CN111667461B - 一种输电线路异常目标检测方法 - Google Patents
一种输电线路异常目标检测方法 Download PDFInfo
- Publication number
- CN111667461B CN111667461B CN202010373851.6A CN202010373851A CN111667461B CN 111667461 B CN111667461 B CN 111667461B CN 202010373851 A CN202010373851 A CN 202010373851A CN 111667461 B CN111667461 B CN 111667461B
- Authority
- CN
- China
- Prior art keywords
- feature
- anchor
- pyramid
- transmission line
- map
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 53
- 238000001514 detection method Methods 0.000 title claims abstract description 32
- 230000002159 abnormal effect Effects 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 32
- 230000007246 mechanism Effects 0.000 claims abstract description 18
- 230000006870 function Effects 0.000 claims description 36
- 238000010586 diagram Methods 0.000 claims description 8
- 238000012549 training Methods 0.000 claims description 8
- 238000013507 mapping Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000011176 pooling Methods 0.000 claims description 3
- 238000012935 Averaging Methods 0.000 claims description 2
- 238000012216 screening Methods 0.000 claims description 2
- 230000005856 abnormality Effects 0.000 claims 2
- 238000007689 inspection Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 238000007499 fusion processing Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/30—Noise filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
Abstract
Description
Resnet-101 | 输入 | 输出 | 输出维度 | 卷积核大小 |
Conv1 | 224x224 | 112*112 | 64 | 7*7,64 |
Conv2_x | 112*112 | 56*56 | 64 | 3*3,64 |
Conv3_x | 56*56 | 28*28 | 128 | 3*3,128 |
Conv4_x | 28*28 | 14*14 | 256 | 3*3,256 |
Conv5_x | 14*14 | 7*7 | 512 | 3*3,512 |
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010373851.6A CN111667461B (zh) | 2020-05-06 | 2020-05-06 | 一种输电线路异常目标检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010373851.6A CN111667461B (zh) | 2020-05-06 | 2020-05-06 | 一种输电线路异常目标检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111667461A CN111667461A (zh) | 2020-09-15 |
CN111667461B true CN111667461B (zh) | 2023-08-29 |
Family
ID=72383259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010373851.6A Active CN111667461B (zh) | 2020-05-06 | 2020-05-06 | 一种输电线路异常目标检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111667461B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112541508A (zh) * | 2020-12-21 | 2021-03-23 | 山东师范大学 | 果实分割识别方法及系统、果实采摘机器人 |
CN112949779A (zh) * | 2021-04-20 | 2021-06-11 | 中国人民解放军国防科技大学 | 全局特征增强的小目标特征提取方法及装置 |
CN113670929B (zh) * | 2021-07-05 | 2024-06-14 | 国网宁夏电力有限公司电力科学研究院 | 输电线异物检测方法与装置、存储介质、终端设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110135267A (zh) * | 2019-04-17 | 2019-08-16 | 电子科技大学 | 一种大场景sar图像细微目标检测方法 |
CN111027547A (zh) * | 2019-12-06 | 2020-04-17 | 南京大学 | 一种针对二维图像中的多尺度多形态目标的自动检测方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9881234B2 (en) * | 2015-11-25 | 2018-01-30 | Baidu Usa Llc. | Systems and methods for end-to-end object detection |
US11562243B2 (en) * | 2017-11-17 | 2023-01-24 | Meta Platforms, Inc. | Machine-learning models based on non-local neural networks |
-
2020
- 2020-05-06 CN CN202010373851.6A patent/CN111667461B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110135267A (zh) * | 2019-04-17 | 2019-08-16 | 电子科技大学 | 一种大场景sar图像细微目标检测方法 |
CN111027547A (zh) * | 2019-12-06 | 2020-04-17 | 南京大学 | 一种针对二维图像中的多尺度多形态目标的自动检测方法 |
Non-Patent Citations (1)
Title |
---|
Pedestrian detection algorithm based on video sequences and laser point cloud;Hui LI, et al;Frontiers of Computer Science;第9卷(第3期);402-414 * |
Also Published As
Publication number | Publication date |
---|---|
CN111667461A (zh) | 2020-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108961235B (zh) | 一种基于YOLOv3网络和粒子滤波算法的缺陷绝缘子识别方法 | |
CN108596055B (zh) | 一种复杂背景下高分辨遥感图像的机场目标检测方法 | |
CN111667461B (zh) | 一种输电线路异常目标检测方法 | |
CN112084869B (zh) | 一种基于紧致四边形表示的建筑物目标检测方法 | |
CN113111727B (zh) | 一种基于特征对齐的遥感场景下旋转目标检测方法 | |
CN108038846A (zh) | 基于多层卷积神经网络的输电线路设备图像缺陷检测方法及系统 | |
CN113255589B (zh) | 一种基于多卷积融合网络的目标检测方法及系统 | |
CN110956207B (zh) | 一种光学遥感影像全要素变化检测方法 | |
WO2020093624A1 (zh) | 一种基于多尺度检测算法的天线下倾角测量方法 | |
CN113591617B (zh) | 基于深度学习的水面小目标检测与分类方法 | |
CN114170527B (zh) | 一种利用旋转框表示的遥感目标检测方法 | |
CN116778146A (zh) | 基于多模态数据的道路信息提取方法及装置 | |
CN113327255A (zh) | 基于YOLOv3检测定位裁剪及fine-tune的输电线路巡检图像处理方法 | |
CN115953371A (zh) | 一种绝缘子缺陷检测方法、装置、设备和存储介质 | |
CN116645595A (zh) | 遥感影像建筑物屋顶轮廓识别方法、装置、设备和介质 | |
CN111383273B (zh) | 一种基于改进结构推理网络的高铁接触网零部件定位方法 | |
CN113313107A (zh) | 一种斜拉桥缆索表面多类型病害智能检测和识别方法 | |
CN114078106B (zh) | 基于改进Faster R-CNN的疵点检测方法 | |
CN114219763A (zh) | 基于Faster RCNN算法的配电设备异常发热点红外图片检测方法 | |
CN113920479A (zh) | 一种目标检测网络构建和目标检测方法、装置及电子设备 | |
CN113591608A (zh) | 一种基于深度学习的高分辨率遥感影像不透水面提取方法 | |
CN113673534A (zh) | 一种基于Faster RCNN的RGB-D图像果实检测方法 | |
CN118279320A (zh) | 基于自动提示学习的目标实例分割模型建立方法及其应用 | |
CN111860332B (zh) | 基于多阈值级联检测器的双通道电力图零部件检测方法 | |
CN113947723A (zh) | 基于尺寸平衡fcos的高分辨率遥感场景目标检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240621 Address after: 214000 Room 305, building 17, No. 1588, Zhonghui Avenue, Huishan District, Wuxi City, Jiangsu Province (Urban Railway Huishan station area) Patentee after: Jiangsu Wuzheng Information Technology Co.,Ltd. Country or region after: China Address before: 266061 Songling Road, Laoshan District, Qingdao, Shandong Province, No. 99 Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY Country or region before: China |