
(3)、将所述六元一次方程组简化为四元一次方程组,所述四元一次方程组对应的公式为
cM0iPx=s1,cMliPx=s2,cQ0iPx=s3
(4)、基于由已知监测点位置所确定的cQ0i,cM0i,cM1i,将四元一次方程组简化为二元一次方程组,所述二元一次方程组对应的公式为cM0iPx=s1,cM1iPx=s2;所述cQ0i,cM0i,cM1i对应的公式为
Figure FDA0003317454250000141
Figure FDA0003317454250000142
Figure FDA0003317454250000143
Figure FDA0003317454250000144
Figure FDA0003317454250000145
Figure FDA0003317454250000146
其中,η=a/L是相对长度;距离a表示若任意监测位置i位于套管上起始端点与光纤所感应到的最大检测值对应的监测位置之间,其表示为AC段,则a为该位置与起始监测位置间的距离;距离b为b=L-a,其表示若任意监测位置i位于套管上另一端端点与光纤所感应到的最大检测值对应的监测位置之间,其表示为BC段,则表示b两者间的距离;
(5)、依据各个监测位置位于AC段/BC段,求解方程组cM0iPx=s1,cM1iPx=s2;其中,cQ0a=cM1a,cQ0b=-cM1b
Figure FDA0003317454250000147
(6)、基于ηBCAC=2,确定出各个监测位置AC段或者BC段,即当当前监测位置位于AC段时,相应的ηAC∈(0,1)时,ηBC∈(1,2);当监测位置位于BC段时,相应的ηBC∈(0,1),ηAC∈(-2,-1);进而对方程组求解cM0iPx=s1,cM1iPx=s2以获得全部载荷信息Px、Py、P。
8.根据权利要求5所述的装置,其特征在于,在螺旋布线的情况下,集中载荷与边界条件关系即边界类型还包括:剪力Q、弯矩M各自与计算点的位置和边界条件的关系表达式为:
Figure FDA0003317454250000151
Figure FDA0003317454250000152
RA=cRAF
RB=cRBF
MA=cMAF
MB=cMBF
cRA=-cQ0a
cRB=-cQ0b
cMA=cM0a
cMB=cM0b+cM1bL
其中,边界和计算点的函数c#的诸符号中的cRA,cRB,cMA,cMB均仅是边界函数,即cRAA端支反力系数,cRB为B端支反力系数,cMA为A端/B支反力矩系数,cMB为B端支反力矩系数,cQ0a为AC段的常剪力系数,cQ0b为BC段的常剪力系数,cM0a为AC段的常弯矩系数,cM0b是BC段的常弯矩系数,cM1a为AC段的一次弯矩系数,cM1b为BC段的一次弯矩系数;同时在仅考虑集中力的情况下,定义相对长度η,η=a/L,即a=ηL,b=(1-η)L。
CN202010341332.1A 2020-04-27 2020-04-27 一种基于螺旋布设光纤的套管应变监测的方法和装置 Active CN111707204B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010341332.1A CN111707204B (zh) 2020-04-27 2020-04-27 一种基于螺旋布设光纤的套管应变监测的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010341332.1A CN111707204B (zh) 2020-04-27 2020-04-27 一种基于螺旋布设光纤的套管应变监测的方法和装置

Publications (2)

Publication Number Publication Date
CN111707204A CN111707204A (zh) 2020-09-25
CN111707204B true CN111707204B (zh) 2021-12-28

Family

ID=72536680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010341332.1A Active CN111707204B (zh) 2020-04-27 2020-04-27 一种基于螺旋布设光纤的套管应变监测的方法和装置

Country Status (1)

Country Link
CN (1) CN111707204B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112629400B (zh) * 2020-12-02 2022-04-29 山东航天电子技术研究所 基于光纤传感实现圆柱形金属体应变高精度测量的方法
CN114152371A (zh) * 2021-12-06 2022-03-08 中油奥博(成都)科技有限公司 基于分布式螺旋状铠装光缆的地下应力场测量装置及方法
CN115266075B (zh) * 2022-09-26 2023-02-17 中交第一公路勘察设计研究院有限公司 鼓凸自感知的板式支座及制作方法、监测系统及监测方法
CN115655133B (zh) * 2022-11-01 2024-05-03 中国石油大学(北京) 基于光纤应变感测管柱的地应力测量方法
CN116434482B (zh) * 2023-04-19 2024-04-30 华南理工大学 一种三分量分布式光纤隧洞口边坡灾害监测预警系统
CN117606377A (zh) * 2023-12-06 2024-02-27 哈尔滨工程大学 一种基于弱反射光纤光栅的海洋柔性管道曲率监测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573797A (ja) * 1991-09-12 1993-03-26 Furukawa Electric Co Ltd:The 線状外圧センサー及びそれを用いたケーブル
JPH11344390A (ja) * 1998-06-03 1999-12-14 Mitsubishi Heavy Ind Ltd 配管または容器の損傷位置検知装置
CN101738170A (zh) * 2009-12-18 2010-06-16 北京科技大学 一种用于大变形量测的分布式光纤传感器
CN104500035A (zh) * 2014-12-09 2015-04-08 中国石油天然气集团公司 提高井下套管柱分布式光纤在线应力检测数据精度的方法
CN105203341A (zh) * 2014-06-13 2015-12-30 北京强度环境研究所 大型贮箱悬挂式静力试验装置
CN105300305A (zh) * 2015-11-10 2016-02-03 桂林理工大学 耦合光纤光栅的大量程智能高强钢丝及其制作方法
CN106610273A (zh) * 2016-12-08 2017-05-03 天津大学 基于螺旋光纤光栅传感器阵列的形状检测装置和方法
CN107003192A (zh) * 2014-10-08 2017-08-01 光学感应器控股有限公司 具有经调谐的横向灵敏度的光纤线缆
CN107560548A (zh) * 2017-07-28 2018-01-09 刘伟平 一种Berry相产生器和基于Berry相的光纤位移传感器
WO2019240803A1 (en) * 2018-06-14 2019-12-19 Halliburton Energy Services, Inc. Method for installing fiber on production casing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006023588B3 (de) * 2006-05-17 2007-09-27 Sächsisches Textilforschungsinstitut eV Verwendung eines multifunktionalen, sensorbasierten Geotextilsystems zur Deichertüchtigung, für räumlich ausgedehntes Deichmonitoring sowie für die Gefahrenerkennung im Hochwasserfall
CN202403676U (zh) * 2011-12-29 2012-08-29 中船重工远舟(北京)科技有限公司 光纤光栅应变传感器校准系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0573797A (ja) * 1991-09-12 1993-03-26 Furukawa Electric Co Ltd:The 線状外圧センサー及びそれを用いたケーブル
JPH11344390A (ja) * 1998-06-03 1999-12-14 Mitsubishi Heavy Ind Ltd 配管または容器の損傷位置検知装置
CN101738170A (zh) * 2009-12-18 2010-06-16 北京科技大学 一种用于大变形量测的分布式光纤传感器
CN105203341A (zh) * 2014-06-13 2015-12-30 北京强度环境研究所 大型贮箱悬挂式静力试验装置
CN107003192A (zh) * 2014-10-08 2017-08-01 光学感应器控股有限公司 具有经调谐的横向灵敏度的光纤线缆
CN104500035A (zh) * 2014-12-09 2015-04-08 中国石油天然气集团公司 提高井下套管柱分布式光纤在线应力检测数据精度的方法
CN105300305A (zh) * 2015-11-10 2016-02-03 桂林理工大学 耦合光纤光栅的大量程智能高强钢丝及其制作方法
CN106610273A (zh) * 2016-12-08 2017-05-03 天津大学 基于螺旋光纤光栅传感器阵列的形状检测装置和方法
CN107560548A (zh) * 2017-07-28 2018-01-09 刘伟平 一种Berry相产生器和基于Berry相的光纤位移传感器
WO2019240803A1 (en) * 2018-06-14 2019-12-19 Halliburton Energy Services, Inc. Method for installing fiber on production casing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Distributed Optical Fiber-Based Approach for Soil-Structure Interaction;Boujia, N 等;《SENSORS》;20200131(第1期);全文 *
基于光纤光栅传感原理的桥梁索力测试方法研究与应用;李盛;《中国优秀博士学位论文库》;20090301;全文 *

Also Published As

Publication number Publication date
CN111707204A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
CN111707204B (zh) 一种基于螺旋布设光纤的套管应变监测的方法和装置
Li et al. Dent damage identification in stiffened cylindrical structures using inverse Finite Element Method
CN104111032B (zh) 一种基于光纤光栅传感网络的大型结构体变形测量方法
Ramos Jr et al. A consistent analytical model to predict the structural behavior of flexible risers subjected to combined loads
Floris et al. Measurement uncertainty of multicore optical fiber sensors used to sense curvature and bending direction
Bahtui et al. Numerical and analytical modeling of unbonded flexible risers
Floris et al. Experimental study of the influence of FBG length on optical shape sensor performance
Zhang et al. Crack detection of reinforced concrete structures based on BOFDA and FBG sensors
CN110887448B (zh) 一种基于光纤应变测量的梁结构形态重构方法
Todd et al. A local material basis solution approach to reconstructing the three-dimensional displacement of rod-like structures from strain measurements
CN105403344A (zh) 管道实时应力的获取方法
CN111707205B (zh) 一种基于轴向布设光纤的套管应变监测的方法和装置
Munzke et al. Distributed fiber-optic strain sensing with millimeter spatial resolution for the structural health monitoring of multiaxial loaded GFRP tube specimens
Guarracino et al. Effects of boundary conditions on testing of pipes and finite element modelling
Dvorkin et al. Finite element models in the steel industry: Part II: Analyses of tubular products performance
Qu et al. Various static loading condition monitoring of carbon fiber composite cylinder with integrated optical fiber sensors
CN103994747A (zh) 梁形结构拉伸弯曲复合变形场的无基准分布式测量方法
Cao et al. Analytical study on the buckling of cylindrical shells with arbitrary thickness imperfections under axial compression
Md Rafi et al. Revisiting ASME strain-based dent evaluation criterion
Sarvestani et al. Three-dimensional stress analysis of orthotropic curved tubes-part 2: laminate solution
Le Grognec et al. Influence of residual stresses and geometric imperfections on the elastoplastic collapse of cylindrical tubes under external pressure
Ozkan et al. Testing and analysis of steel pipes under bending, tension, and internal pressure
Kishida et al. Monitoring of tunnel shape using distributed optical fiber sensing techniques
Mathur et al. FEA based prediction of crack growth behavior of 304LN stainless steel cracked and healthy piping elbows
Yoosef-Ghodsi et al. Analytical simulation and field measurements for a wrinkle on the norman wells pipeline

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant