CN111690731B - Fxr激动剂在治疗肝性脑病中的应用 - Google Patents
Fxr激动剂在治疗肝性脑病中的应用 Download PDFInfo
- Publication number
- CN111690731B CN111690731B CN202010438815.3A CN202010438815A CN111690731B CN 111690731 B CN111690731 B CN 111690731B CN 202010438815 A CN202010438815 A CN 202010438815A CN 111690731 B CN111690731 B CN 111690731B
- Authority
- CN
- China
- Prior art keywords
- fxr
- liver
- hepatic encephalopathy
- ammonia
- oca
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/575—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0008—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
- A61K48/0025—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/08—Hepato-biliairy disorders other than hepatitis
- G01N2800/085—Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Wood Science & Technology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Urology & Nephrology (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Neurology (AREA)
- General Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Neurosurgery (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明属于生物医药技术领域,尤其涉及FXR激动剂在治疗肝性脑病中的应用,具体为奥贝胆酸在治疗肝性脑病中的应用。本发明还提供核受体FXR在肝性脑病治疗中的应用,具体为以核受体FXR为靶点,得到治疗肝性脑病或肝脏保护的药物。用FXR的激动剂奥贝胆酸(OCA)激活FXR,我们发现在肝损伤模型中,FXR的激活能诱导NAGS,SLC1A4,AL等氨代谢通路关键酶的表达,降低血液中血氨的含量,降低大脑星形胶质细胞的损伤;此外,FXR的激活能起到显著的肝保护功能。
Description
技术领域
本发明属于生物医药技术领域,尤其涉及FXR激动剂在治疗肝性脑病中的应用。
背景技术
肝性脑病(hepatic encephalopathy,HE)是急性或慢性肝病患者中枢神经系统功能障碍所引起的可逆的代谢性疾病。肝性脑病的发病机制比较复杂,长期以来,氨中毒学说在其发病机制假说中一直占主导地位。肠道来源的毒素如血氨等在正常情况下由肝脏代谢清除,但在肝功能衰竭及门-体分流异常的情况下,氨等毒素无法通过肝脏代谢清除而直接进入体循环,进而穿透血-脑屏障进入脑内,导致神经精神症状的发生。大脑中星形胶质细胞是唯一可以代谢氨的细胞,可将氨转化为谷氨酰胺,其调节效应是肝性脑病的细胞学基础。一旦星形胶质细胞将氨转化为谷氨酰胺,便改变细胞内渗透压,促进更多水分进入细胞,引起星形胶质细胞肿胀,加速氧化应激,改变线粒体渗透性,从而导致脑水肿的发生。同时大脑细胞内氨水平的升高可改变神经传递过程,造成神经系统异常。目前,肝性脑病的治疗无特异的方法,以综合治疗为主。首先,是去除诱发因素、处理肝硬化并发症,改善肝脏功能。其次,以肠道为中心,即主要是降低氨水平,包括抑制氨的生成和吸收,增加氨的代谢清除。此外,还有改善神经系统和调节肠道菌群的药物应用于肝性脑病的治疗。
机体中产生的氨主要以葡萄糖-丙氨酸循环和谷氨酰胺的形式转运到肝脏中,在肝脏中,谷氨酰胺被溶质载体-1A5(ASCT2)转运到门脉周围的肝细胞中,在谷氨酰胺酶(GLS)的作用下,合成谷氨酸盐,在NAG合成酶(NAGS)的作用下,谷氨酸盐合成N-乙酰谷氨酸(NAG),NAG是氨基甲酰磷酸合成酶l(CPS-I)必须的共催化剂,而CPS-I则是尿素生成途径中的限速酶。另外一种途径,谷氨酸盐在谷氨酸盐脱氢酶的作用下,生成α-酮戊二酸(αKG)和氨。在肝脏静脉周围的肝细胞中,由于存在谷氨酰胺合成酶(GS),谷氨酰胺被转运蛋白SLC1A2和SLC1A4转运到肝细胞中,主要合成谷氨酸盐。其中,氨基甲酰磷酸合成酶-I(CPS-I),鸟氨酸氨基甲酰转移酶(OCT),精氨酸代琥珀酸合成酶(AS),精氨酸代琥珀酸裂解酶(AL),精氨酸酶I(ArgI)是氨代谢中的关键酶。
法尼酯X受体(FXR,NR1H4)早在1995年被分离出来,它作为一个孤儿核受体被法尼醇活化,是甲羟戊酸代谢通路的中间媒介。FXR高表达于肝、肠、肾和肾上腺中,反馈性控制调节这些器官中胆汁酸的合成、分泌和重吸收通道。FXR能被数种胆汁酸活化,像鹅脱氧胆酸(CDCA)、奥贝胆酸(OCA)、胆酸(CA)、脱氧胆酸(DCA)等。在肝脏中,FXR可作为一个单一元件或和类维生素AX受体(RXR)形成二聚体作为FXR的功能单位调节多种目的基因。
OCA由美国Intercept制药公司研发成功,是二十年来首个研发用于治疗胆汁淤积性肝病的药物,做为一种胆汁酸的模拟物可活化FXR,但是关于OCA在肝性脑病中的应用尚未见报道。在本发明中,申请人发现,OCA通过活化FXR可以调控氨代谢通路来提高肝脏的氨代谢功能,改善肝性脑病。
发明内容
针对现有技术存在的问题,本发明提供FXR激动剂在治疗肝性脑病中的应用。
本发明的目的,在于提供FXR激动剂在治疗肝性脑病中的应用;所述的FXR激动剂可以为奥贝胆酸。
本发明的另一个目的,提供核受体FXR在肝性脑病治疗中的应用,具体为以核受体FXR为靶点,得到治疗肝性脑病或肝脏保护的药物。
本发明通过调控FXR及其靶基因的表达来调控氨代谢,从而达到减轻肝性脑病的目的。
所述的以FXR为靶点的治疗肝性脑病的药物,包括增强或抑制的FXR表达的基因药物,和通过FXR的配体来调控FXR及其靶基因的表达的化学药物。
所述的基因药物或化学药物包括药学上可接受的载体,形式为临床上可接受的形式。所述的基因药物含有FXR表达载体或干扰载体;所述的化学药物含有调控FXR的配体及调控FXR靶基因的配体。
所述FXR的配体包括鹅脱氧胆酸(CDCA)、奥贝胆酸(OCA)、GW4064、胆酸(CA)、脱氧胆酸(DCA)等。
所述FXR的靶基因包括NAGS,ASCT1,SLC1A4,GLS和GDH等。
本发明显著的技术效果。
本发明人在前期的工作中,利用70%肝脏切除和化学药物TAA建立肝脏损伤模型。用FXR的激动剂奥贝胆酸(OCA)激活FXR,我们发现在肝损伤模型中,FXR的激活能诱导NAGS,SLC1A4,AL等氨代谢通路关键酶的表达,降低血液中血氨的含量,降低大脑星形胶质细胞的损伤;此外,FXR的激活能起到显著的肝保护功能。上述结果的发现,有助于我们通过药物靶向调控FXR来治疗肝性脑病。
附图说明
图1为肝性脑病模型的建立;其中,图A.小鼠血浆中NH3,ALB,ALT,AST,TBA,BUN的含量;图B.小鼠肝脏病理切片,HE,100X;图C.小鼠大脑病理切片,HE,100X;图D.小鼠大脑病理切片,GFAP抗体标记,200X;图E.小鼠血浆中NH3,ALB,ALT,AST,ALP,BUN的含量;图F.小鼠肝脏病理切片,HE,100X;图G.小鼠大脑病理切片,HE,100X;图H.小鼠大脑病理切片,GFAP抗体标记,200X。
图2FXR激动剂OCA能提高肝脏氨代谢能力;其中,图A.FXR的靶基因SHP和CYP7A1的表达;图B.小鼠血浆中NH3,ALB,ALT,AST,TBA,BUN的含量;图C.小鼠肝脏病理切片,HE,100X;图D.氨代谢通路相关基因的表达;图E.FXR的靶基因SHP和CYP7A1的表达;图F.小鼠血浆中NH3,ALB,ALT,AST,ALP,BUN的含量;图G.小鼠肝脏病理切片,HE,100X。
图3FXR激动剂OCA改善肝性脑病;其中,图A.小鼠大脑病理切片,HE,100X;图B.小鼠大脑炎症相关基因的表达;图C.小鼠大脑病理切片,GFAP抗体标记,200X。
具体实施方式
下面结合具体实施例对本发明做详细的说明。
实施例1。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
12周龄的野生型C57BL/6N雄性小鼠:购自北京维通利华实验动物技术有限公司,C57BL/6N FXR缺陷小鼠:购自美国希望之城医学中心实验室;奥贝胆酸(OCA):购自陶素,产品目录编号为459789-99-2;甲基纤维素:购自陶素,产品目录编号为9004-67-5;硫代乙酰胺(TAA):购自陶素,产品目录编号为62-55-5;NH3,ALB,ALT,AST,TBA,ALP,BUN等检测试剂盒:购自日本富士公司;GFPA抗体:购自abcam,产品目录编号为ab183735;免疫组化二抗试剂盒:购自中杉金桥,PV-9001。
本发明涉及的实验结果检测方法。
1、肝性脑病模型的建立。
(1)肝切模型:取正常饲养的12周龄的野生型C57BL/6N雄性小鼠(MOCK)和FXR缺陷小鼠(FXR-KO),手术切除70%(PH)的肝组织,分别在0天,40小时,3天,7天处死小鼠。
(2)TAA肝损伤模型:取正常饲养的12周龄的野生型C57BL/6N雄性小鼠,设置四组,一组作为对照(MOCK),一组饲喂FXR激动剂OCA 10mg/kg(OCA),一组腹腔注射TAA 200mg/kg(TAA),一组同时饲喂OCA和注射TAA(OCA+TAA)。每天给药一次,7天后处死小鼠。
2、血浆中氨含量,ALB,ALT,AST,TBA,ALP和尿素含量的检测。
取不同处理后的小鼠,摘除眼球取血,放到含有肝素的离心管中,6000转/分钟4度离心15分钟,取血浆。立即用日本富士生化分析仪检测血浆中NH3,ALB,ALT,AST,TBA,ALP,BUN等的含量。
3、病理切片。
将取出的肝脏,大脑等组织,取出已固定的组织放入包埋盒,流水冲洗,置于自动脱水机过夜,次日石蜡包埋切片。组织切片4~5μm左右为宜。37℃水浴锅展片,载玻片捞片。然后放入烤片机烤片2-3h。
(1)HE染色。
具体操作步骤如下:①烤片:将组织切片,放到烘箱烘烤半个小时。②脱蜡水化:将组织切片放到二甲苯中,十分钟;捞出后放入新的二甲苯,十分钟;重复一次;然后将组织切片捞出放入95%的乙醇中,五分钟;将组织切片捞出后放入85%的乙醇五分钟;再将组织切片捞出,放入75%的乙醇,五分钟;然后放入单蒸水中,每次五分钟,重复两次。③滴加苏木素染细胞核5min左右,后流水轻轻冲洗,用1%盐酸酒精分化2s,使切片儿褪色至淡兰红色。④流水返兰3min。⑤滴加伊红染料,染细胞质五分钟。放入水中,洗去伊红染料;捞出放入80%的乙醇中,停留一分钟;然后捞出,放入90%的乙醇中,两分钟;转移到无水乙醇中,四分钟;然后放入二甲苯中,透明五分钟;再捞出,放入新的二甲苯中,透明十分钟。⑥然后将切边捞出,用擦镜纸将组织周围残余的二甲苯擦拭干净,然后用中性树脂封固,尽量不要产生气泡,然后平放使其自然风干。⑦将切片拿至光学显微镜下观察拍片。
(2)免疫组织化学。
具体实验操作流程:①烤片:将石蜡包埋后的组织切片,放到烘箱烘烤半个小时。②脱蜡水化:将组织切片放到二甲苯中,十分钟;捞出后放入新的二甲苯,十分钟;重复一次;然后将组织切片捞出放入95%的乙醇中,五分钟;将组织切片捞出后放入85%的乙醇五分钟;再将组织切片捞出,放入75%的乙醇,五分钟;然后放入单蒸水中,每次五分钟,重复两次。③过氧化氢酶的去除:滴加3%的过氧化氢溶液,室温静置15分钟,PBS洗3次。④抗原修复:微波法。将切片放入抗原修复液中,放入微波炉,微波高火三分钟,然后停止;开始计时15分钟,每隔两分钟进行一次中高火20秒,直至15分钟结束;放置室温,使抗原修复液自然冷却;。然后用PBS洗3次,5min/次。⑤封闭:将玻片组织边缘擦干,向每个组织切片滴加适量的5%BSA,置于湿盒中封闭30分钟;然后用PBS洗3次,5min/次。⑥孵育一抗:按照说明书比例,用5%BSA稀释一抗,每个组织切片滴加50微升的抗体,放于湿盒中,冰箱4℃孵育过夜;第二天取出湿盒,室温放置30min,观察避免干片,用PBS洗3次。⑦孵育二抗:将玻片组织边缘擦干,向每个组织切片滴加适量的二抗,37℃孵育20min,然后PBS洗3次,5min/次。⑧DAB显色(避光):预先配置好显色液;在每张玻片组织上滴加适量的显色液,室温避光孵育十分钟左右;注意在显微镜下观察具体显色情况,合理调整显色时间;显色结束后,用流水冲洗。⑨复染:将玻片组织在苏木素中复染五分钟左右,观察颜色变化,自来水冲洗10min;分化:在1%的盐酸酒精中浸泡2秒,迅速拿出,自来水冲洗10min。脱水透明:依次过70%乙醇、80%乙醇、95%乙醇以及无水乙醇,各1次,每次5min;然后依次过二甲苯Ⅰ、二甲苯Ⅱ,各1次,每次10min。⑩封片:中性树脂封片;注意避免气泡产生,然后平放使其自然风干。显微镜下观察拍照。
4、荧光定量PCR检测氨代谢通路及炎症相关基因的表达。
(1)提RNA。
①将取出的肝脏,大脑等组织液氮速冻,保存在零下80度的冰箱备用。②取适量冻存组织,加tri-regent,组织破碎仪裂解细胞。③加BCP分层细胞/组织裂解液,12000g15min 4℃离心,将上清液转移到新的EP管中。④加2-protocal(异丙醇)(2-protocal:上清液=1:1),上下混匀10多次,放置10min,让RNA充分析出。12000g,10min,4℃离心。⑤弃上清,加入75%DEPC乙醇1ml,洗RNA一次,轻吹起来。7500g 5min 4℃离心。⑥吸净上清液,放置超净台上干燥10min。1.7加适量PCR水溶解RNA,放55℃水浴10min,放置-20℃冰箱保存。
(2)RNA反转录cDNA。
①加样顺序:H2O—RNA—oligdT,充分混匀,微离后,将PCR管放置PCR仪中,65℃,10min。
②反应体系,见表1:
表1 PCR反应体系。
混匀后,加入上述PCR管中,混匀,微离。将PCR管放到PCR仪中,42℃90min,95℃5min。反应结束后,cDNA放到-20℃冰箱中保存。
(3)real-time PCR。
①稀释cDNA样品。②倍比稀释标准曲线的样品:取出一个稀释后的cDNA样品进行倍比稀释,终浓度别为6ng/ul、0.6ng/ul、0.06ng/ul、0.006ng/ul、0.0006ng/ul。③配β-actin、FXR、SHP和CYP7A1等基因的混合液(mix)。④上样:使用real-time PCR专用的8排管,加液顺序为mix 15ul/well→稀释的cDNA样品5ul/well.上样结束后,将PCR专用的8排管或96孔板放在涡旋振荡器上震荡混匀,离心后;打开7500real time PCR system,将PCR专用的8排管孔板放置机器中进行检测。⑤结果分析:将每个孔的数值除以相对应的内参值(βactin)后,再进行相关实验组的比较。
本发明具体实验过程如下。
一、建立二种肝性脑病模型:
1.肝切模型:取正常饲养的12周龄的野生型C57BL/6N雄性小鼠,手术切除70%(PH)的肝组织,分别在0天,40小时,3天,7天处死小鼠,取血浆,肝脏,大脑。生化分析仪检测血浆中氨含量,ALB,ALT,AST,TBA和尿素含量等。HE和免疫组织化学检测肝脏和大脑的病理损伤。
病理性肝切除,是肝癌治疗中常见的方案,尽管肝细胞具有较强的再生能力,但是肝切之后会引起急剧的肝功能缺失。我们此模型模拟在部分肝切除后肝脏的氨代谢能力以及FXR对氨代谢的影响。结果显示,肝切之后,肝脏功能受到显著影响,血浆中ALT,AST和TBA均有显著升高,氨的含量也有一定程度升高,尿素的含量明显降低。其中,尤其以肝切后40小时变化最大,随着肝脏的再生,7天后肝功能基本恢复(图1-A)。病理切片显示,肝切之后主要引起肝脏的再生,其病理损伤并不明显(图1-B);大脑的病理损伤结果也不明显(图1-C),但是免疫组织化学结果显示,肝切后大脑中GFAP的表达会有一定程度的升高(图1-D)。这说明着肝切后由于肝功能的损伤,导致氨代谢的降低,血液中氨含量升高,氨进入大脑后,造成了一定程度脑损伤。
2.TAA肝损伤模型:取正常饲养的12周龄的野生型C57BL/6N雄性小鼠,腹腔注射硫代乙酰胺(TAA)200mg/kg,每天给药一次,7天后处死小鼠,取血浆,肝脏,大脑。生化分析仪检测血浆中氨含量,ALB,ALT,AST,ALP和尿素含量等。HE和免疫组织化学检测肝脏和大脑的病理损伤。
TAA是剧烈的肝毒性化学物质,能引起肝脏的急性损伤。我们此模型模拟在肝损伤后肝性脑病的产生和活化FXR对肝功能的改善。结果显示,注射TAA后,小鼠的肝脏功能受到显著影响,血浆中ALT,AST均有显著升高,氨的含量也明显升高,但是尿素的含量却无明显变化(图1-E)。病理切片显示,注射TAA后,肝脏的病理损伤非常明显,可见到明显的炎症和坏死区域(图1-F);同肝切一样,大脑的病理损伤结果也不显著(图1-G),但是免疫组织化学结果显示,大脑中GFAP的表达明显升高(图1-H)。
二、激活FXR能提高肝脏氨代谢能力。
1、肝切模型:取正常饲养的12周龄的野生型C57BL/6N雄性小鼠(WT)和FXR缺陷小鼠(FXR-KO),手术切除70%(PH)的肝组织,分别在0天,40小时,3天,7天处死小鼠,取血浆,肝脏。通过荧光定量PCR检测FXR的靶基因SHP和CYP7A1来验证FXR的激活,生化分析仪检测血浆中氨含量,ALB,ALT,AST,TBA和尿素含量等。HE和免疫组织化学检测肝脏的病理损伤,荧光定量PCR检测氨代谢通路相关基因的表达。
结果显示,在肝切模型中,由于胆汁酸的增加和肝脏的再生,FXR被活化,其下游靶基因SHP表达上调,负调控靶基因CYP7A1表达下调;FXR-KO小鼠由于FXR缺陷,SHP的表达低于WT小鼠,而CYP7A1的表达高于WT小鼠,在肝切模型中也有不同程度的上调(SHP)和下调(CYP7A1)(图2-A)。该结果证明在肝切模型中,FXR是被激活的,FXR-KO模型也是成功的。生化结果显示,血浆中ALT,AST和TBA均有显著升高,氨的含量也有一定程度升高,尿素的含量明显降低。其中,尤其以肝切后40小时变化最大,随着肝脏的再生,7天后肝功能基本恢复。值得注意的是,FXR-KO小鼠的肝功能受影响更严重,血浆中ALT,AST和TBA较WT小鼠均有显著升高,而氨和尿素的含量则变化不显著(图2-B)。病理切片显示,肝切之后主要引起肝脏的再生,其病理损伤并不明显;FXR-KO小鼠的肝脏中有很多脂滴,主要是由于FXR的缺陷,导致脂代谢障碍所致(图2-C)。为了探索肝切对氨代谢的影响,我们对氨代谢通路中关键酶的基因表达进行了检测,结果显示,肝切之后,GS,CPS1,ARG1,AL,NAGS,SLC1A4等多个基因的表达显著上调,但也有OTC,ASCT2是下调的,其中FXR-KO小鼠和WT小鼠的趋势是一致的。另外,需要注意的是,和WT小鼠相比,FXR的靶基因NAGS,SLC1A4和GLS在FXR-KO小鼠中的表达量是降低的(图2-D)。
2、TAA肝损伤模型:取正常饲养的12周龄的野生型C57BL/6N雄性小鼠,设置四组,一组作为对照(MOCK),一组饲喂FXR激动剂OCA 10mg/kg(OCA),一组腹腔注射TAA 200mg/kg(TAA),一组同时饲喂OCA和注射TAA(OCA+TAA)。每天给药一次,7天后处死小鼠,取血浆,肝脏。通过荧光定量PCR检测FXR的靶基因SHP和CYP7A1来验证FXR的激活,生化分析仪检测血浆中氨含量,ALB,ALT,AST,ALP和尿素含量等。HE检测肝脏的病理损伤。
在TAA模型中,通过对小鼠饲喂FXR的激动剂OCA,其下游靶基因SHP表达上调,负调控靶基因CYP7A1表达下调(图2-E)。该结果证明,对小鼠饲喂OCA可以活化FXR。生化结果显示,饲喂OCA活化FXR后再注射TAA,肝功能受到了一定的保护,血浆中ALT和AST较TAA组均有显著下降,氨的含量也有一定程度下降(图2-F)。病理切片显示,活化FXR可以减轻TAA造成的肝脏的病理损伤,其炎症和坏死区域显著减少(图2-G)。
(三)激活FXR改善肝性脑病。
取正常饲养的12周龄的野生型C57BL/6N雄性小鼠,设置四组,一组作为对照(MOCK),一组饲喂FXR激动剂OCA 10mg/kg(OCA),一组腹腔注射TAA 200mg/kg(TAA),一组同时饲喂OCA和注射TAA(OCA+TAA)。每天给药一次,7天后处死小鼠,取大脑。HE检测大脑海马区域和皮质及髓质区域的病理损伤,荧光定量PCR检测大脑病理损伤相关基因的表达,免疫组织化学检测病理损伤相关蛋白的表达。
在TAA模型中,大脑的病理损伤结果差异并不显著(图3-A)。但是通过检测大脑病理损伤相关基因的表达,GFAP,SOD,TSPO,MAO-A,GRIAL等基因表达显著升高,对小鼠饲喂OCA活化FXR后,上述基因的表达有明显的下降(图3-B)。免疫组织化学显示,活化FXR后大脑海马和皮质区域GFAP的表达有明显下降(图3-C)。这说明活化FXR对肝性脑病有明显改善作用。
Claims (2)
1.奥贝胆酸在制备治疗肝性脑病药物中的应用。
2.如权利要求1所述的奥贝胆酸在制备治疗肝性脑病药物中的应用,其特征在于,所述的治疗肝性脑病药物以核受体FXR为靶点。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010438815.3A CN111690731B (zh) | 2020-05-22 | 2020-05-22 | Fxr激动剂在治疗肝性脑病中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010438815.3A CN111690731B (zh) | 2020-05-22 | 2020-05-22 | Fxr激动剂在治疗肝性脑病中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111690731A CN111690731A (zh) | 2020-09-22 |
CN111690731B true CN111690731B (zh) | 2021-09-28 |
Family
ID=72477179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010438815.3A Active CN111690731B (zh) | 2020-05-22 | 2020-05-22 | Fxr激动剂在治疗肝性脑病中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111690731B (zh) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201706347SA (en) * | 2015-02-06 | 2017-09-28 | Intercept Pharmaceuticals Inc | Pharmaceutical compositions for combination therapy |
PE20180690A1 (es) * | 2015-04-27 | 2018-04-23 | Intercept Pharmaceuticals Inc | Composiciones de acido obeticolico y metodos de uso |
WO2017210147A1 (en) * | 2016-05-29 | 2017-12-07 | Wei Jia | Liver disease-related biomarkers and methods of use thereof |
-
2020
- 2020-05-22 CN CN202010438815.3A patent/CN111690731B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111690731A (zh) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xue et al. | Triptolide attenuates renal tubular epithelial-mesenchymal transition via the MiR-188-5p-mediated PI3K/AKT pathway in diabetic kidney disease | |
Yuan et al. | Rev-erbα activation down-regulates hepatic Pck1 enzyme to lower plasma glucose in mice | |
Guo et al. | Effects and mechanisms of dendrobium officinalis six nostrum for treatment of hyperuricemia with hyperlipidemia | |
Yu et al. | Aescin can alleviate NAFLD through Keap1-Nrf2 by activating antioxidant and autophagy | |
Zhang et al. | Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/-mice via p66shc/cytochrome C cascade | |
Liu et al. | Phloretin ameliorates diabetic nephropathy by inhibiting nephrin and podocin reduction through a non-hypoglycemic effect | |
Duan et al. | Remote ischemic preconditioning protects liver ischemia-reperfusion injury by regulating eNOS-NO pathway and liver microRNA expressions in fatty liver rats | |
Xu et al. | Dynamic changes and mechanism of intestinal endotoxemia in partially hepatectomized rats | |
CN111690731B (zh) | Fxr激动剂在治疗肝性脑病中的应用 | |
Kumari et al. | Deletion of insulin receptor in the proximal tubule and fasting augment albumin excretion | |
Xiong et al. | Nr2e1 ablation impairs liver glucolipid metabolism and induces inflammation, high-fat diets amplify the damage | |
Cao et al. | Regulatory effects of Prohibitin 1 on proliferation and apoptosis of pulmonary arterial smooth muscle cells in monocrotaline-induced PAH rats | |
Zhao et al. | Preventive effect of collagen peptides from Acaudina molpadioides on acute kidney injury through attenuation of oxidative stress and inflammation | |
Xu et al. | Effects of glycyrrhizin on biliary transport and hepatic levels of glutathione in rats | |
Con et al. | Water salinity and postprandial effects on transcription of peptide and amino acid transporters in the kidney of Mozambique tilapia (Oreochromis mossambicus) | |
Wu et al. | Yang-Gan-Jiang-Mei formula alleviates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome through mitophagy | |
CN116870068A (zh) | 文冠果叶在制备预防和治疗高尿酸血症肾病药物中的应用 | |
Fei et al. | Protective effects of Radix Astragali injection on multiple organs of rats with obstructive jaundice | |
CN107412768B (zh) | Ggpps的抑制在制备治疗梗阻性黄疸肝损伤药物中的用途 | |
Yalçın et al. | Investigation of the hepatic mTOR/S6K1/SREBP1 signalling pathway in rats at different ages: from neonates to adults | |
Yuanyuan et al. | Yanggan Jiangmei Formula alleviates hepatic inflammation and lipid accumulation in non-alcoholic steatohepatitis by inhibiting the NF-κB/NLRP3 signaling pathway | |
CN112206231A (zh) | 苦参碱衍生物在治疗非酒精性脂肪性肝炎中的用途 | |
Wan et al. | Effect of Galactooligosaccharide on PPARs/PI3K/Akt Pathway and Gut Microbiota in High-Fat and High-Sugar Diet Combined with STZ-Induced GDM Rat Model | |
Zhang et al. | LncRNA NORAD defects deteriorate the formation of age-related macular degeneration | |
CN115927592B (zh) | Csde1基因为靶点在制备用于治疗非酒精性脂肪肝的药物中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |