CN111689772A - 一种多种元素增韧氧化锆基陶瓷材料的制备方法及其产品 - Google Patents
一种多种元素增韧氧化锆基陶瓷材料的制备方法及其产品 Download PDFInfo
- Publication number
- CN111689772A CN111689772A CN202010563350.4A CN202010563350A CN111689772A CN 111689772 A CN111689772 A CN 111689772A CN 202010563350 A CN202010563350 A CN 202010563350A CN 111689772 A CN111689772 A CN 111689772A
- Authority
- CN
- China
- Prior art keywords
- ball milling
- ceramic material
- based ceramic
- powder
- toughened zirconia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/62615—High energy or reactive ball milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种多种元素增韧氧化锆基陶瓷材料及其制备方法。制备的材料为一种多种元素增韧氧化锆基陶瓷材料,材料的化学组成为ZraYbbCecScdYeOx,其中a=88.1~94.1,b=4~5,c=1~2,d=0.5~1.5,e=1~3,x满足其它元素化合价所需的氧原子总数。本发明提供的材料具有较高的相稳定性、高韧性、致密性的特点,该材料的最高断裂韧性可达12.34MPa·m1/2,最高的硬度为1120HV10;抗弯强度为910.4MPa;致密性为98.2%。
Description
技术领域
本发明属于氧化锆基陶瓷技术领域,具体涉及一种多种元素增韧氧化锆基陶瓷材料的制备方法及其产品。
背景技术
氧化锆陶瓷在现代工业领域得到了广泛的应用,例如作为挤出和拉丝模具、固体氧化物燃料电池(SOFCs)、催化剂或催化剂载体、相变增韧陶瓷,汽车发动机零件、氧传感器、航空发动机用热障碍涂层等。
氧化锆作为陶瓷材料其得到了广泛的应用,但是仅以氧化锆作为陶瓷,其性能并不能满足现有实际生产的需求,因而对其改性是目前提高氧化锆性能的主要手段。其中3Y-TZP具有最佳的强度和韧性的组合,作为结构陶瓷应用广泛。然而,由于应力诱导相变增韧对温度的敏感性,相变增韧随温度升高而失效,氧化锆的中高温性能不够理想。此外,水热老化使得其在相应环境的应用受限(如医疗刀具的反复蒸汽消毒、生物植入体、蒸汽涡轮机部件等)。利用共掺杂稳定的方法能有效地结合不同稀土稳定剂的优势,其中,Ce-Y共稳定氧化锆兼具3Y-TZP和Ce-TZP的优点,其力学性能和抗老化性能相对较好,但相比Y-TZP而言,其晶粒尺寸仍然较大,力学性能仍需进一步提高。由于TZP的韧性主要是通过应力诱导相变增韧来保证,这意味着从该途径提高其韧性有一定的限度,利用合适的第二相对氧化锆进行增韧成为一种有效手段。因此,对氧化锆来说,如何通过成分设计和工艺优化实现强韧化的同时兼顾其高温性能及抗水热老化能力,如何进一步优化其耐摩擦性及高温相稳定性,是一系列亟待解决的技术问题。此外,稀土元素的分布及含量对氧化锆的力学性能影响较大,多元稀土共稳定氧化锆中掺杂的稀土元素之间的相互作用、分布及含量对微观结构与力学性能的影响规律和机理尚不清楚,其强韧化机制及各机制之间的协同关系尚未明确。
因而对氧化锆基陶瓷材料的韧性、硬度、抗弯强度以及致密性的提高仍是目前亟待解决的问题。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种多种元素增韧氧化锆基陶瓷材料的制备方法及其产品,其具有较高的断裂韧性,硬度,抗弯强度以及致密性,以及将其在手机充电的保险管制作中的应用。
本发明采用以下技术方案:
一种多种元素增韧氧化锆基陶瓷材料的制备方法,其特征在于:所述制备方法包括如下步骤:
1)首先将纳米超细ZrO2粉体过200目筛;
2)将所需的ZrO2,Yb2O3,CeO2,Sc2O3,Y2O3按照ZraYbbCecScdYeOx,其中a=88.1~94.1,b=4~5,c=1~2,d=0.5~1.5,e=1~3,x满足其它元素化合价所需的氧原子总数的化学计量比进行称取,然后放于球磨罐中进行球磨,其中,球磨介质为无水乙醇;
3)球磨结束后,将获得的悬浮液真空干燥,干燥后进行研磨,研磨后的粉体过200目筛;
4)将过筛后的粉体在马弗炉中于720℃~830℃下煅烧0.5~3h,煅烧后将得到的粉体进行造粒,将造粒的粉体通过压片机预成型后再经250MPa~300MPa下压制成胚体,将所得的胚体在马弗炉中于1250~1600℃下烧结1~3h,随炉冷却至室温得到陶瓷。
优选的,所述步骤2)球磨罐为聚乙烯球磨罐,以3Y-TZP球进行球磨。
优选的,所述步骤2)中还包括2wt%的氧化铝。
优选的,所述步骤2)中球磨转速为300~400r/min,球磨时间8~16h。
优选的,所述步骤3)中的真空干燥为在真空烘箱中于60~80℃干燥12~24h以除去除乙醇。
优选的,所述步骤4)中,所述于720℃~830℃下煅烧0.5~3h的升温速率为3~5℃/min;所述于1250~1600℃下烧结1~3h的升温速率为8~10℃/min。
本发明的另一个技术方案是,基于上述制备方法制备的一种多种元素增韧氧化锆基陶瓷材料。
优选的,所述的多种元素增韧氧化锆基陶瓷材料的裂韧性为11.45~12.34MPa·m1/2,最高的硬度为1090~1120HV10;抗弯强度为895.5~910.4MPa;致密性为97.9~98.2%。
本发明的另一个技术方案是,基于上述多种元素增韧氧化锆基陶瓷材料的应用,将所述多种元素增韧氧化锆基陶瓷材料在手机充电的保险管制作中的应用。
与现有技术相比,本发明至少具有以下有益效果:
1)本发明提供的一种多种元素增韧氧化锆基陶瓷材料,原料经混料、湿磨、干燥、研磨过筛、预烧,模压成型、烧结制备而成,制备过程简单,形成的一种多种元素增韧氧化锆基陶瓷材料致密度高、主要力学指标优良,适合工业推广。
2)在球磨过程中添加了氧化铝助剂,提高了氧化锆陶瓷材料的致密性。
3)通过多种元素的协同作用,提高了氧化锆基陶瓷材料的断裂韧性,硬度,抗弯强度以及致密性,而且通过多种稀土共掺杂得到的氧化锆陶瓷材料,其裂韧性为11.45~12.34MPa·m1/2,最高的硬度为1090~1120HV10;抗弯强度为895.5~910.4MPa;致密性为97.9~98.2%。
综上所述,本发明制备的一种多种元素增韧氧化锆基陶瓷材料是用于实际运用的理想材料。
下面通过实施例,对本发明的技术方案做进一步的详细描述。
具体实施方式
本发明的一种多种元素增韧氧化锆基陶瓷材料的制备方法,所述制备方法包括如下步骤:
1)首先将纳米超细ZrO2粉体过200目筛;
2)将所需的ZrO2,Yb2O3,CeO2,Sc2O3,Y2O3按照ZraYbbCecScdYeOx,其中a=88.1~94.1,b=4~5,c=1~2,d=0.5~1.5,e=1~3,x满足其它元素化合价所需的氧原子总数的化学计量比进行称取,并添加2wt%的氧化铝,然后放于聚乙烯球磨罐中以3Y-TZP球进行球磨,其中,球磨介质为无水乙醇;300~400r/min,球磨时间8~16h;
3)球磨结束后,将获得的在真空烘箱中于60~80℃干燥12~24h以除去除乙醇,干燥后进行研磨,研磨后的粉体过200目筛;
4)将过筛后的粉体在马弗炉中于720℃~830℃下煅烧0.5~3h,其升温速率为3~5℃/min,煅烧后将得到的粉体进行造粒,将造粒的粉体通过压片机预成型后再经250MPa~300MPa下压制成胚体,将所得的胚体在马弗炉中于1250~1600℃下烧结1~3h,其升温速率为8~10℃/min,随炉冷却至室温得到陶瓷。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在所示的本发明实施例的组件可以通过各种不同的配置来布置和设计。因此,以下对本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种多种元素增韧氧化锆基陶瓷材料的制备方法,所述制备方法包括如下步骤:
1)首先将纳米超细ZrO2粉体过200目筛;
2)将所需的ZrO2,Yb2O3,CeO2,Sc2O3,Y2O3按照ZraYbbCecScdYeOx,其中a=90.5,b=4,c=1.5,d=1,e=3,x满足其它元素化合价所需的氧原子总数的化学计量比进行称取,并添加2wt%的氧化铝,然后放于聚乙烯球磨罐中以3Y-TZP球进行球磨,其中,球磨介质为无水乙醇;350r/min,球磨时间14h;
3)球磨结束后,将获得的在真空烘箱中于80℃干燥20h以除去除乙醇,干燥后进行研磨,研磨后的粉体过200目筛;
4)将过筛后的粉体在马弗炉中于800℃下煅烧2.5h,其升温速率为4℃/min,煅烧后将得到的粉体进行造粒,将造粒的粉体通过压片机预成型后再经300MPa下压制成胚体,将所得的胚体在马弗炉中于1600℃下烧结2h,其升温速率为10℃/min,随炉冷却至室温得到陶瓷。
实施例2
一种多种元素增韧氧化锆基陶瓷材料的制备方法,所述制备方法包括如下步骤:
1)首先将纳米超细ZrO2粉体过200目筛;
2)将所需的ZrO2,Yb2O3,CeO2,Sc2O3,Y2O3按照ZraYbbCecScdYeOx,其中a=91.5,b=5,c=1,d=0.5,e=2,x满足其它元素化合价所需的氧原子总数的化学计量比进行称取,并添加2wt%的氧化铝,然后放于聚乙烯球磨罐中以3Y-TZP球进行球磨,其中,球磨介质为无水乙醇;400r/min,球磨时间10h;
3)球磨结束后,将获得的在真空烘箱中于70℃干燥24h以除去除乙醇,干燥后进行研磨,研磨后的粉体过200目筛;
4)将过筛后的粉体在马弗炉中于720℃下煅烧3h,其升温速率为5℃/min,煅烧后将得到的粉体进行造粒,将造粒的粉体通过压片机预成型后再经300MPa下压制成胚体,将所得的胚体在马弗炉中于1500℃下烧结5h,其升温速率为10℃/min,随炉冷却至室温得到陶瓷。
对照例的通式为ZraYbbCecScdYeOx,除a、b、c、d、e不同以外,其它制备参数和条件与实施例1相同,具体参数见表1:
表1氧化锆基材料的主要性能
综上所述,本发明制备的一种多种元素增韧氧化锆基陶瓷材料由于高裂韧性、高硬度,高抗弯强度和致密性,是一种理想陶瓷材料,而且通过实施例1和对照例1-13的对比可以发现,组分之间具有协同作用,同时添加Yb、Ce、Sc和Y能够现在提高氧化锆基陶瓷材料的裂韧性、硬度、抗弯强度和致密性。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。
Claims (9)
1.一种多种元素增韧氧化锆基陶瓷材料的制备方法,其特征在于:所述制备方法包括如下步骤:
1)首先将纳米超细ZrO2粉体过200目筛;
2)将所需的ZrO2,Yb2O3,CeO2,Sc2O3,Y2O3按照ZraYbbCecScdYeOx,其中a=88.1~94.1,b=4~5,c=1~2,d=0.5~1.5,e=1~3,x满足其它元素化合价所需的氧原子总数的化学计量比进行称取,然后放于球磨罐中进行球磨,其中,球磨介质为无水乙醇;
3)球磨结束后,将获得的悬浮液真空干燥,干燥后进行研磨,研磨后的粉体过200目筛;
4)将过筛后的粉体在马弗炉中于720℃~830℃下煅烧0.5~3h,煅烧后将得到的粉体进行造粒,将造粒的粉体通过压片机预成型后再经250MPa~300MPa下压制成胚体,将所得的胚体在马弗炉中于1250~1600℃下烧结1~3h,随炉冷却至室温得到陶瓷。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤2)球磨罐为聚乙烯球磨罐,以3Y-TZP球进行球磨。
3.根据权利要求1所述的制备方法,其特征在于:所述步骤2)中还包括2wt%的氧化铝。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤2)中球磨转速为300~400r/min,球磨时间8~16h。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤3)中的真空干燥为在真空烘箱中于60~80℃干燥12~24h以除去除乙醇。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤4)中,所述于720℃~830℃下煅烧0.5~3h的升温速率为3~5℃/min;所述于1250~1600℃下烧结1~3h的升温速率为8~10℃/min。
7.根据权利要求1-6任一项所述的制备方法制备的一种多种元素增韧氧化锆基陶瓷材料。
8.根据权利要求7所述的一种多种元素增韧氧化锆基陶瓷材料,其特征在于:所述的多种元素增韧氧化锆基陶瓷材料的裂韧性为11.45~12.34MPa·m1/2,最高的硬度为1090~1120HV10;抗弯强度为895.5~910.4MPa;致密性为97.9~98.2%。
9.根据权利要求7或8所述的一种多种元素增韧氧化锆基陶瓷材料的应用,其特征在于,所述多种元素增韧氧化锆基陶瓷材料在手机充电的保险管制作中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010563350.4A CN111689772A (zh) | 2020-06-19 | 2020-06-19 | 一种多种元素增韧氧化锆基陶瓷材料的制备方法及其产品 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010563350.4A CN111689772A (zh) | 2020-06-19 | 2020-06-19 | 一种多种元素增韧氧化锆基陶瓷材料的制备方法及其产品 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111689772A true CN111689772A (zh) | 2020-09-22 |
Family
ID=72481835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010563350.4A Withdrawn CN111689772A (zh) | 2020-06-19 | 2020-06-19 | 一种多种元素增韧氧化锆基陶瓷材料的制备方法及其产品 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111689772A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115073172A (zh) * | 2022-07-20 | 2022-09-20 | 内蒙古科技大学 | 一种陶瓷靶材及其制备方法和应用 |
-
2020
- 2020-06-19 CN CN202010563350.4A patent/CN111689772A/zh not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115073172A (zh) * | 2022-07-20 | 2022-09-20 | 内蒙古科技大学 | 一种陶瓷靶材及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5685846B2 (ja) | 透明ジルコニア焼結体及びその製造方法、並びにその用途 | |
CN101182193B (zh) | 一种原位自增韧氧化铝陶瓷的制备方法 | |
CN101786878B (zh) | 防静电陶瓷材料及其制备方法及该材料制得的鞭炮引线编织针 | |
KR101951622B1 (ko) | 소결 세라믹 부품 및 이의 형성 방법 | |
CN101481240B (zh) | 一种莫来石—刚玉质偏转磁芯承烧座及其制备方法 | |
CN102718477A (zh) | 一种高介电常数x8r型mlcc介质材料及其制备方法 | |
CN106045505A (zh) | 一种氧化镁掺杂的钇稳定氧化锆(5y‑psz)陶瓷的制备方法 | |
CN107555990A (zh) | 一种白色陶瓷 | |
CN103232237A (zh) | 一种常压烧结透明氧化锆陶瓷材料的制备方法 | |
CN111689772A (zh) | 一种多种元素增韧氧化锆基陶瓷材料的制备方法及其产品 | |
CN115073152B (zh) | 层压陶瓷复合材料及制备方法和铬酸镧陶瓷及制作工艺 | |
CN101734920A (zh) | 一种氮化钛多孔陶瓷及其制备方法 | |
CN111423230B (zh) | 一种多种稀土共掺杂增韧氧化铪陶瓷材料及其制备方法 | |
AU623956B2 (en) | Electrically conductive zirconia-based sintered body and process for the production thereof | |
CN111675537A (zh) | 一种改性增韧氧化锆基陶瓷材料的制备方法及其产品 | |
CN110835264A (zh) | 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法 | |
CN102503407A (zh) | 新型无铅x8r型多层陶瓷电容器介质及其制备方法 | |
CN101423396A (zh) | 一种耐高温、抗氧化硅氮氧陶瓷的低温制备方法 | |
CN102557638A (zh) | 锆钛铝硅碳固溶体材料及其制备方法 | |
US10882794B2 (en) | Zirconium tin titanate compositions, ceramic bodies comprising same, and methods of manufacturing same | |
KR20030090081A (ko) | 열팽창이 낮은 알루미늄 티타네이트- 지르코늄 티타네이트세라믹 제조 방법 | |
KR101062442B1 (ko) | 우수한 고온물성을 갖는 저온 소결 탄화규소 및 그 제조방법 | |
JPH08208317A (ja) | アルミナ質焼結体およびその製造方法 | |
CN118373686A (zh) | 一种非化学计量比稀土锆酸盐陶瓷及其制备方法 | |
RU2760814C1 (ru) | Керамический огнеупорный материал, тигель и способ изготовления тигля |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200922 |