CN111601562B - 根据组织位置控制超声外科器械 - Google Patents
根据组织位置控制超声外科器械 Download PDFInfo
- Publication number
- CN111601562B CN111601562B CN201880084582.2A CN201880084582A CN111601562B CN 111601562 B CN111601562 B CN 111601562B CN 201880084582 A CN201880084582 A CN 201880084582A CN 111601562 B CN111601562 B CN 111601562B
- Authority
- CN
- China
- Prior art keywords
- ultrasonic
- surgical
- power level
- generator
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002604 ultrasonography Methods 0.000 claims abstract description 298
- 239000012636 effector Substances 0.000 claims abstract description 276
- 230000001225 therapeutic effect Effects 0.000 claims description 56
- 230000004044 response Effects 0.000 claims description 40
- 238000000034 method Methods 0.000 abstract description 278
- 210000001519 tissue Anatomy 0.000 description 551
- 238000004422 calculation algorithm Methods 0.000 description 222
- 238000004891 communication Methods 0.000 description 161
- 230000015654 memory Effects 0.000 description 153
- 238000006073 displacement reaction Methods 0.000 description 114
- 230000006870 function Effects 0.000 description 95
- 102000008186 Collagen Human genes 0.000 description 93
- 108010035532 Collagen Proteins 0.000 description 93
- 229920001436 collagen Polymers 0.000 description 93
- 230000008569 process Effects 0.000 description 88
- 230000007704 transition Effects 0.000 description 76
- 230000008859 change Effects 0.000 description 59
- 238000010304 firing Methods 0.000 description 59
- 230000003044 adaptive effect Effects 0.000 description 57
- 238000010586 diagram Methods 0.000 description 56
- 229920002549 elastin Polymers 0.000 description 53
- 102000016942 Elastin Human genes 0.000 description 52
- 108010014258 Elastin Proteins 0.000 description 52
- 230000002452 interceptive effect Effects 0.000 description 50
- 239000000523 sample Substances 0.000 description 49
- 230000004913 activation Effects 0.000 description 47
- 238000012545 processing Methods 0.000 description 47
- 238000005259 measurement Methods 0.000 description 46
- 238000001356 surgical procedure Methods 0.000 description 46
- 238000003384 imaging method Methods 0.000 description 44
- 230000033001 locomotion Effects 0.000 description 43
- 239000000779 smoke Substances 0.000 description 40
- 239000012530 fluid Substances 0.000 description 34
- 239000000203 mixture Substances 0.000 description 32
- 238000003032 molecular docking Methods 0.000 description 27
- 238000003860 storage Methods 0.000 description 25
- 238000005520 cutting process Methods 0.000 description 24
- 230000000694 effects Effects 0.000 description 23
- 230000007246 mechanism Effects 0.000 description 23
- 238000009826 distribution Methods 0.000 description 22
- 238000002847 impedance measurement Methods 0.000 description 22
- 238000002955 isolation Methods 0.000 description 21
- 238000012544 monitoring process Methods 0.000 description 21
- 238000004458 analytical method Methods 0.000 description 20
- 230000003068 static effect Effects 0.000 description 20
- 238000005345 coagulation Methods 0.000 description 19
- 238000007789 sealing Methods 0.000 description 19
- 238000012800 visualization Methods 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 18
- 230000015271 coagulation Effects 0.000 description 18
- 238000001514 detection method Methods 0.000 description 18
- 238000012549 training Methods 0.000 description 18
- 230000005540 biological transmission Effects 0.000 description 17
- 239000011162 core material Substances 0.000 description 17
- 230000001965 increasing effect Effects 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 17
- 238000003491 array Methods 0.000 description 16
- 239000003990 capacitor Substances 0.000 description 16
- 230000003287 optical effect Effects 0.000 description 16
- 238000002059 diagnostic imaging Methods 0.000 description 15
- 210000002414 leg Anatomy 0.000 description 15
- 238000001228 spectrum Methods 0.000 description 15
- 230000008901 benefit Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 14
- 230000002262 irrigation Effects 0.000 description 13
- 238000003973 irrigation Methods 0.000 description 13
- 238000013519 translation Methods 0.000 description 13
- 241000282817 Bovidae Species 0.000 description 12
- 239000004809 Teflon Substances 0.000 description 12
- 229920006362 Teflon® Polymers 0.000 description 12
- 210000004204 blood vessel Anatomy 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 238000005070 sampling Methods 0.000 description 12
- 230000001360 synchronised effect Effects 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 11
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 238000002310 reflectometry Methods 0.000 description 11
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 230000005355 Hall effect Effects 0.000 description 10
- 230000009471 action Effects 0.000 description 10
- 238000007906 compression Methods 0.000 description 10
- 230000006835 compression Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 230000002093 peripheral effect Effects 0.000 description 10
- 238000011144 upstream manufacturing Methods 0.000 description 10
- 230000008878 coupling Effects 0.000 description 9
- 238000005859 coupling reaction Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- 230000007958 sleep Effects 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 8
- 230000003750 conditioning effect Effects 0.000 description 8
- 230000005669 field effect Effects 0.000 description 8
- 230000001939 inductive effect Effects 0.000 description 8
- 230000002441 reversible effect Effects 0.000 description 8
- 238000007460 surgical drainage Methods 0.000 description 8
- 230000000007 visual effect Effects 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 230000009977 dual effect Effects 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 210000003127 knee Anatomy 0.000 description 7
- 210000004072 lung Anatomy 0.000 description 7
- 238000012806 monitoring device Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 230000003213 activating effect Effects 0.000 description 6
- 238000004590 computer program Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 238000002224 dissection Methods 0.000 description 6
- 238000007726 management method Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 210000004872 soft tissue Anatomy 0.000 description 6
- 238000004611 spectroscopical analysis Methods 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000001112 coagulating effect Effects 0.000 description 5
- 238000002405 diagnostic procedure Methods 0.000 description 5
- 238000004520 electroporation Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 230000023597 hemostasis Effects 0.000 description 5
- 230000001976 improved effect Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 230000002427 irreversible effect Effects 0.000 description 5
- 238000013538 segmental resection Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 230000005670 electromagnetic radiation Effects 0.000 description 4
- 230000013011 mating Effects 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- 230000008447 perception Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000001953 sensory effect Effects 0.000 description 4
- 238000001429 visible spectrum Methods 0.000 description 4
- 206010002091 Anaesthesia Diseases 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 238000007476 Maximum Likelihood Methods 0.000 description 3
- 101710172711 Structural protein Proteins 0.000 description 3
- 230000004931 aggregating effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000037005 anaesthesia Effects 0.000 description 3
- 210000003484 anatomy Anatomy 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000000881 depressing effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000002439 hemostatic effect Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000004377 microelectronic Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000002271 resection Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 101100458289 Drosophila melanogaster msps gene Proteins 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000000701 chemical imaging Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000005228 liver tissue Anatomy 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012978 minimally invasive surgical procedure Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000002980 postoperative effect Effects 0.000 description 2
- 238000012913 prioritisation Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000001931 thermography Methods 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 241000238366 Cephalopoda Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101100001674 Emericella variicolor andI gene Proteins 0.000 description 1
- 206010027457 Metastases to liver Diseases 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 208000007123 Pulmonary Atelectasis Diseases 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000012976 endoscopic surgical procedure Methods 0.000 description 1
- 238000010336 energy treatment Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000012830 laparoscopic surgical procedure Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 208000018769 loss of vision Diseases 0.000 description 1
- 231100000864 loss of vision Toxicity 0.000 description 1
- 238000001748 luminescence spectrum Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000005404 monopole Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001448 refractive index detection Methods 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 238000013349 risk mitigation Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 208000025247 virus-associated trichodysplasia spinulosa Diseases 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00026—Conductivity or impedance, e.g. of tissue
- A61B2017/0003—Conductivity or impedance, e.g. of tissue of parts of the instruments
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mechanical Engineering (AREA)
- Biomedical Technology (AREA)
- Dentistry (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
本发明公开了用于根据在端部执行器(1122)内抓握的组织的位置来控制超声外科器械的各种系统和方法。控制电路可以被配置为经由发生器向超声换能器施加变化的功率水平,所述超声换能器驱动超声机电系统以振动超声刀片。此外,所述控制电路可以测量所述超声换能器的对应于所述变化的功率水平的阻抗,并且根据所述超声换能器的所述阻抗之间的差值相对于阈值来确定定位在所述端部执行器(130420、130424、130422)内的组织的位置。
Description
相关申请的交叉引用
本专利申请按照美国法典第35卷第119条(e)款的规定要求2018年8月23日提交的标题为根据组织位置控制超声外科器械(CONTROLLING AN ULTRASONIC SURGICALINSTRUMENT ACCORDING TO TISSUE LOCATION)的美国临时专利申请62/721,995的优先权,该临时专利的公开内容全文以引用方式并入本文。
本专利申请按照美国法典第35卷第119条(e)款的规定要求2018年8月23日提交的标题为电外科系统的态势感知(SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS)美国临时专利申请62/721,998的优先权,该临时专利申请全文以引用方式并入本文中。
本专利申请按照美国法典第35卷第119条(e)款的规定要求2018年8月23日提交的标题为由于无意的电容耦合引起的能量中断(INTERRUPTION OF ENERGY DUE TOINADVERTENT CAPACITIVE COUPLING)的美国临时专利申请62/721,999的优先权,该临时专利申请的公开内容全文以引用方式并入本文。
本专利申请按照美国法典第35卷第119条(e)款的规定要求2018年8月23日提交的标题为基于能量模态自动调节压力的双极组合式装置(BIPOLAR COMBINATION DEVICETHAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY)的美国临时专利申请62/721,994的优先权,该临时专利申请的公开内容全文以引用方式并入本文。
本专利申请按照美国法典第35卷第119条(e)款的规定要求2018年8月23日提交的标题为用于递送组合的电信号的射频能量装置(RADIO FREQUENCY ENERGY DEVICE FORDELIVERING COMBINED ELECTRICAL SIGNALS)的美国临时专利申请62/721,996的优先权,该临时专利申请的公开内容全文以引用方式并入本文。
本专利申请按照美国法典第35卷第119条(e)款的规定还要求2018年6月30日提交的标题为通过另一装置智能激活能量装置(SMART ACTIVATION OF AN ENERGY DEVICE BYANOTHER DEVICE)的美国临时专利申请62/692,747、2018年6月30日提交的标题为智能能量架构(SMART ENERGY ARCHITECTURE)的美国临时专利申请62/692,748和2018年6月30日提交的标题为智能能量装置(SMART ENERGY DEVICES)的美国临时专利申请62/692,768的优先权,这些临时专利申请中的每个的公开内容全文以引用方式并入本文。
本专利申请按照美国法典第35卷第119条(e)款的规定还要求2018年3月20日提交的标题为具有可分离阵列元件的电容耦合的返回路径垫(CAPACITIVE COUPLED RETURNPATH PAD WITH SEPARABLE ARRAY ELEMENTS)的美国临时专利申请62/650,898、2018年3月30日提交的标题为具有优化的感测能力的外科系统(SURGICAL SYSTEMS WITH OPTIMIZEDSENSING CAPABILITIES)的美国临时专利申请序列号62/650,887、2018年3月30日提交的标题为用于交互式外科平台的排烟模块(SMOKE EVACUATION MODULE FOR INTERACTIVESURGICAL PLATFORM)的美国临时专利申请序列号62/650,882和2018年3月30日提交的标题为外科排烟感测和控制(SURGICAL SMOKE EVACUATION SENSING AND CONTROLS)的美国临时专利申请序列号62/650,877的优先权的权益,这些临时专利申请中的每个的公开内容全文以引用方式并入本文。
本专利申请按照美国法典第35卷第119条(e)款的规定还要求2017年12月28日提交的标题为交互式外科平台(INTERACTIVE SURGICAL PLATFORM)的美国临时专利申请序列号62/611,341、2017年12月28日提交的标题为基于云的医学分析(CLOUD-BASED MEDICALANALYTICS)的美国临时专利申请序列号62/611,340和2017年12月28日提交的标题为机器人辅助的外科平台(ROBOT ASSISTED SURGICAL PLATFORM)的美国临时专利申请序列号62/611,339的优先权的权益,这些临时专利申请中的每个的公开内容全文以引用方式并入本文。
背景技术
在外科环境中,智能能量装置可需要在智能能量架构环境中。
发明内容
在一个整体方面,一种确定位于超声外科器械的端部执行器中的组织的位置的方法,该超声外科器械包括超声换能器,该端部执行器包括声学上耦合到超声换能器的超声刀片。该方法包括:由控制电路向超声换能器施加第一功率水平;由所述控制电路测量所述超声换能器的对应于所述第一功率水平的第一阻抗测量值;由所述控制电路向所述超声换能器施加第二功率水平;由所述控制电路测量所述超声换能器的对应于所述第二功率水平的第二阻抗测量值;由所述控制电路计算所述第一阻抗测量值和所述第二阻抗测量值之间的超声换能器阻抗的差值;由所述控制电路将所述超声换能器阻抗的所述差值与第一阈值进行比较;并且由控制电路基于第一阈值确定定位在端部执行器内的组织的位置。
在另一个整体方面,一种能够连接到发生器的超声外科器械。该超声外科器械包括端部执行器,该端部执行器包括超声刀片、声学上耦合到超声刀片的超声换能器,以及耦合到超声换能器的控制电路。超声换能器被配置为响应于来自发生器的驱动信号而使超声刀片超声振动。控制电路被配置为:经由超声发生器向超声换能器施加变化的功率水平,测量超声换能器的对应于变化的功率水平的阻抗,并且根据超声换能器的阻抗之间的差值相对于阈值来确定定位在端部执行器内的组织的位置。
在另一个整体方面,一种能够连接到超声器械的超声发生器,该超声器械包括端部执行器、超声刀片以及声学上耦合到超声刀片的超声换能器。该超声发生器包括能够耦合到超声换能器的控制电路。控制电路被配置为:向超声换能器施加变化的功率水平,测量超声换能器的对应于变化的功率水平的阻抗,并且根据超声换能器的阻抗之间的差值相对于阈值来确定定位在端部执行器内的组织的位置。
附图说明
各个方面的特征在所附权利要求书中进行了特别描述。然而,通过参考以下结合如下附图所作的说明可最好地理解各个方面(有关手术组织和方法)及其进一步的目的和优点。
图1为根据本公开的至少一个方面的计算机实现的交互式外科系统的框图。
图2为根据本公开的至少一个方面的用于在手术室中执行外科规程的外科系统。
图3为根据本公开的至少一个方面的与可视化系统、机器人系统和智能器械配对的外科集线器。
图4为根据本公开的至少一个方面的外科集线器壳体和可滑动地接纳在外科集线器壳体的抽屉中的组合发生器模块的局部透视图。
图5为根据本公开的至少一个方面的具有双极、超声和单极触点以及排烟部件的组合发生器模块的透视图。
图6示出了根据本公开的至少一个方面的用于横向模块化外壳的多个横向对接端口的单个功率总线附接件,该横向模块化外壳被配置为容纳多个模块。
图7示出了根据本公开的至少一个方面的被配置为容纳多个模块的竖直模块化外壳。
图8示出了根据本公开的至少一个方面的包括模块化通信集线器的外科数据网络,该模块化通信集线器被配置为将位于医疗设施的一个或多个手术室中的模块化装置或专用于外科操作的医疗设施中的任何房间连接到云。
图9为根据本公开的至少一个方面的计算机实现的交互式外科系统。
图10示出了根据本公开的至少一个方面的包括耦合到模块化控制塔的多个模块的外科集线器。
图11示出了根据本公开的至少一个方面的通用串行总线(USB)网络集线器装置的一个方面。
图12示出了根据本公开的至少一个方面的外科器械或工具的控制系统的逻辑图。
图13示出了根据本公开的至少一个方面的被配置为控制外科器械或工具的各个方面的控制电路。
图14示出了根据本公开的至少一个方面的被配置为控制外科器械或工具的各个方面的组合逻辑电路。
图15示出了根据本公开的至少一个方面的被配置为控制外科器械或工具的各方面的时序逻辑电路。
图16示出了根据本公开的至少一个方面的包括多个马达的外科器械或工具,多个马达可被激活以执行各种功能。
图17为根据本公开的至少一个方面的被配置为操作本文所述的外科工具的机器人外科器械的示意图。
图18示出了根据本公开的至少一个方面的被编程以控制位移构件的远侧平移的外科器械的框图。
图19为根据本公开的至少一个方面的被配置为控制各种功能的外科器械的示意图。
图20为根据本公开的至少一个方面的被配置为在包括模块化通信集线器的外科数据网络中执行自适应超声刀片控制算法的系统。
图21示出根据本公开的至少一个方面的发生器的示例。
图22为根据本公开的至少一个方面的外科系统,该外科系统包括发生器和可与其一起使用的各种外科器械。
图23为根据本公开的至少一个方面的端部执行器。
图24为根据本公开的至少一个方面的图22的外科系统的图示。
图25为根据本公开的至少一个方面的示出动态支路电流的模型。
图26为根据本公开的至少一个方面的发生器架构的结构视图。
图27A-27C为根据本公开的至少一个方面的发生器架构的功能视图。
图28A-28B为根据本公开的至少一个方面的发生器的结构和功能方面。
图29为超声驱动电路的一个方面的示意图。
图30为根据本公开的至少一个方面的控制电路的示意图。
图31示出了根据本公开的至少一个方面的示出包含在模块化超声外科器械内的另一个电路的简化电路框图。
图32示出了根据本公开的至少一个方面的被划分为多个级的发生器电路。
图33示出了根据本公开的至少一个方面的被划分成多个级的发生器电路,其中第一级电路是第二级电路共有的。
图34为根据本公开的至少一个方面的被配置用于驱动高频电流(RF)的驱动电路的一个方面的示意图。
图35示出了根据本公开的至少一个方面的数字合成电路诸如直接数字合成(DDS)电路的基本架构的一个方面,该DDS电路被配置为生成用于外科器械中的电信号波形的多个波形状。
图36示出了根据本公开的至少一个方面的直接数字合成(DDS)电路的一个方面,该DDS电路被配置为生成用于外科器械中的电信号波形的多个波形状。
图37示出了根据本公开的至少一个方面的根据模拟波形(被示出为叠加在离散的时间数字电信号波形之上以用于比较目的)的本公开的至少一个方面的离散时间数字电信号的一个循环。
图38为根据本公开的一个方面的控制系统的图示,该控制系统被配置为在闭合构件朝远侧推进以闭合夹持臂从而以期望的速率施加闭合力负载时提供闭合构件的逐渐闭合。
图39示出了根据本公开的一个方面的比例积分微分(PID)控制器反馈控制系统。
图40为根据本公开的至少一个方面的包括多个独立操作的电路区段的分段电路的系统图。
图41为根据本公开的至少一个方面的具有马达控制功能的外科器械的各个部件的电路图。
图42为根据本公开的至少一个方面的用于控制超声机电系统的频率并检测其阻抗的替代系统。
图43A为作为具有冷色(蓝色)和暖色(红色)超声刀片的相同超声装置的谐振频率的函数的阻抗相位角的图形表示;并且
图43B为作为具有冷色(蓝色)和暖色(红色)超声刀片的相同超声装置的谐振频率的函数的阻抗量值的图形表示。
图44为根据本公开的至少一个方面的基于在多种频率处测量的超声换能器上的阻抗来改善温度估计器和状态空间模型的卡尔曼滤波器的示意图。
图45为根据本公开的至少一个方面的图44中所示的卡尔曼滤波器的状态估计器用来最大化估计的三种概率分布。
图46A为在没有温度控制的情况下达到490℃的最高温度的超声装置的温度与时间的关系图形表示。
图46B为根据本公开的至少一个方面的在具有温度控制的情况下达到320℃的最高温度的超声装置的温度与时间关系的图形表示。
图47A-47B为在检测到超声刀片的温度突然下降时调节施加到超声换能器的超声功率放入反馈控制的图示,其中
图47A为作为时间的函数的超声功率的图形表示;并且
图47B为根据本公开的至少一个方面的作为时间的函数的超声刀片温度的曲线图。
图48为根据本公开的至少一个方面的描绘控制超声刀片的温度的控制程序或逻辑配置的过程的逻辑流程图。
图49为根据本公开的至少一个方面的在血管击发期间作为时间的函数的超声刀片温度的图形表示。
图50为根据本公开的至少一个方面的描绘控制两个温度设定点之间的超声刀片的温度的控制程序或逻辑配置的过程的逻辑流程图。
图51为根据本公开的至少一个方面的描绘确定超声刀片的初始温度的控制程序或逻辑配置的过程的逻辑流程图。
图52为根据本公开的至少一个方面的描绘确定超声刀片何时接近不稳定然后调节到超声换能器的功率以防止超声换能器的不稳定的控制程序或逻辑配置的过程的逻辑流程图。
图53为根据本公开的至少一个方面的描绘提供具有温度控制的超声密封的控制程序或逻辑配置的过程的逻辑流程图。
图54为根据本公开的至少一个方面的作为时间的函数的超声换能器电流和超声刀片温度的图形表示。
图55为根据本公开的至少一个方面的超声端部执行器的底视图,其示出了夹持臂和超声刀片并且描绘了定位在超声端部执行器内的组织。
图56为根据本公开的至少一个方面的描绘在预定超声发生器功率水平增加的范围内作为组织在超声端部执行器内的位置的函数的超声换能器阻抗变化的图形表示。
图57为根据本公开的至少一个方面的描绘相对于组织在超声端部执行器内的位置作为时间的函数的超声换能器阻抗变化的图形表示。
图58为根据本公开的至少一个方面的描绘识别施加到超声换能器的非治疗功率范围内的操作以确定组织定位的控制程序或逻辑配置的过程的逻辑流程图。
图59示出了根据本公开的至少一个方面的超声外科器械的端部执行器的一个方面,该端部执行器包括位于钳口构件上的红外(IR)传感器。
图60示出了根据本公开的一个方面的柔性电路的一个方面,图59中所示的IR传感器可安装在该柔性电路上或与该柔性电路一体形成。
图61为根据本公开的至少一个方面的包括夹持臂和超声刀片的超声端部执行器的剖视图。
图62示出了根据本公开的至少一个方面的以平面图所示的安装在柔性电路基板上的IR折射率检测传感器电路。
图63为根据本公开的至少一个方面的描绘测量IR反射率以确定组织组成从而调谐超声换能器的幅值的控制程序或逻辑配置的过程的逻辑流程图。
图64A为根据本公开的至少一个方面的根据本公开的各个方面的识别胶原蛋白转变点的夹持臂的闭合速率与时间的关系图形表示,其中时间沿水平轴示出,而夹持臂位置变化沿竖直轴示出。
图64B为图64A中所示的图形表示的放大部分。
图65为根据本公开的至少一个方面的描绘检测胶原蛋白转变点以控制夹持臂的闭合速率或超声换能器的幅值的控制程序或逻辑配置的过程的逻辑流程图。
图66为根据本公开的至少一个方面的根据本公开的各个方面识别胶原蛋白转变温度点以识别胶原蛋白/弹性蛋白比率的图形表示,其中组织温度沿水平轴示出,而超声换能器阻抗沿竖直轴示出。
图67为根据本公开的至少一个方面的描绘识别胶原蛋白转变温度以识别胶原蛋白/弹性蛋白比率的控制程序或逻辑配置的过程的逻辑流程图。
图68为根据本公开的至少一个方面的超声刀片上的压缩负载的分布的图形表示。
图69为根据本公开的至少一个方面的施加到组织的压力与时间的关系图形表示。
图70示出了根据本公开的至少一个方面的包括用于检测组织位置的单钳口电极阵列的端部执行器。
图71为根据本公开的至少一个方面的图70的单钳口电极阵列的激活矩阵。
图72示出了根据本公开的至少一个方面的包括用于检测组织位置的双钳口电极阵列的端部执行器。
图73为根据本公开的至少一个方面的图72的双钳口电极阵列的激活矩阵。
图74示出了根据本公开的至少一个方面的覆盖由对应于图73上的激活矩阵的端部执行器抓握的组织的相对的电极组。
图75示出了根据本公开的至少一个方面的包括双钳口分段电极阵列的端部执行器。
图76示出了根据本公开的至少一个方面的覆盖包括分段电极阵列的钳口的组织。
图77为根据本公开的至少一个方面的包括带通滤波器的分段电极阵列电路的示意图。
图78为根据本公开的至少一个方面的对应于图76中所抓握的组织的频率响应的图形表示。
图79为根据本公开的至少一个方面的作为驱动频率和超声刀片温度漂移的函数的超声换能器系统的频率的图形表示。
图80为根据本公开的至少一个方面的作为时间的函数的超声换能器的温度的图形表示。
图81为根据本公开的至少一个方面的作为超声刀片的温度的函数的基于移动谐振频率的超声刀片的温度的谐振频率的模态偏移的图形表示。
图82为根据本公开的至少一个方面的具有端部执行器的多种不同状态和状况的超声外科器械的光谱,其中超声换能器的阻抗的相位和量值被绘制为频率的函数。
图83为根据本公开的至少一个方面的基于一组训练数据S对数据进行分类的方法,其中超声换能器阻抗量值和相位被绘制为频率的函数。
图84为根据本公开的至少一个方面的描绘基于复阻抗特征图案(指纹)来确定钳口状况的控制程序或逻辑配置的逻辑流程图。
图85为根据本公开的至少一个方面的描绘外科集线器的态势感知的时间轴。
具体实施方式
本专利申请的申请人拥有于2018年8月28日提交的以下美国专利申请,这些专利申请中的每个的公开内容全文以引用方式并入本文:
·美国专利申请案卷号END8536USNP2/180107-2,其标题为超声端部执行器的估计状态及其控制系统(ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROLSYSTEM THEREFOR);
·美国专利申请案卷号END8560USNP2/180106-2,其标题为超声端部执行器的温度控制及其控制系统(TEMPERATURE CONTROL OF ULTRASONIC END EFFECTOR AND CONTROLSYSTEM THEREFOR);
·美国专利申请案卷号END8561USNP1/180144-1,其标题为用于递送组合电信号的射频能量装置(RADIO FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINEDELECTRICAL SIGNALS);
·美国专利申请案卷号END8563USNP2/180139-2,其标题为根据组织的存在控制超声外科器械的激活(CONTROLLING ACTIVATION OF AN ULTRASONIC SURGICALINSTRUMENT ACCORDING TO THE PRESENCE OF TISSUE);
·美国专利申请案卷号END8563USNP3/180139-3,其标题为经由超声系统确定组织组成(DETERMINING TISSUE COMPOSITION VIA AN ULTRASONIC SYSTEM);
·美国专利申请案卷号END8563USNP4/180139-4,其标题为根据频移确定超声机电系统的状态(DETERMINING THE STATE OF AN ULTRASONIC ELECTROMECHANICAL SYSTEMACCORDING TO FREQUENCY SHIFT);
·美国专利申请案卷号END8563USNP5/180139-5,其标题为确定超声端部执行器的状态(DETERMINING THE STATE OF AN ULTRASONIC END EFFECTOR);
·美国专利申请案卷号END8564USNP1/180140-1,其标题为电外科系统的态势感知(SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS);
·美国专利申请案卷号END8564USNP2/180140-2,其标题为用于控制电子外科器械的不同机电系统的机构(MECHANISMS FOR CONTROLLING DIFFERENT ELECTROMECHANICALSYSTEMS OF AN ELECTROSURGICAL INSTRUMENT);
·美国专利申请案卷号END8564USNP3/180140-3,其标题为检测端部执行器浸入液体中(DETECTION OF END EFFECTOR IMMERSION IN LIQUID);
·美国专利申请案卷号END8565USNP1/180142-1,其标题为由于不当的电容耦合引起的能量中断(INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVECOUPLING);
·美国专利申请案卷号END8565USNP2/180142-2,其标题为增加射频以生成无垫单极环路(INCREASING RADIO FREQUENCY TO CREATE PAD-LESS MONOPOLAR LOOP);
·美国专利申请案卷号END8566USNP1/180143-1,其标题为基于能量模态自动调节压力的双极组合式装置(BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTSPRESSURE BASED ON ENERGY MODALITY);以及
·美国专利申请案卷号END8573USNP1/180145-1,其标题为能量装置的激活(ACTIVATION OF ENERGY DEVICES)。
本专利申请的申请人拥有于2018年8月23日提交的以下美国专利申请,这些专利申请中的每个的公开内容全文以引用方式并入本文:
·美国临时专利申请62/721,995,其标题为根据组织位置控制超声外科器械(CONTROLLING AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION);
·美国临时专利申请62/721,998,其标题为电外科系统的态势感知(SITUATIONALAWARENESS OF ELECTROSURGICAL SYSTEMS);
·美国临时专利申请62/721,999,其标题为由于不当的电容耦合引起的能量中断(INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING);
·美国临时专利申请62/721,994,其标题为基于能量模态自动调节压力的双极组合式装置(BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASEDON ENERGY MODALITY);以及
·美国临时专利申请62/721,996,其标题为用于递送组合电信号的射频能量装置(RADIO FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINED ELECTRICAL SIGNALS)。
本专利申请的申请人拥有于2018年6月30日提交的以下美国专利申请,这些专利申请中的每个的公开内容全文以引用方式并入本文:
·美国临时专利申请62/692,747,其标题为通过另一装置智能激活能量装置(SMART ACTIVATION OF AN ENERGY DEVICE BY ANOTHER DEVICE);
·美国临时专利申请62/692,748,其标题为智能能量架构(SMART ENERGYARCHITECTURE);以及
·美国临时专利申请62/692,768,其标题为智能能量装置(SMART ENERGYDEVICES)。
本专利申请的申请人拥有于2018年6月29日提交的以下美国专利申请,这些专利申请中的每个的公开内容全文以引用方式并入本文:
·美国专利申请序列号16/024,090,其标题为具有可分离阵列元件的电容耦合的返回路径垫(CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS);
·美国专利申请序列号16/024,057,其标题为根据感测的闭合参数控制外科器械(CONTROLLING A SURGICAL INSTRUMENT ACCORDING TO SENSED CLOSURE PARAMETERS);
·美国专利申请序列号16/024,067,其标题为用于基于围手术期间的信息调节端部执行器参数的系统(SYSTEMS FOR ADJUSTING END EFFECTOR PARAMETERS BASED ONPERIOPERATIVE INFORMATION);
·美国专利申请序列号16/024,075,其标题为用于智能供电的外科缝合的安全系统(SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING);
·美国专利申请序列号16/024,083,其标题为用于智能供电的外科缝合的安全系统(SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING);
·美国专利申请序列号16/024,094,其标题为用于检测端部执行器组织分布不规则的外科系统(SURGICAL SYSTEMS FOR DETECTING END EFFECTOR TISSUE DISTRIBUTIONIRREGULARITIES);
·美国专利申请序列号16/024,138,其标题为用于检测外科端部执行器与癌组织的接近度的系统(SYSTEMS FOR DETECTING PROXIMITY OF SURGICAL END EFFECTOR TOCANCEROUS TISSUE);
·美国专利申请序列号16/024,150,其标题为外科器械料筒传感器组件(SURGICAL INSTRUMENT CARTRIDGE SENSOR ASSEMBLIES);
·美国专利申请序列号16/024,160,其标题为可变输出料筒传感器组件(VARIABLE OUTPUT CARTRIDGE SENSOR ASSEMBLY);
·美国专利申请序列号16/024,124,其标题为具有柔性电极的外科器械(SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE);
·美国专利申请序列号16/024,132,其标题为具有柔性电路的外科器械(SURGICAL INSTRUMENT HAVING A FLEXIBLE CIRCUIT);
·美国专利申请序列号16/024,141,其标题为具有组织标记组件的外科器械(SURGICAL INSTRUMENT WITH A TISSUE MARKING ASSEMBLY);
·美国专利申请序列号16/024,162,其标题为具有优先数据传输能力的外科系统(SURGICAL SYSTEMS WITH PRIORITIZED DATA TRANSMISSION CAPABILITIES);
·美国专利申请序列号16/024,066,其标题为外科排抽感测和马达控制(SURGICAL EVACUATION SENSING AND MOTOR CONTROL);
·美国专利申请序列号16/024,096,其标题为外科排抽传感器布置方式(SURGICAL EVACUATION SENSOR ARRANGEMENTS);
·美国专利申请序列号16/024,116,其标题为外科排抽流动路径(SURGICALEVACUATION FLOW PATHS);
·美国专利申请序列号16/024,149,其标题为外科排抽感测和发生器控制(SURGICAL EVACUATION SENSING AND GENERATOR CONTROL);
·美国专利申请序列号16/024,180,其标题为外科排抽感测和显示(SURGICALEVACUATION SENSING AND DISPLAY);
·美国专利申请序列号16/024,245,其标题为将排烟系统参数传递至用于交互式外科平台的排烟模块中的集线器或云(COMMUNICATION OF SMOKE EVACUATION SYSTEMPARAMETERS TO HUB OR CLOUD IN SMOKE EVACUATION MODULE FOR INTERACTIVESURGICAL PLATFORM);
·美国专利申请序列号16/024,258,其标题为包括用于交互式外科平台的包括分段控制电路的排烟系统(SMOKE EVACUATION SYSTEM INCLUDING A SEGMENTED CONTROLCIRCUIT FOR INTERACTIVE SURGICAL PLATFORM);
·美国专利申请序列号16/024,265,其标题为具有用于过滤器和排烟装置之间的通信的通信电路的外科排抽系统(SURGICAL EVACUATION SYSTEM WITH A COMMUNICATIONCIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKE EVACUATION DEVICE);以及
·美国专利申请序列号16/024,273,其标题为双串联大型液滴过滤器和小型液滴过滤器(DUAL IN-SERIES LARGE AND SMALL DROPLET FILTERS)。
本专利申请的申请人拥有于2018年6月28日提交的以下美国临时专利申请,这些临时专利申请中的每个的公开内容全文以引用方式并入本文:
·美国临时专利申请序列号62/691,228,其标题为一种使用具有具有电外科装置的多个传感器的增强柔性电路的方法(A Method of using reinforced flex circuitswith multiple sensors with electrosurgical devices);
·美国临时专利申请序列号62/691,227,其标题为根据感测的闭合参数控制外科器械(controlling a surgical instrument according to sensed closureparameters);
·美国临时专利申请序列号62/691,230,其标题为具有柔性电极的外科器械(SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE);
·美国临时专利申请序列号62/691,219,其标题为外科排抽感测和马达控制(SURGICAL EVACUATION SENSING AND MOTOR CONTROL);
·美国临时专利申请序列号62/691,257,其标题为将排烟系统参数传递至用于交互式外科平台的排烟模块中的集线器或云(COMMUNICATION OF SMOKE EVACUATION SYSTEMPARAMETERS TO HUB OR CLOUD IN SMOKE EVACUATION MODULE FOR INTERACTIVESURGICAL PLATFORM);
·美国临时专利申请序列号62/691,262,其标题为具有用于过滤器和排烟装置之间的通信的通信电路的外科排抽系统(SURGICAL EVACUATION SYSTEM WITH ACOMMUNICATION CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKEEVACUATION DEVICE);以及
·美国临时专利申请序列号62/691,251,其标题为双串联大型液滴过滤器和小型液滴过滤器(DUAL IN-SERIES LARGE AND SMALL DROPLET FILTERS)。
本专利申请的申请人拥有于2018年4月19日提交的以下美国临时专利申请,这些临时专利申请中的每个的公开内容全文以引用方式并入本文:
·美国临时专利申请序列号62/659,900,其标题为集线器通信方法(METHOD OFHUB COMMUNICATION)。
本专利申请的申请人拥有于2018年3月30日提交的以下美国临时专利申请,这些临时专利申请中的每个的公开内容全文以引用方式并入本文:
·2018年3月30日提交的美国临时专利申请62/650,898,其标题为具有可分离阵列元件的电容耦合的返回路径垫(CAPACITIVE COUPLED RETURN PATH PAD WITHSEPARABLE ARRAY ELEMENTS);
·美国临时专利申请序列号62/650,887,其标题为具有优化感测能力的外科系统(SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES);
·美国专利申请序列号62/650,882,其标题为用于交互式外科平台的排烟模块(SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM);以及
·美国专利申请序列号62/650,877,其标题为外科排烟感测和控制(SURGICALSMOKE EVACUATION SENSING AND CONTROLS)。
本专利申请的申请人拥有于2018年3月29日提交的以下美国专利申请,这些临时专利申请中的每个的公开内容全文以引用方式并入本文:
·美国专利申请序列号15/940,641,其标题为具有加密通信能力的交互式外科系统(INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES);
·美国专利申请序列号15/940,648,其标题为具有状况处理装置和数据能力的交互式外科系统(INTERACTIVE SURGICAL SYSTEMS WITH CONDITION HANDLING OF DEVICESAND DATA CAPABILITIES);
·美国专利申请序列号15/940,656,其标题为手术室装置控制和通信的外科集线器协调(SURGICAL HUB COORDINATION OF CONTROL AND COMMUNICATION OF OPERATINGROOM DEVICES);
·美国专利申请序列号15/940,666,其标题为手术室中的外科集线器的空间感知(SPATIAL AWARENESS OF SURGICAL HUBS IN OPERATING ROOMS);
·美国专利申请序列号15/940,670,其标题为通过智能外科集线器从次级源导出的数据的协作利用(COOPERATIVE UTILIZATION OF DATA DERIVED FROM SECONDARYSOURCES BY INTELLIGENT SURGICAL HUBS);
·美国专利申请序列号15/940,677,其标题为外科集线器控制布置方式(SURGICAL HUB CONTROL ARRANGEMENTS);
·美国·专利申请序列号15/940,632,其标题为数据询问患者记录并创建匿名记录的数据剥离方法(DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS ANDCREATE ANONYMIZED RECORD);
·美国专利申请序列号15/940,640,其标题为用于存储待与基于云的分析系统共享的外科装置的参数和状况的通信集线器和存储装置(COMMUNICATION HUB AND STORAGEDEVICE FOR STORING PARAMETERS AND STATUS OF A SURGICAL DEVICE TO BE SHAREDWITH CLOUD BASED ANALYTICS SYSTEMS);
·美国专利申请序列号15/940,645,其标题为在发行器械处生成的自述数据包(SELF DESCRIBING DATA PACKETS GENERATED AT AN ISSUING INSTRUMENT);
·美国专利申请序列号15/940,649,其标题为用于将装置测量参数与结果互连的数据配对(DATA PAIRING TO INTERCONNECT A DEVICE MEASURED PARAMETER WITH ANOUTCOME);
·美国专利申请序列号15/940,654,其标题为外科集线器态势感知(SURGICALHUB SITUATIONAL AWARENESS);
·美国专利申请序列号15/940,663,其标题为外科系统分布式处理(SURGICALSYSTEM DISTRIBUTED PROCESSING);
·美国专利申请序列号15/940,668,其标题为外科集线器数据的聚集和报告(AGGREGATION AND REPORTING OF SURGICAL HUB DATA);
·美国专利申请序列号15/940,671,其标题为用于确定手术室中的装置的外科集线器空间感知(SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATINGTHEATER);
·美国专利申请序列号15/940,686,其标题为显示将钉仓与先前线性钉线对准(DISPLAY OF ALIGNMENT OF STAPLE CARTRIDGE TO PRIOR LINEAR STAPLE LINE);
·美国专利申请序列号15/940,700,其标题为无菌场交互式控制显示(STERILEFIELD INTERACTIVE CONTROL DISPLAYS);
·美国专利申请序列号15/940,629,其标题为计算机实现的交互式外科系统(COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS);
·美国专利申请序列号15/940,704,其标题为使用激光和红绿蓝显色来确定背散射光的特性(USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINEPROPERTIES OF BACK SCATTERED LIGHT);
·美国专利申请序列号15/940,722,其标题为通过使用单色光折射率来表征组织不规则(CHARACTERIZATION OF TISSUE IRREGULARITIES THROUGH THE USE OF MONO-CHROMATIC LIGHT REFRACTIVITY);以及
·美国专利申请序列号15/940,742,其标题为双CMOS阵列成像(DUAL CMOS ARRAYIMAGING)。
·美国专利申请序列号15/940,636,其标题为针对外科装置的自适应控制程序更新(ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES);
·美国专利申请序列号15/940,653,其标题为针对外科集线器的自适应控制程序更新(ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL HUBS);
·美国专利申请序列号15/940,660,其标题为用于定制和向用户推荐的基于云的医学分析(CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONSTO A USER);
·美国专利申请序列号15/940,679,其标题为用于将本地使用趋势与较大数据集的资源采集行为链接的基于云的医学分析(CLOUD-BASED MEDICAL ANALYTICS FORLINKING OF LOCAL USAGE TRENDS WITH THE RESOURCE ACQUISITION BEHAVIORS OFLARGER DATA SET);
·美国专利申请序列号15/940,694,其标题为用于将器械功能分段个性化的医疗设施的基于云的医学分析(CLOUD-BASED MEDICAL ANALYTICS FOR MEDICAL FACILITYSEGMENTED INDIVIDUALIZATION OF INSTRUMENT FUNCTION);
·美国专利申请序列号15/940,634,其标题为用于安全和认证趋势和反应性测量的基于云的医学分析(CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY ANDAUTHENTICATION TRENDS AND REACTIVE MEASURES);
·美国专利申请序列号15/940,706,其标题为云分析网络中的数据处理和优先级(DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK);以及
·美国专利申请序列号15/940,675,其标题为用于耦合的外科装置的云接口(CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES)。
·美国专利申请序列号15/940,627,其标题为用于机器人辅助外科平台的驱动布置方式(DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS);
·美国专利申请序列号15/940,637,其标题为用于机器人辅助外科平台的通信布置方式(COMMUNICATION ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS);
·美国专利申请序列号15/940,642,其标题为用于机器人辅助外科平台的控制(CONTROLS FOR ROBOT-ASSISTED SURGICAL PLATFORMS);
·美国专利申请序列号15/940,676,其标题为用于机器人辅助外科平台的自动工具调节(AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS);
·美国专利申请序列号15/940,680,其标题为用于机器人辅助外科平台的控制器(CONTROLLERS FOR ROBOT-ASSISTED SURGICAL PLATFORMS);
·美国专利申请序列号15/940,683,其标题为用于机器人辅助外科平台的协作外科动作(COOPERATIVE SURGICAL ACTIONS FOR ROBOT-ASSISTED SURGICAL PLATFORMS);
·美国专利申请序列号15/940,690,其标题为用于机器人辅助外科平台的显示器布置方式(DISPLAY ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS);以及
·美国专利申请序列号15/940,711,其标题为用于机器人辅助外科平台的感测布置方式(SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS)。
本专利申请的申请人拥有于2018年3月28日提交的以下美国临时专利申请,这些临时专利申请中的每个的公开内容全文以引用方式并入本文:
·美国临时专利申请序列号62/649,302,其标题为具有加密通信能力的交互式外科系统(INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATIONCAPABILITIES);
·美国临时专利申请序列号62/649,294,其标题为询问患者记录并创建匿名记录的数据剥离方法(DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS ANDCREATE ANONYMIZED RECORD);
·美国专利申请序列号62/649,300,其标题为外科集线器态势感知(SURGICALHUB SITUATIONAL AWARENESS);
·美国临时专利申请序列号62/649,309,其标题为用于确定手术室中的装置的外科集线器空间感知(SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES INOPERATING THEATER);
·美国专利申请序列号62/649,310,其标题为计算机实现的交互式外科系统(COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS);
·美国临时专利申请序列号62/649,291,其标题为使用激光和红绿蓝显色来确定背散射光的特性(USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINEPROPERTIES OF BACK SCATTERED LIGHT);
·美国专利申请序列号62/649,296,其标题为针对外科装置的自适应控制程序更新(ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES);
·美国临时专利申请序列号62/649,333,其标题为用于定制和向用户推荐的基于云的医学分析(CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION ANDRECOMMENDATIONS TO A USER);
·美国临时专利申请序列号62/649,327,其标题为用于安全和认证趋势和反应性测量的基于云的医学分析(CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY ANDAUTHENTICATION TRENDS AND REACTIVE MEASURES);
·美国临时专利申请序列号62/649,315,其标题为云分析网络中的数据处理和优先级(DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK);
·美国专利申请序列号62/649,313,其标题为用于耦合的外科装置的云接口(CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES);
·美国专利申请序列号62/649,320,其标题为用于机器人辅助外科平台的驱动布置方式(DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS);
·美国临时专利申请序列号62/649,307,其标题为用于机器人辅助外科平台的自动工具调节(AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS);以及
·美国临时专利申请序列号62/649,323,其标题为用于机器人辅助外科平台的感测布置方式(SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS)。
本专利申请的申请人拥有于2018年3月8日提交的以下美国临时专利申请,这些临时专利申请中的每个的公开内容全文以引用方式并入本文:
·美国临时专利申请序列号62/640,417,其标题为超声装置中的温度控制以及为此的控制系统(TEMPERATURE CONTROL IN ULTRASONIC DEVICE AND CONTROL SYSTEMTHEREFOR);以及
·美国临时专利申请序列号62/640,415,其标题为估计超声端部执行器的状态以及为此的控制系统(ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROLSYSTEM THEREFOR)。
本专利申请的申请人拥有于2017年12月28日提交的以下美国临时专利申请,这些临时专利申请中的每个的公开内容全文以引用方式并入本文:
·美国临时专利申请序列号62/611,341,其标题为交互式外科平台(INTERACTIVESURGICAL PLATFORM);
·美国临时专利申请序列号62/611,340,其标题为基于云的医学分析(CLOUD-BASED MEDICAL ANALYTICS);以及
·美国专利申请序列号62/611,339,其标题为机器人辅助的外科平台(ROBOTASSISTED SURGICAL PLATFORM)。
在详细说明外科装置和发生器的各个方面之前,应该指出的是,示例性示例的应用或使用并不局限于附图和具体实施方式中所示出的部件的构造和布置的细节。示例性示例可单独实施,或与其它方面、变更形式和修改形式结合在一起实施,并可以各种方式实践或执行。此外,除非另外指明,否则本文所用的术语和表达是为了方便读者而对示例性实施例进行描述而所选的,并非为了限制性的目的。而且,应当理解,以下描述的方面中的一个或多个、方面和/或示例的表达可以与以下描述的其它方面、方面和/或示例的表达中的任何一个或多个组合。
各个方面涉及改进的超声外科装置、电外科装置和与其一起使用的发生器。超声外科装置的各方面可被配置为用于例如在外科规程期间横切和/或凝固组织。电外科装置的各方面可被配置为用于例如在外科规程期间横切、凝固、定标、焊接和/或干燥组织。
参见图1,计算机实现的交互式外科系统100包括一个或多个外科系统102和基于云的系统(例如,可包括耦合到存储装置105的远程服务器113的云104)。每个外科系统102包括与可包括远程服务器113的云104通信的至少一个外科集线器106。在一个示例中,如图1中所示,外科系统102包括可视化系统108、机器人系统110和手持式智能外科器械112,其被配置为彼此通信并且/或者与集线器106通信。在一些方面,外科系统102可包括M数量的集线器106、N数量的可视化系统108、O数量的机器人系统110和P数量的手持式智能外科器械112,其中M、N、O和P为大于或等于一的整数。
图3描绘了用于对平躺在外科手术室116中的手术台114上的患者执行外科规程的外科系统102的示例。机器人系统110在外科规程中用作外科系统102的一部分。机器人系统110包括外科医生的控制台118、患者侧推车120(外科机器人)和外科机器人集线器122。当外科医生通过外科医生的控制台120观察外科部位时,患者侧推车117可通过患者体内的微创切口操纵至少一个可移除地耦合的外科工具118。外科部位的图像可通过医疗成像装置124获得,该医疗成像装置可由患者侧推车120操纵以定向成像装置124。机器人集线器122可用于处理外科部位的图像,以随后通过外科医生的控制台118显示给外科医生。
其它类型的机器人系统可容易地适于与外科系统102一起使用。适用于本公开的机器人系统和外科工具的各个示例在2017年12月28日提交的标题为机器人辅助的外科平台(ROBOT ASSISTED SURGICAL PLATFORM)的美国临时专利申请序列号62/611,339中有所描述,该专利的公开内容全文以引用方式并入本文。
由云104执行并且适用于本公开的基于云的分析的各个示例描述于2017年12月28日提交的标题为“基于云的医疗分析(CLOUD-BASED MEDICAL ANALYTICS)”的美国临时专利申请序列号62/611,340中,其公开内容全文以引用方式并入本文。
在各个方面,成像装置124包括至少一个图像传感器和一个或多个光学部件。合适的图像传感器包括但不限于电荷耦合装置(CCD)传感器和互补金属氧化物半导体(CMOS)传感器。
成像装置124的光学部件可包括一个或多个照明源和/或一个或多个透镜。一个或多个照明源可被引导以照明外科场地的多部分。一个或多个图像传感器可接收从外科场地反射或折射的光,包括从组织和/或外科器械反射或折射的光。
一个或多个照明源可被配置为辐射可见光谱中的电磁能以及不可见光谱。可见光谱(有时被称为光学光谱或发光光谱)是电磁光谱中对人眼可见(即,可被其检测)的那部分,并且可被称为可见光或简单光。典型的人眼将对空气中约380nm至约750nm的波长作出响应。
不可见光谱(即,非发光光谱)是电磁光谱的位于可见光谱之下和之上的部分(即,低于约380nm且高于约750nm的波长)。人眼不可检测到不可见光谱。大于约750nm的波长长于红色可见光谱,并且它们变为不可见的红外(IR)、微波和无线电电磁辐射。小于约380nm的波长比紫色光谱短,并且它们变为不可见的紫外、x射线和γ射线电磁辐射。
在各个方面,成像装置124被配置为用于微创规程中。适用于本公开的成像装置的示例包括但不限于关节镜、血管镜、支气管镜、胆道镜、结肠镜、细胞检查镜、十二指镜、肠窥镜、食道-十二指肠镜(胃镜)、内窥镜、喉镜、鼻咽-肾内窥镜、乙状结肠镜、胸腔镜和子宫内窥镜。
在一个方面,成像装置采用多光谱监测来辨别形貌和底层结构。多光谱图像是捕获跨电磁波谱的特定波长范围内的图像数据的图像。可通过滤波器或通过使用对特定波长敏感的器械来分离波长,特定波长包括来自可见光范围之外的频率的光,例如IR和紫外。光谱成像可允许提取人眼未能用其红色,绿色和蓝色的受体捕获的附加信息。多光谱成像的使用在2017年12月28日提交的标题为“交互式外科平台(INTERACTIVE SURGICALPLATFORM)”的美国临时专利申请序列号62/611,341的标题“高级成像采集模块(AdvancedImaging Acquisition Module)”下更详细地描述,该专利的公开内容全文以引用方式并入本文。在完成外科任务以对处理过的组织执行一个或多个先前所述测试之后,多光谱监测可以是用于重新定位外科场地的有用工具。
不言自明的是,在任何外科期间都需要对手术室和外科设备进行严格消毒。在“外科室”(即,手术室或治疗室)中所需的严格的卫生和消毒条件需要所有医疗装置和设备的最高可能的无菌性。该灭菌过程的一部分是需要对接触患者或穿透无菌场的任何物质进行灭菌,包括成像装置124及其附接件和部件。应当理解,无菌场可被认为是被认为不含微生物的指定区域,诸如在托盘内或无菌毛巾内,或者无菌场可被认为是已准备用于外科规程的患者周围的区域。无菌场可包括被恰当地穿着的擦洗的团队构件,以及该区域中的所有家具和固定件。
在各个方面,可视化系统108包括一个或多个成像传感器、一个或多个图像处理单元、一个或多个存储阵列、以及一个或多个显示器,其相对于无菌场进行策略布置,如图2中所示。在一个方面,可视化系统108包括用于HL7、PACS和EMR的界面。可视化系统108的各种部件在2017年12月28日提交的标题为“交互式外科平台(INTERACTIVE SURGICALPLATFORM)”的美国临时专利申请序列号62/611,341的标题“高级成像采集模块(AdvancedImaging Acquisition Module)”下有所描述,该专利申请的公开内容全文以引用方式并入本文。
如图2中所示,主显示器119被定位在无菌场中,以对在手术台114处的操作者可见。此外,可视化塔111被定位在无菌场之外。可视化塔111包括彼此背离的第一非无菌显示器107和第二非无菌显示器109。由集线器106引导的可视化系统108被配置为利用显示器107、109和119来将信息流协调到无菌场内侧和外侧的操作者。例如,集线器106可使成像系统108在非无菌显示器107或109上显示由成像装置124记录的外科部位的快照,同时保持外科部位在主显示器119上的实时馈送。非无菌显示器107或109上的快照可允许非无菌操作者例如执行与外科规程相关的诊断步骤。
在一个方面,集线器106被进一步配置为将由非无菌操作者在可视化塔111处输入的诊断输入或反馈路由至无菌场内的主显示器119,其中可由操作台上的无菌操作员查看。在一个示例中,输入可以是对显示在非无菌显示器107或109上的快照的修改形式,其可通过集线器106路由到主显示器119。
参见图2,外科器械112作为外科系统102的一部分在外科规程中使用。集线器106被进一步配置为协调流向外科器械112的显示器的信息流。例如,在2017年12月28日提交的标题为“交互式外科平台(INTERACTIVE SURGICAL PLATFORM)”的美国临时专利申请序列号62/611,341,其公开内容全文以引用方式并入本文。由非无菌操作者在可视化塔111处输入的诊断输入或反馈可由集线器106路由至无菌场内的外科器械显示器115,其中外科器械112的操作者可观察到该输入或反馈。例如,适合与外科系统102一起使用的示例性外科器械描述于2017年12月28日提交的美国临时专利申请序列号62/611,341(标题为“交互式外科平台(INTERACTIVE SURGICAL PLATFORM)”,其公开内容以引用方式全文并入本文)的标题“外科器械硬件(SURGICAL INSTRUMENT HARDWARE)”下。
现在参见图3,集线器106被描绘为与可视化系统108、机器人系统110和手持式智能外科器械112通信。集线器106包括集线器显示器135、成像模块138、发生器模块140、通信模块130、处理器模块132和存储阵列134。在某些方面,如图3中所示,集线器106还包括排烟模块126和/或抽吸/冲洗模块128。
在外科规程期间,施加到组织用于密封和/或切割的能量通常与排烟、抽吸多余的流体和/或冲洗组织相关联。来自不同来源的流体管线、功率管线和/或数据管线通常在外科规程期间缠结。在外科规程期间解决该问题可丢失有价值的时间。断开管线可需要将管线与其相应的模块断开连接,这可需要重置模块。集线器模块化壳体136提供用于管理功率管线、数据管线和流体管线的统一环境,这减小了此类管线之间缠结的频率。
本公开的各方面提供了用于外科规程的外科集线器,该外科规程涉及在外科部位处将能量施加到组织。外科集线器包括集线器壳体和可滑动地接纳在集线器壳体的对接底座中的组合发生器模块。对接底座包括数据触点和功率触点。组合发生器模块包括座置在单个单元中的超声能量发生器部件、双极RF能量发生器部件和单极RF能量发生器部件中的两个或更多个。在一个方面,组合发生器模块还包括排烟部件,用于将组合发生器模块连接到外科器械的至少一根能量递送缆线、被配置为排出通过向组织施加治疗能量而产生的烟雾、流体和/或颗粒的至少一个排烟部件、以及从远程外科部位延伸至排烟部件的流体管线。
在一个方面,流体管线是第一流体管线,并且第二流体管线从远程外科部位延伸至可滑动地接纳在集线器壳体中的抽吸和冲洗模块。在一个方面,集线器壳体包括流体接口。
某些外科规程可需要将多于一种能量类型施加到组织。一种能量类型可更有利于切割组织,而另一种不同的能量类型可更有利于密封组织。例如,双极发生器可用于密封组织,而超声发生器可用于切割密封的组织。本公开的各方面提供了一种解决方案,其中集线器模块化壳体136被配置为容纳不同的发生器,并且有利于它们之间的交互式通信。集线器模块化壳体136的优点之一是能够快速地移除和/或更换各种模块。
本公开的方面提供了在涉及将能量施加到组织的外科规程中使用的模块化外科壳体。模块化外科壳体包括第一能量发生器模块,该第一能量发生器模块被配置为生成用于施加到组织的第一能量,和第一对接底座,该第一对接底座包括第一对接端口,该第一对接端口包括第一数据和功率触点,其中第一能量发生器模块可滑动地移动成与该功率和数据触点电接合,并且其中第一能量发生器模块可滑动地移动出与第一功率和数据触点的电接合,
对上文进行进一步描述,模块化外科壳体还包括第二能量发生器模块,该第二能量发生器模块被配置为生成不同于第一能量的第二能量以用于施加到组织,和第二对接底座,该第二对接底座包括第二对接端口,该第二对接端口包括第二数据和功率触点,其中第二能量发生器模块可滑动地移动成与功率和数据触点电接合,并且其中第二能量发生器可滑动地移动出于第二功率和数据触点的电接触。
此外,模块化外科壳体还包括在第一对接端口和第二对接端口之间的通信总线,其被配置为有利于第一能量发生器模块和第二能量发生器模块之间的通信。
参见图3-7,本公开的各方面被呈现为集线器模块化壳体136,其允许发生器模块140、排烟模块126和抽吸/冲洗模块128的模块化集成。集线器模块化壳体136还有利于模块140、126、128之间的交互式通信。如图5中所示,发生器模块140可为具有集成的单极部件、双极部件和超声部件的发生器模块,该部件被支撑在可滑动地插入到集线器模块化壳体136中的单个外壳单元139中。如图5中所示,发生器模块140可被配置为连接到单极装置146、双极装置147和超声装置148。另选地,发生器模块140可包括通过集线器模块化壳体136进行交互的一系列单极发生器模块、双极发生器模块和/或超声发生器模块。集线器模块化壳体136可被配置为有利于多个发生器的插入和对接到集线器模块化壳体136中的发生器之间的交互通信,使得发生器将充当单个发生器。
在一个方面,集线器模块化壳体136包括具有外部和无线通信接头的模块化功率和通信底板149,以实现模块140、126、128的可移除附接件以及它们之间的交互通信。
在一个方面,集线器模块化壳体136包括对接底座或抽屉151(本文也称为抽屉),其被配置为可滑动地接纳模块140、126、128。图4示出了能够可滑动地接纳在外科集线器壳体136的对接底座151中的外科集线器壳体136和组合发生器模块145的局部透视图。在组合发生器模块145的背面上具有功率和数据触点的对接端口152被配置为当组合发生器模块145滑动到集线器模块壳体136的对应的对接底座151内的适当位置时,将对应的对接端口150与集线器模块化壳体136的对应对接底座151的功率和数据触点接合。在一个方面,组合发生器模块145包括一起集成到单个外壳单元139中的双极、超声和单极模块以及排烟模块,如图5中所示。
在各个方面,排烟模块126包括流体管线154,该流体管线154将捕集/收集的烟雾和/或流体从外科部位输送到例如排烟模块126。源自排烟模块126的真空抽吸可将烟雾吸入外科部位处的公用导管的开口中。耦合到流体管线的公用导管可以是端接在排烟模块126处的柔性管的形式。公用导管和流体管线限定朝向接纳在集线器壳体136中的排烟模块126延伸的流体路径。
在各个方面,抽吸/冲洗模块128耦合到包括吸出流体管线和抽吸流体管线的外科工具。在一个示例中,吸出流体管线和抽吸流体管线为从外科部位朝向抽吸/冲洗模块128延伸的柔性管的形式。一个或多个驱动系统可被配置为冲洗到外科部位的流体和从外科部位抽吸流体。
在一个方面,外科工具包括轴,该轴具有在其远侧端部处的端部执行器以及与端部执行器、吸出管和冲洗管相关联的至少一种能量处理。吸出管可在其远侧端部处具有入口,并且吸出管延伸穿过轴。类似地,吸出管可延伸穿过轴并且可具有邻近能量递送工具的入口。能量递送工具被配置为将超声能量和/或RF能量递送至外科部位,并且通过初始延伸穿过轴的缆线耦合到发生器模块140。
冲洗管可与流体源流体连通,并且吸出管可与真空源流体连通。流体源和/或真空源可座置在抽吸/冲洗模块128中。在一个示例中,流体源和/或真空源可独立于抽吸/冲洗模块128座置在集线器壳体136中。在此类示例中,流体接口能够将抽吸/冲洗模块128连接到流体源和/或真空源。
在一个方面,集线器模块化壳体136上的模块140、126、128和/或其对应的对接底座可包括对准特征件,该对准特征件被配置为将模块的对接端口对准成与其在集线器模块化壳体136的对接底座中的对应端口接合。例如,如图4中所示,组合发生器模块145包括侧支架155,侧支架155被配置为与集线器模块化壳体136的对应的对接底座151的对应支架156可滑动地接合。支架配合以引导组合发生器模块145的对接端口触点与集线器模块化壳体136的对接端口触点电接合。
在一些方面,集线器模块化壳体136的抽屉151为相同的或大体上相同的大小,并且模块的大小被调节为接纳在抽屉151中。例如,侧支架155和/或156可根据模块的大小而更大或更小。在其它方面,抽屉151的大小不同,并且各自被设计成容纳特定模块。
此外,可对特定模块的触点进行键控以与特定抽屉的触点接合,以避免将模块插入到具有不匹配触点的抽屉中。
如图4中所示,一个抽屉151的对接端口150可通过通信链路157耦合到另一个抽屉151的对接端口150,以有利于座置在集线器模块化壳体136中的模块之间的交互式通信。另选地或附加地,集线器模块化壳体136的对接端口150可有利于座置在集线器模块化壳体136中的模块之间的无线交互通信。可采用任何合适的无线通信,诸如例如Air Titan-Bluetooth。
图6示出了用于横向模块化外壳160的多个横向对接端口的单个功率总线附接件,该横向模块化外壳160被配置为容纳外科集线器206的多个模块。横向模块化外壳160被配置为横向容纳和互连模块161。模块161可滑动地插入到横向模块化外壳160的对接底座162中,该横向模块化外壳160包括用于互连模块161的底板。如图6中所示,模块161横向布置在横向模块化外壳160中。另选地,模块161可竖直地布置在横向模块化外壳中。
图7示出了被配置为容纳外科集线器106的多个模块165的竖直模块化外壳164。模块165可滑动地插入到竖直模块化外壳164的对接底座或抽屉167中,该竖直模块化外壳164包括用于互连模块165的底板。尽管竖直模块化外壳164的抽屉167竖直布置,但在某些情况下,竖直模块化外壳164可包括横向布置的抽屉。此外,模块165可通过竖直模块化外壳164的对接端口彼此交互。在图7的示例中,提供了用于显示与模块165的操作相关的数据的显示器177。此外,竖直模块化外壳164包括主模块178,该主模块座置可滑动地容纳在主模块178中的多个子模块。
在各个方面,成像模块138包括集成视频处理器和模块化光源,并且适于与各种成像装置一起使用。在一个方面,成像装置由可装配有光源模块和相机模块的模块化外壳构成。外壳可为一次性外壳。在至少一个示例中,一次性外壳可移除地耦合到可重复使用的控制器、光源模块和相机模块。光源模块和/或相机模块可根据外科规程的类型选择性地选择。在一个方面,相机模块包括CCD传感器。在另一方面,相机模块包括CMOS传感器。在另一方面,相机模块被配置用于扫描波束成像。同样,光源模块可被配置为递送白光或不同的光,这取决于外科规程。
在外科规程期间,从外科场地移除外科装置并用包括不同相机或不同光源的另一外科装置替换外科装置可为低效的。暂时失去对外科场地的视线可导致不期望的后果。本公开的模块成像装置被配置为允许在外科规程期间中流替换光源模块或相机模块,而不必从外科场地移除成像装置。
在一个方面,成像装置包括包括多个通道的管状外壳。第一通道被配置为可滑动地容纳相机模块,该相机模块可被配置为与第一通道搭扣配合接合。第二通道被配置为可滑动地容纳光源模块,该光源模块可被配置为与第二通道搭扣配合接合。在另一个示例中,相机模块和/或光源模块可在其相应通道内旋转到最终位置。可采用螺纹接合代替搭扣配合接合。
在各个示例中,多个成像装置被放置在外科场地中的不同位置以提供多个视图。成像模块138可被配置为在成像装置之间切换以提供最佳视图。在各个方面,成像模块138可被配置为集成来自不同成像装置的图像。
适用于本公开的各种图像处理器和成像装置描述于2011年8月9日公布的标题为组合SBI和常规图像处理器(COMBINED SBI AND CONVENTIONAL IMAGE PROCESSOR)美国专利7,995,045中,该专利以引用方式全文并入本文。此外,2011年7月19日公布的标题为SBI运动伪影移除设备和方法(SBI MOTION ARTIFACT REMOVAL APPARATUS AND METHOD)的美国专利7,982,776描述了用于从图像数据中移除运动伪影的各种系统,该专利以引用方式全文并入本文。此类系统可与成像模块138集成。此外,2011年12月15日公布的标题为对固定件体内设备的可控制磁源(CONTROLLABLE MAGNETIC SOURCE TO FIXTUREINTRACORPOREAL APPARATUS)的美国专利申请公布2011/0306840和2014年8月28日公布的标题为用于执行微创外科规程的系统(SYSTEM FOR PERFORMING A MINIMALLY INVASIVESURGICAL PROCEDURE)的美国专利申请公布2014/0243597,以上专利中的每个全文以引用方式并入本文。
图8示出了包括模块化通信集线器203的外科数据网络201,该模块化通信集线器203被配置为将位于医疗设施的一个或多个手术室中的模块化装置或专门配备用于外科操作的医疗设施中的任何房间连接到基于云的系统(例如,可包括耦合到存储装置205的远程服务器213的云204)。在一个方面,模块化通信集线器203包括与网络路由器通信的网络集线器207和/或网络交换机209。模块化通信集线器203还可耦合到本地计算机系统210以提供本地计算机处理和数据操纵。外科数据网络201可被配置为无源的、智能的或交换的。无源外科数据网络充当数据的管道,从而使其能够从一个装置(或区段)转移到另一个装置(或区段)以及云计算资源。智能外科数据网络包括附加特征件,以使得能够监测穿过外科数据网络的流量并配置网络集线器207或网络交换器209中的每个端口。智能外科数据网络可被称为可管理的集线器或交换器。交换集线器读取每个分组的目标地址,并且然后将分组转发到正确的端口。
位于手术室中的模块化装置1a-1n可耦合到模块化通信集线器203。网络集线器207和/或网络交换机209可耦合到网络路由器211以将装置1a-1n连接至云204或本地计算机系统210。与装置1a-1n相关联的数据可经由路由器传输到基于云的计算机,用于远程数据处理和操纵。与装置1a-1n相关联的数据也可被传输至本地计算机系统210以用于本地数据处理和操纵。位于相同手术室中的模块化装置2a-2m也可耦合到网络交换机209。网络交换机209可耦合到网络集线器207和/或网络路由器211以将装置2a-2m连接至云204。与装置2a-2n相关联的数据可经由网络路由器211传输到云204以用于数据处理和操纵。与装置2a-2m相关联的数据也可被传输至本地计算机系统210以用于本地数据处理和操纵。
应当理解,可通过将多个网络集线器207和/或多个网络交换机209与多个网络路由器211互连来扩展外科数据网络201。模块化通信集线器203可被包含在模块化控制塔中,该模块化控制塔被配置为接纳多个装置1a-1n/2a-2m。本地计算机系统210也可包含在模块化控制塔中。模块化通信集线器203连接到显示器212以显示例如在外科规程期间由装置1a-1n/2a-2m中的一些获得的图像。在各个方面,装置1a-1n/2a-2m可包括例如各种模块,诸如耦合到内窥镜的成像模块138、耦合到基于能量的外科装置的发生器模块140、排烟模块126、抽吸/冲洗模块128、通信模块130、处理器模块132、存储阵列134、连接到显示器的外科装置、和/或可连接到外科数据网络201的模块化通信集线器203的其它模块化装置中的非接触传感器模块。
在一个方面,外科数据网络201可包括将装置1a-1n/2a-2m连接至云的一个或多个网络集线器、一个或多个网络交换机和一个或多个网络路由器的组合。耦合到网络集线器或网络交换机的装置1a-1n/2a-2m中的任何一个或全部可实时收集数据并将数据传输到云计算机中以进行数据处理和操纵。应当理解,云计算依赖于共享计算资源,而不是使用本地服务器或个人装置来处理软件应用程序。可使用“云”一词作为“互联网”的隐喻,尽管该术语不受此限制。因此,本文可使用术语“云计算”来指“基于互联网的计算的类型”,其中将不同的服务(诸如服务器、存储器和应用程序)递送至位于外科室(例如,固定、移动、临时或现场手术室或空间)中的模块化通信集线器203和/或计算机系统210以及通过互联网连接至模块化通信集线器203和/或计算机系统210的装置。云基础设施可由云服务提供方维护。在这种情况下,云服务提供方可为协调位于一个或多个手术室中的装置1a-1n/2a-2m的使用和控制的实体。云计算服务可基于由智能外科器械、机器人和位于手术室中的其它计算机化装置所收集的数据来执行大量计算。集线器硬件使多个装置或连接能够连接到与云计算资源和存储器通信的计算机。
对由装置1a-1n/2a-2m所收集的数据应用云计算机数据处理技术,外科数据网络提供改善的外科结果、减小的成本和改善的患者满意度。可采用装置1a-1n/2a-2m中的至少一些来观察组织状态以评估在组织密封和切割规程之后密封的组织的渗漏或灌注。可采用装置1a-1n/2a-2m中的至少一些来识别病理学,诸如疾病的影响,使用基于云的计算检查包括用于诊断目的的身体组织样本的图像的数据。这包括组织和表型的定位和边缘确认。可采用装置1a-1n/2a-2m中的至少一些使用与成像装置和技术(诸如重叠由多个成像装置捕获的图像)集成的多种传感器来识别身体的解剖结构。由装置1a-1n/2a-2m收集的数据(包括图像数据)可被传输到云204或本地计算机系统210或两者以用于数据处理和操纵,包括图像处理和操纵。可分析数据以通过确定是否可继续进行进一步治疗(诸如内窥镜式干预、新兴技术、靶向辐射、靶向干预和精确机器人对组织特异性位点和条件的应用)来改善外科规程结果。此类数据分析可进一步采用结果分析处理,并且使用标准化方法可提供有益反馈以确认外科治疗和外科医生的行为,或建议修改外科治疗和外科医生的行为。
在一个具体实施中,手术室装置1a-1n可通过有线信道或无线信道连接至模块化通信集线器203,这取决于装置1a-1n至网络集线器的配置。在一个方面,网络集线器207可被实现为在开放式系统互连(OSI)模型的物理层上工作的本地网络广播装置。该网络集线器提供与位于同一手术室网络中的装置1a-1n的连接。网络集线器207以分组的形式收集数据,并以半双工模式将其发送至路由器。网络集线器207不存储用于传输装置数据的任何媒体访问控制/因特网协议(MAC/IP)。装置1a-1n中的仅一个可一次通过网络集线器207发送数据。网络集线器207没有关于在何处发送信息并在每个连接上广播所有网络数据以及通过云204向远程服务器213(图9)广播所有网络数据的路由表或智能。网络集线器207可以检测基本网络错误诸如冲突,但将所有信息广播到多个端口可带来安全风险并导致瓶颈。
在另一个具体实施中,手术室装置2a-2m可通过有线信道或无线信道连接到网络交换机209。网络交换机209在OSI模型的数据链路层中工作。网络交换机209是用于将位于相同手术室中的装置2a-2m连接到网络的多点广播装置。网络交换机209以帧的形式向网络路由器211发送数据并且以全双工模式工作。多个装置2a-2m可通过网络交换机209同时发送数据。网络交换机209存储并使用装置2a-2m的MAC地址来传输数据。
网络集线器207和/或网络交换机209耦合到网络路由器211以连接到云204。网络路由器211在OSI模型的网络层中工作。网络路由器211创建用于将从网络集线器207和/或网络交换机211接收的数据分组传输到基于云的计算机资源的路由,以进一步处理和操纵由装置1a-1n/2a-2m中的任一者或所有收集的数据。可采用网络路由器211来连接位于不同位置的两个或更多个不同的网络,诸如例如同一医疗设施的不同手术室或位于不同医疗设施的不同手术室的不同网络。网络路由器211以分组的形式向云204发送数据并且以全双工模式工作。多个装置可以同时发送数据。网络路由器211使用IP地址来传输数据。
在一个示例中,网络集线器207可被实现为USB集线器,其允许多个USB装置连接到主机。USB集线器可将单个USB端口扩展到多个层级,以便有更多端口可用于将装置连接到主机系统计算机。网络集线器207可包括用于通过有线信道或无线信道接收信息的有线或无线能力。在一个方面,无线USB短距离、高带宽无线无线电通信协议可用于装置1a-1n和位于手术室中的装置2a-2m之间的通信。
在其它示例中,手术室装置1a-1n/2a-2m可经由蓝牙无线技术标准与模块化通信集线器203通信,以用于在短距离(使用ISM频带中的2.4至2.485GHz的短波长UHF无线电波)从固定装置和移动装置交换数据以及构建个人局域网(PAN)。在其它方面,手术室装置1a-1n/2a-2m可经由多种无线或有线通信标准或协议与模块化通信集线器203通信,包括但不限于Wi-Fi(IEEE 802.11系列)、WiMAX(IEEE 802.16系列)、IEEE 802.20、长期演进(LTE)和Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、及其以太网衍生物、以及指定为3G、4G、5G和以上的任何其它无线和有线协议。计算模块可包括多个通信模块。例如,第一通信模块可专用于更短距离的无线通信诸如Wi-Fi和蓝牙,并且第二通信模块可专用于更长距离的无线通信,诸如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO等。
模块化通信集线器203可用作手术室装置1a-1n/2a-2m中的一者或全部的中心连接,并且处理被称为帧的数据类型。帧携带由装置1a-1n/2a-2m生成的数据。当模块化通信集线器203接收到帧时,其被放大并传输到网络路由器211,该网络路由器211通过使用如本文所述的多个无线或有线通信标准或协议将数据传输到云计算资源。
模块化通信集线器203可用作独立装置或连接到兼容的网络集线器和网络交换机以形成更大的网络。模块化通信集线器203通常易于安装、配置和维护,使得其成为对手术室装置1a-1n/2a-2m进行联网的良好选项。
图9示出了计算机实现的交互式外科系统200。计算机实现的交互式外科系统200在许多方面类似于计算机实现的交互式外科系统100。例如,计算机实现的交互式外科系统200包括在许多方面类似于外科系统102的一个或多个外科系统202。每个外科系统202包括与可包括远程服务器213的云204通信的至少一个外科集线器206。在一个方面,计算机实现的交互式外科系统200包括模块化控制塔236,该模块化控制塔236连接到多个手术室装置,诸如例如智能外科器械、机器人和位于手术室中的其它计算机化装置。如图10中所示,模块化控制塔236包括耦合到计算机系统210的模块化通信集线器203。如图9的示例中所示,模块化控制塔236耦合到耦合到内窥镜239的成像模块238、耦合到能量装置241的发生器模块240、排烟器模块226、抽吸/冲洗模块228、通信模块230、处理器模块232、存储阵列234、任选地耦合到显示器237的智能装置/器械235、和非接触传感器模块242。手术室装置经由模块化控制塔236耦合到云计算资源和数据存储。机器人集线器222也可连接到模块化控制塔236和云计算资源。装置/器械235、可视化系统208等等可经由有线或无线通信标准或协议耦合到模块化控制塔236,如本文所述。模块化控制塔236可耦合到集线器显示器215(例如,监测器、屏幕)以显示和叠加从成像模块、装置/器械显示器和/或其它可视化系统208接收的图像。集线器显示器还可结合图像和叠加图像来显示从连接到模块化控制塔的装置接收的数据。
图10示出了包括耦合到模块化控制塔236的多个模块的外科集线器206。模块化控制塔236包括模块化通信集线器203(例如,网络连接性装置)和计算机系统210,以提供例如本地处理、可视化和成像。如图10中所示,模块化通信集线器203可以分层配置连接以扩展可连接到模块化通信集线器203的模块(例如,装置)的数量,并将与模块相关联的数据传输至计算机系统210、云计算资源或两者。如图10中所示,模块化通信集线器203中的网络集线器/交换机中的每个包括三个下游端口和一个上游端口。上游网络集线器/交换机连接至处理器以提供与云计算资源和本地显示器217的通信连接。与云204的通信可通过有线或无线通信信道进行。
外科集线器206采用非接触传感器模块242来测量手术室的尺寸,并且使用超声或激光型非接触测量装置来生成外科室的标测图。基于超声的非接触传感器模块通过传输一阵超声波并在其从手术室的围墙弹回时接收回波来扫描手术室,如在2017年12月28日提交的标题为“交互式外科平台(INTERACTIVE SURGICAL PLATFORM)”的美国临时专利申请序列号62/611,341中的标题“手术室内的外科集线器空间感知(Surgical Hub SpatialAwareness Within an Operating Room)”下所述,该专利全文以引用方式并入本文,其中传感器模块被配置为确定手术室的大小并调节蓝牙配对距离限制。基于激光的非接触传感器模块通过传输激光脉冲、接收从手术室的围墙弹回的激光脉冲,以及将传输脉冲的相位与所接收的脉冲进行比较来扫描手术室,以确定手术室的大小并调节蓝牙配对距离限制。
计算机系统210包括处理器244和网络接口245。处理器244经由系统总线耦合到通信模块247、存储装置248、存储器249、非易失性存储器250和输入/输出接口251。系统总线可为若干类型的总线结构中的任一者,该总线结构包括存储器总线或存储器控制器、外围总线或外部总线、和/或使用任何各种可用总线架构的本地总线,包括但不限于9位总线、工业标准架构(ISA)、微型Charmel架构(MSA)、扩展ISA(EISA)、智能驱动电子器件(IDE)、VESA本地总线(VLB)、外围部件互连(PCI)、USB、高级图形端口(AGP)、个人计算机存储卡国际协会总线(PCMCIA)、小型计算机系统接口(SCSI)或任何其它外围总线。
控制器244可为任何单核或多核处理器,诸如由德克萨斯器械公司(TexasInstruments)提供的商品名为ARM Cortex的那些处理器。在一个方面,处理器可为购自例如德克萨斯器械公司(Texas Instruments)LM4F230H5QR ARM Cortex-M4F处理器核心,其包括256KB的单循环闪存或其它非易失性存储器(高达40MHZ)的片上存储器、用于改善高于40MHz的性能的预取缓冲器、32KB单循环序列随机存取存储器(SRAM)、装载有软件的内部只读存储器(ROM)、2KB电可擦除可编程只读存储器(EEPROM)、和/或一个或多个脉宽调制(PWM)模块、一个或多个正交编码器输入(QEI)模拟、具有12个模拟输入信道的一个或多个12位模数转换器(ADC),其细节可见于产品数据表。
在一个方面,处理器244可包括安全控制器,该安全控制器包括两个基于控制器的系列(诸如TMS570和RM4x),已知同样由德克萨斯器械公司(Texas Instruments)生产的商品名为Hercules ARM Cortex R4。安全控制器可被配置为专门用于IEC 61508和ISO 26262安全关键应用等等,以提供先进的集成安全特征件,同时递送可定标的性能、连接性和存储器选项。
系统存储器包括易失性存储器和非易失性存储器。基本输入/输出系统(BIOS)(包含诸如在启动期间在计算机系统内的元件之间传输信息的基本例程,)存储在非易失性存储器中。例如,非易失性存储器可包括ROM、可编程ROM(PROM)、电可编程ROM(EPROM)、EEPROM或闪存。易失存储器包括充当外部高速缓存存储器的随机存取存储器(RAM)。此外,RAM可以多种形式可用,诸如SRAM、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据速率SDRAM(DDRSDRAM)增强SDRAM(ESDRAM)、同步链路DRAM(SLDRAM)和直接Rambus RAM(DRRAM)。
计算机系统210还包括可移除/不可移除的、易失性/非易失性的计算机存储介质,诸如例如磁盘存储器。磁盘存储器包括但不限于诸如装置如磁盘驱动器、软盘驱动器、磁带驱动器、Jaz驱动器、Zip驱动器、LS-60驱动器、闪存存储卡或内存条。此外,磁盘存储器可包括单独地或与其它存储介质组合的存储介质,包括但不限于光盘驱动器诸如光盘ROM装置(CD-ROM)、光盘可记录驱动器(CD-R驱动器)、光盘可重写驱动器(CD-RW驱动器)或数字通用磁盘ROM驱动器(DVD-ROM)。为了有利于磁盘存储装置与系统总线的连接,可使用可移除或非可移除接口。
应当理解,计算机系统210包括充当用户和在合适的操作环境中描述的基本计算机资源之间的中介的软件。此类软件包括操作系统。可存储在磁盘存储装置上的操作系统用于控制并分配计算机系统的资源。系统应用程序利用操作系统通过存储在系统存储器或磁盘存储装置中的程序模块和程序数据来管理资源。应当理解,本文所述的各种部件可用各种操作系统或操作系统的组合来实现。
用户通过耦合到I/O接口251的一个或多个输入装置将命令或信息输入到计算机系统210中。输入装置包括但不限于指向装置,诸如鼠标、触控球、触笔、触摸板、键盘、麦克风、操纵杆、游戏垫、卫星盘、扫描仪、电视调谐器卡、数字相机、数字摄像机、幅材相机等。这些和其它输入装置经由一个或多个接口端口通过系统总线连接到处理器。一个或多个接口端口包括例如串口、并行端口、游戏端口和USB。一个或多个输出装置使用与一个或多个输入装置相同类型的端口。因此,例如,USB端口可用于向计算机系统提供输入并将信息从计算机系统输出到输出装置。提供了输出适配器来说明在其它输出装置中存在需要特殊适配器的一些输出装置(如监测器、显示器、扬声器和打印机。输出适配器以举例的方式包括但不限于提供输出装置和系统总线之间的连接装置的视频和声卡。应当指出,其它装置或装置诸如一个或多个远程计算机的系统提供了输入能力和输出能力两者。
计算机系统210可使用与一个或多个远程计算机(诸如一个或多个云计算机)或本地计算机的逻辑连接在联网环境中操作。一个或多个远程云计算机可为个人计算机、服务器、路由器、网络PC、工作站、基于微处理器的器具、对等装置或其它公共网络节点等,并且通常包括相对于计算机系统所述的元件中的许多或全部。为简明起见,仅示出了具有一个或多个远程计算机的存储器存储装置。一个或多个远程计算机通过网络接口在逻辑上连接到计算机系统,并且然后经由通信连接物理连接。网络接口涵盖通信网络诸如局域网(LAN)和广域网(WAN)。LAN技术包括光纤分布式数据接口(FDDI)、铜分布式数据接口(CDDI)、以太网/IEEE 802.3、令牌环/IEEE 802.5等。WAN技术包括但不限于点对点链路、电路交换网络如综合业务数字网络(ISDN)及其变体、分组交换网络和数字用户管线(DSL)。
在各个方面,图10的计算机系统210、成像模块238和/或可视化系统208、和/或图9-10的处理器模块232可包括图像处理器、图像处理引擎、媒体处理器、或用于处理数字图像的任何专用数字信号处理器(DSP)。图像处理器可采用具有单个指令、多数据(SIMD)或多指令、多数据(MIMD)技术的并行计算以提高速度和效率。数字图像处理引擎可执行一系列任务。图像处理器可为具有多核处理器架构的芯片上的系统。
一个或多个通信连接是指用于将网络接口连接到总线的硬件/软件。虽然示出了通信连接以便在计算机系统内侧进行示例性澄清,但其也可位于计算机系统210的外部。连接到网络接口所必需的硬件/软件仅出于示例性目的包括内部和外部技术,诸如调制解调器,包括常规的电话级调制解调器、电缆调制解调器和DSL调制解调器、ISDN适配器和以太网卡。
图11示出了根据本公开的至少一个方面的USB网络集线器300装置的一个方面的功能框图。在例示的方面,USB网络集线器装置300采用得克萨斯器械公司(TexasInstruments)的TUSB2036集成电路集线器。USB网络集线器300是根据USB 2.0规范提供上游USB收发器端口302和多达三个下游USB收发器端口304、306、308的CMOS装置。上游USB收发器端口302为差分根数据端口,其包括与差分数据正(DM0)输入配对的差分数据负(DP0)输入。三个下游USB收发器端口304、306、308为差分数据端口,其中每个端口包括与差分数据负(DM1-DM3)输出配对的差分数据正(DP1-DP3)输出。
USB网络集线器300装置用数字状态机而不是微控制器来实现,并且不需要固件编程。完全兼容的USB收发器集成到用于上游USB收发器端口302和所有下游USB收发器端口304、306、308的电路中。下游USB收发器端口304、306、308通过根据附接到端口的装置的速度自动设置转换速率来支持全速度装置和低速装置两者。USB网络集线器300装置可被配置为处于总线供电模式或自供电模式,并且包括用于管理功率的集线器功率逻辑312。
USB网络集线器300装置包括串行接口引擎310(SIE)。SIE 310是USB网络集线器300硬件的前端,并处理USB规范第8章中描述的大多数协议。SIE 310通常包括多达交易级别的信令。其处理的功能可包括:分组识别、事务排序、SOP、EOP、RESET和RESUME信号检测/生成、时钟/数据分离、不返回到零反转(NRZI)数据编码/解码和数位填充、CRC生成和校验(令牌和数据)、分组ID(PID)生成和校验/解码、和/或串行并行/并行串行转换。310接收时钟输入314并且耦合到暂停/恢复逻辑和帧定时器316电路以及集线器中继器电路318,以通过端口逻辑电路320、322、324控制上游USB收发器端口302和下游USB收发器端口304、306、308之间的通信。SIE 310经由接口逻辑耦合到命令解码器326,以经由串行EEPROM接口330来控制来自串行EEPROM的命令。
在各个方面,USB网络集线器300可将配置在多达六个逻辑层(层级)中的127功能连接至单个计算机。此外,USB网络集线器300可使用提供通信和功率分配两者的标准化四线电缆连接到所有外装置。功率配置为总线供电模式和自供电模式。USB网络集线器300可被配置为支持四种功率管理模式:具有单独端口功率管理或成套端口功率管理的总线供电集线器,以及具有单独端口功率管理或成套端口功率管理的自供电集线器。在一个方面,使用USB电缆将USB网络集线器300、上游USB收发器端口302插入USB主机控制器中,并且将下游USB收发器端口304、306、308暴露以用于连接USB兼容装置等。
外科器械硬件
图12示出了根据本公开的一个或多个方面的外科器械或工具的控制系统470的逻辑图。系统470包括控制电路。控制电路包括微控制器461,该微控制器包括处理器462和存储器468。例如,传感器472、474、476中的一个或多个向处理器462提供实时反馈。由马达驱动器492驱动的马达482可操作地耦合纵向可移动的位移构件以驱动夹持臂闭合构件。跟踪系统480被配置为确定纵向可移动的位移构件的位置。将位置信息提供给处理器462,该处理器462可被编程或配置为确定可纵向可移动的驱动构件的位置以及闭合构件的位置。可在工具驱动器接口处提供附加的马达以控制闭合管行进、轴旋转、关节运动、或夹持臂闭合、或上述的组合。显示器473显示器械的多种操作条件并且可包括用于数据输入的触摸屏功能。显示在显示器473上的信息可叠加有经由内窥镜式成像模块获取的图像。
在一个方面,微处理器461可为任何单核或多核处理器,诸如已知的由德克萨斯器械公司(Texas Instruments)生产的商品名为ARM Cortex的那些。在一个方面,微控制器461可为购自例如德克萨斯器械公司(Texas Instruments)的LM4F230H5QR ARM Cortex-M4F处理器核心,其包括256KB的单循环闪存或其它非易失性存储器(高达40MHZ)的片上存储器、用于改善高于40MHz的性能的预取缓冲器、32KB单循环SRAM、装载有软件的内部ROM、2KB电EEPROM、一个或多个PWM模块、一个或多个QEI模拟、具有12个模拟输入信道的一个或多个12位ADC,其细节可见于产品数据表。
在一个方面,微控制器461可包括安全控制器,该安全控制器包括两个基于控制器的系列(诸如TMS570和RM4x),已知同样由德克萨斯器械公司(Texas Instruments)生产的商品名为Hercules ARM Cortex R4。安全控制器可被配置为专门用于IEC 61508和ISO26262安全关键应用等等,以提供先进的集成安全特征件,同时递送可定标的性能、连接性和存储器选项。
微控制器461可被编程为执行各种功能,诸如精确控制刀、关节运动系统、夹持臂或上述的组合的速度和位置。在一个方面,微控制器461包括处理器462和存储器468。电动马达482可为有刷直流(DC)马达,其具有齿轮箱以及至关节运动或刀系统的机械链路。在一个方面,马达驱动器492可为可购自Allegro微系统公司(Allegro Microsystems,Inc)的A3941。其它马达驱动器可容易地被替换以用于包括绝对定位系统的跟踪系统480中。绝对定位系统的详细描述在2017年10月19日公布的标题为用于控制外科缝合和切割器械的系统和方法(SYSTEMS AND METHODS FOR CONTROLLING A SURGICAL STAPLING AND CUTTINGINSTRUMENT)的美国专利申请公布2017/0296213中有所描述,该专利申请全文以引用方式并入本文。
微控制器461可被编程为提供对位移构件和关节运动系统的速度和位置的精确控制。微控制器461可被配置为计算微控制器461的软件中的响应。将计算的响应与实际系统的所测量响应进行比较,以获得“观察到的”响应,其用于实际反馈决定。观察到的响应为有利的调谐值,该值使所模拟响应的平滑连续性质与所测量响应均衡,这可检测对系统的外部影响。
在一个方面,马达482可由马达驱动器492控制并可被外科器械或工具的击发系统采用。在各种形式中,马达482可为具有大约25,000RPM的最大旋转速度的有刷DC驱动马达。在其它布置方式中,马达482可包括无刷马达、无绳马达、同步马达、步进马达或任何其它合适的电动马达。马达驱动器492可包括例如包括场效应晶体管(FET)的H桥驱动器。马达482可通过可释放地安装到柄部组件或工具外壳的功率组件来供电,以用于向外科器械或工具供应控制功率。功率组件可包括电池,该电池可包括串联连接的、可用作功率源以为外科器械或工具提供功率的多个电池单元。在某些情况下,功率组件的电池单元可为可替换的和/或可再充电的电池单元。在至少一个示例中,电池单元可为锂离子电池,其能够耦合到功率组件并且可与功率组件分离。
驱动器492可为可购自Allegro微系统公司(Allegro Microsystems,Inc)的A3941。A3941 492为全桥控制器,其用于与针对电感负载(诸如有刷DC马达)特别设计的外部N信道功率金属氧化物半导体场效应晶体管(MOSFET)一起使用。驱动器492包括独特的电荷泵调整器,其为低至7V的电池电压提供完整的(>10V)栅极驱动并且允许A3941在低至5.5V的减小的栅极驱动下操作。可采用自举电容器来提供N信道MOSFET所需的上述电池供电电压。高边驱动装置的内部电荷泵允许直流(100%占空比)操作。可使用二极管或同步整流在快衰减模式或慢衰减模式下驱动全桥。在慢衰减模式下,电流再循环可穿过高边FET或低边FET。通过电阻器可调式空载时间保护功率FET不被击穿。整体诊断提供欠压、过热和功率桥故障的指示,并且可被配置为在大多数短路条件下保护功率MOSFET。其它马达驱动器可容易地被替换以用于包括绝对定位系统的跟踪系统480中。
跟踪系统480包括根据本公开的一个方面的包括位置传感器472的受控马达驱动电路布置方式。用于绝对定位系统的位置传感器472提供对应于位移构件的位置的独特位置信号。在一个方面,位移构件表示纵向可移动的驱动构件,其包括用于与齿轮减速器组件的对应驱动齿轮啮合接合的驱动齿的齿条。在其它方面,位移构件表示击发构件,该击发构件可被适配和配置为包括驱动齿的齿条。在又一方面,位移构件表示用于打开和闭合夹持臂的纵向位移构件,该纵向位移构件可被适配和配置为包括驱动齿的齿条。在其它方面,位移构件表示夹持臂闭合构件,该夹持臂闭合构件被配置为闭合和打开缝合器的夹持臂、超声或电外科装置的夹持臂、或上述的组合。因此,如本文所用,术语位移构件一般用来指外科器械或工具(诸如驱动构件、夹持臂或任何可被位移的元件)的任何可移动构件。因此,绝对定位系统实际上可通过跟踪纵向可移动的驱动构件的线性位移来跟踪夹持臂的位移。
在其它方面,绝对定位系统可以被配置为跟踪夹持臂在闭合或打开过程中的位置。在各种其它方面,位移构件可耦合到适于测量线性位移的任何位置传感器472。因此,纵向可移动的驱动构件、或夹持臂或它们的组合可耦合到任何合适的线性位移传感器。线性位移传感器可包括接触式位移传感器或非接触式位移传感器。线性位移传感器可包括线性可变差分变压器(LVDT)、差分可变磁阻换能器(DVRT)、滑动电位计、包括可移动磁体和一系列线性布置的霍尔效应传感器的磁感测系统、包括固定磁体和一系列可移动的线性布置的霍尔效应传感器的磁感测系统、包括可移动光源和一系列线性布置的光电二极管或光电检测器的光学感测系统、包括固定光源和一系列可移动的线性布置的光电二极管或光电检测器的光学感测系统、或它们的任何组合。
电动马达482可包括可操作地与齿轮组件交接的可旋转轴,该齿轮组件与驱动齿的组或齿条啮合接合安装在位移构件上。传感器元件可以可操作地耦合到齿轮组件,使得位置传感器472元件的单次旋转对应于位移构件的一些线性纵向平移。传动装置和传感器的布置方式可经由齿条和小齿轮布置方式连接至线性致动器,或者经由直齿齿轮或其它连接连接至旋转致动器。功率源为绝对定位系统供电,并且输出指示器可显示绝对定位系统的输出。位移构件表示纵向可移动驱动构件,该纵向可移动驱动构件包括形成于其上的驱动齿的齿条,以用于与齿轮减速器组件的对应驱动齿轮啮合接合。位移构件表示用于打开和闭合夹持臂的纵向可移动的击发构件。
与位置传感器472相关联的传感器元件的单次旋转等同于位移构件的纵向线性位移d1,其中d1为在耦合到位移构件的传感器元件的单次旋转之后位移构件从点“a”移动到点“b”的纵向线性距离。可经由齿轮减速连接传感器布置方式,该齿轮减速使得位置传感器472针对位移构件的全行程仅完成一次或多次旋转。位置传感器472可针对位移构件的全行程完成多次旋转。
可单独或结合齿轮减速采用一系列开关(其中n为大于一的整数)以针对位置传感器472的多于一次旋转提供独特位置信号。开关的状态被馈送回微控制器461,该微控制器461应用逻辑以确定对应于位移构件的纵向线性位移d1+d2+…dn的独特位置信号。位置传感器472的输出被提供给微控制器461。该传感器布置方式的位置传感器472可包括磁性传感器、模拟旋转传感器(如电位差计)、模拟霍尔效应元件的阵列,该霍尔效应元件的阵列输出位置信号或值的独特组合。
位置传感器472可包括任何数量的磁性感测元件,诸如例如根据它们是否测量磁场的总磁场或矢量分量而被分类的磁性传感器。用于产生上述两种类型磁性传感器的技术涵盖物理学和电子学的多个方面。用于磁场感测的技术包括探查线圈、磁通门、光泵、核旋、超导量子干涉仪(SQUID)、霍尔效应、各向异性磁电阻、巨磁电阻、磁性隧道结、巨磁阻抗、磁致伸缩/压电复合材料、磁敏二极管、磁敏晶体管、光纤、磁光,以及基于微机电系统的磁性传感器等等。
在一个方面,用于包括绝对定位系统的跟踪系统480的位置传感器472包括磁性旋转绝对定位系统。位置传感器472可被实现为AS5055EQFT单片磁性旋转位置传感器,其可购自澳大利亚奥地利微电子公司(Austria Microsystems,AG)。位置传感器472与微控制器461交接,以提供绝对定位系统。位置传感器472为低电压和低功率部件,并且包括位于磁体上方的位置传感器472的区域中的四个霍尔效应元件。在芯片上还提供了高分辨率ADC和智能功率管理控制器。提供了坐标旋转数字计算机(CORDIC)处理器(也被称为逐位法和Volder算法)以执行简单有效的算法来计算双曲线函数和三角函数,其仅需要加法、减法、数位位移和表格查找操作。角位置、报警位和磁场信息通过标准串行通信接口(诸如串行外围接口(SPI)接口)传输到微控制器461。位置传感器472提供12或14位分辨率。位置传感器472可为以小QFN 16引脚4×4×0.85mm封装提供的AS5055芯片。
包括绝对定位系统的跟踪系统480可包括并且/或者可被编程以实现反馈控制器,诸如PID、状态反馈和自适应控制器。功率源将来自反馈控制器的信号转换为对系统的物理输入:在这种情况下为电压。其它示例包括电压、电流和力的PWM。除了由位置传感器472所测量的位置之外,可提供一个或多个其它传感器来测量物理系统的物理参数。在一些方面,一个或多个其它传感器可包括传感器布置方式,诸如在2016年5月24日发布的标题为钉仓组织厚度传感器系统(STAPLE CARTRIDGE TISSUE THICKNESS)的美国专利9,345,481中所述的那些,该专利全文以引用方式并入本文;2014年9月18日公布的标题为钉仓组织厚度传感器系统(STAPLE CARTRIDGE TISSUE THICKNESS)的美国专利申请公布2014/0263552,该专利全文以引用方式并入本文;以及2017年6月20日提交的标题为用于外科缝合和切割器械的马达速度的自适应控制的技术(TECHNIQUES FOR ADAPTIVE CONTROL OF MOTORVELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT)的美国专利申请序列号15/628,175,该专利申请全文以引用方式并入本文。在数字信号处理系统中,绝对定位系统耦合到数字数据采集系统,其中绝对定位系统的输出将具有有限分辨率和采样频率。绝对定位系统可包括比较和组合电路,以使用算法(诸如加权平均和理论控制环路)将计算响应与测量响应进行组合,该算法驱动计算响应朝向所测量的响应。物理系统的计算响应将特性如质量、惯性、粘性摩擦、电感电阻考虑在内,以通过得知输入预测物理系统的状态和输出。
因此,绝对定位系统在器械上电时提供位移构件的绝对位置,并且不使位移构件回缩或推进至如常规旋转编码器可需要的复位(清零或本位)位置,这些编码器仅对马达482采取的向前或向后的步骤数进行计数以推断装置致动器、驱动棒、刀等等的位置。
传感器474(诸如,例如应变仪或微应变仪)被配置为测量端部执行器的一个或多个参数,诸如例如在夹持操作期间施加在砧座上的应变的幅值,该幅值可以指示施加到砧座的闭合力。将测得的应变转换成数字信号并提供给处理器462。另选地或除了传感器474之外,传感器476(诸如例如,负载传感器)可以测量由闭合驱动系统施加到超声或电外科器械中的缝合器或夹持臂中的砧座的闭合力。传感器476(诸如例如,负载传感器)可测量施加到耦合到外科器械或工具的夹持臂的闭合构件的击发力或由夹持臂施加到位于超声或电外科器械的钳口中的组织的力。另选地,可以采用电流传感器478来测量由马达482消耗的电流。位移构件还可被配置为接合夹持臂以打开或闭合夹持臂。力传感器可被配置为测量组织上的夹持力。推进位移构件所需的力可对应于例如由马达482消耗的电流。将测得的力转换成数字信号并提供给处理器462。
在一种形式中,应变仪传感器474可用于测量由端部执行器施加到组织的力。应变计可耦合到端部执行器以测量被端部执行器处理的组织上的力。用于测量施加到由端部执行器抓握的组织的力的系统包括应变仪传感器474,诸如例如微应变仪,其被配置为测量例如端部执行器的一个或多个参数。在一个方面,应变仪传感器474可测量在夹持操作期间施加到端部执行器的钳口构件上的应变的幅值或量值,这可指示组织压缩。将测得的应变转换成数字信号并将其提供到微控制器461的处理器462。负载传感器476可测量用于操作刀元件例如以切割被捕获在砧座和钉仓之间的组织的力。负载传感器476可测量用于操作夹持臂元件例如以捕获夹持臂和超声刀片之间的组织或捕获夹持臂和电外科器械的钳口之间的组织的力。可采用磁场传感器来测量捕集的组织的厚度。磁场传感器的测量值也可被转换成数字信号并提供给处理器462。
微控制器461可使用分别由传感器474、476测量的组织压缩、组织厚度和/或闭合端部执行器所需的力的测量来表征击发构件的所选择的位置和/或击发构件的速度的对应值。在一种情况下,存储器468可存储可由微控制器461在评估中所采用的技术、公式和/或查找表。
外科器械或工具的控制系统470还可包括有线或无线通信电路以与模块化通信集线器通信,如图8-11中所示。
图13示出了控制电路500,该控制电路500被配置为控制根据本公开的一个方面的外科器械或工具的各方面。控制电路500可被配置为实现本文所述的各种过程。控制电路500可包括微控制器,该微控制器包括耦合到至少一个存储器电路504的一个或多个处理器502(例如,微处理器、微控制器)。存储器电路504存储在由处理器502执行时使处理器502执行机器指令以实现本文所述的各种过程的机器可执行指令。处理器502可为本领域中已知的多种单核或多核处理器中的任一种。存储器电路504可包括易失性存储介质和非易失性存储介质。处理器502可包括指令处理单元506和运算单元508。指令处理单元可被配置为从本公开的存储器电路504接收指令。
图14示出了组合逻辑电路510,该组合逻辑电路510被配置为控制根据本公开的一个方面的外科器械或工具的各方面。组合逻辑电路510可被配置为实现本文所述的各种过程。组合逻辑电路510可包括有限状态机,该有限状态机包括组合逻辑512,该组合逻辑512被配置为在输入514处接收与外科器械或工具相关联的数据,通过组合逻辑512处理数据并提供输出516。
图15示出了根据本公开的一个方面的被配置为控制外科器械或工具的各个方面的时序逻辑电路520。时序逻辑电路520或组合逻辑522可被配置为实现本文所述的各种过程。时序逻辑电路520可包括有限状态机。时序逻辑电路520可包括例如组合逻辑522、至少一个存储器电路524和时钟529。至少一个存储器电路524可以存储有限状态机的当前状态。在某些情况下,时序逻辑电路520可为同步的或异步的。组合逻辑522被配置为从输入526接收与外科器械或工具相关联的数据,通过组合逻辑522处理数据并提供输出528。在其它方面,电路可包括处理器(例如,处理器502,图13)和有限状态机的组合以实现本文的各种过程。在其它方面,有限状态机可包括组合逻辑电路(例如,组合逻辑电路510,图14)和时序逻辑电路520的组合。
图16示出了包括可被激活以执行各种功能的多个马达的外科器械或工具。在某些情况下,第一马达可被激活以执行第一功能,第二马达可被激活以执行第二功能,并且第三马达可被激活以执行第三功能。在某些情况下,机器人外科器械600的多个马达可被单独地激活以导致端部执行器中的击发运动、闭合运动、和/或关节运动。击发运动、闭合运动、和/或关节运动可例如通过轴组件传输到端部执行器。
在某些情况下,外科器械系统或工具可包括击发马达602。击发马达602可操作地耦合到击发马达驱动组件604,该击发马达驱动组件604可被配置为将由马达602生成的击发运动传输到端部执行器,具体地用于移置夹持臂闭合构件。闭合构件可通过反转马达602的方向而回缩,这也导致夹持臂打开。
在某些情况下,外科器械或工具可包括闭合马达603。闭合马达603可以可操作地耦合到闭合马达驱动组件605,该闭合马达驱动组件605被配置为将由马达603生成的闭合运动传输到端部执行器,具体地用于移置闭合管以闭合砧座并且压缩砧座和钉仓之间的组织。闭合马达603可以可操作地耦合到闭合马达驱动组件605,该闭合马达驱动组件被配置为将由马达603生成的闭合运动传输到端部执行器,具体地用于移置闭合管以闭合夹持臂并且压缩夹持臂和电外科装置的超声刀片或钳口构件之间的组织。闭合运动可使例如端部执行器从打开配置转变成接近配置以捕获组织。端部执行器可通过反转马达603的方向而转变到打开位置。
在某些情况下,外科器械或工具可包括例如一个或多个关节运动马达606a、606b。马达606a、606b可以可操作地耦合到相应的关节运动马达驱动组件608a、608b,该关节运动马达驱动组件可被配置为将由马达606a、606b生成的关节运动传输到端部执行器。在某些情况下,关节运动可使端部执行器相对于轴进行关节运动,例如。
如上所述,外科器械或工具可包括多个马达,该多个马达可被配置为执行各种独立功能。在某些情况下,外科器械或工具的多个马达可被单独地或独立地激活以执行一个或多个功能,而其它马达保持非活动的。例如,关节运动马达606a、606b可被激活以使端部执行器进行关节运动,而击发马达602保持非活动的。另选地,击发马达602可被激活以击发多个钉并且/或者推进切割边缘,而关节运动马达606保持非活动的。此外,闭合马达603可与击发马达602同时激活,以使闭合管或闭合构件朝远侧推进,如下文更详细地描述。
在某些情况下,外科器械或工具可包括公共控制模块610,该公共控制模块610可与外科器械或工具的多个马达一起使用。在某些情况下,公共控制模块610每次可调节多个马达中的一个。例如,公共控制模块610能够单独地耦合到外科器械的多个马达并且可从外科器械的多个马达分离。在某些情况下,外科器械或工具的多个马达可共用一个或多个公共控制模块诸如公共控制模块610。在某些情况下,外科器械或工具的多个马达可独立地和选择性地接合公共控制模块610。在某些情况下,公共控制模块610可从与外科器械或工具的多个马达中的一个交接切换到与外科器械或工具的多个马达中的另一个交接。
在至少一个示例中,公共控制模块610可在可操作地接合关节运动马达606a、606b和可操作地接合击发马达602或闭合马达603之间选择性地切换。在至少一个示例中,如图16中所示,开关614可以在多个位置和/或状态之间移动或转变。在第一位置616中,开关614可将公共控制模块610电耦合到击发马达602;在第二位置617中,开关614可将公共控制模块610电耦合到闭合马达603;在第三位置618a中,开关614可将公共控制模块610电耦合到第一关节运动马达606a;并且在第四位置618b中,开关614可将公共控制模块610电耦合到例如第二关节运动马达606b。在某些情况下,单独的公共控制模块610可同时电耦合到击发马达602、闭合马达603和关节运动马达606a、606b。在某些情况下,开关614可为机械开关、机电开关、固态开关、或任何合适的开关机构。
马达602、603、606a、606b中的每个可包括扭矩传感器以测量马达的轴上的输出扭矩。可以任何常规方式感测端部执行器上的力,诸如通过钳口的外侧上的力传感器或通过用于致动钳口的马达的扭矩传感器来感测端部执行器上的力。
在各种情况下,如图16中所示,公共控制模块610可包括马达驱动器626,该马达驱动器626可包括一个或多个H桥场效应FET。马达驱动器626可例如基于得自微控制器620(“控制器”)的输入来调制从功率源628传输到耦合到公共控制模块610的马达的功率。在某些情况下,当马达耦合到公共控制模块610时,可例如采用微控制器620来确定由马达消耗的电流,如上所述。
在某些情况下,微控制器620可包括微处理器622(“处理器”)和一个或多个非暂态计算机可读介质或存储单元624(“存储器”)。在某些情况下,存储器624可存储各种程序指令,这些各种程序指令在被执行时可使处理器622执行本文所述的多个功能和/或计算。在某些情况下,存储器单元624中的一个或多个可例如耦合到处理器622。在各个方面,微控制器620可通过有线或无线信道或它们的组合进行通信。
在某些情况下,功率源628可例如用于为微控制器620供电。在某些情况下,功率源628可包括电池(或者“电池组”或“功率组”),诸如锂离子电池,例如。在某些情况下,电池组可被配置为可释放地安装到柄部以用于给外科器械600供电。多个串联连接的电池单元可用作功率源628。在某些情况下,功率源628可为例如可替换的和/或可再充电的。
在各种情况下,处理器622可控制马达驱动器626以控制耦合到公共控制器610的马达的位置、旋转方向、和/或速度。在某些情况下,处理器622可发信号通知马达驱动器626,以停止和/或停用耦合到公共控制器610的马达。应当理解,如本文所用的术语“处理器”包括任何合适的微处理器、微控制器、或将计算机的中央处理单元(CPU)的功能结合在一个集成电路或至多几个集成电路上的其它基础计算装置。处理器622是多用途的可编程装置,该装置接收数字数据作为输入,根据其存储器中存储的指令来处理输入,并且然后提供结果作为输出。因为处理器具有内部存储器,所以是时序数字逻辑的示例。处理器的操作对象是以二进制数字系统表示的数字和符号。
在一种情况下,处理器622可为任何单核或多核处理器,诸如已知的由德克萨斯器械公司(Texas Instruments)生产的商品名为ARM Cortex的那些。在某些情况下,微控制器620可为例如可从德州仪器公司(Texas Instruments)购得的LM 4F230H5QR。在至少一个示例中,Texas Instruments LM4F230H5QR为ARM Cortex-M4F处理器芯,其包括:256KB的单循环闪存或其它非易失性存储器(高达40MHZ)的片上存储器、用于改善高于40MHz的性能的预取缓冲器、32KB的单循环SRAM、装载有软件的内部ROM、2KB的EEPROM、一个或多个PWM模块、一个或多个QEI模拟、具有12个模拟输入信道的一个或多个12位ADC、以及易得的其它特征件。可容易地换用其它微控制器,以与模块4410一起使用。因此,本公开不应限于这一上下文。
在某些情况下,存储器624可包括用于控制能够耦合到公共控制器610的外科器械600的马达中的每个的程序指令。例如,存储器624可包括用于控制击发马达602、闭合马达603和关节运动马达606a、606b的程序指令。此类程序指令可使得处理器622根据来自外科器械或工具的算法或控制程序的输入来控制击发、闭合和关节运动功能。
在某些情况下,一个或多个机构和/或传感器诸如传感器630可以用于警示处理器622应当在特定设定中使用的程序指令。例如,传感器630可警示处理器622使用与击发、闭合和关节运动端部执行器相关联的程序指令。在某些情况下,传感器630可包括例如可以用于感测开关614的位置的位置传感器。因此,处理器622可在例如通过传感器630检测到开关614处于第一位置616时使用与击发耦合到端部执行器的夹持臂的闭合构件相关联的程序指令;处理器622可在例如通过传感器630检测到开关614处于第二位置617时使用与闭合砧座相关联的程序指令;并且处理器622可在例如通过传感器630检测到开关614处于第三位置618a或第四位置618b时使用与使端部执行器进行关节运动相关联的程序指令。
图17是根据本公开的一个方面的被配置为操作本文所述的外科工具的机器人外科器械700的示意图。机器人外科器械700可被编程或配置为控制位移构件的远侧/近侧平移、闭合管的远侧/近侧位移、轴旋转、以及具有单个或多个关节运动驱动连杆的关节运动。在一个方面,外科器械700可被编程或配置为单独地控制击发构件、闭合构件、轴构件、或一个或多个关节运动构件、或它们的组合。外科器械700包括控制电路710,该控制电路710被配置为控制马达驱动的击发构件、闭合构件、轴构件、或一个或多个关节运动构件、或它们的组合。
在一个方面,机器人外科器械700包括控制电路710,该控制电路710被配置为控制端部执行器702的夹持臂716和闭合构件714部分、耦合到超声发生器721激发的超声换能器719的超声刀片718、轴740、以及经由多个马达704a-704e的一个或多个关节运动构件742a、742b。位置传感器734可被配置为向控制电路710提供闭合构件714的位置反馈。其它传感器738可被配置为向控制电路710提供反馈。定时器/计数器731向控制电路710提供定时和计数信息。可提供能量源712以操作马达704a-704e,并且电流传感器736向控制电路710提供马达电流反馈。马达704a-704e可通过控制电路710在开环或闭环反馈控制中单独操作。
在一个方面,控制电路710可包括用于执行使得一个或多个处理器执行一个或多个任务的指令的一个或多个微控制器、微处理器或其它合适的处理器。在一个方面,定时器/计数器731向控制电路710提供输出信号,诸如耗用时间或数字计数,以将如由位置传感器734确定的闭合构件714的位置与定时器/计数器731的输出相关联,使得控制电路710可确定闭合构件714在相对于起始位置的特定时间(t)或闭合构件714处于相对于起始位置的特定位置时的时间(t)处的位置。定时器/计数器731可被配置为测量所耗用的时间、计数外部事件或时间外部事件。
在一个方面,控制电路710可被编程为基于一个或多个组织条件来控制端部执行器702的功能。控制电路710可被编程为直接或间接地感测组织条件,诸如厚度,如本文所述。控制电路710可被编程为基于组织条件选择击发控制程序或闭合控制程序。击发控制程序可描述位移构件的远侧运动。可选择不同的击发控制程序以更好地处理不同的组织状况。例如,当存在更厚的组织时,控制电路710可被编程为以更低的速度和/或以更低的功率平移位移构件。当存在更薄的组织时,控制电路710可被编程为以更高的速度和/或以更高的功率平移位移构件。闭合控制程序可控制由夹持臂716施加到组织的闭合力。其它控制程序控制轴740和关节运动构件742a、742b的旋转。
在一个方面,控制电路710可生成马达设定点信号。马达设定点信号可被提供给各种马达控制器708a-708e。马达控制器708a-708e可包括一个或多个电路,这些电路被配置为向马达704a-704e提供马达驱动信号,以驱动马达704a-704e,如本文所述。在一些示例中,马达704a-704e可为有刷DC电动马达。例如,马达704a-704e的速度可与相应的马达驱动信号成比例。在一些示例中,马达704a-704e可为无刷DC马达,并且相应的马达驱动信号可包括提供给马达704a-704e的一个或多个定子绕组的PWM信号。而且,在一些示例中,可省略马达控制器708a-708e,并且控制电路710可直接生成马达驱动信号。
在一些示例中,控制电路710可针对位移构件的行程的第一开环部分初始以开环配置操作马达704a-704e中的每个。基于在行程的开环部分期间机器人外科器械700的响应,控制电路710可选择处于闭环配置的击发控制程序。器械的响应可包括在开环部分期间位移构件的平移距离、在开环部分期间耗用的时间、在开环部分期间提供给马达704a-704e中的一者的能量、马达驱动信号的脉冲宽度之和等。在开环部分之后,控制电路710可对位移构件行程的第二部分实现所选择的击发控制程序。例如,在行程的闭环部分期间,控制电路710可基于以闭环方式描述位移构件的位置的平移数据来调制马达704a-704e中的一者,以使位移构件以恒定速度平移。
在一个方面,马达704a-704e可从能量源712接收功率。能量源712可为由主交流功率源、电池、超级电容器或任何其它合适的能量源驱动的DC功率源。马达704a-704e可经由相应的传动装置706a-706e机械地耦合到单独的可移动机械元件,诸如闭合构件714、夹持臂716、轴740、关节运动742a和关节运动742b。传动装置706a-706e可包括一个或多个齿轮或其它连杆部件,以将马达704a-704e耦合到可移动机械元件。位置传感器734可感测闭合构件714的位置。位置传感器734可为或包括能够生成指示闭合构件714的位置的位置数据的任何类型的传感器。在一些示例中,位置传感器734可包括编码器,该编码器被配置为在闭合构件714朝远侧和近侧平移时向控制电路710提供一系列脉冲。控制电路710可跟踪脉冲以确定闭合构件714的位置。可使用其它合适的位置传感器,包括例如接近传感器。其它类型的位置传感器可提供指示闭合构件714的运动的其它信号。而且,在一些示例中,可省略位置传感器734。在马达704a-704e是步进马达的情况下,控制电路710可通过聚合马达704已被指示执行的步骤的数量和方向来跟踪闭合构件714的位置。位置传感器734可位于端部执行器702中或器械的任何其它部分处。马达704a-704e中的每个的输出包括用于感测力的扭矩传感器744a-744e,并且具有用于感测驱动轴的旋转的编码器。
在一个方面,控制电路710被配置为驱动击发构件诸如端部执行器702的闭合构件714部分。控制电路710向马达控制708a提供马达设定点,该马达控制向马达704a提供驱动信号。马达704a的输出轴耦合到扭矩传感器744a。扭矩传感器744a耦合到传动装置706a,该传动装置706a耦合到闭合构件714。传动装置706a包括可移动的机械元件诸如旋转元件和击发构件,以控制闭合构件714沿端部执行器702的纵向轴线向远侧和近侧的移动。在一个方面,马达704a可耦合到刀齿轮组件,该刀齿轮组件包括刀齿轮减速组,该刀齿轮减速组包括第一刀驱动齿轮和第二刀驱动齿轮。扭矩传感器744a向控制电路710提供击发力反馈信号。击发力信号表示击发或移置闭合构件714所需的力。位置传感器734可被配置为将闭合构件714沿击发行程的位置或击发构件的位置作为反馈信号提供给控制电路710。端部执行器702可包括被配置为向控制电路710提供反馈信号的附加传感器738。当准备好使用时,控制电路710可向马达控制708a提供击发信号。响应于击发信号,马达704a可沿端部执行器702的纵向轴线将击发构件从近侧行程开始位置朝远侧驱动至行程开始位置远侧的行程结束位置。当闭合构件714朝远侧平移时,夹持臂716朝超声刀片718闭合。
在一个方面,控制电路710被配置为驱动闭合构件,诸如端部执行器702的夹持臂716部分。控制电路710向马达控制708b提供马达设定点,该马达控制708b向马达704b提供驱动信号。马达704b的输出轴耦合到扭矩传感器744b。扭矩传感器744b耦合到耦合到夹持臂716的传动装置706b。传动装置706b包括可移动机械元件诸如旋转元件和闭合构件,以控制夹持臂716从打开位置和闭合位置的移动。在一个方面,马达704b耦合到闭合齿轮组件,该闭合齿轮组件包括被支撑成与闭合正齿轮啮合接合的闭合减速齿轮组。扭矩传感器744b向控制电路710提供闭合力反馈信号。闭合力反馈信号表示施加到夹持臂716的闭合力。位置传感器734可被配置为将闭合构件的位置作为反馈信号提供给控制电路710。端部执行器702中的附加传感器738可向控制电路710提供闭合力反馈信号。可枢转夹持臂716被定位成与超声刀片718相对。当准备好使用时,控制电路710可向马达控制708b提供闭合信号。响应于闭合信号,马达704b推进闭合构件以抓握夹持臂716和超声刀片718之间的组织。
在一个方面,控制电路710被配置为使轴构件诸如轴740旋转,以使端部执行器702旋转。控制电路710向马达控制708c提供马达设定点,该马达控制708c向马达704c提供驱动信号。马达704c的输出轴耦合到扭矩传感器744c。扭矩传感器744c耦合到耦合到轴740的传动装置706c。传动装置706c包括可移动机械元件诸如旋转元件,以控制轴740顺时针或逆时针旋转高达360°和360°以上。在一个方面,马达704c耦合到旋转传动装置组件,该旋转传动装置组件包括管齿轮区段,该管齿轮区段形成于(或附接到)近侧闭合管的近侧端部上,以通过可操作地支撑在工具安装板上的旋转齿轮组件可操作地接合。扭矩传感器744c向控制电路710提供旋转力反馈信号。旋转力反馈信号表示施加到轴740上的旋转力。位置传感器734可被配置为将闭合构件的位置作为反馈信号提供给控制电路710。附加传感器738诸如轴编码器可向控制电路710提供轴740的旋转位置。
在一个方面,控制电路710被配置为使端部执行器702进行关节运动。控制电路710向马达控制708d提供马达设定点,该马达控制708d向马达704d提供驱动信号。马达704d的输出耦合到扭矩传感器744d。扭矩传感器744d耦合到耦合到关节运动构件742a的传动装置706d。传动装置706d包括可移动的机械元件诸如关节运动元件,以控制端部执行器702±65°的关节运动。在一个方面,马达704d耦合到关节运动螺母,该关节运动螺母可旋转地轴颈连接在远侧脊部的近侧端部部分上并且通过关节运动齿轮组件在其上可旋转地驱动。扭矩传感器744d向控制电路710提供关节运动力反馈信号。关节运动力反馈信号表示施加到端部执行器702的关节运动力。传感器738(诸如关节运动编码器)可向控制电路710提供端部执行器702的关节运动位置。
在另一方面,机器人外科系统700的关节运动功能可包括两个关节运动构件或连杆742a、742b。这些关节运动构件742a、742b由机器人接口(齿条)上的单独的盘驱动,所述单独的盘由两个马达708d、708e驱动。当提供单独的击发马达704a时,关节运动连杆742a、742b中的每个可相对于另一个连杆进行拮抗驱动,以便在头部未运动时向头部提供阻力保持运动和负载,并且在头部进行关节运动时提供关节运动。当头部旋转时,关节运动构件742a、742b以固定的半径附接到头部。因此,当头部旋转时,推拉连杆的机械优点发生变化。机械优点的该变化对于其它关节运动连杆驱动系统可更明显。
在一个方面,一个或多个马达704a-704e可包括具有齿轮箱的有刷DC马达和与击发构件、闭合构件或关节运动构件的机械链路。另一个示例包括操作可移动机械元件诸如位移构件、关节运动连杆、闭合管和轴的电动马达704a-704e。外部影响是事物如组织、周围身体和摩擦对物理系统的未测量的、不可预测的影响。此类外部影响可被称为曳力,其相对电动马达704a-704e中的一个作用。外部影响诸如曳力可导致物理系统的操作偏离物理系统的期望操作。
在一个方面,位置传感器734可被实现为绝对定位系统。在一个方面,位置传感器734可包括磁性旋转绝对定位系统,该磁性旋转绝对定位系统被实现为AS5055EQFT单片磁性旋转位置传感器,其可购自澳大利亚奥地利微电子公司(Austria Microsystems,AG)。位置传感器734与控制器710交接,以提供绝对定位系统。位置可包括位于磁体上方并耦合到CORDIC处理器的霍尔效应元件,该CORDIC处理器也被已知为逐位方法和Volder算法,提供该CORDIC处理器以实现用于计算双曲线函数和三角函数的简单有效的算法,双曲线函数和三角函数仅需要加法操作、减法操作、数位位移操作和表格查找操作。
在一个方面,控制电路710可与一个或多个传感器738通信。传感器738可定位在端部执行器702上并且适于与机器人外科器械700一起操作以测量各种衍生参数,诸如间隙距离对时间、组织压缩与时间、以及砧座应变与时间。传感器738可包括磁性传感器、磁场传感器、应变仪、负荷传感器、压力传感器、力传感器、扭矩传感器、电感式传感器诸如涡流传感器、电阻式传感器、电容式传感器、光学传感器和/或用于测量端部执行器702的一个或多个参数的任何其它合适的传感器。传感器738可包括一个或多个传感器。传感器738可位于夹持臂716上,以使用分段电极来确定组织位置。扭矩传感器744a-744e可被配置为感测力诸如击发力、闭合力和/或关节运动力等。因此,控制电路710可感测(1)远侧闭合管所经历的闭合负荷及其位置,(2)在齿条处的击发构件及其位置,(3)超声刀片718在其上具有组织的部分,以及(4)两个关节运动杆上的负载和位置。
在一个方面,一个或多个传感器738可包括应变仪,诸如微应变仪,其被配置为在夹持条件期间测量夹持臂716中的应变的量值。应变仪提供电信号,该电信号的幅值随着应变量值而变化。传感器738可包括压力传感器,该压力传感器被配置为检测由夹持臂716和超声刀片718之间的压缩组织的存在所生成的压力。传感器738可被配置为检测位于夹持臂716和超声刀片718之间的组织区段的阻抗,该阻抗指示位于其间的组织的厚度和/或填充度。
在一个方面,传感器738可实现为一个或多个限位开关、机电装置、固态开关、霍尔效应装置、磁阻(MR)装置、巨磁电阻(GMR)装置、磁力计等等。在其它具体实施中,传感器738可被实现为在光的影响下操作的固态开关,诸如光学传感器、IR传感器、紫外线传感器等等。同样,开关可为固态装置,诸如晶体管(例如,FET、结型FET、MOSFET、双极型晶体管等)。在其它具体实施中,传感器738可包括无电导体开关、超声开关、加速度计和惯性传感器等等。
在一个方面,传感器738可被配置为测量由闭合驱动系统施加在夹持臂716上的力。例如,一个或多个传感器738可位于闭合管和夹持臂716之间的交互点处,以检测由闭合管施加到夹持臂716的闭合力。施加在夹持臂716上的力可以表示在夹持臂716和超声刀片718之间捕获的组织区段所经受的组织压缩。一个或多个传感器738可沿闭合驱动系统定位在各种交互点处,以检测由闭合驱动系统施加到夹持臂716的闭合力。一个或多个传感器738可在夹持操作期间由控制电路710的处理器实时取样。控制电路710接收实时样本测量值以提供和分析基于时间的信息,并实时评估施加到夹持臂716的闭合力。
在一个方面,电流传感器736可用于测量由马达704a-704e中的每个所消耗的电流。推进可移动的机械元件(诸如闭合构件714)中的任一者所需的力对应于由马达704a-704e中的一个所消耗的电流。将力转换成数字信号并提供给处理器710。控制电路710可以被配置为模拟器械的实际系统在控制器的软件中的响应。可致动位移构件以将端部执行器702中的闭合构件714以目标速度或接近目标速度移动。机器人外科系统700可包括反馈控制器,该反馈控制器可为任何反馈控制器中的一者,包括但不限于例如PID、状态反馈、线性平方(LQR)和/或自适应控制器。机器人外科器械700可包括功率源,以例如将来自反馈控制器的信号转换成物理输入,诸如外壳电压、PWM电压、频率调制电压、电流、扭矩和/或力。附加细节公开于2017年6月29日提交的标题为用于机器人外科器械的闭环速度控制技术(CLOSED LOOP VELOCITY CONTROL TECHNIQUES FOR ROBOTIC SURGICAL INSTRUMENT)的美国专利申请序列号15/636,829中,该专利全文以引用方式并入本文。
图18示出了根据本公开的一个方面的被配置为控制位移构件的远侧平移的外科器械750的示意图。在一个方面,外科器械750被编程为控制位移构件诸如闭合构件764的远侧平移。外科器械750包括端部执行器752,该端部执行器752可包括夹持臂766、闭合构件764和耦合到由超声发生器771驱动的超声换能器769的超声刀片768。
线性位移构件诸如闭合构件764的位置、移动、位移和/或平移可通过绝对定位系统、传感器布置方式和位置传感器784来测量。由于闭合构件764耦合到纵向可移动的驱动构件,因此闭合构件764的位置可通过采用位置传感器784测量纵向可移动的驱动构件的位置来确定。因此,在以下描述中,闭合构件764的位置、位移和/或平移可通过本文所述的位置传感器784来实现。控制电路760可被编程为控制位移构件诸如闭合构件764的平移。在一些示例中,控制电路760可包括一个或多个微控制器、微处理器或其它合适的处理器,以用于执行使一个或多个处理器以所述方式控制位移构件(例如,闭合构件764)的指令。在一个方面,定时器/计数器781向控制电路760提供输出信号,诸如耗用时间或数字计数,以将如由位置传感器784确定的闭合构件764的位置与定时器/计数器781的输出相关联,使得控制电路760可确定闭合构件764在相对于起始位置的特定时间(t)处的位置。定时器/计数器781可被配置为测量所耗用的时间、计数外部事件或时间外部事件。
控制电路760可生成马达设定点信号772。马达设定点信号772可被提供给马达控制器758。马达控制器758可包括一个或多个电路,这些电路被配置为向马达754提供马达驱动信号774,以驱动马达754,如本文所述。在一些示例中,马达754可为有刷DC电动马达。例如,马达754的速度可与马达驱动信号774成比例。在一些示例中,马达754可为无刷DC电动马达,并且马达驱动信号774可包括提供给马达754的一个或多个定子绕组的PWM信号。而且,在一些示例中,可省略马达控制器758,并且控制电路760可直接生成马达驱动信号774。
马达754可从能量源762处接收功率。能量源762可为或包括电池、超级电容器或任何其它合适的能量源。马达754可经由传动装置756机械耦合到闭合构件764。传动装置756可包括一个或多个齿轮或其它连杆部件,以将马达754耦合到闭合构件764。位置传感器784可感测闭合构件764的位置。位置传感器784可为或包括能够生成指示闭合构件764的位置的位置数据的任何类型的传感器。在一些示例中,位置传感器784可包括编码器,该编码器被配置为在闭合构件764朝远侧和朝近侧平移时向控制电路760提供一系列脉冲。控制电路760可跟踪脉冲以确定闭合构件764的位置。可使用其它合适的位置传感器,包括例如接近传感器。其它类型的位置传感器可提供指示闭合构件764的运动的其它信号。而且,在一些示例中,可省略位置传感器784。在马达754是步进马达的情况下,控制电路760可通过聚合马达754已被指示执行的步骤的数量和方向来跟踪闭合构件764的位置。位置传感器784可位于端部执行器752中或器械的任何其它部分处。
控制电路760可与一个或多个传感器788通信。传感器788可定位在端部执行器752上并且适于与外科器械750一起操作以测量各种衍生参数,诸如间隙距离与时间、组织压缩与时间以及砧座应变与时间。传感器788可包括例如磁性传感器、磁场传感器、应变仪、压力传感器、力传感器、电感式传感器(诸如涡流传感器)、电阻式传感器、电容式传感器、光学传感器和/或用于测量端部执行器752的一个或多个参数的任何其它合适的传感器。传感器788可包括一个或多个传感器。
在某些情况下,一个或多个传感器788可包括应变仪,诸如微应变仪,其被配置为在夹持条件期间测量夹持臂766中的应变的量值。应变仪提供电信号,该电信号的幅值随着应变量值而变化。传感器788可包括压力传感器,该压力传感器被配置为检测由夹持臂766和超声刀片768之间的压缩组织的存在生成的压力。传感器788可被配置为检测位于夹持臂766和超声刀片768之间的组织区段的阻抗,该阻抗指示位于其间的组织的厚度和/或填充度。
传感器788可被配置为测量由闭合驱动系统施加在夹持臂766上的力。例如,一个或多个传感器788可位于闭合管和夹持臂766之间的交互点处,以检测由闭合管施加到夹持臂766的闭合力。施加在夹持臂766上的力可表示在夹持臂766和超声刀片768之间捕获的组织区段所经受的组织压缩。一个或多个传感器788可以沿闭合驱动系统定位在各种交互点处,以检测由闭合驱动系统施加到夹持臂766的闭合力。一个或多个传感器788可在夹持操作期间由控制电路760的处理器实时取样。控制电路760接收实时样本测量值以提供和分析基于时间的信息,并实时评估施加到夹持臂766的闭合力。
电流传感器786可以用于测量由马达754消耗的电流。推进闭合构件764所需的力可对应于例如由马达754消耗的电流。将力转换成数字信号并提供给控制电路760。
控制电路760可以被配置为模拟器械的实际系统在控制器的软件中的响应。可致动位移构件以将端部执行器752中的闭合构件764以目标速度或接近目标速度移动。外科器械750可包括反馈控制器,该反馈控制器可为任何反馈控制器中的一者,包括但不限于例如PID、状态反馈、LQR和/或自适应控制器。外科器械750可包括功率源,以例如将来自反馈控制器的信号转换为物理输入,诸如外壳电压、PWM电压、频率调制电压、电流、扭矩和/或力。
外科器械750的实际驱动系统被配置为通过具有齿轮箱和与关节运动和/或刀系统的机械链路的有刷DC马达驱动位移构件、切割构件或闭合构件764。另一个示例是操作例如可互换轴组件的位移构件和关节运动驱动器的电动马达754。外部影响是事物如组织、周围身体和摩擦对物理系统的未测量的、不可预测的影响。此类外部影响可以被称为与电动马达754相反地作用的曳力。外部影响诸如曳力可导致物理系统的操作偏离物理系统的期望操作。
各个示例方面涉及外科器械750,其包括具有马达驱动的外科密封和切割具体实施的端部执行器752。例如,马达754可沿端部执行器752的纵向轴线朝远侧和朝近侧驱动位移构件。端部执行器752可包括可枢转的夹持臂766,并且当被配置为用于使用时,超声刀片768与夹持臂766相对定位。临床医生可抓握夹持臂766和超声刀片768之间的组织,如本文所述。当准备好使用器械750时,临床医生可例如通过按下器械750的触发器来提供击发信号。响应于击发信号,马达754可沿端部执行器752的纵向轴线将位移构件从近侧行程开始位置朝远侧驱动到行程开始位置远侧的行程结束位置。当位移构件朝远侧平移时,具有定位在远侧端部处的切割元件的闭合构件764可切割超声刀片768和夹持臂766之间的组织。
在各个示例中,外科器械750可包括控制电路760,该控制电路760被编程为基于一个或多个组织条件控制位移构件(诸如闭合构件764)的远侧平移。控制电路760可被编程为直接或间接地感测组织条件,诸如厚度,如本文所述。控制电路760可被编程为基于组织条件选择控制程序。控制程序可描述位移构件的远侧运动。可选择不同的控制程序以更好地处理不同的组织条件。例如,当存在更厚的组织时,控制电路760可被编程为以更低的速度和/或以更低的功率平移位移构件。当存在更薄的组织时,控制电路760可被编程为以更高的速度和/或以更高的功率平移位移构件。
在一些示例中,控制电路760可针对位移构件的行程的第一开环部分初始以开环构型来操作马达754。基于在行程的开环部分期间器械750的响应,控制电路760可选择击发控制程序。器械的响应可包括在开环部分期间位移构件的平移距离、在开环部分期间耗用的时间、在开环部分期间提供给马达754的能量、马达驱动信号的脉冲宽度之和等。在开环部分之后,控制电路760可对位移构件行程的第二部分实施所选择的击发控制程序。例如,在行程的闭环部分期间,控制电路760可基于以闭环方式描述位移构件的位置的平移数据来调制马达754,以使位移构件以恒定速度平移。附加细节公开于2017年9月29日提交的标题为用于控制外科器械的显示器的系统和方法(SYSTEM AND METHODS FOR CONTROLLING ADISPLAY OF A SURGICAL INSTRUMENT)的美国专利申请序列号15/720,852中,该专利申请全文以引用方式并入本文。
图19为根据本公开的一个方面的被配置为控制各种功能的外科器械790的示意图。在一个方面,外科器械790被编程为控制位移构件诸如闭合构件764的远侧平移。外科器械790包括端部执行器792,该端部执行器792可包括夹持臂766、闭合构件764和超声刀片768,该超声刀片768可与一个或多个RF电极796(以点划线示出)互换或结合一个或多个RF电极796工作。超声刀片768耦合到由超声发生器771驱动的超声换能器769。
在一个方面,传感器788可被实现为限位开关、机电装置、固态开关、霍尔效应装置、MR装置、GMR装置、磁力计等等。在其它具体实施中,传感器638可被实现为在光的影响下操作的固态开关,诸如光学传感器、IR传感器、紫外线传感器等等。同样,开关可为固态装置,诸如晶体管(例如,FET、结型FET、MOSFET、双极型晶体管等)。在其它具体实施中,传感器788可包括无电导体开关、超声开关、加速度计和惯性传感器等等。
在一个方面,位置传感器784可被实现为绝对定位系统,该绝对定位系统包括被实现为AS5055EQFT单片磁性旋转位置传感器,其可购自澳大利亚奥地利微电子公司(AustriaMicrosystems,AG)。位置传感器784可与控制器760交接,以提供绝对定位系统。位置可包括位于磁体上方并耦合到CORDIC处理器的霍尔效应元件,该CORDIC处理器也被已知为逐位方法和Volder算法,提供该CORDIC处理器以实现用于计算双曲线函数和三角函数的简单有效的算法,双曲线函数和三角函数仅需要加法操作、减法操作、数位位移操作和表格查找操作。
在一些示例中,可省略位置传感器784。在马达754是步进马达的情况下,控制电路760可通过聚合马达已被指示执行的步骤的数量和方向来跟踪闭合构件764的位置。位置传感器784可位于端部执行器792中或器械的任何其它部分处。
控制电路760可与一个或多个传感器788通信。传感器788可定位在端部执行器792上并且适于与外科器械790一起操作以测量各种衍生参数,诸如间隙距离与时间、组织压缩与时间以及砧座应变与时间。传感器788可包括例如磁性传感器、磁场传感器、应变仪、压力传感器、力传感器、电感式传感器(诸如涡流传感器)、电阻式传感器、电容式传感器、光学传感器和/或用于测量端部执行器792的一个或多个参数的任何其它合适的传感器。传感器788可包括一个或多个传感器。
RF能量源794耦合到端部执行器792,并且当RF电极796设置在端部执行器792中以代替超声刀片768或结合超声刀片768工作时,RF能量源794被施加到RF电极796。例如,超声刀片由导电金属制成,并且可用作电外科RF电流的返回路径。控制电路760控制RF能量到RF电极796的递送。
附加细节公开于2017年6月28日提交的美国专利申请序列号15/636,096,其标题为能够与钉仓和射频仓耦合的外科系统及其使用方法(SURGICAL SYSTEM COUPLABLE WITHSTAPLE CARTRIDGE AND RADIO FREQUENCY CARTRIDGE,AND METHOD OF USING SAME),该专利全文以引用方式并入本文。
发生器硬件
自适应超声刀片控制算法
在各个方面,智能超声能量装置可包括用于控制超声刀片的操作的自适应算法。在一个方面,超声刀片自适应控制算法被配置为识别组织类型并调节装置参数。在一个方面,超声刀片控制算法被配置为将组织类型参数化。本公开的以下区段描述了一种用于检测组织的胶原/弹性比率以调谐超声刀片的远侧末端的幅值的算法。本文结合例如图1-85描述了智能超声能量装置的各方面。因此,以下对自适应超声刀片控制算法的描述应当结合图1-85以及与其相关联的描述来阅读。
组织类型标识和装置参数调节
在某些外科规程中,期望采用自适应超声刀片控制算法。在一个方面,可采用自适应超声刀片控制算法来基于与超声刀片接触的组织的类型来调节超声装置的参数。在一个方面,超声装置的参数可基于组织在超声端部执行器的钳口内的位置(例如,组织在夹持臂和超声刀片之间的位置)来调节。超声换能器的阻抗可用于区分组织在端部执行器的远侧端部或近侧端部中的百分比。超声装置的反应可基于组织类型或组织的压缩率。在另一方面,超声装置的参数可基于所识别的组织类型或参数化来调节。例如,超声刀片的远侧末端的机械位移幅值可基于在组织识别过程期间检测到的胶原与弹性蛋白组织的比率而调谐。可使用多种技术检测胶原与弹性蛋白组织的比率,包括红外(IR)表面反射率和比辐射率。由夹持臂和/或夹持臂的行程施加到组织的力以产生间隙和压缩。可采用横跨配备有电极的钳口的电连续性来确定被组织覆盖的钳口的百分比。
图20为根据本公开的至少一个方面的被配置为在包括模块化通信集线器的外科数据网络中执行自适应超声刀片控制算法的系统800。在一个方面,发生器模块240被配置为执行如本文参考图43A-54所述的一个或多个自适应超声刀片控制算法802。在另一方面,装置/器械235被配置为执行如本文参考图43A-54所述的一个或多个自适应超声刀片控制算法804。在另一方面,装置/器械235和装置/器械235两者均被配置为执行如本文参考图43A-54所述的自适应超声刀片控制算法802、804。
发生器模块240可包括经由功率变压器与非隔离级通信的患者隔离级。功率变压器的二次绕组包含在隔离级中,并且可包括分接配置(例如,中心分接或非中心分接配置)以限定驱动信号输出,该驱动信号输出用于将驱动信号递送至不同的外科器械,诸如例如超声外科器械、RF电外科器械和包括能够单独或同时递送的超声能量模式和RF能量模式的多功能外科器械。具体地,驱动信号输出可将超声驱动信号(例如,420V均方根(RMS)驱动信号)输出到超声外科器械241,并且驱动信号输出可将RF电外科驱动信号(例如,100V RMS驱动信号)输出到RF电外科器械241。本文参考图21-28B描述了发生器模块240的各方面。
发生器模块240或装置/器械235或两者耦合到模块化控制塔236,该模块化控制塔236连接到多个手术室装置,诸如例如智能外科器械、机器人和位于手术室中的其它计算机化装置,如参照图8-11所述,例如。
图21示出了发生器900的示例,其为发生器的一种形式,该发生器被配置为耦合到超声器械并且进一步被配置为在包括模块化通信集线器的外科数据网络中执行自适应超声刀片控制算法,如图20中所示。发生器900被配置为将多个能量模态递送至外科器械。发生器900提供用于独立地或同时将能量递送至外科器械的RF信号和超声信号。RF信号和超声信号可单独或组合提供,并且可同时提供。如上所述,至少一个发生器输出可通过单个端口递送多种能量模态(例如,超声、双极或单极RF、不可逆和/或可逆电穿孔和/或微波能量等等),并且这些信号可分开或同时被递送到端部执行器以处理组织。发生器900包括耦合到波形发生器904的处理器902。处理器902和波形发生器904被配置为基于存储在耦合到处理器902的存储器中的信息来生成多种信号波形,为了本公开清楚起见而未示出该存储器。与波形相关联的数字信息被提供给波形发生器904,该波形发生器904包括一个或多个DAC电路以将数字输入转换成模拟输出。模拟输出被馈送到放大器1106用于信号调节和放大。放大器906的经调节和放大的输出耦合到功率变压器908。信号通过功率变压器908耦合到患者隔离侧中的次级侧。第一能量模态的第一信号被提供给被标记为ENERGY1和RETURN的端子之间的外科器械。第二能量模态的第二信号耦合到电容器910两端并被提供给被标记为ENERGY2和RETURN的端子之间的外科器械。应当理解,可输出超过两种能量模态,并且因此下标“n”可被用来指定可提供多达n个ENERGYn端子,其中n是大于1的正整数。还应当理解,在不脱离本公开的范围的情况下,可提供多达n个返回路径RETURNn。
第一电压感测电路912耦合到被标记为ENERGY1和RETURN路径的端子的两端,以测量其间的输出电压。第二电压感测电路924耦合到被标记为ENERGY2和RETURN路径的端子的两端,以测量其间的输出电压。如图所示,电流感测电路914与功率变压器908的次级侧的RETURN支路串联设置,以测量任一能量模态的输出电流。如果为每种能量模态提供不同的返回路径,则应在每个返回支路中提供单独的电流感测电路。第一电压感测电路912和第二电压感测电路924的输出被提供给相应的隔离变压器916、922,并且电流感测电路914的输出被提供给另一隔离变压器918。功率变压器908(非患者隔离侧)的初级侧上的隔离变压器916、928、922的输出被提供给一个或多个ADC电路926。ADC电路926的数字化输出被提供给处理器902用于进一步处理和计算。可采用输出电压和输出电流反馈信息来调整提供给外科器械的输出电压和电流,并且计算输出阻抗等参数。处理器902和患者隔离电路之间的输入/输出通信通过接口电路920提供。传感器也可通过接口920与处理器902电通信。
在一个方面,阻抗可由处理器902通过将耦合在被标记为ENERGY1/RETURN的端子两端的第一电压感测电路912或耦合在被标记为ENERGY2/RETURN的端子两端的第二电压感测电路924的输出除以与功率变压器908的次级侧的RETURN支路串联设置的电流感测电路914的输出来确定。第一电压感测电路912和第二电压感测电路924的输出被提供给单独的隔离变压器916、922,并且电流感测电路914的输出被提供给另一隔离变压器916。来自ADC电路926的数字化电压和电流感测测量值被提供给处理器902以用于计算阻抗。例如,第一能量模态ENERGY1可为超声能量,并且第二能量模态ENERGY2可为RF能量。然而,除了超声和双极或单极RF能量模态之外,其它能量模态还包括不可逆和/或可逆电穿孔和/或微波能量等。而且,虽然图21中所示的示例示出了可为两种或更多种能量模态提供单个返回路径RETURN,但在其它方面,可为每种能量模态ENERGYn提供多个返回路径RETURNn。因此,如本文所述,超声换能器阻抗可通过将第一电压感测电路912的输出除以电流感测电路914的输出来测量,并且组织阻抗可通过将第二电压感测电路924的输出除以电流感测电路914的输出来测量。
如图21中所示,包括至少一个输出端口的发生器900可包括具有单个输出和多个分接头的功率变压器908,以例如根据正在执行的组织处理类型以一种或多种能量模态(诸如超声、双极或单极RF、不可逆和/或可逆电穿孔和/或微波能量等等)的形式向端部执行器提供功率。例如,发生器900可用更高电压和更低电流递送能量以驱动超声换能器,用更低电压和更高电流递送能量以驱动RF电极以用于密封组织,或者用凝固波形递送能量以用于使用单极或双极RF电外科电极。来自发生器900的输出波形可被操纵、切换或滤波,以向外科器械的端部执行器提供频率。超声换能器与发生器900输出的连接将优选地位于被标记为ENERGY1和RETURN的输出之间,如图21中所示。在一个示例中,RF双极电极与发生器900输出的连接将优选地位于被标记为ENERGY2和RETURN的输出之间。在单极输出的情况下,优选的连接将是有源电极(例如,光锥(pencil)或其它探头)到ENERGY2输出的和连接至RETURN输出的合适的返回垫。
附加细节公开于2017年3月30日公布的标题为用于操作用于数字地生成电信号波形的发生器和外壳器械的技术(TECHNIQUES FOR OPERATING GENERATOR FOR DIGITALLYGENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS)的美国专利申请公布2017/0086914中,该专利申请全文以引用方式并入本文。
如本说明书通篇所用,术语“无线”及其衍生物可用于描述可通过使用经调制的电磁辐射通过非固体介质来传送数据的电路、装置、系统、方法、技术、通信信道等。该术语并不意味着相关联的装置不包含任何电线,尽管在一些方面它们可能不包含。通信模块可实现多种无线或有线通信标准或协议中的任一种,包括但不限于Wi-Fi(IEEE 802.11系列)、WiMAX(IEEE802.16系列)、IEEE 802.20、长期演进(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、蓝牙、及其以太网衍生物、以及被指定为3G、4G、5G和以上的任何其它无线和有线协议。计算模块可包括多个通信模块。例如,第一通信模块可专用于更短距离的无线通信诸如Wi-Fi和蓝牙,并且第二通信模块可专用于更长距离的无线通信诸如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO等。
如本文所用,处理器或处理单元是对一些外部数据源(通常为存储器或一些其它数据流)执行操作的电子电路。本文所用术语是指组合多个专门的“处理器”的一个或多个系统(尤其是片上系统(SoC))中的中央处理器(中央处理单元)。
如本文所用,片上系统或芯片上系统(SoC或SOC)为集成了计算机或其它电子系统的所有部件的集成电路(也被称为“IC”或“芯片”)。它可包含数字、模拟、混合信号以及通常射频功能—全部在单个基板上。SoC将微控制器(或微处理器)与高级外围装置如图形处理单元(GPU)、Wi-Fi模块或协处理器集成。SoC可包含或可不包含内置存储器。
如本文所用,微控制器或控制器为将微处理器与外围电路和存储器集成的系统。微控制器(或微控制器单元的MCU)可被实现为单个集成电路上的小型计算机。其可类似于SoC;SoC可包括作为其部件之一的微控制器。微控制器可包含一个或多个核心处理单元(CPU)以及存储器和可编程输入/输出外围装置。以铁电RAM、NOR闪存或OTP ROM形式的程序存储器以及少量RAM也经常包括在芯片上。与个人计算机或由各种分立芯片组成的其它通用应用中使用的微处理器相比,微控制器可用于嵌入式应用。
如本文所用,术语控制器或微控制器可为与外围装置交接的独立式IC或芯片装置。这可为计算机的两个部件或用于管理该装置的操作(以及与该装置的连接)的外部装置上的控制器之间的链路。
如本文所述的处理器或微控制器中的任一者可为任何单核或多核处理器,诸如由德克萨斯器械公司(Texas Instruments)提供的商品名为ARM Cortex的那些。在一个方面,处理器可为例如购自德克萨斯器械公司(Texas Instruments)的LM4F230H5QR ARMCortex-M4F处理器内核,其包括:256KB的单循环闪存或其它非易失性存储器(高达40MHZ)的片上存储器、用于使性能改善高于40MHz的预取缓冲器、32KB的单循环串行随机存取存储器(SRAM)、装载有软件的内部只读存储器(ROM)、2KB的电可擦除可编程只读存储器(EEPROM)、一个或多个脉宽调制(PWM)模块、一个或多个正交编码器输入(QEI)模拟、具有12个模拟输入信道的一个或多个12位模数转换器(ADC)、以及易得的其它特征。
在一个示例中,处理器可包括安全控制器,该安全控制器包括两个基于控制器的系列,诸如同样由德克萨斯器械公司(Texas Instruments)提供的商品名为Hercules ARMCortex R4的TMS570和RM4x。安全控制器可被配置为专门用于IEC 61508和ISO 26262安全关键应用等等,以提供先进的集成安全特征件,同时递送可定标的性能、连接性和存储器选项。
模块化装置包括可接纳在外科集线器内的模块(如结合图3和图9所述)和外科装置或器械,该外科装置或器械可连接到各种模块以便与对应的外科集线器连接或配对。模块化装置包括例如智能外科器械、医疗成像装置、抽吸/冲洗装置、排烟器、能量发生器、呼吸机、吹入器和显示器。本文所述的模块化装置可通过控制算法来控制。控制算法可在模块化装置自身上、在与特定模块化装置配对的外科集线器上或在模块化装置和外科集线器两者上执行(例如,经由分布式计算架构)。在一些示例中,模块化装置的控制算法基于由模块化装置自身感测到的数据来控制装置(即,通过模块化装置之中、之上或连接到模块化装置的传感器)。该数据可与正在手术的患者(例如,组织特性或吹入压力)或模块化装置本身相关(例如,刀被推进的速率、马达电流或能量水平)。例如,外科缝合和切割器械的控制算法可根据刀在其前进时遇到的阻力来控制器械的马达驱动其刀穿过组织的速率。
图22示出了包括发生器1100和可与其一起使用的各种外科器械1104、1106、1108的外科系统1000的一种形式,其中外科器械1104为超声外科器械,外科器械1106为RF电外科器械,并且多功能外科器械1108为超声/RF电外科器械的组合。发生器1100可配置用于与多种外科装置一起使用。根据各种形式,发生器1100可为可配置用于与不同类型的不同外科器械一起使用,该外科器械包括例如超声外科器械1104、RF电外科器械1106以及集成了从发生器1100同时递送的RF能量和超声能量的多功能外科器械1108。尽管在图22的形式中,发生器1100被显示为与外科器械1104、1106、1108分离,然而在一种形式中,发生器1100可与外科器械1104、1106、1108中的任一者整体地形成,以形成一体式外科系统。发生器1100包括位于发生器1100控制台的前面板上的输入装置1110。输入装置1110可包括生成适用于对发生器1100的操作进行编程的信号的任何合适的装置。发生器1100可被配置为用于有线或无线通信。
发生器1100被配置为驱动多个外科器械1104、1106、1108。第一外科器械为超声外科器械1104并且包括手持件1105(HP)、超声换能器1120、轴1126和端部执行器1122。端部执行器1122包括声学地耦合到超声换能器1120的超声刀片1128和夹持臂1140。手持件1105包括用于操作夹持臂1140的触发器1143和用于给超声刀片1128供能和驱动超声刀片1128或其它功能的切换按钮1134a、1134b、1134c的组合。切换按钮1134a、1134b、1134c可以被配置为用发生器1100给超声换能器1120供能。
发生器1100被进一步配置为驱动第二外科器械1106。第二外科器械1106为RF电外科器械,并且包括手持件1107(HP)、轴1127和端部执行器1124。端部执行器1124包括夹持臂1142a、1142b中的电极并穿过轴1127的电导体部分返回。这些电极耦合到发生器1100内的双极能量源并由其供能。手持件1107包括用于操作夹持臂1142a、1142b的触发器1145和用于致动能量开关以给端部执行器1124中的电极供能的能量按钮1135。
发生器1100被进一步配置为驱动多功能外科器械1108。多功能外科器械1108包括手持件1109(HP)、轴1129和端部执行器1125。端部执行器1125包括超声刀片1149和夹持臂1146。超声刀片1149声学地耦合到超声换能器1120。手持件1109包括用于操作夹持臂1146的触发器1147和用于给超声刀片1149供能和驱动超声刀片1149或其它功能的切换按钮1137a、1137b、1137c的组合。切换按钮1137a、1137b、1137c可以被配置为用发生器1100给超声换能器1120供能,并且用同样包含在发生器1100内的双极能量源给超声刀片1149供能。
发生器1100可配置用于与多种外科装置一起使用。根据各种形式,发生器1100可为可配置用于与不同类型的不同外科器械一起使用,该外科器械包括例如超声外科器械1104、RF电外科器械1106和集成了从发生器1100同时递送的RF能量和超声能量的多功能外科器械1108。尽管在图22的形式中,发生器1100被显示为与外科器械1104、1106、1108分开,然而在另一种形式中,发生器1100可与外科器械1104、1106、1108中的任一者整体地形成,以形成一体式外科系统。如上文所讨论的,发生器1100包括位于发生器1100控制台的前面板上的输入装置1110。输入装置1110可包括生成适用于对发生器1100的操作进行编程的信号的任何合适的装置。发生器1100还可包括一个或多个输出装置1112。用于数字生成电信号波形的发生器和外科器械的另外方面描述于美国专利公布US-2017-0086914-A1中,该专利全文以引用方式并入本文。
图23为根据本公开的至少一个方面的示例超声装置1104的端部执行器1122。端部执行器1122可包括刀片1128,该刀片1128可经由波导耦合到超声换能器1120。当由超声换能器1120驱动时,刀片1128可振动,并且当与组织进行接触时,可切割和/或凝固组织,如本文所述。根据各个方面,并且如图23中所示,端部执行器1122还可包括夹持臂1140,该夹持臂1140可被配置为与端部执行器1122的刀片1128协作行动。利用刀片1128,夹持臂1140可包括一组钳口。夹持臂1140可以可枢转地连接在器械部分1104的轴1126的远侧端部处。夹持臂1140可包括夹持臂组织垫1163,该夹持臂组织垫1163可由或其它合适的低摩擦材料形成。可安装垫1163,以用于与刀1128协作,其中夹持臂1140的枢转移动将夹持垫1163定位成与刀片1128大体平行并接触。通过该构造,待夹持的组织咬合可被抓握在组织垫1163和刀片1128之间。组织垫1163可具有锯齿状配置,包括多个轴向间隔开的朝近侧延伸的抓持齿1161,以与刀片1128协作增强对组织的抓持。夹持臂1140可从图23中所示的打开位置以任何合适的方式转变到闭合位置(其中夹持臂1140与刀片1128接触或接近刀片1128)。例如,手持件1105可包括钳口闭合触发器。当由临床医生致动时,钳口闭合触发器可以任何合适的方式枢转夹持臂1140。
发生器1100可被激活以按照任何合适的方式将驱动信号提供到换能器1120。例如,发生器1100可包括脚踏开关1430(图24),该脚踏开关1430经由脚踏开关缆线1432耦合到发生器1100。临床医生可通过压下脚踏开关1430来激活超声换能器1120,并且从而激活超声换能器1120和刀片1128。此外,或作为脚踏开关1430的替代,装置1104的一些方面可利用定位于手持件1105上的一个或多个开关,当被激活时,该一个或多个开关可使发生器1100激活换能器1120。在一个方面,例如,一个或多个开关可包括一对切换按钮1134a、1134b、1134c(图22)例如以确定装置1104的操作模式。当切换按钮1134a被压下时,例如,超声发生器1100可将最大驱动信号提供到换能器1120,从而使其产生最大超声能量输出。压下切换按钮1134b可使超声发生器1100将用户可选的驱动信号提供到超声换能器1120,从而使其产生小于最大值的超声能量输出。附加地或另选地,装置1104可包括第二开关以例如指示用于经由端部执行器1122的夹持臂1140操作钳口的钳口闭合触发器的位置。此外,在一些方面,超声发生器1100可基于钳口闭合触发器的位置被激活(例如,当临床医生压下钳口闭合触发器以经由夹持臂1140闭合钳口时,可施加超声能量)。
附加地或另选地,一个或多个开关可包括切换按钮1134c,该切换按钮1134c在被压下时使发生器1100提供脉冲输出(图22)。脉冲例如可按任何合适的频率和分组提供。在某些方面,例如,脉冲的功率水平可为与切换按钮1134a、1134b相关联的功率水平(最大值、小于最大值)。
应当理解,装置1104可包括切换按钮1134a、1134b、1134c的任何组合(图22)。例如,装置1104可被配置为仅具有两个切换按钮:用于产生最大超声能量输出的切换按钮1134a和用于以最大功率水平或小于最大功率水平产生脉冲输出的切换按钮1134c。这样,发生器1100的驱动信号输出配置可为五个连续信号,或任何离散数量的单个脉冲信号(1、2、3、4或5)。在某些方面,例如可基于发生器1100中的EEPROM设定和/或一个或多个用户功率水平选择来控制特定的驱动信号配置。
在某些方面,可提供双位开关来替代切换按钮1134c(图22)。例如,装置1104可包括用于以最大功率水平产生连续输出的切换按钮1134a和双位切换按钮1134b。在第一止动位置中,切换按钮1134b可以小于最大功率水平产生连续输出,并且在第二止动位置中,切换按钮1134b可产生脉冲输出(例如,根据EEPROM设定,以最大功率水平或小于最大功率水平)。
在一些方面,RF电外科端部执行器1124、1125(图22)也可包括一对电极。电极可例如经由缆线与发生器1100通信。电极可用于例如测量存在于夹持臂1142a、1146和刀片1142b、1149之间的组织咬合的阻抗。发生器1100可向电极提供信号(例如,非治疗信号)。例如,可通过监测信号的电流、电压等来发现组织咬合的阻抗。
在各个方面,发生器1100可包括若干独立的功能元件,诸如模块和/或块,如图24、图22的外科系统1000的图示中所示。不同的功能元件或模块可被配置用于驱动不同种类的外科装置1104、1106、1108。例如,超声发生器模块可驱动超声装置,诸如超声外科装置1104。电外科/RF发生器模块可驱动电外科装置1106。例如,模块可生成用于驱动外科装置1104、1106、1108的相应的驱动信号。在各个方面,超声发生器模块和/或电外科/RF发生器模块各自可与发生器1100整体地形成。另选地,模块中的一个或多个可被设置成电耦合到发生器1100的单独的电路模块。(模块以虚线显示以示出该部分。)此外,在一些方面,电外科/RF发生器模块可与超声发生器模块整体地形成,或反之亦然。
根据所述方面,超声发生器模块可生成特定电压、电流和频率(例如,55,500循环每秒或Hz)的一个或多个驱动信号。该一个或多个驱动信号可被提供至超声装置1104、尤其是可例如如上所述进行操作的换能器1120。在一个方面,发生器1100可被配置为生成特定电压、电流和/或频率输出信号的驱动信号,该驱动信号可在高分辨率、精度和再现性方面进行修改。
根据所述方面,电外科/RF发生器模块可生成具有足以使用射频(RF)能量执行双极电外科的输出功率的一个或多个驱动信号。在双极电外科应用中,驱动信号可被提供至例如电外科装置1106的电极,如上文所述。因此,发生器1100可被配置为用于通过将足以处理组织(例如,凝固、烧灼、组织焊接等)的电能施加到组织而达到治疗目的。
发生器1100可包括位于例如发生器1100控制台的前面板上的输入装置2150(图27B)。输入装置2150可包括产生适用于对发生器1100的操作进行编程的信号的任何合适的装置。在操作中,用户可以使用输入装置2150对发生器1100的操作进行编程或以其它方式进行控制。输入装置2150可包括生成可由发生器(例如,由包含在发生器中的一个或多个处理器)用来控制发生器1100的操作(例如,超声发生器模块和/或电外科/RF发生器模块的操作)的信号的任何合适的装置。在各个方面,输入装置2150包括以下中的一种或多种:按钮、开关、指轮、键盘、小键盘、触摸屏监测器、指点装置、到通用或专用计算机的远程连接。在其它方面,输入装置2150例如可包括合适的用户界面,诸如显示于触摸屏监测器上的一个或多个用户界面屏幕,例如。因此,通过输入装置2150,用户可设定发生器的各种操作参数或对其进行编程,诸如例如由超声发生器模块和/或电外科/RF发生器模块生成的一个或多个驱动信号的电流(I)、电压(V)、频率(f)和/或周期(T)。
发生器1100还可包括位于例如发生器1100控制台的前面板上的输入装置2140(图27B)。输出装置2140包括用于向用户提供感观反馈的一个或多个装置。此类装置可包括例如视觉反馈装置(例如,LCD显示屏、LED指示器)、音频反馈装置(例如,扬声器、蜂鸣器)或触觉反馈装置(例如,触觉致动器)。
尽管可通过示例来描述发生器1100的某些模块和/或块,但可理解,可使用更多或更少数目的模块和/或块,并仍落入所述方面的范围内。此外,虽然各个方面可按照模块和/或块的形式描述以便于说明,但此类模块和/或块可通过一个或多个硬件部件(例如,处理器、数字信号处理器(DSP)、可编程逻辑装置(PLD)、专用集成电路(ASIC)、电路、寄存器)和/或软件部件(例如,程序、子例程、逻辑)、和/或硬件部件与软件部件的组合加以实施。
在一个方面,超声发生器驱动模块和电外科/RF驱动模块1110(图22)可包括作为固件、软件、硬件或它们的任何组合实现的一个或多个嵌入式应用程序。模块可包括各种可执行模块,诸如软件、程序、数据、驱动器、应用程序接口(API)等。固件可存储在非易失性存储器(NVM)(诸如位屏蔽只读存储器(ROM)或闪速存储器)中。在各种具体实施中,将固件存储在ROM中可保护闪存存储器。NVM可包括其它类型的存储器,包括例如可编程ROM(PROM)、可擦除可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或电池支持的随机存取存储器(RAM)(诸如动态RAM(DRAM)、双数据率DRAM(DDRAM)和/或同步DRAM(SDRAM))。
在一个方面,模块包括硬件部件,该硬件部件被实现为用于执行程序指令的处理器,该程序指令用于监测装置1104、1106、1108的各种可测量特征并生成用于操作装置1104、1106、1108的对应输出驱动信号。在其中发生器1100与装置1104结合使用的方面中,驱动信号可以切割和/或凝固操作模式驱动超声换能器1120。装置1104和/或组织的电特征可被测量并且用于控制发生器1100的操作方面并且/或者可作为反馈提供给用户。在其中发生器1100与装置1106结合使用的方面中,驱动信号可以切割、凝固和/或脱水模式将电能(例如,RF能量)供应至端部执行器1124。可测量装置1106和/或组织的电特征并将其用于控制发生器1100的操作方面并且/或者可作为反馈向用户提供。在各个方面,如在前文所述,硬件部件可被实现为DSP、PLD、ASIC、电路和/或寄存器。在一个方面,处理器可被配置为存储和执行计算机软件程序指令,以生成用于驱动装置1104、1106、1108的各种部件(例如超声换能器1120和端部执行器1122、1124、1125)的阶跃函数输出信号。
机电超声系统包括超声换能器、波导和超声刀片。机电超声系统具有由超声换能器、波导和超声刀片的物理特性限定的初始谐振频率。超声换能器受激于交变电压Vg(t)信号和电流Ig(t)信号的谐振频率等于所述机电超声系统。当超声机电系统处于谐振时,电压Vg(t)信号和电流Ig(t)信号之间的相位差为零。换句话说,在谐振时,感应阻抗等于电容阻抗。当超声刀片加热时,超声刀片(被建模为等效电容)的顺应性导致机电超声系统的谐振频率偏移。因此,感应阻抗不再等于电容阻抗,从而导致机电超声系统的驱动频率和谐振频率之间不匹配。系统现在运行“非谐振(off-resonance)”。驱动频率和谐振频率之间的失配的表现为施加到超声换能器的电压Vg(t)信号和电流Ig(t)信号之间的相位差。发生器电子器件可以容易地监测电压Vg(t)和电流Ig(t)信号之间的相位差并且可以连续调节驱动频率直到相位差再次为零为止。此时,新驱动频率等于机电超声系统的新谐振频率。相位和/或频率的变化可用作超声刀片温度的间接测量值。
如图25中所示,超声换能器的机电特性可被建模成这样的等效电路,该等效电路包括具有静态电容的第一支路和具有限定谐振器的机电特性的串联连接的电感、电阻和电容的第二“动态”支路。已知的超声发生器可包括调谐电感器,该调谐电感器用于解谐处于谐振频率的静态电容,使得大体上发生器的驱动信号电流中的所有均流入动态支路中。因此,通过使用调谐电感器,发生器的驱动信号电流表示动态支路电流,并且因此发生器能够控制其驱动信号以保持超声换能器的谐振频率。调谐电感器还可变换超声换能器的相位阻抗曲线图以改善发生器的频率锁定能力。然而,调谐电感器必须与超声换能器在操作谐振频率下的特定静态电容匹配。换句话讲,具有不同静态电容的不同超声换能器需要不同的调谐电感器。
图25示出了根据一个方面的超声换能器诸如超声换能器1120的等效电路1500。电路1500包括具有限定谐振器的机电特性的串联连接的电感Ls、电阻Rs和电容Cs的第一“动态”支路和具有静态电容的第二电容支路C0。可在驱动电压Vg(t)下从发生器接收驱动电流Ig(t),其中动态电流Im(t)流过第一支路并且电流Ig(t)-Im(t)流过电容支路。可通过适当地控制Ig(t)和Vg(t)来实现对超声换能器的机电特性的控制。如上所述,已知的发生器架构可包括并联谐振电路中的调谐电感器Lt(在图25中以虚线显示),该调谐电感器用于将静态电容C0调谐成谐振频率,使得大体上发生器的电流输出Ig(t)中的所有均流过动态支路。以此方式,通过控制发生器电流输出Ig(t)来实现对动态支路电流Im(t)的控制。然而,调谐电感器Lt对超声换能器的静态电容C0是特定的,并且具有不同静态电容的不同超声换能器需要不同的调谐电感器Lt。此外,因为调谐电感器Lt在单个谐振频率下与静态电容C0的标称值匹配,所以仅在该频率下确保对动态支路电流Im(t)的精确控制。随着频率随换能器温度的推移而向下偏移,对动态支路电流的精确控制受到损害。
发生器1100的各个方面可不依赖于调谐电感器Lt来监测动态支路电流Im(t)。相反,发生器1100可使用在施加用于特定超声外科装置1104的功率之间静电容C0的测量值(连同驱动信号电压和电流反馈数据),以在动态行进的基础上(例如,实时地)确定动态支路电流Im(t)的值。因此,发生器1100的此类方面能够提供虚拟调谐,以模拟被调谐的系统或与在任何频率下的静电容C0的任何值谐振,而非仅在静态电容C0的标称值所指示的单个谐振频率下谐振。
图26为发生器1100的一个方面的简化框图,该发生器如上所述除提供其它有益效果之外还提供无电感器调谐。图27A-27C示出了根据一个方面的图26的发生器1100的架构。参照图26,发生器1100可包括患者隔离级1520,该患者隔离级经由功率变压器1560与非隔离级1540通信。功率变压器1560的二次绕组1580包含在隔离级1520中,并且可包括分接配置(例如,中心分接或非中心分接配置)来限定驱动信号输出1600a、1600b、1600c,以用于将驱动信号输出至不同外科装置(诸如例如,超声外科装置1104和电外科装置1106)。具体而言,驱动信号输出1600a、1600b、1600c可将驱动信号(例如,420V RMS驱动信号)输出至超声外科装置1104,并且驱动信号输出1600a、1600b、1600c可将驱动信号(例如,100V RMS驱动信号)输出至电外科装置1106,其中输出1600b对应于功率变压器1560的中心分接头。非隔离级1540可包括功率放大器1620,该功率放大器1620具有连接到功率变压器1560的一次绕组1640的输出。在某些方面,功率放大器1620可包括例如推拉放大器。非隔离级1540还可包括可编程逻辑装置1660,该可编程逻辑装置1660用于向数模转换器(DAC)1680供应数字输出,而该数模转换器1680继而将对应的模拟信号供应至功率放大器1620的输入。在某些方面,可编程逻辑装置1660可包括例如现场可编程门阵列(FPGA)。由于经由DAC 1680控制功率放大器1620的输入,可编程逻辑装置1660可因此控制在驱动信号输出1600a、1600b、1600c处出现的驱动信号的多个参数(例如,频率、波形形状、波形幅值)中的任一者。在某些方面并且如下所述,可编程逻辑装置1660结合处理器(例如,以下所述的处理器1740)可实现多个基于数字信号处理(DSP)的算法和/或其它控制算法,以控制由发生器1100输出的驱动信号的参数。
可通过开关模式调整器1700将功率供应至功率放大器1620的功率轨。在某些方面,开关模式调节器1700可包括例如可调式降压调节器。如上所述,非隔离级1540可进一步包括处理器1740,该处理器1740在一个方面可包括DSP处理器诸如ADSP-21469SHARC DSP,其可得自例如马萨诸塞州诺伍德的模拟装置公司(Analog Devices,Norwood,Mass.)。在某些方面,处理器1740可响应于由处理器1740经由模数转换器(ADC)1760从功率放大器1620接收的电压反馈数据来控制开关模式功率转换器1700的操作。在一个方面,例如,处理器1740可经由ADC 1760接收正被功率放大器1620放大的信号(例如,RF信号)的波形包络作为输入。然后,处理器1740可控制开关模式调节器1700(例如,经由脉宽调制(PWM)输出),使得被供应至功率放大器1620的干线电压跟踪经放大信号的波形包络。通过基于波形包络动态调制功率放大器1620的干线电压,功率放大器1620的效率相对于固定干线电压放大器方案可显著升高。处理器1740可被配置为用于有线或无线通信。
在某些方面并且如结合图28A-28B更详细地讨论的,可编程逻辑装置1660结合处理器1740可实现直接数字合成器(DDS)控制方案,以控制由发生器1100输出的驱动信号的波形形状、频率和/或幅值。在一个方面,例如,可编程逻辑装置1660可通过检索(recall)存储于动态更新的查找表(LUT)(诸如可嵌入在FPGA中的RAM LUT)中的波形样本来实现DDS控制算法2680(图28A)。该控制算法尤其可用于如下超声应用,其中超声换能器诸如超声换能器1120可由其谐振频率下的纯正弦式电流驱动。因为其它频率可激发寄生谐振,因此最小化或减小动态支路电流的总失真可相应地最小化或减小不利的谐振效应。因为由发生器1100输出的驱动信号的波形形状受输出驱动电路(例如,功率变压器1560、功率放大器1620)中存在的各种失真源的影响,所以基于驱动信号的电压和电流反馈数据可被输入至算法(诸如由处理器1740实现的误差控制算法)中,该算法通过适当地在动态行进的基础上(例如,实时地)使存储于LUT中的波形样本预先失真或修改来补偿失真。在一种形式中,对LUT样本所施加的预先失真量或程度可基于所计算的动态支路电流和期望的电流波形形状之间的误差而定,其中该误差可在逐一样本的基础上确定。以该方式,预先失真的LUT样本在通过驱动电路进行处理时,可使动态支路驱动信号具有所期望的波形形状(例如,正弦形状),以最佳地驱动超声换能器。因此,在此类方面,当考虑到失真效应时,LUT波形样本将因此不表示驱动信号的期望波形形状,而是表示最终产生动态支路驱动信号的期望波形形状所需的波形形状。
非隔离级1540可进一步包括ADC 1780和ADC 1800,该ADC 1780和ADC 1800经由相应的隔离变压器1820、1840耦合到功率变压器1560的输出,以分别用于对由发生器1100输出的驱动信号的电压和电流进行采样。在某些方面,ADC 1780、1800可被配置为以高速(例如,80Msps)进行采样,以实现对驱动信号进行过采样。在一个方面,例如,ADC 1780、1800的采样速度可实现驱动信号的约200X(根据频率而定)的过采样。在某些方面,可通过经由二路式多路复用器接收输入电压信号和电流信号的单个ADC来执行ADC 1780、1800的采样操作。通过在发生器1100的方面中使用高速采样,除可实现其它事物之外,还可实现对流过动态支路的复杂电流的计算(这在某些方面可用于实现上述基于DDS的波形形状控制)、对采样信号进行精确的数字滤波、以及以高精度计算实际功耗。ADC 1780、1800所输出的电压和电流反馈数据可由可编程逻辑装置1660接收并处理(例如,FIFO缓冲、多路复用)并且被存储于数据存储器中,以供例如DSP处理器1740后续检索。如上所述,电压和电流反馈数据可用作算法的输入用于以动态行进方式使LUT波形样本预先失真或修改。在某些方面,当采集到电压和电流反馈数据对时,这可需要基于由可编程逻辑装置1660输出的对应LUT样本或以其它方式与对应LUT样本相关联,为每个所存储的电压和电流反馈数据对进行编索引。以此方式使LUT样本和电压和电流反馈数据同步有助于预失真算法的准确计时和稳定性。
在某些方面,可使用电压和电流反馈数据来控制驱动信号的频率和/或幅值(例如,电流幅值)。在一个方面,例如,可使用电压和电流反馈数据来确定阻抗相位,例如电压和电流驱动信号之间的相位差。然后,可控制驱动信号的频率以最小化或减小所确定阻抗相位和阻抗相位设定点(例如,0°)之间的差值,从而最小化或减小谐波失真的影响,并且相应地提高阻抗相位测量精确度。相位阻抗和频率控制信号的确定可在处理器1740中实现,例如,其中频率控制信号作为输入被供应至由可编程逻辑装置1660实现的DDS控制算法。
阻抗相位可通过傅立叶分析来确定。在一个方面,可使用如下的快速傅里叶变换(FFT)或离散傅里叶变换(DFT)来确定发生器电压Vg(t)驱动信号和发生器电流Ig(t)驱动信号之间的相位差:
在正弦频率下评估傅立叶变换得到:
其它方法包括加权最小二乘估计、卡尔曼滤波和基于空间矢量的技术。例如,FFT或DFT技术中的几乎所有处理可在数字域中在例如2信道高速ADC 1780、1800的辅助下执行。在一种技术中,电压信号和电流信号的数字信号样本是用FFT或DFT傅里叶变换的。可通过以下公式计算任何时间点处的相位角
其中为相位角,f为频率,t为时间,并且为在t=0处的相位。
用于确定电压Vg(t)信号和电流Ig(t)信号之间的相位差的另一技术为零点交叉方法并且产生非常精确的结果。对于具有相同频率的电压Vg(t)信号和电流Ig(t)信号,电压信号Vg(t)的每个负到正零点交叉触发脉冲的开始,而电流信号Ig(t)的每个负到正零点交叉触发脉冲的结束。其结果是脉冲串具有与电压信号和电流信号之间的相位角成比例的脉冲宽度。在一个方面,脉冲串可通过平均滤波器以得到相位差的测量值。此外,如果正到负零点交叉也以类似的方式使用,并且结果取平均值,则可减小DC和谐波分量的任何效果。在一个具体实施中,该模拟电压Vg(t)信号和电流Ig(t)信号被转换为数字信号,在模拟信号为正的情况下该数字信号为高的,并且在模拟信号为负的情况下该数字信号为低的。高精度相位估计需要在高值和低值之间进行急剧转变。在一个方面,可采用Schmitt触发器以及RC稳定化网络将模拟信号转换为数字信号。在其它方面,可采用边缘触发RS触发器(flip-flop)和辅助电路。在又一方面,零点交叉技术可采用异或(XOR)门。
用于确定电压信号和电流信号之间的相位差的其它技术包括Lissajous图和对图像的监测;方法,诸如三伏特计法、交叉线圈法、矢量伏特计和矢量阻抗法;以及使用相位标准器械、锁相环路、以及如Peter O’Shea、2000CRC出版有限公司<http://www.engnetbase.com>的“相位测量”(Peter O’Shea,2000CRC Press LLC,<http://www.engnetbase.com>),该文献以引用方式并入本文。
在另一方面,例如,可监测电流反馈数据,以便将驱动信号的电流幅值保持在电流幅值设定点。电流幅值设定点可被直接指定或基于特定的电压幅值和功率设定点而间接地确定。在某些方面,可通过处理器1740中的控制算法(诸如例如,比例积分微分(PID)控制算法)来实现对电流幅值的控制。控制算法为了适当控制驱动信号的电流幅值而控制的变量可包括例如存储在可编程逻辑装置1660中的LUT波形样本的定标和/或经由DAC 1860的DAC1680(其为功率放大器1620供应输入)的全标度输出电压。
非隔离级1540可进一步包括处理器1900以用于除别的之外还提供用户界面(UI)功能。在一个方面,处理器1900可包括例如购自加利福尼亚州圣何塞的阿特梅尔公司(Atmel Corporation,San Jose,Calif.)的具有ARM926EJ-S核心的Atmel AT91 SAM9263处理器。处理器1900所支持的UI功能的示例可包括听觉和视觉用户反馈、与外围装置(例如,经由通用串行总线(USB)接口)的通信、与脚踏开关1430的通信、与输入装置2150(例如,触摸屏显示器)的通信、以及与输出装置2140(例如,扬声器)的通信。处理器1900可与处理器1740和可编程逻辑装置(例如,经由串行外围接口(SPI)总线)通信。尽管处理器1900可主要支持UI功能,然而在某些方面,其也可与处理器1740配合以实现风险减缓。例如,处理器1900可被编程用于监测用户输入和/或其它输入(例如,触摸屏输入2150、脚踏开关1430输入、温度传感器输入2160)的各个方面,并且当检测到错误条件时停用发生器1100的驱动输出。
在某些方面,处理器1740(图26、图27A)和处理器1900(图26、图27B)可确定并监测发生器1100的操作状态。对于处理器1740,发生器1100的操作状态例如可指示处理器1740实现的是哪些控制和/或诊断过程。对于处理器1900,发生器1100的操作状态例如可指示用户界面的哪些元素(例如,显示屏、声音)被呈现给用户。处理器1740、1900可独立地保持发生器1100的当前操作状态并识别和评估当前操作状态的可能转变。处理器1740可用作该关系中的主体并确定何时会发生操作状态间的转变。处理器1900可注意到操作状态间的有效转变并可证实特定的转变是否适当。例如,当处理器1740指示处理器1900转变到特定状态时,处理器1900可验证所请求的转变是有效的。在处理器1900确定所请求的状态间转变是无效的情况下,处理器1900可使发生器1100进入失效模式。
非隔离级1540可进一步包括控制器1960(图26、图27B),以用于监测输入装置2150(例如,用于接通和断开发生器1100的电容式触摸传感器、电容式触摸屏)。在某些方面,控制器1960可包括与处理器1900通信的至少一个处理器和/或其它控制器装置。在一个方面,例如,控制器1960可包括处理器(例如,可从Atmel公司(Atemel)购得的Mega168 8位控制器),该处理器被配置为监测经由一个或多个电容式触摸传感器提供的用户输入。在一个方面,控制器1960可包括触摸屏控制器(例如,可从Atmel公司(Atemel)购得的QT5480触摸屏控制器),以控制和管理从电容式触摸屏对触摸数据的采集。
在某些方面,当发生器1100处于“功率关”状态时,控制器1960可继续接收操作功率(例如,经由来自发生器1100的功率源(诸如以下讨论的功率源2110(图26))的管线)。以此方式,控制器1960可继续监测输入装置2150(例如,位于发生器1100的前面板上的电容式触摸传感器),以用于接通和断开发生器1100。当发生器1100处于“功率关”状态时,如果检测到用户“接通/断开”输入装置2150的激活,则控制器1960可唤醒功率源(例如,启用功率源2110的一个或多个DC/DC电压转换器2130(图26)的操作)。因此控制器1960可开始使发生器1100转变到“功率开”状态的序列。相反,当发生器1100处于“功率开”状态时,如果检测到“接通/断开”输入装置2150的激活,则控制器1960可开始使发生器1100转变到“功率关”状态的序列。在某些方面,例如,控制器1960可向处理器1900报告“接通/断开”输入装置2150的激活,处理器1900继而实现所需的过程序列以使发生器1100转变到“功率关”状态。在此类方面,控制器1960可不具有在已建立起“功率关”状态之后从发生器1100移除功率的独立能力。
在某些方面,控制器1960可使发生器1100提供听觉或其它感观反馈,以用于警示用户“功率开”或“功率关”序列已开始。可在“功率开”或“功率关”序列开始时以及在与该序列相关联的其它过程开始之前提供此警示。
在某些方面,隔离级1520可包括器械接口电路1980,以例如在外科装置的控制电路(例如,包括手持件开关的控制电路)和非隔离级1540的部件(诸如例如,可编程逻辑装置1660、处理器1740、和/或处理器1900)之间提供通信接口。器械接口电路1980可经由保持级1520、1540之间的合适的电隔离程度的通信链路(诸如例如,基于红外(IR)的通信链路)与非隔离级1540的部件交换信息。例如,可使用由隔离变压器供电的低压降电压调整器为器械接口电路1980供应功率,该低压降电压调整器从非隔离级1540被驱动。
在一个方面,器械接口电路1980可包括与信号调节电路2020(图26和图27C)通信的可编程逻辑装置2000(例如FPGA)。信号调节电路2020可被配置为从可编程逻辑装置2000接收周期性信号(例如,2kHz的方波),以生成具有相同频率的双极询问信号。例如,可使用由差分放大器馈送的双极电流源生成询问信号。询问信号可被发送至外科装置控制电路(例如,通过使用将发生器1100连接到外科装置的缆线中的导电对)并被监测,以确定控制电路的状态或配置。例如,控制电路可包括多个开关、电阻器和/或二极管,以修改询问信号的一个或多个特征(例如,幅值、校正),使得可基于该一个或多个特征唯一地辨别控制电路的状态或配置。在一个方面,例如,信号调节电路2020可包括ADC,以用于生成由询问信号通过控制电路而得到的控制电路的输入中的电压信号的样本。然后,可编程逻辑装置2000(或非隔离级1540的部件)可基于ADC样本来确定控制电路的状态或配置。
在一个方面,器械接口电路1980可包括第一数据电路接口2040,以实现可编程逻辑装置2000(或器械接口电路1980的其它元件)和设置于外科装置中的或以其它方式与外科装置相关联的第一数据电路之间的信息交换。在某些方面,例如,第一数据电路2060可设置于整体地附接到外科装置手持件的缆线中,或设置于用于使特定的外科装置类型或模型与发生器1100交接的适配器。在某些方面,第一数据电路可包括非易失性存储装置,诸如电可擦除可编程只读存储器(EEPROM)装置。在某些方面并且再次参见图26,第一数据电路接口2040可与可编程逻辑装置2000分开地实现,并且包括合适的电路系统(例如,离散的逻辑装置、处理器),以实现可编程逻辑装置2000和第一数据电路之间的通信。在其它方面,第一数据电路接口2040可与逻辑装置2000成为整体。
在某些方面,第一数据电路2060可存储与相关联的特定外科装置相关联的信息。此类信息可包括例如型号、序列号、其中已使用外科装置的多个操作、和/或任何其它类型的信息。该信息可被器械接口电路1980(例如,通过可编程逻辑装置2000)读取、被传输至非隔离级1540的部件(例如,至可编程逻辑装置1660、处理器1740和/或处理器1900),以经由输出装置2140呈现给用户并且/或者控制发生器1100的功能或操作。另外,任何类型的信息均可经由第一数据电路接口2040(例如,使用可编程逻辑装置2000)被发送至第一数据电路2060以存储于其中。此类信息例如可包括其中使用外科装置的操作的更新数目和/或其使用的日期和/或时间。
如在前所讨论,外科器械可从手持件拆卸(例如,器械1106可从手持件1107拆卸)以促进器械可互换性和/或处置性。在此类情形中,已知发生器的识别所使用特定器械配置和相应地优化控制和诊断过程的能力可受限。然而,从兼容性角度来看,通过对外科装置器械添加可读数据电路来解决此问题是有问题的。例如,设计外科装置来保持与缺少必备数据读取功能的发生器的向后兼容可由于例如不同的信号方案、设计复杂性和成本而不切实际。器械的其它方面通过使用数据电路来解决这些问题,该数据电路可经济地实现于现有外科器械中并具有最小的设计变化,以保持外科装置与当前发生器平台的兼容性。
另外,发生器1100的方面可实现与基于器械的数据电路的通信。例如,发生器1100可被配置为与外科装置的器械(例如,器械1104、1106或1108)中所包含的第二数据电路进行通信。器械接口电路1980可包括用于实现该通信的第二数据电路接口2100。在一个方面,第二数据电路接口2100可包括三态数字接口,然而也可使用其它接口。在某些方面,第二数据电路通常可为用于传输和/或接收数据的任何电路。在一个方面,第二数据电路可存储与相关联的特定外科器械相关联的信息。此类信息可包括例如型号、序列号、其中已使用外科器械的多个操作、和/或任何其它类型的信息。附加地或另选地,任何类型的信息均可经由第二数据电路接口2100(例如,使用可编程逻辑装置2000)被发送至第二数据电路以存储于其中。此类信息例如可包括其中使用外科器械的操作的更新数目和/或其使用的日期和/或时间。在某些方面,第二数据电路可传输由一个或多个传感器(例如,基于器械的温度传感器)采集的数据。在某些方面,第二数据电路可从发生器1100接收数据并基于所接收的数据向用户提供指示(例如,LED指示或其它可视指示)。
在某些方面,第二数据电路和第二数据电路接口2100可被配置为使得可达成可编程逻辑装置2000和第二数据电路之间的通信而无需为此提供附加的导体(例如,将手持件连接至发生器1100的缆线的专用导体)。在一个方面,例如,可使用实施于现有缆线上的单总线通信方案(诸如用于将询问信号从信号调节电路2020传输到手持件中的控制电路的导体中的一者)而将信息传输至第二数据电路并从第二数据电路传输信息。以此方式,可最小化或减少原本可能必要的外科装置的设计变化或修改。此外,因为可在共用物理信道(具有频带分离或不具有频带分离)上实现不同类型的通信,所以第二数据电路的存在对于不具有必备数据读取功能的发生器而言可为“隐形的”,因此能够实现外科装置器械的向后兼容性。
在某些方面,隔离级1520可包括至少一个阻挡电容器2960-1(图27C),该至少一个阻挡电容器2096-1连接到驱动信号输出件1600b以防止DC电流流向患者。例如,可要求信号阻挡电容器符合医疗规则或标准。尽管相对而言单电容器设计中很少出现失效,然而此类失效可具有负面后果。在一个方面,可设置有与阻挡电容器2960-1串联的第二阻挡电容器2960-2,其中通过例如ADC 2980来检测从阻挡电容器2960-1、2960-2之间的点发生的电流泄漏,以用于对泄漏电流所感应的电压进行采样。该样本例如可由可编程逻辑装置2000接收。基于泄漏电流的变化(如图26的方面中的电压样本所指示),发生器1100可确定阻挡电容器2960-1、2960-2中的至少一者何时失效。因此,图26的方面相对于具有单个失效点的单个电容器设计具有益处。
在某些方面,非隔离级1540可包括功率源2110,以用于在适当的电压和电流下输出DC功率。功率源可包括例如400W的功率源用于输出48VDC的系统电压。如上所述,功率源2110可进一步包括一个或多个DC/DC电压转换器2130,以用于接收功率源的输出,以在发生器1100的各种部件所需的电压和电流下产生DC输出。如以上结合控制器1960所述,当控制器1960检测到用户激活“接通/断开”输入装置2150以启用DC/DC电压转换器2130的操作或唤醒DC/DC电压转换器2130时,DC/DC电压转换器2130中的一个或多个可从控制器1960接收输入。
图28A-28B示出了发生器1100的一个方面的某些功能和结构方面。指示来自功率变压器1560的二次绕组1580的电流和电压输出的反馈分别由ADC 1780、1800接收。如图所示,ADC 1780、1800可被实现为2信道ADC,并且可高速(例如,80Msps)对反馈信号进行采样以允许对驱动信号进行过采样(例如,大约200x过采样)。在由ADC 1780、1800处理之前,电流反馈信号和电压反馈信号可在模拟域中适当调节(例如,放大、滤波)。来自ADC 1780、1800的电流和电压反馈样本可被单独缓冲,并且随后被多路复用或交插到可编程逻辑装置1660的块2120内的单个数据流中。在图28A-28B的方面,可编程逻辑装置1660包括FPGA。
多路复用电流和电压反馈样本可由实现在处理器1740的块2144内的并行数据采集端口(PDAP)来接收。PDAP可包括用于实现用于将多路复用反馈样本与存储器地址相关联的多种方法中的任一种的封装单元。在一个方面,例如,对应于由可编程逻辑装置1660输出的特定LUT样本的反馈样本可存储在与LUT样本的LUT地址相关或建立索引的一个或多个存储器地址处。在另一方面,对应于由可编程逻辑装置1660输出的特定LUT样本的反馈样本可与LUT样本的LUT地址一起存储在公共存储器位置处。在任何情况下,反馈样本可被存储为使得可随后确定源自其的特定反馈样本集合的LUT样本的地址。如上所述,以该方式同步LUT样本地址和反馈样本有助于预失真算法的正确定时和稳定性。处理器1740的块2166处实现的直接存储器访问(DMA)控制器可在处理器1740的指定存储器位置2180(例如,内部RAM)处存储反馈样本(以及在适用的情况下存储任何LUT样本地址数据)。
处理器1740的块2200可实现预失真算法,以用于在动态行进的基础上预失真或修改存储在可编程逻辑装置1660中的LUT样本。如上所述,LUT样本的预失真可补偿发生器1100的输出驱动电路中存在的各种失真源。预失真的LUT样本在通过驱动电路进行处理时,将因此使驱动信号具有所期望的波形形状(例如,正弦形状),以最佳地驱动超声换能器。
在预失真算法的块2220处,确定通过超声换能器的动态支路的电流。可基于例如存储在存储器位置2180处的电流和电压反馈样本(其在适当定标时可表示上文所讨论的图25的模型中的Ig和Vg)、超声换能器静态电容C0的值、以及驱动频率的已知值,使用基尔霍夫电流定律来确定动态支路电流。可确定与LUT样本相关联的每组所存储的电流和电压反馈样本的动态支路电流样本。
在预失真算法的块2240处,将在块2220处确定的每个动态支路电流样本与期望的电流波形形状的样本进行比较,以确定比较的样本之间的差值或样本幅值误差。为了该确定,可例如从波形形状LUT 2260供应期望电流波形形状的样本,该波形形状LUT 2260包含期望电流波形形状的一个循环的幅值样本。用于比较的来自LUT 2260的期望电流波形形状的特定样本可由与用于比较的动态支路电流样本相关联的LUT样本地址来决定。因此,运动支路电流对块2240的输入可与其相关联的LUT样本地址的输入同步到块2240。因此,存储在可编程逻辑装置1660中的LUT样本和存储在波形形状LUT 2260中的LUT样本的数量可相等。在某些方面,由存储在波形形状LUT2260中的LUT样本表示的期望电流波形形状可为基本正弦波。其它波形形状可为期望的。例如,可以设想可使用用于驱动在其它频率下与一个或多个其它驱动信号叠加的超声换能器的主纵向运动的基本正弦波,诸如用于驱动用于横向或其它模式的有利振动的至少两个机械谐振的三阶谐波。
在块2240确定的样本幅值误差的每个值连同其相关联的LUT地址的指示一起被传输到可编程逻辑装置1660的LUT(在图28A中的块2280处示出)。基于样本幅值误差的值及其相关联的地址(以及任选地,先前接收的相同LUT地址的样本幅值误差的值),LUT 2280(或可编程逻辑装置1660的其它控制块)可预失真或修改存储在LUT地址处的LUT样本的值,使得样本幅值误差减小或最小化。应当理解,在整个LUT地址范围内以迭代方式对每个LUT样本进行此类预失真或修改将导致发生器的输出电流的波形形状匹配或适形于波形形状LUT2260的样本所表示的期望电流波形形状。
电流和电压幅值测量值、功率测量值和阻抗测量值可在处理器1740的块2300处基于存储在存储器位置2180处的电流和电压反馈样本来确定。在确定这些量之前,反馈样本可被适当地定标,并且在某些方面,通过合适的滤波器2320进行处理以移除由例如数据采集过程和感应的谐波分量得到的噪声。因此,滤波后的电压和电流样本可大体上表示发生器的驱动输出信号的基频。在某些方面,滤波器2320可为应用于频域的有限脉冲响应(FIR)滤波器。此类方面可使用输出驱动信号电流和电压信号的快速傅里叶变换(FFT)。在某些方面,所得频谱可用于提供附加的发生器功能。在一个方面,例如,第二阶谐波分量和/或第三阶谐波分量相对于基频分量的比率可用作诊断指示符。
在块2340(图28B)处,可对表示整数循环的驱动信号的一定样本大小的电流反馈样本应用均方根(RMS)计算,以生成表示驱动信号输出电流的测量值Irms。
在块2360处,可对表示整数循环的驱动信号的一定样本大小的电压反馈样本应用均方根(RMS)计算,以确定表示驱动信号输出电压的测量值Vrms。
在块2380处,可将电流和电压反馈样本进行逐点相乘,并且可对表示整数循环的驱动信号的样本进行平均计算,以确定发生器的真实输出功率的测量值Pr。
在块2400处,发生器的表观输出功率的测量值Pa可被确定为乘积Vrms·Irms。
在块2420处,负载电阻量值的测量值Zm可被确定为商数Vrms/Irms。
在某些方面,在块2340、2360、2380、2400和2420处确定的量Irms、Vrms、Pr、Pa和Zm可被发生器1100用于实现多个控制和/或诊断过程中的任一者。在某些方面,这些量中的任一者可经由例如与发生器1100形成整体的输出装置2140或通过合适的通信接口(例如,USB接口)连接到发生器1100的输出装置2140来传送至用户。例如,各种诊断过程可包括但不限于手持件完整性、器械完整性、器械附接完整性、器械过载、接近器械过载、频率锁定失效、过电流条件、过功率条件、电压感测失效、电流感测失效、音频指示失效、视觉指示失效、短路条件、功率递送失效或阻塞电容器失效。
处理器1740的块2440可实现用于确定和控制由发生器1100驱动的电力负载(例如,超声换能器)的阻抗相位的相位控制算法。如上所述,通过控制驱动信号的频率以最小化或减小所确定的阻抗相位和阻抗相位设定点(例如,0°)之间的差值,可最小化或减小谐波失真的影响,并且相位测量的准确性增加。
相位控制算法接收存储在存储器位置2180中的电流和电压反馈样本作为输入。在将反馈样本用于相位控制算法之前,反馈样本可被适当定标,并且在某些方面通过合适的滤波器2460(其可与滤波器2320相同)进行处理以移除例如数据采集过程和感应的谐波分量得到的噪声。因此,滤波后的电压和电流样本可大体上表示发生器的驱动输出信号的基频。
在相位控制算法的块2480处,确定通过超声换能器的动态支路的电流。该确定可与上文结合预失真算法的块2220所述的确定相同。因此,对于与LUT样本相关联的每组所存储的电流和电压反馈样本,块2480的输出可为动态支路电流样本。
在相位控制算法的块2500处,基于在块2480处确定的动态支路电流样本的同步输入和对应的电压反馈样本来确定阻抗相位。在某些方面,阻抗相位被确定为在波形上升沿处测量的阻抗相位和在波形的下降沿处测量的阻抗相位的平均值。
在相位控制算法的块2520处,将在块2220处确定的阻抗相位值与相位设定点2540进行比较,以确定所比较值之间的差值或相位误差。
在相位控制算法的块2560(图28A)处,基于在块2520处确定的相位误差的值和在块2420处确定的阻抗量值,确定用于控制驱动信号的频率的频率输出。频率输出的值可由块2560连续调节并传输至DDS控制块2680(下文讨论),以便将在框2500处确定的阻抗相位保持在相位设定点处(例如,零相位误差)。在某些方面,阻抗相位可被调整至0°相位设定点。这样,任何谐波失真将围绕电压波形的波峰居中,从而增强相位阻抗确定的准确性。
处理器1740的块2580可实现用于调制驱动信号的电流幅值的算法,以便根据用户指定的设定点或根据由发生器1100实现的其它过程或算法所指定的要求来控制驱动信号电流、电压和功率。这些量的控制可例如通过定标LUT 2280中的LUT样本并且/或者通过经由DAC 1860调节DAC 1680(其向功率放大器1620供应输入)的全标度输出电压来实现。块2600(其在某些方面可被实现为PID控制器)可接收来自存储器位置2180的电流反馈样本(其可被适当地定标和滤波)作为输入。可将电流反馈样本与由受控变量(例如,电流、电压或功率)规定的“电流需求”Id值进行比较,以确定驱动信号是否供应必要的电流。在驱动信号电流为控制变量的方面,电流需求Id可由电流设定点2620A(Isp)直接指定。例如,可将电流反馈数据的RMS值(如块2340中所确定)与用户指定的RMS电流设定点Isp进行比较以确定适当的控制器动作。例如,如果电流反馈数据指示RMS值小于电流设定点Isp,则DAC 1680的LUT定标和/或全标度输出电压可由块2600调节,使得驱动信号电流增加。相反,当电流反馈数据指示RMS值大于电流设定点Isp时,块2600可调节DAC 1680的LUT定标和/或全标度输出电压以降低驱动信号电流。
在驱动信号电压为控制变量的方面,电流需求Id可例如基于保持在块2420处测量的负载阻抗量值Zm给出的期望电压设定点2620B(Vsp)所需的电流间接指定(例如,Id=Vsp/Zm)。相似地,在驱动信号功率为控制变量的方面,电流需求Id可例如基于在块2360处测量的电压Vrms给出的期望设定点2620C(Psp)所需的电流间接指定(例如,Id=Psp/Vrms)。
块2680(图28A)可实现DDS控制算法,以用于通过检索存储在LUT2280中的LUT样本来控制驱动信号。在某些方面,DDS控制算法可为数字控制振荡器(NCO)算法,以用于使用点(存储器位置)-跳过技术以固定时钟速率生成波形的样本。NCO算法可实现相位累加器或频率到相位转换器,其用作地址指针以用于从LUT 2280中检索LUT样本。在一个方面,相位累加器可为D步长、模量N的相位累加器,其中D是表示频率控制值的正整数,并且N是LUT 2280中的LUT样本的数量。例如,D=1的频率控制值可使得相位累加器顺序地指向LUT 2280的每个地址,从而得到复制存储在LUT 2280中的波形的波形输出。当D>1时,相位累加器可跳过LUT 2280中的地址,从而得到具有更高频率的波形输出。因此,由DDS控制算法生成的波形的频率可因此通过适当地改变频率控制值来控制。在某些方面,频率控制值可基于在块2440处实现的相位控制算法的输出来确定。块2680的输出可供应DAC 1680的输入,DAC1680继而向功率放大器1620的输入供应对应的模拟信号。
处理器1740的块2700可实现开关模式转换器控制算法,以用于基于被放大信号的波形包络动态地调制功率放大器1620的干线电压,从而提高功率放大器1620的效率。在某些方面,波形包络的特征可通过监测功率放大器1620中包含的一个或多个信号来确定。在一个方面,例如,可通过监测根据放大信号的包络调制的漏极电压(例如,MOSFET漏极电压)的最小值来确定波形包络的特征。可例如通过耦合到漏极电压的电压最小值检测器来生成最小电压信号。最小值电压信号可由ADC 1760取样,其中输出最小值电压样本在开关模式转换器控制算法的块2720处被接收。基于最小值电压样本的值,块2740可控制由PWM发生器2760输出的PWM信号,该PWM发生器2760继而控制由开关模式调整器1700供应给功率放大器1620的干线电压。在某些方面,只要最小值电压样本的值小于输入到块2720中的最小值目标2780,则可根据由最小值电压样本表征的波形包络来调制干线电压。例如,当最小值电压样本指示低包络功率水平时,块2740可导致向功率放大器1620供应低干线电压,其中仅当最小值电压样本指示最大包络功率水平时供应全干线电压。当最小值电压样本落到低于最小值目标2780时,块2740可使得干线电压保持在适于确保功率放大器1620的正确操作的最小值。
图29为根据本公开的至少一个方面的适于驱动超声换能器(诸如超声换能器1120)的电路2900的一个方面的示意图。电路2900包括模拟多路复用器2980。模拟多路复用器2980多路复用来自上游信道SCL-A、SDA-A诸如超声、电池和功率控制电路的各种信号。电流传感器2982与功率源电路的返回支路或接地支路串联耦合,以测量由功率源提供的电流。场效应晶体管(FET)温度传感器2984提供环境温度。如果主程序忽略周期性地对其维护,则脉宽调制(PWM)看门狗定时器2988自动生成系统复位。其由于软件或硬件故障而停摆或冻结时,其被设置成自动复位电路2900。应当理解,例如,电路2900可被配置为用于驱动超声换能器或用于驱动RF电极诸如图34中所示的电路3600的RF驱动器电路。因此,现在重新参考图29,电路2900可用于可互换地驱动超声换能器和RF电极两者。如果同时驱动,则滤波器电路可设置在对应的第一级电路3404(图32)中,以选择超声波形或RF波形。此类滤波技术描述于共同拥有的标题为用于组合式发生器的电路拓扑结构的技术(TECHNIQUES FORCIRCUIT TOPOLOGIES FOR COMBINED GENERATOR)的美国专利公布US-2017-0086910-A1中,其全文以引用方式并入本文。
驱动电路2986提供左超声能量输出和右超声能量输出。表示信号波形的数字信号从控制电路诸如控制电路3200(图30)提供给模拟复用器2980的SCL-A、SDA-A输入。数模转换器2990(DAC)将数字输入转换成模拟输出以驱动耦合到振荡器2994的脉宽调制(PWM)电路2992。PWM电路2992向耦合到第一晶体管输出级2998a的第一栅极驱动电路2996a提供第一信号,以驱动第一超声(LEFT)能量输出。PWM电路2992还向耦合到第二晶体管输出级2998b的第二栅极驱动电路2996b提供第二信号,以驱动第二超声(RIGHT)能量输出。电压传感器2999耦合在超声LEFT/RIGHT输出端子之间以测量输出电压。驱动电路2986、第一驱动电路2996a和第二驱动电路2996b、以及第一晶体管输出级2998a和第二晶体管输出级2998b限定第一级放大器电路。在操作中,控制电路3200(图30)采用电路诸如直接数字合成(DDS)电路4100、4200(图35和图36)生成数字波形4300(图37)。DAC 2990接收数字波形4300并将其转换为模拟波形,该模拟波形由第一级放大器电路接收和放大。
图30为根据本公开的至少一个方面的控制电路3200诸如控制电路3212的示意图。控制电路3200位于电池组件的外壳内。电池组件是用于多种本地功率源3215的能量源。控制电路包括主处理器3214,主处理器3214通过例如输出SCL-A和SDA-A、SCL-B和SDA-B、SCL-C和SDA-C经由接口主机(interface master)3218耦合到各种下游电路。在一个方面,接口主机3218是通用串行接口,诸如I2C串行接口。主处理器3214被进一步配置为通过通用输入/输出(GPIO)3220驱动开关3224,通过GPIO 3222驱动显示器3226(例如,和LCD显示器)以及各种指示器3228。看门狗处理器3216被设置成控制主处理器3214。开关3230与电池3211串联设置,以在电池组件插入外科器械的柄部组件时激活控制电路3212。
在一个方面,主处理器3214通过输出端子SCL-A、SDA-A耦合到电路2900(图29)。主处理器3214包括存储器,以用于存储例如发射至电路2900以驱动超声换能器1120的数字化驱动信号或波形的表。在其它方面,主处理器3214可生成数字波形并将其传输至电路2900,或者可存储数字波形以用于稍后传输到电路2900。主处理器3214还可通过输出端子SCL-B、SDA-B提供RF驱动,并且可通过输出端子SCL-C、SDA-C提供各种传感器(例如,霍尔效应传感器,磁流变液(MRF)传感器等)。在一个方面,主处理器3214被配置为感测超声驱动电路系统和/或RF驱动电路系统的存在,以启用适当的软件和用户界面功能。
在一个方面,主处理器3214可为例如可购自德克萨斯器械公司(TexasInstruments)的LM 4F230H5QR。在至少一个示例中,德克萨斯器械公司(TexasInstruments)的LM4F230H5QR是ARM Cortex-M4F处理器内核,其包括:256KB的单循环闪存或其它非易失性存储器(高达40MHZ)的片上存储器、用于使性能改善高于40MHz的预取缓冲器、32KB的单循环串行随机存取存储器(SRAM)、装载有软件的内部只读存储器(ROM)、2KB的电可擦除可编程只读存储器(EEPROM)、一个或多个脉宽调制(PWM)模块、一个或多个正交编码器输入(QED模拟、具有12个模拟输入信道的一个或多个12位模数转换器(ADC)、以及易得的其它特征件。可很方便地换用其它处理器,因此,本公开不应限于这一上下文。
图31示出了根据本公开的至少一个方面的示出包含在模块化超声外科器械3334内的另一个电路3300的简化电路框图。电路3300包括处理器3302、时钟3330、存储器3326、功率源3304(例如,电池)、开关3306(诸如金属氧化物半导体场效应晶体管(MOSFET)功率开关)、驱动电路3308(PLL)、变压器3310、信号平滑电路3312(也被称为匹配电路,并且可为例如储能电路)、感测电路3314、换能器1120、和轴组件(例如,轴组件1126、1129),该轴组件包括本文中可被简称为波导的端接在超声刀片(例如超声刀片1128、1149)处的超声传输波导。
本公开的一个切断对高电压(120伏交流电)输入功率的依赖(一般超声切割装置的特征)的特征是在整个波形成过程期间利用低压开关,并且仅直接在变压器级之前放大驱动信号。因此,在本公开的一个方面,功率仅来源于一个电池或一组电池,其足够小以适配在柄部组件内。本领域的电池技术提供了高度和宽度为几厘米、深度为几毫米的大功率电池。通过组合本公开的特征件以提供自包含和自供电超声装置,可实现制造成本的减少。
功率源3304的输出被馈送至处理器3302并向其供电。处理器3302接收并输出信号,并且如下文将描述的,处理器3302根据定制逻辑或根据由处理器3302执行的计算机程序来工作。如上所述,电路3300还可包括存储器3326,优选地包括随机存取存储器(RAM),其存储计算机可读指令和数据。
功率源3304的输出也被引导至具有由处理器3302控制的占空比的开关3306。通过控制开关3306的接通时间,处理器3302能够指定最终递送至换能器1120的功率的总量。在一个方面,开关3306为MOSFET,但其它开关和开关配置也是可适应的。开关3306的输出被馈送至驱动电路3308,该驱动电路3308包含例如相位检测锁相环路(PLL)和/或低通滤波器和/或电压控制振荡器。开关3306的输出由处理器3302取样以分别确定输出信号的电压和电流(VIN和IIN)。这些值用于反馈架构中以调节开关3306的脉宽调制。例如,开关3306的占空比可在约20%至约80%的范围内变化,这取决于来自开关3306的期望输出和实际输出。
从开关3306接收信号的驱动电路3308包括振荡电路(VCO),该振荡电路将开关3306的输出转变成具有超声频率(例如55kHz)的电信号。如上所述,该超声波形的平滑化型式最终被馈送到超声换能器1120,以沿超声传输波导产生谐振正弦波。
驱动电路3308的输出是能够将一个或多个低电压信号升压到更高电压的变压器3310。应当指出的是,在变压器3310之前的上游开关是在低(例如,电池驱动的)电压下执行的,这是迄今为止对于超声切割和烧灼装置而言尚不可能的。这至少部分地归因于装置有利地使用低接通电阻MOSFET开关装置的事实。低接通电阻MOSFET开关是有利的,因为它们产生比传统MOSFET装置更低的开关损耗和更少的热,并且允许更高的电流通过。因此,开关级(预变压器)可被表征为低电压/高电流。为了确保一个或多个放大器MOSFET的低接通电阻,一个或多个MOSFET在例如10V下运行。在此情况下,单独的10VDC功率源可用于给MOSFET栅极供电,这确保MOSFET完全接通并且实现了相当低的接通电阻。在本公开的一个方面,变压器3310将电池电压升压到120V均方根(RMS)。变压器是本领域已知的,并且因此在本文中未详细说明。
在所述电路配置中,电路部件劣化可对电路的电路性能产生负面影响。直接影响部件性能的一个因素是热。已知电路通常监测开关温度(例如,MOSFET温度)。然而,由于MOSFET设计的技术进步以及相应的大小减小,MOSFET温度已不再是电路负载和热的有效指示。因此,根据本公开的至少一个方面,感测电路3314感测变压器3310的温度。该温度感测是有利的,因为在装置使用期间变压器3310以或非常接近其最大温度运行。附加的温度将导致芯材料(例如,铁氧体)破裂,并且可发生永久性损坏。本公开可通过例如减小变压器3310中的驱动功率、向用户发出信号、关闭功率、脉冲功率或其它适当响应来响应变压器3310的最大温度。
在本公开的一个方面,处理器3302通信地耦合到端部执行器(例如,1122、1125),该端部执行器用于将材料放置成与超声刀片(例如,1128、1149)物理接触。提供了传感器,该传感器在端部执行器处测量夹持力值(存在于已知范围内),并且基于所接收的夹持力值,处理器3302改变动态电压VM。由于高力值与设定的运动速率组合可产生高刀片温度,因此温度传感器3332可通信地耦合到处理器3302,其中可操作处理器3302以接收和解释指示来自温度传感器3336的刀片的当前温度的信号并且基于所接收的温度来确定刀片移动的目标频率。在另一方面,力传感器诸如应变传感器或压力传感器可耦合到触发器(例如,1143、1147)以测量由用户施加到触发器的力。在另一方面,力传感器诸如应变传感器或压力传感器可耦合到开关按钮,使得位移强度对应于由用户施加到开关按钮的力。
根据本公开的至少一个方面,耦合到处理器3302的驱动电路3308的PLL部分能够确定波导移动的频率并将该频率传送至处理器3302。当装置被关闭时,处理器3302将该频率值存储在存储器3326中。通过读取时钟3330,处理器3302能够确定在装置被关闭之后的耗用时间,并且如果耗用时间小于预定值,则检索上一个波导移动频率。然后该装置可以以上一个频率启动,这大概是当前负载的最佳频率。
具有多级发生器电路的模块化电池供电的手持式外科器械
在另一方面,本公开提供一种具有多级发生器电路的模块化电池供电的手持式外科器械。本发明公开了一种外科器械,该外科器械包括电池组件、柄部组件和轴组件,其中电池组件和轴组件被配置为机械地和电连接到柄部组件。电池组件包括被配置为生成数字波形的控制电路。柄部组件包括第一级电路,该第一级电路被配置为接收数字波形、将数字波形转换成模拟波形、以及放大模拟波形。轴组件包括第二级电路,该第二级电路耦合到第一级电路以接收、放大模拟波形并将模拟波形施加到负载。
在一个方面,本公开提供一种外科器械,包括:电池组件,该电池组件包括包括电池的控制电路、耦合到电池的存储器、以及耦合到存储器和电池的处理器,其中处理器被配置为生成数字波形;柄部组件,该柄部组件包括耦合到处理器的第一级电路,该第一级电路包括数模(DAC)转换器和第一级放大器电路,其中DAC被配置为接收数字波形并将数字波形转换成模拟波形,其中第一级放大器电路被配置为接收和放大模拟波形;以及轴组件,该轴组件包括第二级电路,该第二级电路耦合到第一级放大器电路以接收模拟波形、放大模拟波形、以及将模拟波形施加到负载;其中电池组件和轴组件被配置为机械地和电连接到柄部组件。
负载可包括超声换能器、电极或传感器中的任一者、或它们的任何组合。第一级电路可包括第一级超声驱动电路和第一级高频电流驱动电路。控制电路可被配置为独立地或同时驱动第一级超声驱动电路和第一级高频电流驱动电路。第一级超声驱动电路可被配置为耦合到第二级超声驱动电路。第二级超声驱动电路可被配置为耦合到超声换能器。第一级高频电流驱动电路可被配置为耦合到第二级高频驱动电路。第二级高频驱动电路可被配置为耦合到电极。
第一级电路可包括第一级传感器驱动电路。第一级传感器驱动电路可被配置为第二级传感器驱动电路。第二级传感器驱动电路可被配置为耦合到传感器。
在另一方面,本公开提供了一种外科器械,包括:电池组件,该电池组件包括包括电池的控制电路、耦合到电池的存储器、以及耦合到存储器和电池的处理器,其中处理器被配置为生成数字波形;柄部组件,该柄部组件包括耦合到处理器的公共第一级电路,该公共第一级电路包括数模(DAC)转换器和公共第一级放大器电路,其中DAC被配置为接收数字波形并将数字波形转换成模拟波形,其中公共第一级放大器电路被配置为接收并放大模拟波形;以及轴组件,该轴组件包括第二级电路,该第二级电路耦合到公共第一级放大器电路以接收模拟波形、放大模拟波形、以及将模拟波形施加到负载;其中电池组件和轴组件被配置为机械地和电连接到柄部组件。
负载可包括超声换能器、电极或传感器中的任一者、或它们的任何组合。公共第一级电路可被配置为驱动超声、高频电流或传感器电路。公共第一级驱动电路可被配置为耦合到第二级超声驱动电路、第二级高频驱动电路或第二级传感器驱动电路。第二级超声驱动电路可被配置为耦合到超声换能器,第二级高频驱动电路被配置为耦合到电极,并且第二级传感器驱动电路被配置为耦合到传感器。
在另一方面,本公开提供一种外科器械,该外科器械包括控制电路,该控制电路包括耦合到处理器的存储器,其中处理器被配置为生成数字波形;柄部组件,该柄部组件包括耦合到处理器的公共第一级电路,该公共第一级电路被配置为接收数字波形、将数字波形转换成模拟波形、以及放大模拟波形;以及轴组件,该轴组件包括第二级电路,该第二级电路耦合到公共第一级电路以接收并放大模拟波形;其中轴组件被配置为机械地和电连接到柄部组件。
公共第一级电路可被配置为驱动超声、高频电流或传感器电路。公共第一级驱动电路可被配置为耦合到第二级超声驱动电路、第二级高频驱动电路或第二级传感器驱动电路。第二级超声驱动电路可被配置为耦合到超声换能器,第二级高频驱动电路被配置为耦合到电极,并且第二级传感器驱动电路被配置为耦合到传感器。
图32示出了根据本公开的至少一个方面的被划分成第一级电路3404和第二级电路3406的发生器电路3400。在一个方面,本文所述的外科系统1000的外科器械可包括被划分成多个级的发生器电路3400。例如,外科系统1000的外科器械可包括被划分成至少两个电路的发生器电路3400:仅实现RF能量操作、仅实现超声能量操作和/或实现RF能量操作和超声能量操作的组合的第一级电路3404和第二级电路3406。组合式模块化轴组件3414可通过位于柄部组件3412内的公共第一级电路3404和与模块化轴组件3414整体形成的模块化第二级电路3406来供电。如先前在本说明书通篇中结合外科系统1000的外科器械所讨论的,电池组件3410和轴组件3414被配置为机械地和电连接到柄部组件3412。端部执行器组件被配置为机械地和电连接轴组件3414。
现在转到图32,发生器电路3400被划分成多个级,这些级位于外科器械(诸如本文所述的外科系统1000的外科器械)的多个模块化组件中。在一个方面,控制级电路3402可位于外科器械的电池组件3410中。控制级电路3402是如结合图30所述的控制电路3200。控制电路3200包括处理器3214,该处理器包括内部存储器3217(图32)(例如,易失性和非易失性存储器)并且电耦合到电池3211。电池3211分别向第一级电路3404、第二级电路3406和第三级电路3408供应功率。如前所述,控制电路3200使用结合图35和图36所述的电路和技术来生成数字波形4300(图37)。返回图32,数字波形4300可被配置为独立或同时驱动超声换能器、高频(例如,RF)电极或它们的组合。如果同时驱动,则滤波器电路可设置在对应的第一级电路3404中以选择超声波形或RF波形。此类滤波技术描述于共同拥有的标题为用于组合式发生器的电路拓扑结构的技术(TECHNIQUES FOR CIRCUIT TOPOLOGIES FOR COMBINEDGENERATOR)的美国专利公布US-2017-0086910-A1中,其全文以引用方式并入本文。
第一级电路3404(例如,第一级超声驱动电路3420、第一级RF驱动电路3422和第一级传感器驱动电路3424)位于外科器械的柄部组件3412中。控制电路3200经由控制电路3200的输出SCL-A、SDA-A向第一级超声驱动电路3420提供超声驱动信号。第一级超声驱动电路3420结合图29详细描述。控制电路3200经由控制电路3200的输出SCL-B、SDA-B向第一级RF驱动电路3422提供RF驱动信号。第一级RF驱动电路3422结合图34详细描述。控制电路3200经由控制电路3200的输出SCL-C、SDA-C向第一级传感器驱动电路3424提供传感器驱动信号。一般来讲,第一级电路3404中的每个包括数模(DAC)转换器和第一级放大器区段以驱动第二级电路3406。第一级电路3404的输出被提供给第二级电路的输入3406。
控制电路3200被配置为检测将哪些模块插入控制电路3200中。例如,控制电路3200被配置为检测位于柄部组件3412中的第一级超声驱动电路3420、第一级RF驱动电路3422、或第一级传感器驱动电路3424是否连接到电池组件3410。同样,第一级电路3404中的每个可检测哪些第二级电路3406连接到其上,并且该信息被提供回控制电路3200以确定要生成的信号波形的类型。类似地,第二级电路3406中的每个可检测哪个第三级电路3408或哪些部件连接到其上,并且该信息被提供回控制电路3200以确定要生成的信号波形的类型。
在一个方面,第二级电路3406(例如,超声驱动第二级电路3430、RF驱动第二级电路3432和传感器驱动第二级电路3434)位于外科器械的轴组件3414中。第一级超声驱动电路3420经由输出US-Left/US-Right向第二级超声驱动电路3430提供信号。第二级超声驱动电路3430可以包括例如变压器、滤波器、放大器和/或信号调节电路。第一级高频(RF)电流驱动电路3422经由输出RF-Left/RF-Right向第二级RF驱动电路3432提供信号。除了变压器和闭锁电容器之外,第二级RF驱动电路3432还可包括滤波器、放大器和信号调节电路。第一级传感器驱动电路3424经由输出Sensor-1/Sensor-2向第二级传感器驱动电路3434提供信号。根据传感器的类型,第二级传感器驱动电路3434可包括滤波器、放大器和信号调节电路。第二级电路3406的输出被提供给第三级电路3408的输入。
在一个方面,第三级电路3408(例如,超声换能器1120、RF电极3074a、3074b和传感器3440)可位于外科器械的各种组件3416中。在一个方面,第二级超声驱动电路3430向超声换能器1120压电叠堆提供驱动信号。在一个方面,超声换能器1120位于外科器械的超声换能器组件中。然而,在其它方面,超声换能器1120可位于柄部组件3412、轴组件3414或端部执行器中。在一个方面,第二级RF驱动电路3432向通常位于外科器械的端部执行器部分中的RF电极3074a、3074b提供驱动信号。在一个方面,第二级传感器驱动电路3434向位于整个外科器械中的各种传感器3440提供驱动信号。
图33示出了根据本公开的至少一个方面的被划分成多个级的发生器电路3500,其中第一级电路3504是第二级电路3506共有的。在一个方面,本文所述的外科系统1000的外科器械可包括被划分成多个级的发生器电路3500。例如,外科系统1000的外科器械可包括被划分成至少两个电路的发生器电路3500:仅实现高频(RF)能量操作、仅实现超声能量操作和/或实现RF能量操作和超声能量操作的组合的第一级放大电路3504和第二级放大电路3506。组合式模块化轴组件3514可通过位于柄部组件3512内的公共第一级电路3504和与模块化轴组件3514整体形成的模块化第二级电路3506供电。如先前在本说明书通篇中结合外科系统1000的外科器械所讨论的,电池组件3510和轴组件3514被配置为机械地和电连接到柄部组件3512。端部执行器组件被配置为机械地和电连接轴组件3514。
如图33的示例所示,外科器械的电池组件3510部分包括第一控制电路3502,该第一控制电路包括先前所述的控制电路3200。连接到电池组件3510的柄部组件3512包括公共第一级驱动电路3420。如前所述,第一级驱动电路3420被配置为驱动超声、高频(RF)电流和传感器负载。公共第一级驱动电路3420的输出可驱动第二级电路3506中的任一个,诸如第二级超声驱动电路3430、第二级高频(RF)电流驱动电路3432、和/或第二级传感器驱动电路3434。当轴组件3514连接到柄部组件3512时,公共第一级驱动电路3420检测哪个第二级电路3506位于轴组件3514中。在轴组件3514连接到柄部组件3512时,公共第一级驱动电路3420确定第二级电路3506中的哪一个(例如,第二级超声驱动电路3430、第二级RF驱动电路3432、和/或第二级传感器驱动电路3434)位于轴组件3514中。该信息被提供给位于柄部组件3512中的控制电路3200,以便向第二级电路3506提供合适的数字波形4300(图37),从而驱动适当的负载,例如超声、RF或传感器。应当理解,识别电路可包括在第三级电路3508中的各种组件3516中,诸如超声换能器1120、电极3074a、3074b、或传感器3440。因此,当第三级电路3508连接到第二级电路3506时,第二级电路3506基于识别信息知道所需的负载的类型。
图34为根据本公开的至少一个方面的被配置为驱动高频电流(RF)的电路3600的一个方面的示意图。电路3600包括模拟多路复用器3680。模拟多路复用器3680多路复用来自上游信道SCL-A、SDA-A诸如RF、电池和功率控制电路的各种信号。电流传感器3682与功率源电路的返回支路或接地支路串联耦合,以测量由功率源提供的电流。场效应晶体管(FET)温度传感器3684提供环境温度。如果主程序忽略周期性地对其维护,则脉宽调制(PWM)看门狗定时器3688自动生成系统复位。其由于软件或硬件故障而停摆或冻结时,其被设置成自动复位电路3600。应当理解,例如,电路3600可被配置为用于驱动RF电极或用于驱动超声换能器1120,如结合图29所述。因此,现在重新参考图34,电路3600可以用于可互换地驱动超声电极和RF电极两者。
驱动电路3686提供Left RF能量输出和Right RF能量输出端。表示信号波形的数字信号从控制电路诸如控制电路3200(图30)提供给模拟复用器3680的SCL-A、SDA-A输入。数模转换器3690(DAC)将数字输入转换成模拟输出以驱动耦合到振荡器3694的脉宽调制(PWM)电路3692。PWM电路3692向耦合到第一晶体管输出级3698a提供第一栅极驱动电路3696a以驱动第一RF+(Left)能量输出。PWM电路3692还向耦合到第二晶体管输出级3698b提供第二栅极驱动电路3696b以驱动第二RF-(Right)能量输出。电压传感器3699耦合在RFLeft/RF输出端子之间以测量输出电压。驱动电路3686、第一驱动电路3696a和第二驱动电路3696b以及第一晶体管输出级3698a和第二晶体管输出级3698b限定第一级放大器电路。在操作中,控制电路3200(图30)采用电路诸如直接数字合成(DDS)电路4100、4200(图35和图36)生成数字波形4300(图37)。DAC 3690接收数字波形4300并将其转换为模拟波形,该模拟波形由第一级放大器电路接收和放大。
在一个方面,外科系统1000的超声或高频电流发生器可被配置为数字地生成电信号波形,使得期望的使用存储在查找表中的预定数量的相位点来数字化波形。相位点可存储在限定于存储器、场可编程门阵列(FPGA)或任何合适的非易失性存储器中的表中。图35示出了数字合成电路诸如直接数字合成(DDS)电路4100的基本架构的一个方面,该DDS电路被配置为生成电信号波形的多个波形状。发生器软件和数字控件可命令FPGA扫描查找表4104中的地址,该查找表4104继而向馈送功率放大器的DAC电路4108提供变化的数字输入值。可根据感兴趣的频率扫描地址。使用此查找表4104能够生成各种类型的波形,该波形可同时被馈送到组织或换能器、RF电极中、同时被馈送到多个换能器中、同时被馈送到多个RF电极中、或被馈送到RF器械和超声器械的组合中。此外,可从发生器创建、存储和向组织施加表示多个波形状的多个查找表4104。
波形信号可被配置为控制超声换能器和/或RF电极或其倍数(例如,两个或更多个超声换能器和/或两个或更多个RF电极)的输出电流、输出电压、或输出功率中的至少一者。另外,在外科器械包括超声部件的情况下,波形信号可被配置为驱动至少一个外科器械的超声换能器的至少两个振动模式。因此,发生器可被配置为向至少一个外科器械提供波形信号,其中波形信号对应于表中多个波形状中的至少一个波形状。另外,提供给两个外科器械的波形信号可包括两个或更多个波形状。该表可包括与多个波形状相关联的信息,并且该表可存储在发生器内。在一个方面或示例中,该表可为可存储在发生器的FPGA中的直接数字合成表。可通过方便对波形状进行分类的任何方式来寻址该表。根据一个方面,根据波形信号的频率来寻址该表(其可为直接数字合成表)。另外,与所述多个波形状相关联的信息可作为数字信息存储在表中。
模拟电信号波形可被配置为控制超声换能器和/或RF电极或其倍数(例如,两个或更多个超声换能器和/或两个或更多个RF电极)的输出电流、输出电压或输出功率中的至少一者。另外,在外科器械包括超声部件的情况下,模拟电信号波形可被配置为驱动至少一个外科器械的超声换能器的至少两个振动模式。因此,发生器电路可被配置为向至少一个外科器械提供模拟电信号波形,其中模拟电信号波形对应于存储在查找表4104中的多个波形状中的至少一个波形状。另外,提供给两个外科器械的模拟电信号波形可包括两个或更多个波形状。查找表4104可包括与多个波形状相关联的信息,并且查找表4104可存储在发生器电路或外科器械内。在一个方面或示例中,查找表4104可为直接数字合成表,其可存储在发生器电路或外科器械的FPGA中。查找表4104可通过方便地对波形状进行分类的任何方式来寻址。根据一个方面,查找表4104(其可为直接数字合成表)根据期望的模拟电信号波形的频率来寻址。另外,与所述多个波形状相关联的信息可作为数字信息存储在查找表4104中。
随着在器械和通信系统中广泛使用数字技术,从参考频率源生成多个频率的数字控制方法已经演进,并且被称为直接数字合成。基础架构示于图35中。在该简化框图中,DDS电路耦合到发生器电路的处理器、控制器、或逻辑装置,并且耦合到位于外科系统1000的发生器电路中的存储器电路。DDS电路4100包括地址计数器4102、查找表4104、寄存器4106、DAC电路4108和滤波器4112。稳定时钟fc由地址计数器4102接收,并且寄存器4106驱动可编程只读存储器(PROM),该可编程只读存储器将正弦波(或其它任意波形)的一个或多个整数循环存储在查找表4104中。当地址计数器4102步进通过存储器位置时,存储在查找表4104中的值被写入寄存器4106,该寄存器4106耦合到DAC电路4108。在查找表4104的存储器位置处的信号的对应数字幅值驱动DAC电路4108,该DAC电路4108继而生成模拟输出信号4110。模拟输出信号4110的光谱纯度主要由DAC电路4108确定。相位噪声基本上是基准时钟fc的相位噪声。从DAC电路4108输出的第一模拟输出信号4110被滤波器4112滤波,并且由滤波器4112输出的第二模拟输出信号4114被提供给放大器,该放大器具有耦合到发生器电路的输出的输出。第二模拟输出信号具有频率f输出。
因为DDS电路4100是取样数据系统,所以必须考虑取样中涉及的问题:量化噪声、混叠、滤波等。例如,DAC电路4108输出频率的更高阶谐波折返回到Nyquist带宽中,使得它们不可滤波,而基于锁相环路(PLL)的合成器的输出的高阶谐波可被滤波。查找表4104包含整数个循环的信号数据。可通过改变基准时钟频率fc或通过重新编程PROM来改变最终输出频率f输出。
DDS电路4100可包括多个查找表4104,其中查找表4104存储由预定数量的样本表示的波形,其中样本限定波形的预定形状。因此,可将具有独特形状的多个波形存储在多个查找表4104中,以基于器械设置或组织反馈提供不同的组织处理。波形的示例包括用于表面组织凝固的高波峰因数RF电信号波形、用于更深组织渗透的低波峰因数RF电信号波形、以及促进有效触摸凝固的电信号波形。在一个方面,DDS电路4100可创建多个波形状查找表4104,并且在组织处理过程期间(例如,基于用户或传感器输入的“即时(on-the-fly)”或虚拟实时),基于期望的组织效应和/或组织反馈,在存储在单独查找表4104中的不同波形状之间切换。
因此,波形状之间的切换可基于例如组织阻抗和其它因素。在其它方面,查找表4104可存储电信号波形,该电信号波形被成形为使每个循环递送到组织中的功率最大化(即,梯形或方波)。在其它方面,查找表4104可存储以此类方式同步的波形,该方式使得外科系统1000的多功能外科器械在递送RF驱动信号和超声驱动信号时的功率递送最大化。在其它方面,查找表4104可存储电信号波形,以同时驱动超声能量和RF治疗能量、和/或子治疗能量,同时维持超声锁定。特定于不同器械的定制波形状及其组织效应可存储在发生器电路的非易失性存储器中或外科系统1000的非易失性存储器(例如,EEPROM)中,并且在将多功能外科器械连接到发生器电路时被提取。如在许多高波峰因数“凝固”波形中使用的指数衰减正弦曲线的示例在图37中示出。
DDS电路4100的更灵活和有效的具体实施采用被称为数字控制振荡器(NCO)的数字电路。更灵活和有效的数字合成电路诸如DDS电路4200的框图在图36中示出。在该简化框图中,DDS电路4200耦合到发生器的处理器、控制器、或逻辑装置,并且连接到位于发生器中或外科系统1000的外科器械中的任一者中的存储器电路。DDS电路4200包括负载寄存器4202、并行增量相位寄存器4204、加法器电路4216、相位寄存器4208、查找表4210(相位到幅值转换器)、DAC电路4212、和滤波器4214。加法器电路4216和相位寄存器4208形成相累加器4206的一部分。时钟频率fc被施加到相位寄存器4208和DAC电路4212。负载寄存器4202接收将输出频率指定为参考时钟频率信号fc的分数的调谐字。负载寄存器4202的输出以调谐字M提供给并行增量相位寄存器4204。
DDS电路4200包括生成时钟频率fc的采样时钟、相位累加器4206和查找表4210(例如,相位到幅值转换器)。每个时钟循环fc更新一次相位累加器4206的内容。当更新相位累加器4206的时间时,通过加法器电路4216将存储在并联增量相位寄存器4204中的数字M添加至相位寄存器4208中的数字。假设并联增量相位寄存器4204中的数字为00...01并且相位累加器4206的初始内容为00...00。相位累加器4206每个时钟循环更新00...01。如果相位累加器4206为232位宽,则在相位累加器4206返回至00...00之前需要232个时钟循环(超过40亿),并且重复该循环。
将相位累加器4206的截断的输出4218提供到相位到幅值转换器查找表4210,并且查找表4210的输出耦合到DAC电路4212。相位累加器4206的截断的输出4218充当正弦(或余弦)查找表的地址。查找表中的地址对应于从0°到360°的正弦波上的相位点。查找表4210包含正弦波的一个完整循环的对应数字幅值信息。因此,查找表4210将来自相位累加器4206的相位信息映射到数字幅值字,该数字幅值字继而驱动DAC电路4212。DAC电路的输出为第一模拟信号4220并且通过滤波器4214进行滤波。滤波器4214的输出为第二模拟信号4222,该模拟信号被提供给耦合到发生器电路的输出的功率放大器。
在一个方面,电信号波形可被数字化为1024(210)个相位点,但波形状可被数字化为256(28)至281,474,976,710,656(248)范围内的任何合适数量的2n相位点,其中n为正整数,如表1中所示。电信号波形可表示为An(θn),其中点n处的归一化幅值An由被称为点n处的相位点的相位角θn表示。离散相位点的数量n确定DDS电路4200(以及图35中所示的DDS电路4100)的调谐分辨率。
表1指定被数字化为多个相位点的电信号波形。
N | 相位点数2n |
8 | 256 |
10 | 1,024 |
12 | 4,096 |
14 | 16,384 |
16 | 65,536 |
18 | 262,144 |
20 | 1,048,576 |
22 | 4,194,304 |
24 | 16,777,216 |
26 | 67,108,864 |
28 | 268,435,456 |
... | ... |
32 | 4,294,967,296 |
... | ... |
48 | 281,474,976,710,656 |
... | ... |
表1
发生器电路算法和数字控制电路扫描查找表4210中的地址,该查找表4210继而向馈送滤波器4214和功率放大器的DAC电路4212提供变化的数字输入值。可根据感兴趣的频率扫描地址。使用查找表能够生成各种类型的形状,这些形状可被DAC电路4212转换为模拟输出信号、通过滤波器4214进行滤波、通过耦合到发生器电路的输出的功率放大器放大、或者以RF能量的形式被馈送至组织、或者以超声振动的形式被馈送至组织,该超声振动以热的形式将能量递送至组织。放大器的输出可例如被施加到RF电极、被同时施加到多个RF电极、被施加到超声换能器、被同时施加到多个超声换能器、或者被施加到RF和超声换能器的组合。此外,可从发生器电路创建、存储多个波形表并将其施加到组织。
重新参考图35,对于n=32和M=1,相位累加器4206在其溢出和重新启动之前步进通过232个可能的输出。对应的输出波频率等于输入时钟频率除以232。如果M=2,则相位寄存器1708“翻转(rolls over)”两倍快,并且输出频率加倍。这可被归纳如下。
对于被配置为累积n位的相位累加器4206(在大多数DDS系统中n通常在24至32的范围内,但如前所述n可选自广泛的选项),存在2n个可能的相位点。增量相位寄存器中的数字字M表示相位累加器每时钟循环递增的量。如果fc为时钟频率,则输出正弦波的频率等于:
上述公式被称为DDS“调谐公式”。注意,系统的频率分辨率等于对于n=32,该分辨率大于四十亿分之一。在DDS电路4200的一个方面,不是所有来自相位累加器4206的位被传递到查找表4210,而是被截断,仅留下例如前13至15个最高有效位(MSB)。这减小了查找表4210的大小并且不影响频率分辨率。相位截断仅向最终输出添加小但可接受量的相位噪声。
电信号波形可通过预定频率下的电流、电压或功率来表征。另外,在外科系统1000的外科器械中的任一个包括超声部件的情况下,电信号波形可被配置为驱动至少一个外科器械的超声换能器的至少两个振动模式。因此,发生器电路可被配置为向至少一个外科器械提供电信号波形,其中电信号波形通过存储在查找表4210(或图35的查找表4104)中的预定波形状来表征。此外,电信号波形可为两个或更多个波形状的组合。查找表4210可包括与多个波形状相关联的信息。在一个方面或示例中,查找表4210可由DDS电路4200生成,并且可被称为直接数字合成表。DDS通过首先在板载存储器中存储大量重复波形来工作。波形(正弦、三角形、正方形、任意)的循环可由如表1中所示的预定数量的相位点表示并被存储到存储器中。一旦波形被存储到存储器中,其就可以在非常精确的频率下生成。直接数字合成表可被存储在发生器电路的非易失性存储器中并且/或者可用发生器电路中的FPGA电路来实现。查找表4210可通过方便对波形状进行分类的任何合适的技术来寻址。根据一个方面,查找表4210根据电信号波形的频率来寻址。另外,与所述多个波形状相关联的信息可作为数字信息或作为查找表4210的一部分存储在存储器中。
在一个方面,发生器电路可被配置为同时向至少两个外科器械提供电信号波形。发生器电路还可被配置为经由发生器电路的输出信道同时向两个外科器械提供电信号波形,该电信号波形可通过两个或更多个波形来表征。例如,在一个方面,电信号波形包括用于驱动超声换能器的第一电信号(例如,超声驱动信号)、第二RF驱动信号、和/或它们的组合。此外,电信号波形可包括多个超声驱动信号、多个RF驱动信号、和/或多个超声驱动信号和RF驱动信号的组合。
此外,操作根据本公开的发生器电路的方法包括生成电信号波形并向外科系统1000的外科器械中的任一个提供所生成的电信号波形,其中生成电信号波形包括从存储器接收与电信号波形相关联的信息。所生成的电信号波形包括至少一个波形状。此外,向至少一个外科器械提供所生成的电信号波形包括同时向至少两个外科器械提供电信号波形。
如本文所述的发生器电路可允许生成各种类型的直接数字合成表。由发生器电路生成的适用于处理多种组织的RF/电外科信号的波形状的示例包括具有高波峰因数的RF信号(其可用于RF模式下的表面凝固)、低波峰因数RF信号(其可用于更深的组织渗透)、以及促进有效的触摸凝固的波形。发生器电路还可采用直接数字合成查找表4210来生成多个波形状,并且可基于期望的组织效应在特定的波形状之间快速切换。切换可基于组织阻抗和/或其它因素。
除了传统的正弦/余弦波形状之外,发生器电路还可被配置为产生使每个循环中进入组织的功率最大化的一个或多个波形状(即,梯形或方波)。发生器电路可提供一个或多个波形状,该一个或多个波形状被同步以在同时驱动RF信号和超声信号时使递送至负载的功率最大化并保持超声锁定,前提条件是发生器电路包括能够同时驱动RF信号和超声信号的电路拓扑结构。另外,专用于器械及其组织效应的定制波形状可存储在非易失性存储器(NVM)或器械EEPROM中,并且可在将外科系统1000的外科器械中的任一个连接至发生器电路时被提取。
DDS电路4200可包括多个查找表4104,其中查找表4210存储由预定数量的相位点(也可称为样本)表示的波形,其中相位点限定波形的预定形状。因此,可将具有独特形状的多个波形存储在多个查找表4210中,以基于器械设置或组织反馈提供不同的组织处理。波形的示例包括用于表面组织凝固的高波峰因数RF电信号波形、用于更深组织渗透的低波峰因数RF电信号波形、以及促进有效触摸凝固的电信号波形。在一个方面,DDS电路4200可创建多个波形状查找表4210,并且在组织处理过程期间(例如,基于用户或传感器输入的“即时(on-the-fly)”或虚拟实时),基于期望的组织效应和/或组织反馈,在存储在不同查找表4210中的不同波形状之间切换。
因此,波形状之间的切换可基于例如组织阻抗和其它因素。在其它方面,查找表4210可存储电信号波形,该电信号波形被成形为使每个循环递送到组织中的功率最大化(即,梯形或方波)。在其它方面,查找表4210可存储以此类方式同步的波形状,该方式为当递送RF信号和超声驱动信号时,它们通过外科系统1000的外科器械中的任一者使功率递送最大化。在其它方面,查找表4210可存储电信号波形,以同时驱动超声能量和RF治疗能量、和/或子治疗能量,同时维持超声锁定。一般来讲,输出波形状可为正弦波、余弦波、脉冲波、方波等的形式。然而,特定于不同器械的更复杂且定制的波形及其组织效应可存储在发生器电路的非易失性存储器或外科器械的非易失性存储器(例如,EEPROM)中,并且在将外科器械连接到发生器电路时被提取。定制波形状的一个示例如是在许多高波峰因数“凝固”波形中使用的指数衰减正弦曲线,如图37中所示。
图37示出了模拟波形4304的根据本公开的至少一个方面的离散时间数字电信号波形4300的一个循环(显示为叠加在离散时间数字电信号波形4300上以用于比较)。水平轴表示时间(t),而垂直轴表示数字相位点。数字电信号波形4300是例如期望模拟波形4304的数字离散时间型式。通过存储幅值相位点4302来生成数字电信号波形4300,该幅值相位点4302表示一个循环或周期To上每个时钟循环Tclk的幅值。数字电信号波形4300通过任何合适的数字处理电路在一个周期To上生成。幅值相位点是存储在存储器电路中的数字字。在图35和36所示的示例中,数字字是能够以26位或64位的分辨率存储幅值相位点的六位字。应当理解,图35和36所示的示例用于示例性目的,并且在实际具体实施中,分辨率可以更高。例如,将一个周期To内的数字幅值相位点4302作为在查找表4104、4210中的一串字串存储在存储器中,如结合图35和36所述。为了生成模拟波形4304的模拟型式,从存储器中按时钟周期Tclk从0至To依次读取幅值相位点4302,并且通过DAC电路4108、4212转换这些幅值相位点,同样结合图35和36所述。可通过将数字电信号波形4300的幅值相位点4302从0至To反复读取尽可能多的循环或周期来生成附加的循环。通过用滤波器4112、4214(图35和36)对DAC电路4108、4212的输出进行滤波来实现模拟波形4304的平滑模拟型式。将经滤波的模拟输出信号4114、4222(图35和36)施加到功率放大器的输入。
图38为根据本公开的一个方面的控制系统12950的示意图,该控制系统被配置为在位移构件朝远侧推进并且耦合到夹持臂(例如,砧座)时提供闭合构件(例如,闭合管)的逐渐闭合,从而以期望的速率降低闭合构件上的闭合力负载并减小击发构件上的击发力负载。在一个方面,控制系统12950可被实现为嵌套PID反馈控制器。PID控制器是控制环路反馈机构(控制器),其用于将误差值连续地计算期望的设定点和测量的过程变量之间的差值,并基于比例、积分和导数项(有时分别表示为P、I和D)施加校正。嵌套PID控制器反馈控制系统12950包括初级(外部)反馈环路12954中的主控制器12952和次级(内部)反馈环路12956中的次级控制器12955。主控制器12952可为如图39中所示的PID控制器12972,并且次级控制器12955也可为如图39中所示的PID控制器12972。主控制器12952控制初级过程12958,并且次级控制器12955控制次级过程12960。初级过程12958的输出12966为从主设定点SP1减去第一求和器12962。第一求和器12962产生施加到主控制器12952的单个和输出信号。主控制器12952的输出为次级设定点SP2。次级过程12960的输出12968为从次级设定点SP2减去第二求和器12964。
在控制闭合管的位移的情形中,控制系统12950可被配置为使得主设定点SP1为期望的闭合力值,并且主控制器12952被配置为从耦合到闭合马达的输出的扭矩传感器接收闭合力并且确定闭合马达的设定点SP2马达速度。在其它方面,闭合力可用应变仪、测力传感器或其它合适的力传感器来测量。将闭合马达速度设定点SP2与闭合管的实际速度进行比较,该实际速度由次级控制器12955确定。闭合管的实际速度可通过比较测量闭合管与位置传感器的位移并用计时器/计数器测量耗用的时间来测量。可采用其它技术诸如线性编码器或旋转编码器来测量闭合管的位移。次级过程12960的输出12968为闭合管的实际速度。将该闭合管速度输出12968提供给初级过程12958,该初级过程12958确定作用于闭合管上的力并反馈回到加法器12962,该加法器12962从主设定点SP1减去测量的闭合力。主设定点SP1可为上限阈值或下限阈值。基于加法器12962的输出,主控制器12952控制闭合马达的速度和方向。次级控制器12955基于由次级过程12960测量的闭合管的实际速度和次级设定点SP2来控制闭合马达的速度,该速度基于实际击发力与击发力上限阈值和下限阈值的比较。
图39示出了根据本公开的一个方面的PID反馈控制系统12970。主控制器12952或次级控制器12955或两者可被实现为PID控制器12972。在一个方面,PID控制器12972可包括比例元件12974(P)、积分元件12976(I)和导数元件12978(D)。P元件12974、I元件12976、D元件12978的输出由求和器12986求和,该求和器12986向过程12980提供控制变量μ(t)。过程12980的输出为过程变量y(t)。求和器12984计算期望的设定点r(t)和测量的过程变量y(t)之间的差值。PID控制器12972连续地计算误差值e(t)(例如,闭合力阈值和测得的闭合力之间的差值)作为期望的设定点r(t)(例如,闭合力阈值)和测量的过程变量y(t)(例如,闭合管的速度和方向)之间的差值,并且基于分别由比例元件12974(P)、积分元件12976(I)和导数元件12978(D)计算出的比例、积分和导数项来施加校正。PID控制器12972尝试通过调节控制变量μ(t)(例如,闭合管的速度和方向)来最小化随时间推移的误差e(t)。
根据PID算法,“P”元件12974计算误差的当前值。例如,如果误差为大的且为正的,那么控制输出也将为大的和正的。根据本公开,误差项e(t)在闭合管的期望闭合力和所测量的闭合力之间是不同的。“I”元件12976计算误差的过去值。例如,如果当前输出不够强,那么误差的积分会随着时间推移而累积,并且控制器将通过施加更强的动作进行响应。“D”元件12978基于其当前的变化率计算该误差的未来可能趋势。例如,在继续上述P示例的情况下,当大的正控制输出成功地使误差更接近于零时,它也将进程置于最近的将来的大的负误差的路径中。在这种情况下,导数变为负,并且D模块减小动作的强度以防止该过冲。
应当理解,可根据反馈控制系统12950、12970来监测和控制其它变量和设定点。例如,本文所述的自适应闭合构件速度控制算法可测量以下参数中的至少两个:击发构件行程位置、击发构件负载、切割元件的位移、切割元件的速度、闭合管行程位置、闭合管负载等等。
超声外科装置诸如超声手术刀,因其独特的性能特征而用于外科规程的多种应用中。根据具体的装置配置和操作参数,超声外科装置可大体上同时提供组织的横切和通过凝固止血,从而有利地使患者创伤最小化。超声外科装置可包括包含超声换能器的手持件,以及耦合到超声换能器的器械,该超声换能器具有安装在远侧的端部执行器(例如,刀片末端)以切割并密封组织。在一些情况下,器械可永久性地附连到手持件。在其它情况下,器械可为可从手持件拆卸的,如在一次性器械或可互换器械的情况下。端部执行器将超声能量传输到与端部执行器进行接触的组织,以实现切割和密封动作。具有该性质的超声外科装置可被配置用于开放性外科用途、腹腔镜式或内窥镜式外科规程,包括机器人辅助的规程。
超声能量使用低于电外科规程中所用的温度来切割并凝固组织,并且可通过与手持件连通的超声发生器将超声能量传输到端部执行器。在以高频振动(例如,每秒55,500个循环)的情况下,超声刀片使组织中的蛋白变性,以形成粘性凝固物。刀片表面施加在组织上的压力使血管塌缩并使该凝固物形成止血密封。外科医生可通过由端部执行器施加到组织的力、施加该力的时间以及端部执行器的选定偏移水平来控制切割速度和凝固。
超声换能器可被建模成等效电路,该等效电路包括具有静态电容的第一支路和具有串联连接的电感、电阻和电容的第二“动态”支路,该电感、电阻和电容限定谐振器的机电特性。已知的超声发生器可包括调谐电感器,该调谐电感器用于解谐处于谐振频率的静态电容,使得大体上发生器的驱动信号电流中的全部均流入动态支路中。因此,通过使用调谐电感器,发生器的驱动信号电流表示动态支路电流,并且因此发生器能够控制其驱动信号以保持超声换能器的谐振频率。调谐电感器还可变换超声换能器的相位阻抗曲线图以改善发生器的频率锁定能力。然而,调谐电感器必须与超声换能器在操作谐振频率下的特定静态电容匹配。换句话讲,具有不同静态电容的不同超声换能器需要不同的调谐电感器。
另外,在一些超声发生器架构中,发生器的驱动信号呈现非对称谐波失真,这使阻抗量值和相位测量复杂化。例如,阻抗相位测量的准确性可由于电流和电压信号中的谐波失真而减小。
此外,噪声环境中的电磁干扰会降低发生器保持对超声换能器的共振频率的锁定的能力,从而增加无效控制算法输入的可能性。
用于将电能施加到组织以治疗和/或破坏组织的电外科装置也在外科规程中得到日益广泛的应用。电外科装置包括手持件和具有远侧安装的端部执行器(例如,一个或多个电极)的器械。该端部执行器可抵靠组织定位,使得电流被引入组织中。电外科装置可被配置为用于双极或单极操作。在双极操作期间,电流分别通过端部执行器的有源电极和返回电极被引入到组织中并从组织返回。在单极操作期间,电流通过端部执行器的有源电极被引入组织中并且通过单独定位在患者身体上的返回电极(例如,接地垫)返回。流过组织的电流所产生的热可在组织内和/或在组织之间形成止血密封,并因此可尤其适用于例如密封血管。电外科装置的端部执行器还可包括能够相对于组织移动的切割构件以及用于横切组织的电极。
由电外科装置施加的电能可通过与手持件连通的发生器传输至器械。电能可为射频(RF)能量的形式。RF能量是可在300kHz至1MHz的频率范围内的电能形式,如EN60601-2-2:2009+A11:2011,定义201.3.218-高频中所述。例如,单极RF应用中的频率通常被限制为小于5MHz。然而,在双极RF应用中,频率几乎可为任何值。单极应用通常使用高于200kHz的频率,以便避免由于使用低频电流而产生不希望的对神经和肌肉的刺激。如果风险分析显示神经肌肉刺激的可能性已减轻至可接受的水平,则双极技术可使用更低频率。通常,不使用高于5MHz的频率以最小化与高频渗漏电流相关联的问题。通常认为,10mA是组织热效应的下限阈值。
在其操作期间,电外科装置可穿过组织传输低频RF能量,这会引起离子振荡或摩擦,并实际上引起电阻性加热,从而升高组织的温度。由于可在受影响的组织和周围组织之间形成尖锐边界,因此外科医生能够以高精确度水平进行操作,并在不损伤相邻的非目标组织的情况下进行控制。RF能量的低操作温度可适用于在密封血管的同时移除软组织、收缩软组织、或对软组织塑型。RF能量可尤其良好地适用于结缔组织,该结缔组织主要由胶原构成,并在接触热时收缩。
由于其独特的驱动信号、感测和反馈需求,超声和电外科装置通常需要不同的发生器。另外,在其中器械为一次性的或可与手持件互换的情形中,超声和电外科发生器识别所用特定器械配置以及相应地优化控制和诊断过程的能力受限。此外,发生器的非隔离电路和患者隔离电路之间的电容耦合,尤其是在使用更高电压和频率的情况下,可导致患者暴露于不可接受的泄漏电流水平。
此外,由于其独特的驱动信号、感测和反馈需要,超声和电外科装置通常需要用于不同发生器的不同用户界面。在此类常规超声和电外科装置中,一个用户界面被配置为与超声器械一起使用,而另一个用户界面可被配置为与电外科器械一起使用。此类用户界面包括手和/或脚激活的用户界面,诸如手激活交换器和/或脚激活交换器。由于在随后的公开中设想了与超声外科器械和电外科器械一起使用的组合发生器的各个方面,因此还设想了被配置为与超声和/或电外科器械发生器一起操作的附加用户界面。
在后续公开中设想用于向用户或其它机器提供反馈的附加用户界面,以提供指示超声和/或电外科器械的操作模式或状态的反馈。提供用于操作超声和/或电外科器械的组合的用户和/或机器反馈将需要向用户提供感觉反馈以及向机器提供电/机械/机电反馈。在后续公开中设想并入用于组合超声和/或电外科器械的视觉反馈装置(例如,LCD显示屏、LED指示器)、音频反馈装置(例如,扬声器、蜂鸣器)或触觉反馈装置(例如,触觉致动器)的反馈装置。
其它电外科器械包括但不限于不可逆和/或可逆电穿孔、和/或微波技术等等。因此,本文所公开的技术可适用于超声、双极或单极RF(电外科)、不可逆和/或可逆电穿孔、和/或基于微波的外科器械等等。
各个方面涉及改进的超声外科装置、电外科装置和与其一起使用的发生器。超声外科装置的各方面可被配置为用于例如在外科规程期间横切和/或凝固组织。电外科装置的各方面可被配置为用于例如在外科规程期间横切、凝固、定标、焊接和/或干燥组织。
发生器的各方面利用发生器驱动信号电流和电压的高速模数取样(例如,大约200次过采样,这取决于频率)以及数字信号处理,以提供优于已知发生器架构的许多优点和益处。在一个方面,例如,基于电流和电压反馈数据、超声换能器静态电容的值和驱动信号频率的值,发生器可确定超声换能器的动态支路电流。这提供了实质上调谐的系统的益处,并且模拟了以任何频率与静态电容的任何值(例如,图25中的C0)进行调谐或共振的系统的存在。因此,可通过调谐静态电容的效应而不需要调谐电感器来实现对动态支路电流的控制。另外,消除调谐电感器可不使发生器的频率锁定能力劣化,因为频率锁定可通过适当地处理电流和电压反馈数据来实现。
发生器驱动信号电流和电压的高速模数取样以及数字信号处理也可实现样本的精确数字滤波。例如,发生器的各方面可利用低通数字滤波器(例如,有限脉冲响应(FIR)滤波器),该低通数字滤波器在基本驱动信号频率和二阶谐波之间衰减,以减小电流和电压反馈样本中的非对称谐波失真和EMI感应噪声。滤波的电流和电压反馈样本大体上表示基本驱动信号频率,因此能够相对于基本驱动信号频率进行更精确的阻抗相位测量,并且能够改善发生器维持谐振频率锁定的能力。通过将下降沿测量值和上升沿相位测量值取平均值,并且通过将测量的阻抗相位调整至0°,可进一步增强阻抗相位测量的准确性。
发生器的各个方面还可利用发生器驱动信号电流和电压的高速模数取样以及数字信号处理,来以高精度地确定实际功率消耗和其它量。这可允许发生器实现多种可用的算法,诸如例如,控制随着组织的阻抗变化而递送至组织的功率的量并控制功率递送以保持恒定的组织阻抗增加率。这些算法中的一些用于确定发生器驱动信号电流信号和电压信号之间的相位差。在谐振时,电流信号和电压信号之间的相位差为零。当超声系统脱离共振时,该相位改变。可采用各种算法来检测相位差并调节驱动频率,直到超声系统返回谐振,即,电流信号和电压信号之间的相位差为零。相位信息也可用于推断超声刀片的条件。如下文所详细讨论的,相位作为超声刀片的温度的函数而改变。因此,可采用相位信息来控制超声刀片的温度。这可例如通过当超声刀片运行过热时减小递送到超声刀片的功率,并且当超声刀片运行过冷时增加递送到超声刀片的功率来实现。
发生器的各个方面可具有驱动超声外科装置和电外科装置两者必需的宽频范围和增加的输出功率。电外科装置的更低电压、更高电流需求可通过宽带功率变压器上的专用分接头来满足,从而消除对单独功率放大器和输出变压器的需要。此外,发生器的感测和反馈电路可支撑大的动态范围,该动态范围满足超声和电外科应用两者的需要,并且具有极小的失真。
各个方面可为发生器提供简单、经济的手段,以使用现有的多导体发生器/手持件电缆读取并任选地写入设置在附接到手持件的器械中的数据电路(例如,单线总线装置,诸如以商品名“1-Wire”已知的单线协议EEPROM)。这样,发生器能够从附接到手持件的器械检索和处理器械特定数据。这可使发生器能够提供更好的控制和改进的诊断和错误检测。另外,发生器向器械写入数据的能力在例如跟踪器械使用和捕获操作数据方面提供了可能的新功能。此外,频带的使用允许包含总线装置的器械与现有发生器向后兼容。
发生器的公开方面提供由发生器的非隔离电路和患者隔离电路之间的非预期电容耦合引起的泄漏电流的有源消除。除了减小患者风险之外,泄漏电流的减少还可减少电磁辐射。
图40为根据本公开的至少一个方面的分段电路7401的系统图7400,该分段电路包括多个独立操作的电路区段7402、7414、7416、7420、7424、7428、7434、7440。分段电路7401的多个电路区段中的电路区段包括一个或多个电路和存储在一个或多个存储器装置中的一组或多组机器可执行指令。电路区段的一个或多个电路耦合到以通过一个或多个有线或无线连接介质进行电通信。多个电路区段被配置为在三种模式之间转变,该三种模式包括睡眠模式、待机模式和操作模式。
在所示的一个方面,多个电路区段7402、7414、7416、7420、7424、7428、7434、7440首先以待机模式启动、其次转变到睡眠模式,并且再次转变到操作模式。然而,在其它方面,多个电路区段可从三种模式中的任一种转变到三种模式中的任何其它模式。例如,多个电路区段可从待机模式直接转变到操作模式。基于处理器对机器可执行指令的执行,电压控制电路7408可将独立电路区段置于特定状态。该状态包括断电状态、低能量状态和通电状态。断电状态对应于睡眠模式,低能量状态对应于待机模式,并且通电状态对应于操作模式。可通过例如使用电位计来实现向低能量状态的转变。
在一个方面,多个电路区段7402、7414、7416、7420、7424、7428、7434、7440可根据通电顺序从休眠模式或待机模式转变到操作模式。多个电路区段还可根据断电序列从操作模式转变到待机模式或睡眠模式。通电序列和断电序列可为不同的。在一些方面,通电序列包括仅将多个电路区段中的电路区段的子集通电。在一些方面,断电序列包括仅使多个电路区段的电路区段的子集断电。
重新参见图40中的系统图7400,分段电路7401包括多个电路区段,这些电路区段包括转变电路区段7402、处理器电路区段7414、柄部电路区段7416、通信电路区段7420、显示电路区段7424、马达控制电路区段7428、能量处理电路区段7434和轴电路区段7440。转变电路区段包括唤醒电路7404、升压电流电路7406、电压控制电路7408、安全控制器7410和POST控制器7412。转变电路区段7402被配置为实现断电和通电序列、安全检测协议和POST。
在一些方面,唤醒电路7404包括加速度计按钮传感器7405。在各方面,转变电路区段7402被配置为处于通电状态,而分段电路7401的多个电路区段中的其它电路区段被配置为处于低能量状态、断电状态或通电状态。加速度计按钮传感器7405可监测本文所述的外科器械6480的移动或加速度。例如,该移动可为外科器械的取向或旋转的变化。外科器械可通过例如外科器械的用户而相对于三维Euclidean空间在任何方向上移动。当加速度计按钮传感器7405感测移动或加速度时,加速度计按钮传感器7405向电压控制电路7408发送信号,以使电压控制电路7408向处理器电路区段7414施加电压,以将处理器和易失性存储器转变到通电状态。在各方面,在电压控制电路7409向处理器和易失性存储器施加电压之前,处理器和易失性存储器处于通电状态。在操作模式下,处理器可开始通电序列或断电序列。在各个方面,加速度计按钮传感器7405还可将信号发送至处理器,以使处理器开始通电序列或断电序列。在一些方面,当大多数单独的电路区段处于低能量状态或断电状态时,处理器开始通电序列。在其它方面,当大多数单独的电路区段处于通电状态时,处理器开始断电序列。
附加地或另选地,加速度计按钮传感器7405可感测外科器械的预定附近内的外部移动。例如,加速度计按钮传感器7405可感测本文所述的外科器械6480的用户在预定附近移动用户的手。当加速度计按钮传感器7405感测到该外部移动时,加速度计按钮传感器7405可向电压控制电路7408发送信号并且将信号发送至处理器,如前所述。在接收到所发送的信号之后,处理器可开始通电序列或断电序列以使一个或多个电路区段在三种模式之间转变。在各方面,发送至电压控制电路7408的信号被发送以验证处理器处于操作模式。在一些方面,加速度计按钮传感器7405可感测外科器械何时已掉落,并基于所感测的掉落向处理器发送信号。例如,信号可指示独立电路区段的操作中的错误。一个或多个传感器可感测受影响的独立电路区段的损坏或故障。基于所感测的损坏或故障,POST控制器7412可对对应的独立电路区段执行POST。
通电序列或断电序列可基于加速度计按钮传感器7405来限定。例如,加速度计按钮传感器7405可感测指示对多个电路区段中的特定电路区段的选择的特定运动或运动序列。基于所感测的运动或一系列感测的运动,加速度计按钮传感器7405可在处理器处于通电状态时将包括对多个电路区段中的一个或多个电路区段的指示的信号发射至处理器。基于该信号,处理器确定包括所选择的一个或多个电路区段的通电序列。附加地或另选地,本文所述的外科器械6480的用户可基于与外科器械的图形用户界面(GUI)的交互来选择电路区段的数量和次序以限定通电序列或断电序列。
在各个方面,加速度计按钮传感器7405可仅在加速度计按钮传感器7405检测到本文所述的外科器械6480的移动或高于预定阈值的预定附近内的外部运动时向电压控制电路7408发送信号和向处理器发送信号。例如,仅在感测到移动5秒或更多秒的情况下或者在外科器械移动5英寸或更多英寸的情况下,才可发送信号。在其它方面,加速度计按钮传感器7405可仅在加速度计按钮传感器7405检测到外科器械的摆动运动时向电压控制电路7408发送信号并且向处理器发送信号。预定阈值减少外科器械的电路区段的意外转变。如前所述,该转变可包括根据通电序列转变到操作模式、根据断电序列转变到低能量模式、或根据断电序列转变到睡眠模式。在一些方面,外科器械包括可由外科器械的用户致动的致动器。致动由加速度计按钮传感器7405感测。致动器可为滑块、拨动开关或瞬时接触开关。基于所感测的致动,加速度计按钮传感器7405可向电压控制电路7408发送信号并向处理器发送信号。
升压电流电路7406耦合到电池。升压电流电路7406是电流放大器(诸如继电器或晶体管),并且被配置为放大独立电路区段的电流的量值。电流的初始量值对应于由电池提供给分段电路7401的源电压。合适的中继系统包括螺线管。合适的晶体管包括场效应晶体管(FET)、MOSFET和双极结晶体管(BJT)。升压电流电路7406可放大对应于在本文所述的外科器械6480的操作期间需要更多电流消耗的独立电路区段或电路的电流的量值。例如,当外科器械的马达需要更多输入功率时,可提供对马达控制电路区段7428的电流的增加。提供给独立电路区段的电流的增加可导致另一个电路区段或多个电路区段的电流的对应减小。附加地或另选地,电流的增加可对应于由与电池结合操作的附加电压源提供的电压。
电压控制电路7408耦合到电池。电压控制电路7408被配置为向多个电路区段提供电压或从多个电路区段移除电压。电压控制电路7408被进一步配置为增大或减小提供给分段电路7401的多个电路区段的电压。在各个方面,电压控制电路7408包括组合逻辑电路,诸如用于选择输入、多个电子开关和多个电压转换器的多路复用器(MUX)。多个电子开关中的电子开关可被配置为在打开和闭合配置之间切换以将单独电路区段从电池断开或将单独电路区段连接至电池。多个电子开关可为固态装置诸如晶体管或其它类型的开关,诸如无线开关、超声开关、加速度计、惯性传感器等等。组合逻辑电路被配置为选择用于切换到打开配置的单独电子开关,以使得能够将电压施加到对应的电路区段。组合逻辑电路被进一步配置为选择用于切换到闭合配置的单独电子开关,以使得能够从对应的电路区段移除电压。通过选择多个单独的电子开关,组合逻辑电路可实现断电序列或通电序列。多个电压转换器可向多个电路区段提供升压电压或降压电压。电压控制电路7408还可包括微处理器和存储器装置。
安全控制器7410被配置为对电路区段执行安全检查。在一些方面,当一个或多个单独电路区段处于操作模式时,安全控制器7410执行安全检查。可执行安全检查以确定电路区段的功能或操作中是否存在任何错误或缺陷。安全控制器7410可监测多个电路区段的一个或多个参数。安全控制器7410可通过将一个或多个参数与预定义的参数进行比较来验证多个电路区段的身份和操作。例如,如果选择RF能量模态,则安全控制器7410可验证轴的关节运动参数匹配预定义的关节运动参数以验证本文所述的外科器械6480的RF能量模态的操作。在一些方面,安全控制器7410可通过传感器监测外科器械的一个或多个特性之间的预定的关系以检测故障。当一个或多个特性与预定关系不一致时,可发生故障。当安全控制器7410确定存在故障、存在错误或该多个电路区段的一些操作未被验证时,安全控制器7410防止或禁用引起故障、错误或验证失效的特定电路区段的操作。
POST控制器7412执行POST以验证多个电路区段的正确操作。在一些方面,在电压控制电路7408将电压施加到单独电路区段以将单个电路区段从待机模式或睡眠模式转变到操作模式之前,对该多个电路区段中的单独电路区段执行POST。如果单个电路区段未通过POST,则特定电路区段不会从待机模式或睡眠模式转变到操作模式。柄部电路段7416的POST可包括例如测试柄部控制传感器7418是否感测到本文所述的外科器械6480的柄部控件的致动。在一些方面,POST控制器7412可将信号发射到加速度计按钮传感器7405,以验证作为POST的一部分的单独电路区段的操作。例如,在接收信号之后,加速度计按钮传感器7405可促使外科器械的用户将外科器械移动到多个变化位置以确保外科器械的操作。加速度计按钮传感器7405还可监测作为POST的一部分的电路区段或电路区段的电路的输出。例如,加速度计按钮传感器7405可感测由马达7432生成的增量马达脉冲以验证操作。马达控制电路7430的马达控制器可用于控制马达7432以生成增量马达脉冲。
在各个方面,本文所述的外科器械6480可包括附加的加速度计按钮传感器。POST控制器7412还可执行存储在电压控制电路7408的存储器装置中的控制程序。控制程序可使得POST控制器7412发射从多个电路区段请求匹配的加密参数的信号。未能从单独电路区段接收匹配的加密参数向POST控制器7412指示对应的电路区段已损坏或发生故障。在一些方面,如果POST控制器7412基于POST确定处理器已损坏或发生故障,则POST控制器7412可向一个或多个次级处理器发送信号以使得一个或多个次级处理器执行该处理器不能执行的关键功能。在一些方面,如果POST控制器7412基于POST确定一个或多个电路区段不能正常工作,则在锁定未通过POST或不正确操作的那些电路区段的同时,POST控制器7412可开始正确操作的那些电路区段的降低的性能模式。锁定电路区段可类似于处于待机模式或睡眠模式的电路区段起作用。
处理器电路区段7414包括处理器和易失性存储器。处理器被配置为开始通电序列或断电序列。为了开始通电序列,处理器将通电信号发射到电压控制电路7408,以使电压控制电路7408根据通电序列向所述多个电路区段中的多个或子集施加电压。为了开始断电序列,处理器将断电信号发射到电压控制电路7408,以使电压控制电路7408根据断电序列从所述多个电路区段中的多个或子集移除电压。
柄部电路区段7416包括柄部控制传感器7418。柄部控制传感器7418可感测本文所述的外科器械6480的一个或多个柄部控件的致动。在各个方面,一个或多个柄部控件包括夹具控件、释放按钮、关节运动开关、能量激活按钮和/或任何其它合适的柄部控件。用户可激活能量激活按钮以在RF能量模式、超声能量模式或RF能量模式和超声能量模式的组合之间进行选择。柄部控制传感器7418还可有利于将模块化柄部附接到外科器械。例如,柄部控制传感器7418可感测模块化柄部与外科器械的正确附接,并且向外科器械的用户指示感测到的附接。LCD显示器7426可提供感测到的附接的图形指示。在一些方面,柄部控制传感器7418感测一个或多个柄部控件的致动。基于所感测的致动,处理器可开始通电序列或断电序列。
通信电路区段7420包括通信电路7422。通信电路7422包括通信接口以有利于多个电路区段中的单独电路区段之间的信号通信。在一些方面,通信电路7422为本文所述的外科器械6480的模块化部件提供用于电通信的路径。例如,模块化轴和模块化换能器在一起附接到外科器械的柄部时,可通过通信电路7422将控制程序上载到柄部。
显示电路区段7424包括LCD显示器7426。LCD显示器7426可包括液晶显示屏、LED指示器等。在一些方面,LCD显示器7426为有机发光二极管(OLED)屏幕。显示器可放置在本文所述的外科器械6480上,嵌入或远离该外科器械定位。例如,可将显示器放置在外科器械的柄部上。显示器被配置为向用户提供感觉反馈。在各个方面,LCD显示器7426还包括背光源。在一些方面,外科器械还可包括音频反馈装置诸如扬声器或蜂鸣器以及触觉反馈装置诸如触觉致动器。
马达控制电路区段7428包括耦合到马达7432的马达控制电路7430。马达7432通过驱动器和晶体管(诸如FET)耦合到处理器。在各个方面,马达控制电路7430包括马达电流传感器,该马达电流传感器与处理器进行信号通信以向处理器提供指示马达的电流消耗的测量值的信号。处理器将信号发射至显示器。显示器接收信号并显示马达7432的电流消耗的测量值。处理器可例如使用该信号来监测马达7432的电流消耗存在于可接受范围内,以将电流消耗与多个电路区段的一个或多个参数进行比较,并且确定患者治疗部位的一个或多个参数。在各个方面,马达控制电路7430包括用于控制马达的操作的马达控制器。例如,马达控制电路7430控制各种马达参数,诸如通过调节马达7432的速度、扭矩和加速度。该调节基于通过马达电流传感器测量穿过马达7432的电流来完成。
在各个方面,马达控制电路7430包括力传感器以测量由马达7432生成的力和扭矩。马达7432被配置为致动本文所述的外科器械6480的机构。例如,马达7432被配置为控制外科器械的轴的致动以实现夹持、旋转和关节运动功能。例如,马达7432可致动轴以实现用外科器械的钳口进行夹持运动。马达控制器可确定由钳口夹持的材料是组织还是金属。马达控制器也可确定钳口夹持材料的程度。例如,马达控制器可基于感测的马达电流或马达电压的导数来确定钳口是如何打开或闭合的。在一些方面,马达7432被配置为致动换能器以使换能器向柄部施加扭矩或控制外科器械的关节运动。马达电流传感器可与马达控制器交互以设定马达电流限制。当电流满足预定义的阈值限制时,马达控制器开始马达控制操作中的对应变化。例如,超过马达电流限制使得马达控制器降低马达的电流消耗。
能量处理电路区段7434包括RF放大器和安全电路7436以及超声信号发生器电路7438,以实现本文所述的外科器械6480的能量模块化功能。在各个方面,RF放大器和安全电路7436被配置为通过生成RF信号来控制外科器械的RF模态。超声信号发生器电路7438被配置为通过生成超声信号来控制超声能量模态。RF放大器和安全电路7436以及超声信号发生器电路7438可结合操作以控制RF能量模态和超声能量模态的组合。
轴电路区段7440包括轴模块控制器7442、模块化控制致动器7444、一个或多个端部执行器传感器7446和非易失性存储器7448。轴模块控制器7442被配置为控制包括待由处理器执行的控制程序的多个轴模块。该多个轴模块实现轴模态,诸如超声、超声和RF的组合、RF I刀片和RF可相对钳口。轴模块控制器7442可通过选择对应的轴模块来选择轴模态,以供处理器执行。模块化控制致动器7444被配置为根据所选择的轴模态致动轴。在开始致动之后,轴根据特定于所选择的轴模态和所选择的端部执行器模态的一个或多个参数、例程或程序来使端部执行器进行关节运动。位于端部执行器处的一个或多个端部执行器传感器7446可包括力传感器、温度传感器、电流传感器或运动传感器。一个或多个端部执行器传感器7446基于由端部执行器实现的能量模态来发射关于端部执行器的一个或多个操作的数据。在各个方面,能量模态包括超声能量模态、RF能量模态、或超声能量模态和RF能量模态的组合。非易失性存储器7448存储轴控制程序。控制程序包括特定于轴的一个或多个参数、例程或程序。在各个方面,非易失性存储器7448可为ROM、EPROM、EEPROM或闪存。非易失性存储器7448存储对应于本文所述的外科器械6480的所选择轴的轴模块。轴模块可由轴模块控制器7442在非易失性存储器7448中改变或升级,这取决于待在操作中使用的外科器械轴。
图41为根据本公开的至少一个方面的具有马达控制功能的外科器械的各个部件的电路7925的示意图。在各个方面,本文所述的外科器械6480包括驱动机构7930,该驱动机构7930被配置为驱动轴和/或齿轮部件,以便执行与外科器械6480相关联的各种操作。在一个方面,驱动机构7930包括旋转动力传动系统(drivetrain)7932,其被配置为使端部执行器例如围绕纵向轴线相对于柄部外壳旋转。驱动机构7930还包括闭合动力传动系统7934,其被配置为闭合钳口构件以利用端部执行器抓握组织。此外,驱动机构7930包括击发动力传动系统7936,该击发动力传动系统被配置为打开和闭合端部执行器的夹持臂部分以利用端部执行器抓握组织。
驱动机构7930包括可位于外科器械的柄部组件中的选择器齿轮箱组件7938。靠近选择器齿轮箱组件7938的是功能选择模块,其包括第一马达7942,该第一马达7942用于选择性地将齿轮元件在选择器齿轮箱组件7938内移动,以选择性地将动力传动系统7932、7934、7936中的一个定位成与任选的第二马达7944和马达驱动电路7946(以点划线示出,以指示第二马达7944和马达驱动电路7946为任选部件)的输入驱动部件接合。
仍然参见图41,马达7942、7944分别耦合到马达控制电路7946、7948,这两个马达控制电路被配置为控制马达7942、7944的操作,包括电能从功率源7950到马达7942、7944的流动。功率源7950可为DC电池(例如,可再充电的铅基、镍基、锂离子基电池等)、或适合向外科器械提供电能的任何其它功率源。
外科器械还包括微控制器7952(“控制器”)。在某些情况下,控制器7952可包括微处理器7954(“处理器”)和一个或多个计算机可读介质或存储器单元7956(“存储器”)。在某些情况下,存储器7956可存储各种程序指令,所述各种程序指令在被执行时可使处理器7954执行本文所述的多个功能和/或计算。功率源7950可被配置为例如向控制器7952供电。
处理器7954可与马达控制电路7946通信。另外,存储器7956可存储程序指令,该程序指令在由处理器7954响应于用户输入7958或反馈元件7960执行时,可使马达控制电路7946促动马达7942生成至少一个旋转运动,从而选择性地移动选择器齿轮箱组件7938内的齿轮元件以选择性地定位动力传动系统7932、7934和7936中的一者,并将其移动成与第二马达7944的输入驱动部件接合。此外,处理器7954可与马达控制电路7948通信。存储器7956还可存储程序指令,该程序指令在由处理器7954响应于用户输入7958执行时,可使马达控制电路7948促动马达7944以生成至少一个旋转运动,从而驱动例如与第二马达7948的输入驱动部件接合的动力传动系统。
控制器7952和/或本公开的其它控制器可使用集成的和/或分立的硬件元件、软件元件和/或两者的组合来实现。集成硬件元件的示例可包括处理器、微处理器、微控制器、集成电路、ASIC、PLD、DSP、FPGA、逻辑门、寄存器、半导体装置、芯片、微芯片、芯片组、微控制器、片上系统(SoC)、和/或单列直插式封装(SIP)。分立硬件元件的示例可包括电路和/或电路元件,诸如逻辑门、场效应晶体管、双极型晶体管、电阻器、电容器、电感器和/或继电器。在某些情况下,例如,控制器7952可包括混合电路,该混合电路在一个或多个基板上包括分立的和集成的电路元件或部件。
在某些情况下,控制器7952和/或本公开的其它控制器可为例如购自德克萨斯器械公司(Texas Instruments)的LM 4F230H5QR。在某些情况下,Texas InstrumentsLM4F230H5QR为ARM Cortex-M4F处理器芯,其包括:256KB的单循环闪存或其它非易失性存储器(高达40MHZ)的片上存储器、用于改善高于40MHz的性能的预取缓冲器、32KB的单循环SRAM、装载有软件的内部ROM、2KB的EEPROM、一个或多个PWM模块、一个或多个QEI模拟、具有12个模拟输入信道的一个或多个12位ADC、以及易得的其它特征件。可很方便地换用其它微控制器,来与本公开联合使用。因此,本公开不应限于这一上下文。
在各种情况下,本文所述的各种步骤中的一个或多个可由包括组合逻辑电路或时序逻辑电路的有限状态机执行,其中组合逻辑电路或时序逻辑电路耦合到至少一个存储电路。至少一个存储电路存储有限状态机的当前状态。组合或时序逻辑电路被配置为能够使有限状态机到达这些步骤。时序逻辑电路可为同步的或异步的。在其它情况下,例如,本文所述的各种步骤中的一个或多个可通过包括处理器7958和有限状态机的组合的电路来执行。
在各种情况下,能够评估外科器械的功能性状态以确保其功能正常可能是有利的。例如,如上所述的驱动机构(被配置为包括各种马达、动力传动系统和/或齿轮部件,以便执行外科器械的各种操作)可能随着时间的推移而磨损。这可在正常使用中发生,并且在一些情况下,驱动机构由于滥用情况可能磨损得更快。在某些情况下,外科器械可被配置为执行自我评估以确定驱动机构及其各种部件的状态(例如,健康状况)。
例如,自我评估可用于确定外科器械在再次消毒之前何时能够执行其功能或何时应替换和/或修理部件中的一些。可以多种方式实现对驱动机构及其部件(包括但不限于旋转动力传动系统7932、闭合动力传动系统7934和/或击发动力传动系统7936)的评估。与预测性能的偏差量值可用于确定所感测的故障的可能性和此类失效的严重性。可以使用多个度量,包括:可重复预测事件的周期性分析、超出预期阈值的峰值或下降,以及失效的宽度。
在各种情况下,可使用正常运行的驱动机构或其一个或多个部件的特征波形来评估驱动机构或其一个或多个部件的状态。一个或多个振动传感器可相对于正常运行的驱动机构或其一个或多个部件布置,以记录在正常运行的驱动机构或其一个或多个部件的操作期间发生的各种振动。记录的振动可用于创建特征波形。可将未来波形与特征波形进行比较,以评估驱动机构及其部件的状态。
仍然参见图41,外科器械7930包括动力传动系统失效检测模块7962,该模块被配置为记录和分析动力传动系统7932、7934、7936中的一个或多个的一个或多个声学输出。处理器7954可与模块7962通信或以其它方式控制该模块。如下面更详细地描述,模块7962可体现为各种装置,诸如电路系统、硬件、计算机程序产品(其包括存储可由处理设备(例如,处理器7954)执行的计算机可读程序指令的计算机可读介质(例如,存储器7956))、或它们的一些组合。在一些方面,处理器36可包括模块7962或以其它方式控制该模块。
图42为根据本公开的至少一个方面的用于控制超声机电系统132002的频率并检测其阻抗的替代系统132000。系统132000可被结合到发生器中。联接到存储器132026的处理器132004对可编程计数器132006编程以调谐至超声机电系统132002的输出频率fo。输入频率由晶体振荡器132008生成,并且被输入到固定计数器132010中以将频率定标至合适的值。固定计数器132010和可编程计数器132006的输出被施加到相位/频率检测器132012。相位/频率检测器132012的输出被施加到放大器/有源滤波器电路132014以生成施加到电压控制振荡器132016(VCO)的调谐电压Vt。VCO 132016将输出频率fo施加到超声机电系统132002的超声换能器部分,本文所示将其建模为等效电路。施加到超声换能器的电压信号和电流信号由电压传感器132018和电流传感器132020监测。
电压传感器132018和电流传感器13020的输出被施加到另一个相位/频率检测器132022以确定如电压传感器132018和电流传感器13020所测量的电压和电流之间的相位角。相位/频率检测器132022的输出被施加到高速模数转换器132024(ADC)的一个信道,并且通过其提供给处理器132004。任选地,电压传感器132018和电流传感器132020的输出可被施加到双信道ADC 132024的相应信道并且被提供给处理器132004用于零点交叉、FFT或本文所述的其它算法,以用于确定施加到超声机电系统132002的电压信号和电流信号之间的相位角。
任选地调谐电压Vt(该电压与输出频率fo成比例)可经由ADC 132024反馈回处理器132004。这将向处理器132004提供与输出频率fo成比例的反馈信号,并且可以使用该反馈来调节并控制输出频率fo。
温度推断
图43A-43B为根据本公开的至少一个方面的具有冷(室温)超声刀片和热超声刀片的相同超声装置的复阻抗光谱的图形表示133000、133010。如本文所用,冷超声刀片是指室温下的超声刀片,而热超声刀片是指在使用中摩擦加热后的超声刀片。图43A为作为具有冷超声刀片和热超声刀片的相同超声装置的谐振频率fo的函数的阻抗相位角的图形表示133000,并且图43B为作为具有冷超声刀片和热超声刀片的相同超声装置的谐振频率fo的函数的阻抗量值|Z|的图形表示133010。阻抗相位角和阻抗量值|Z|在共振频率fo处处于最小值。
超声换能器阻抗Zg(t)可被测量为驱动信号发生器电压Vg(t)驱动信号和电流Ig(t)驱动信号的比率:
如图43A中所示,当超声刀片为冷的(例如,在室温下)并且未摩擦加热时,超声装置的机电谐振频率fo为大约55,500Hz,并且超声换能器的激发频率被设定为55,500Hz。因此,当超声换能器在机电共振频率fo下被激发并且超声刀片为冷的时,相位角处于最小值或大约0Rad,如由冷刀片曲线图133002所指示的。如图43B中所示,当超声刀片为冷的并且超声换能器在机电谐振频率fo下被激发时,阻抗量值|Z|为800Ω,例如阻抗量值|Z|处于最小阻抗处,并且驱动信号幅值由于超声机电系统的串联谐振等效电路而处于最大值处,如图25所描绘。
现在重新参考图43A和图43B,当超声换能器在55,500Hz的机电谐振频率fo下由发生器电压Vg(t)信号和发生器电流Ig(t)信号驱动时,发生器电压Vg(t)信号和发生器电流Ig(t)信号之间的相位角为零,阻抗量值|Z|处于最小阻抗处(例如,800Ω),并且信号幅值由于超声机电系统的串联谐振等效电路而处于峰值或最大值。当超声刀片的温度增加时,由于在使用中生成的摩擦热,超声装置的机电谐振频率fo'减小。因为超声换能器仍在55,500Hz的先前(冷刀片)机电共振频率fo下由发生器电压Vg(t)信号和发生器电流Ig(t)信号驱动,所以超声装置非共振fo’操作,从而引起发生器电压Vg(t)信号和发生器电流Ig(t)信号之间的相位角偏移。相对于55,500Hz的先前的(冷刀片)机电谐振频率,还存在阻抗量值|Z|的增大和驱动信号的峰值量值的下降。因此,可通过在机电共振频率fo由于超声刀片的温度变化而改变时测量发生器电压Vg(t)信号和发生器电流Ig(t)信号之间的相位角来推断超声刀片的温度。
如前所述,机电超声系统包括超声换能器、波导和超声刀片。超声换能器可被建模成等效串联谐振电路(参见图25),该等效串联谐振电路包括具有静态电容的第一支路和具有限定谐振器的机电特性的串联连接的电感、电阻和电容的第二“动态”支路。机电超声系统具有由超声换能器、波导和超声刀片的物理特性限定的初始机电谐振频率。超声换能器由等于机电谐振频率(例如,机电超声系统的谐振频率)的频率下的交流电压Vg(t)信号和电流Ig(t)信号激发。当机电超声系统在共振频率下被激发时,电压Vg(t)信号和电流Ig(t)信号之间的相位角为零。
换句话说,在谐振时,机电超声系统的模拟电感阻抗等于机电超声系统的模拟电容阻抗。当超声刀片例如由于与组织的摩擦接合而加热时,超声刀片(被建模为模拟电容)的顺应性导致机电超声系统的谐振频率偏移。在本示例中,当超声刀片的温度增加时,机电超声系统的谐振频率降低。因此,机电超声系统的模拟电感阻抗不再等于机电超声系统的模拟电容阻抗,从而导致机电超声系统的驱动频率和新谐振频率之间的失配。因此,利用热超声刀片,机电超声系统“非谐振”操作。驱动频率和共振频率之间失配表现为施加到超声换能器的电压Vg(t)信号和电流Ig(t)信号之间的相位角
如先前所讨论,发生器电子器件可以容易地监测施加到超声换能器的电压Vg(t)信号和电流Ig(t)信号之间的相位角相位角可通过傅立叶分析、加权最小二乘估计、卡尔曼滤波、基于空间矢量的技术、零点交叉方法、Lissajous图、三伏特计法、交叉线圈法、矢量伏特计和矢量阻抗法、相位标准器械、锁相环路等来确定。发生器可连续地监测相位角并调节驱动频率,直到相位角变为零。此时,新驱动频率等于机电超声系统的新谐振频率。相位角和/或发生器驱动频率的变化可用作超声刀片的温度的间接或推断的测量值。
多种技术可用于从这些光谱中的数据估计温度。最值得注意的是,可以采用时间变化的非线性状态空间公式组来对超声刀片的温度和所测量的阻抗之间的动态关系进行建模
在发生器驱动频率范围内,其中发生器驱动频率的范围特定于装置模型。
温度估计方法
估计或推断超声刀片的温度的一个方面可包括三个步骤。首先,限定取决于时间和能量的温度和频率的状态空间模型。为了将温度建模为频率内容的函数,使用一组非线性状态空间公式来对机电谐振频率和超声刀片的温度之间的关系进行建模。其次,应用卡尔曼滤波器来提高温度估计器和状态空间模型随时间变化的准确性。再次,在卡尔曼滤波器的反馈环路中提供状态估计器以控制施加到超声换能器以及因此超声刀片的功率,从而调整超声刀片的温度。下文描述了这三个步骤。
步骤1
第一步是限定取决于时间和能量的温度和频率的状态空间模型。为了将温度建模为频率内容的函数,使用一组非线性状态空间公式来对机电谐振频率和超声刀片的温度之间的关系进行建模。在一个方面,状态空间模型由下式给出:
状态空间模型表示相对于固有频率Fn(t)、温度T(t)、能量E(t)和时间t的机电超声系统的固有频率的变化率和超声刀片的温度的变化率。表示可测量且可观察的变量(诸如机电超声系统的固有频率Fn(t)、超声刀片的温度T(t)、施加到超声刀片的能量E(t)和时间t)的可观察性。超声刀片的温度T(t)可观察为估计值。
步骤2
第二步是应用卡尔曼滤波器来改善温度估计器和状态空间模型。图44为根据以下公式基于阻抗来改善温度估计器和状态空间模型的卡尔曼滤波器133020的图示:
其表示根据本公开的至少一个方面的在多种频率下测量的跨超声换能器的阻抗。
可采用卡尔曼滤波器133020来改善温度估计的性能,并且允许增加外部传感器、模型或先前的信息以改善噪声数据中的温度预测。卡尔曼滤波器133020包括调整器133022和设备(plant)133024。在对照理论中,设备133024是过程和致动器的组合。设备133024被称为具有传递函数,该传递函数指示系统的输入信号和输出信号之间的关系。调整器133022包括状态估计器133026和控制器K 133028。状态调整器133026包括反馈环路133030。状态调整器133026接收y、装置133024的输出作为输入并且反馈变量u。状态估计器133026是与系统状态的真值会聚的内部反馈系统。状态估计器133026的输出为全反馈控制变量包括机电超声系统的固有频率Fn(t)、超声刀片的温度T(t)、施加到超声刀片的能量E(t)、相位角和时间t。到控制器K 133028的输入为^并且控制器K 133028的输出u被馈送回到状态估计器133026和设备133024的t。
卡尔曼滤波(也称为线性二次估计(LQE))是一种算法,该算法使用随时间推移观察到的一系列测量值(包含统计噪声和其它不准确性),并通过估计每个时帧的变量的联合概率分布并因此计算实际测量的最大似然估计来产生未知变量的估计。该算法以两步过程中工作。在预测步骤中,卡尔曼滤波器133020产生当前状态变量的估计以及它们的不确定性。一旦观察到下一次测量的结果(必然因一定数量的误差(包括随机噪声)而损坏),则使用加权平均值来更新这些估计,给出的权重越高,就以越高的确定性进行估计。该算法是递归的并且可实时运行,仅使用当前输入测量值和先前计算的状态及其不确定性矩阵;不需要附加的过去的信息。
卡尔曼滤波器133020使用机电超声系统的动力学模型、该系统已知的对照输入、以及向超声换能器施加的信号的固有频率和相位角的多个时序测量值(观测值)(例如,超声换能器的电阻抗的量值和相位)来形成机电超声系统的变化量的(其状态)的估计,以优于仅使用一个单独测量获得的估计地预测机电超声系统的超声刀片部分的温度。因此,卡尔曼滤波器133020是包括传感器和数据融合以提供超声刀片的温度的最大似然估计的算法。
卡尔曼滤波器133020有效地处理由于向超声换能器施加的信号的噪声测量而导致的不确定性,以测量固有频率和相移数据,并且还有效地处理由于随机外部因素造成的不确定性。卡尔曼滤波器133020以系统的预测状态和使用加权平均值的新测量的平均值产生机电超声系统的状态的估计。加权值提供更好的(即,较小的)估计的不确定性,并且比未加权的值更“可信任”。权重可由协方差、对系统状态预测的估计不确定性的测量来计算。加权平均值的结果是位于预测状态和测量状态之间的新状态估计,并且具有比单独一个更好的估计不确定性。此过程在每一步重复,其中新的估计及其协方差告知在以下迭代中使用的预测。卡尔曼滤波器133020的该递归性质仅需要机电超声系统的状态的上一个“最佳猜测”而不是整个历史来计算新状态。
测量和电流状态估计的相对确定性是重要的考虑因素,并且常见的是讨论滤波器在卡尔曼滤波器133020的增益K方面的响应。卡尔曼增益K是赋予测量值和电流状态估计的相对权重,并且可被“调谐”以实现特定性能。利用高增益K,卡尔曼滤波器133020对最近的测量值施加更多的权重,并因此更响应地遵循它们。使用低增益K,卡尔曼滤波器133020更密切地遵循模型预测。在极端情况下,接近一的高增益将导致估计轨迹较具跳跃性,而接近零的低增益将使噪声平滑但降低响应能力。
当执行卡尔曼滤波器133020的实际计算时(如下所述),状态估计和协方差被编码为矩阵以处理单组计算中涉及的多个维度。这允许表示在转变模型或协方差中的任一者中的不同状态变量(诸如位置、速度和加速度)之间的线性关系。使用卡尔曼滤波器133020并不假定误差是高斯。但是,在所有误差都是高斯分布的特殊情况下,卡尔曼滤波器133020产生精确的条件概率估计。
步骤3
第二步骤使用卡尔曼滤波器133020的反馈环路133032中的状态估计器133026来控制施加到超声换能器并且因此施加到超声刀片的功率,以调节超声刀片的温度。
图45为根据本公开的至少一个方面的图44中所示的卡尔曼滤波器133020的状态估计器133026用来最大化估计值的三个概率分布的图形表示133040。概率分布包括先前的概率分布133042、预测(状态)概率分布133044和观察概率分布133046。根据本公开的至少一个方面,三个概率分布133042、133044、1330467用于对施加到超声换能器的功率的反馈控制,以基于在多种频率下测量的跨超声换能器的阻抗来调整温度。在施加到超声换能器以基于阻抗调整温度的功率进行反馈控制中使用的估计器由以下表达式给出:
其为根据本公开的至少一个方面的在多种频率下测量的跨超声换能器的阻抗。
先前的概率分布133042包括由以下表达式限定的状态方差:
状态方差用于预测系统的下一个状态,该状态表示为预测(状态)概率分布133044。观察概率分布133046是观察方差σm用于限定增益的系统的状态的实际观察的概率分布,该增益由以下表达式给出:
反馈控制
降低功率输入以确保温度(如由状态估计器和卡尔曼滤波器所估计的)被控制。
在一个方面,初始概念证明假设机电超声系统的固有频率和超声刀片的温度之间存在静态线性关系。通过降低作为机电超声系统的固有频率的函数的功率(即,用反馈控制调整温度),可直接控制超声刀片末端的温度。在该示例中,超声刀片的远侧末端的温度可被控制为不超过Teflon垫的熔点。
图46A为不具有温度反馈控制的超声装置的温度与时间关系的图形表示133050。超声刀片的温度(℃)沿竖直轴线显示,并且时间(秒)沿水平轴线显示。用位于超声装置的钳口中的羚羊皮进行测试。一个钳口为超声刀片,而另一个钳口为具有TEFLON垫的夹持臂。超声刀片在谐振频率下被激发,同时与夹持在超声刀片和夹持臂之间的羚羊皮摩擦接合。随着时间的推移,超声刀片的温度(℃)由于与羚羊皮的摩擦接合而增大。随着时间的推移,超声刀片的温度分布133052增大,直到在220℃的温度处约19.5秒后切割羚羊皮样本为止,如在点133054处所指示。在没有温度反馈控制的情况下,在切割羚羊皮样本之后,超声刀片的温度增加到远高于TEFLON熔点的温度~380℃至高达~490℃。在点133056处,超声刀片的温度达到490℃的最大温度,直至TEFLON垫完全熔融。在垫完全消失之后,超声刀片的温度从点133056处的峰值温度略微下降。
图46B为根据本发明的至少一个方面的具有温度反馈控制的超声装置的温度与时间关系的曲线图。超声刀片的温度(℃)沿竖直轴线显示,并且时间(秒)沿水平轴线显示。用位于超声装置的钳口中的羚羊皮样本进行测试。一个钳口为超声刀片,而另一个钳口为具有TEFLON垫的夹持臂。超声刀片在谐振频率下被激发,同时与夹持在超声刀片和夹持臂垫之间的羚羊皮摩擦接合。随着时间的推移,超声刀片的温度分布133062增加,直到在220℃的温度处约23秒后切割羚羊皮样本为止,如在点133064处所指示。在温度反馈控制的情况下,如在点133066处所指示,超声刀片的温度增加高达约380℃的最大温度,刚好低于TEFLON的熔点,并且然后如一般在区域133068处所指示降低到约330℃的平均值,从而防止TEFLON垫熔融。
智能超声刀片技术的应用
当将超声刀片浸入流体填充的外科场所中时,超声刀片在激活期间冷却,使得密封和切割与其接触的组织的效果较低。超声刀片的冷却可导致较长的激活时间和/或止血问题,因为未将足够的热递送至组织。为了克服超声刀片的冷却,可需要更多的能量递送以缩短横切时间并且在这些流体浸没条件下实现合适的止血。使用频率温度反馈控制系统,如果检测到超声刀片以低于某个温度开始或保持低于某个温度一段时间,则可增加发生器的输出功率以补偿由于外科场所中存在的血液/盐水/其它流体引起的冷却。
因此,本文所述的频率温度反馈控制系统可改善超声装置的性能,尤其是在超声刀片部分地或完全地定位或浸入流体填充的外科场所中时。本文所述的频率温度反馈控制系统使流体填充外科场所中超声装置性能的长激活时间和/或潜在问题最小化。
如前所述,超声刀片的温度可通过检测由以下表达式给出的超声换能器的阻抗来推断:
或换句话讲,通过检测施加到超声换能器的电压Vg(t)信号和电流Ig(t)信号之间的相位角来推断。相位角信息也可用于推断超声刀片的条件。如本文所具体讨论,相位角作为超声刀片的温度的函数而变化。因此,相位角信息可用于控制超声刀片的温度。这可例如通过当超声刀片运行过热时降低递送到超声刀片的功率,并且当超声刀片运行过冷时增加递送到超声刀片的功率来实现。图47A-47B为用于在检测到超声刀片的温度骤降时调节施加到超声换能器的超声功率的温度反馈控制的图形表示。
图47A为根据本公开的至少一个方面的作为时间的函数的超声功率输出133070的图形表示。超声发生器的功率输出沿竖直轴线显示,并且时间(秒)沿水平轴线显示。图47B为根据本公开的至少一个方面的作为时间的函数的超声刀片温度133080的图形表示。超声刀片温度沿竖直轴线显示,并且时间(秒)沿水平轴线显示。超声刀片的温度随着施加恒定功率133072而增大,如图47A中所示。在使用期间,超声刀片的温度突然下降。这可由多种条件引起,然而,在使用期间,可推断超声刀片的温度在其浸入流体填充的外科场所(例如,血液、盐水、水等)中时下降。在时间t0处,超声刀片的温度降至低于期望的最小温度133082,并且频率温度反馈控制算法检测温度下降并开始增加或“坡升(ramp up)”功率,如通过递送到超声刀片的功率斜坡133074所示,以开始将超声刀片的温度升高到高于期望的最小温度133082。
参考图47A和图47B,超声发生器输出基本上是恒定功率133072,只要超声刀片的温度保持高于期望的最小温度133082。在t0处,发生器或器械或两者中的处理器或控制电路检测到超声刀片的温度下降到低于期望的最低温度133072,并且开始频率温度反馈控制算法以将超声刀片的温度升高到高于最小期望温度133082。因此,发生器功率在对应于t0处检测到超声刀片的温度的突然下降的t1处开始坡升133074。在频率温度反馈控制算法下,功率继续坡升133074,直到超声刀片的温度高于期望的最小温度133082为止。
图48为根据本公开的至少一个方面的描绘控制超声刀片的温度的控制程序或逻辑配置的过程的逻辑流程图133090。根据该过程,发生器或器械或两者的处理器或控制电路执行结合图47A和图47B讨论的频率-温度反馈控制算法的一个方面,以将功率水平施加133092到超声换能器从而在超声刀片处实现期望的温度。发生器监测133094被施加以驱动超声换能器的电压Vg(t)信号和电流Ig(t)信号之间的相位角基于相位角发生器使用本文结合图43A-45所述的技术来推断133096超声刀片的温度。发生器通过将超声刀片的推断温度与预定的期望温度进行比较来确定133098超声刀片的温度是否低于期望的最小温度。然后发生器基于比较来调节施加到超声换能器的功率电平。例如,当超声刀片的温度达到或高于期望的最小温度时,该方法沿“否”分支继续,并且当超声刀片的温度低于所期望的最小温度时,该过程沿“是”分支继续。当超声刀片的温度低于期望的最小温度时,发生器例如通过增加电压Vg(t)信号和/或电流Ig(t)信号来增加133100到超声换能器的功率水平,以升高超声刀片的温度并继续增加施加到超声换能器的功率水平,直到超声刀片的温度增加到高于最小期望温度为止。
自适应高级组织治疗垫保护模式
图49为根据本公开的至少一个方面的在血管击发期间作为时间的函数的超声刀片温度的图形表示133110。将超声刀片温度的曲线图133112沿垂直轴作图,作为沿水平轴的时间的函数。频率温度反馈控制算法将超声刀片反馈控制的温度与钳口感测能力相组合。频率温度反馈控制算法提供了与装置耐久性平衡的最佳止血,并且能够智能地递送能量以用于最佳密封,同时保护夹持臂垫。
如图49中所示,用于血管密封的最佳温度133114被标记为第一目标温度T1,并且用于“无限”夹持臂垫寿命的最佳温度133116被标记为第二目标温度T2。频率温度反馈控制算法推断超声刀片的温度并且将超声刀片的温度保持在第一目标温度阈值T1和第二目标温度阈值T2之间。因此,驱动发生器功率输出以实现用于密封血管和延长夹持臂垫的寿命的最佳超声刀片温度。
最初,超声刀片的温度随着刀片加热而增加并且最终超过第一目标温度阈值T1。频率-温度反馈控制算法接管以将刀片的温度控制到T1,直到在t0处完成133118血管横切并且超声刀片温度降到低于第二目标温度阈值T2为止。发生器或器械或两者的处理器或控制电路检测超声刀片何时接触夹持臂垫。一旦在t0处完成血管横切并检测到,则频率温度反馈控制算法切换至将超声刀片的温度控制至第二目标阈值T2,以延长夹持臂垫的寿命。TEFLON夹持臂垫的最佳夹持臂衬垫寿命温度为大约325℃。在一个方面,可以第二激活音调将高级组织治疗通报给用户。
图50为根据本公开的至少一个方面的描绘将超声刀片的温度控制在如图49中所描绘的两个温度设定点之间的控制程序或逻辑配置的过程的逻辑流程图133120。根据该过程,发生器执行频率-温度反馈控制算法的一个方面以例如通过调节施加到超声换能器的电压Vg(t)信号和/或电流Ig(t)信号来向超声换能器施加133122第一功率水平,从而将超声刀片温度设定为针对血管密封优化的第一目标T1。如前所述,发生器监测133124施加到超声换能器的电压Vg(t)信号和电流Ig(t)信号之间的相位角并且基于该相位角发生器使用本文结合图43A-45所述的技术推断133126超声刀片的温度。根据频率温度反馈控制算法,发生器或器械或两者的处理器或控制电路将超声刀片温度保持在第一目标温度T1,直到横切完成为止。可使用频率温度反馈控制算法来检测血管横切过程的完成。发生器或器械或两者的处理器或控制电路确定133128血管横切何时完成。当血管横切未完成时,该方法沿“否”分支继续,并且当血管横切完成时沿“是”分支继续。
当血管横切未完成时,发生器或器械或两者的处理器或控制电路确定133130超声刀片的温度是否被设定为针对血管密封和横切优化的温度T1。如果将超声刀片的温度设定为T1,则该过程沿“是”分支继续,并且发生器或器械或两者的处理器或控制电路继续监测133124施加到超声换能器的电压Vg(t)信号和电流Ig(t)信号之间的相位角并基于该相位角如果未将超声刀片的温度设定为T1,则该过程沿“否”分支继续,并且发生器或器械或两者的处理器或控制电路继续向超声换能器施加133122第一功率水平。
当血管横切完成时,发生器或器械或两者的处理器或控制电路向超声换能器施加133132第二功率水平以将超声刀片设定至针对保持或延长夹持臂垫的寿命优化的第二目标温度T2。发生器或器械或两者的处理器或控制电路确定133134超声刀片的温度是否处于设定温度T2。如果将超声刀片的温度设定为T2,则该过程完成133136血管横切规程。
刀片的开始温度
在横切开始时知道超声刀片的温度可使得发生器能够递送适当量的功率以加热刀片以进行快速切割,或者如果刀片已是热的,则仅添加所需的功率。该技术可实现更一致的横切时间和延长夹持臂垫的寿命(例如,TEFLON夹持臂垫)。在横切开始时知道超声刀片的温度可使得发生器能够向超声换能器递送适当量的功率,以生成期望量的超声刀片位移。
图51为根据本公开的至少一个方面的描绘确定超声刀片的初始温度的控制程序或逻辑配置的过程的逻辑流程图133140。为了确定超声刀片的初始温度,在制造设备处,在室温或预定环境温度处测量超声刀片的谐振频率。基线频率值被记录并存储在发生器或器械或两者的查找表中。基线值用于生成传递函数。在超声换能器激活循环开始时,发生器测量133142超声刀片的谐振频率,并将所测量的谐振频率与基线谐振频率值进行比较133144,并确定频率的差值(Δf)。Δf与校正的超声刀片温度的查找表或传递函数进行比较。超声刀片的谐振频率可通过扫描施加到驱动超声换能器的电压Vg(t)信号和电流Ig(t)信号的频率来确定。谐振频率是电压Vg(t)信号和电流Ig(t)信号之间的相位角为零处的频率,如本文所述。
一旦确定超声刀片的谐振频率,发生器或器械或两者的处理器或控制电路基于所测量的谐振频率和基线谐振频率之间的差值来确定133146超声刀片的初始温度。发生器例如通过在激活超声换能器之前调节电压VgVg(t)驱动信号或电流Ig(t)驱动信号或两者来将递送到超声换能器的功率水平设定为以下值中的一个。
发生器或器械或两者的处理器或控制电路确定133148超声刀片的初始温度是否为低的。如果超声刀片的初始温度为低的,则该方法沿“是”分支继续,并且发生器或器械或两者的处理器或控制电路向超声换能器施加133152高功率水平以増加超声刀片的温度并完成133156血管横切规程。
如果超声刀的初始温度不为低的,则该方法沿“否”分支继续,并且发生器或器械或两者的处理器或控制电路确定133150超声刀片的初始温度是否为高的。如果超声刀的初始温度为高的,则该方法沿“是”分支继续,并且发生器或器械或两者的处理器或控制电路向超声换能器施加133154低功率水平以降低超声刀片的温度并完成133156血管横切规程。如果超声刀片的初始温度不为高的,则该方法沿“否”分支继续,并且发生器或器械或两者的处理器或控制电路完成133156血管横切。
用于控制刀片不稳定性的智能刀片技术
超声刀片和超声端部执行器的钳口内的内容物的温度可使用本文所述的频率温度反馈控制算法来确定。采用超声刀片的频率/温度关系来控制超声刀片在温度处的不稳定性。
如本文所述,超声刀片中的频率和温度之间存在熟知的关系。一些超声刀片在升高的温度的存在下表现出位移不稳定性或模态不稳定性。这可采用该已知关系解释超声刀片何时接近不稳定性并且然后调节驱动超声换能器的功率水平(例如,通过调节施加到超声换能器的驱动电压Vg(t)信号或电流Ig(t)信号或两者),以调制超声刀片的温度从而防止超声刀片的不稳定性。
图52为根据本公开的至少一个方面的描绘确定超声刀片何时接近不稳定性然后调节到超声换能器的功率以防止超声换能器的不稳定性的控制程序或逻辑配置的过程的逻辑流程图133160。表现出位移或模态不稳定性的超声刀片的频率/温度关系通过扫描在超声刀片的温度上驱动电压Vg(t)信号或电流Ig(t)信号或两者的频率并记录结果来标测。开发了一种函数或关系,该函数或关系可由发生器执行的控制算法使用/解释。触发器点可使用该关系来建立,以通知发生器超声刀片正接近已知的刀片不稳定性。发生器执行频率-温度反馈控制算法处理功能和闭合环路响应,使得降低驱动功率水平(例如,通过降低施加到超声换能器的驱动电压Vg(t)或电流Ig(t)或两者),以将超声刀片的温度调制到触发器点处或低于触发器点,从而防止给定刀片达到不稳定性。
优点包括简化超声刀片配置,使得不需要设计超声刀片的不稳定性特征,并且可使用本公开的不稳定性控制技术进行补偿。本公开的不稳定性控制技术还能够实现新的超声刀片几何形状,并且可改善受热超声刀片中的应力分布。另外,如果与不采用该技术的发生器一起使用,则超声刀片可被配置为缩减超声刀片的性能。
根据逻辑流程图133160所描绘的方法,发生器或器械或两者的处理器或控制电路监测133162施加到超声换能器的电压Vg(t)信号和电流Ig(t)信号之间的相位角发生器或器械或两者的处理器或控制电路基于施加到超声换能器的电压Vg(t)信号和电流Ig(t)信号之间的相位角推断133164超声刀片的温度。发生器或器械或两者的处理器或控制电路将超声刀片的推断温度与超声刀片不稳定触发点阈值进行比较133166。发生器或器械或两者的处理器或控制电路确定133168超声刀片是否接近不稳定性。如果不是,则该方法沿“否”分支进行,并且监测133162相位角推断133164超声刀片的温度,并且将超声刀片的推断温度与超声刀片不稳定性触发点阈值进行比较133166,直至超声刀接近不稳定性为止。该方法然后沿“是”分支进行,并且发生器或器械或两者的处理器或控制电路调节133170施加到超声换能器的功率水平以调制超声刀片的温度。
具有温度控制的超声密封算法
超声刀片温度控制的超声密封算法可用于利用本文所述的频率温度反馈控制算法来改善止血,以利用超声刀片的频率/温度关系。
在一个方面,可采用频率温度反馈控制算法来基于测量的与温度相关的谐振频率(使用光谱学)来改变施加到超声换能器的功率水平,如本公开的各个方面所描述。在一个方面,频率温度反馈控制算法可通过超声器械上的能量按钮来激活。
已知的是最佳的组织效应可通过在密封循环中尽早增加驱动超声换能器的功率水平(例如,通过增加施加到超声换能器的驱动电压Vg(t)或电流Ig(t)或两者)以快速加热组织并使组织脱水,然后降低驱动超声换能器的功率水平(例如,通过降低施加到超声换能器的驱动电压Vg(t)或电流Ig(t)或两者)以慢慢允许形成最终密封来获得。在一个方面,根据本公开的频率温度反馈控制算法设定当组织在更高功率水平级期间加热时可达到的温度阈值的限制,并且然后基于夹持钳口垫(例如,TEFLON)的熔点降低功率水平以控制超声刀片的温度从而完成密封。控制算法可通过激活器械上的能量按钮以进行更响应性/自适应密封来实现,以进一步降低止血算法的复杂性。
图53为根据本公开的至少一个方面的描述提供具有温度控制的超声密封的控制程序或逻辑配置放入过程的逻辑流程图133180。根据控制算法,发生器或器械或两者的处理器或控制电路使用光谱学(例如,智能刀片)激活133182超声刀片感测,并且测量133184超声刀片的谐振频率(例如,超声机电系统的谐振频率),以使用如本文所述的频率温度反馈控制算法(光谱学)来确定超声刀片的温度。如前所述,超声机电系统的谐振频率被标测以获得作为机电超声系统的谐振频率的函数的超声刀片的温度。
超声机电系统的第一期望谐振频率fx对应于超声刀片的第一期望温度Z°。在一个方面,第一期望超声刀片温度Z°为组织凝固的最佳温度(例如,450℃)。超声机电系统的第二期望频率fY对应于超声刀片的第二期望温度ZZ°。在一个方面,第二期望超声刀片温度ZZ°为330℃的温度,其低于夹持臂垫的熔点,对于TEFLON,该熔点为大约380℃。
发生器或器械或两者的处理器或控制电路将超声机电系统的测量的谐振频率与第一期望频率fx进行比较133186。换句话讲,该方法确定超声刀片的温度是否小于最佳组织凝固的温度。如果超声机电系统的所测量的谐振频率小于第一期望频率fx,则该沿“否”分支继续,并且发生器或器械或两者的处理器或控制电路增加133188施加到超声换能器的功率水平以增加超声刀片的温度,直到超声机电系统的测量的谐振频率超过第一期望频率fx为止。在这种情况下,组织凝固过程完成,并且该方法将超声刀片的温度控制为对应于第二期望频率fy的第二期望温度。
该方法沿“是”分支继续,并且发生器或器械或两者的处理器或控制电路降低133190施加到超声换能器的功率水平以降低超声刀片的温度。发生器或器械或两者的处理器或控制电路测量133192超声机电系统的谐振频率,并且将所测量的谐振频率与第二期望频率fY进行比较。如果所测量的谐振频率不小于第二期望频率fY,则发生器或器械或两者的处理器或控制电路降低133190超声功率水平,直到测量的谐振频率小于第二期望频率fY为止。频率温度反馈控制算法将超声机电系统的测量的谐振频率保持低于第二期望频率fy,例如,超声刀片的温度小于夹持臂垫的熔点的温度,然后,发生器执行增加施加到超声换能器的功率水平以增加超声刀片的温度,直到组织横切过程完成133196为止。
图54为根据本公开的至少一个方面的作为时间的函数的超声换能器电流和超声刀片温度的图形表示133200。图54示出了应用图53中所述的频率-温度反馈控制算法的结果。图示133200示出相对于作为时间的函数的超声换能器电流Ig(t)的第二曲线图133204的作为时间的函数的超声刀片温度的第一曲线图133202。如图所示,换能器Ig(t)保持恒定,直到超声刀片温度达到450°为止,该温度是最佳凝固温度。一旦超声刀片温度达到450°,频率温度反馈控制算法就会降低换能器电流Ig(t),直到超声刀片的温度降低到330°以下,该温度低于例如TEFLON垫的熔点。
组织类型识别或参数化
在各个方面,外科器械(例如,超声外科器械)被配置为识别或参数化由端部执行器抓握的组织,并相应地调节外科器械的各个操作参数。组织的识别或参数化可以包括组织类型(例如,生理组织类型)、组织的物理特征或性质、组织的组成、组织在端部执行器内或相对于端部执行器的位置等。在下面更详细讨论的一个示例中,超声外科器械被配置为根据在端部执行器的钳口中检测到的组织的胶原蛋白/弹性蛋白比来调谐超声刀片的远侧末端的位移幅值。如先前所讨论的,超声器械包括经由超声波导声学上耦合到超声刀片的超声换能器。超声刀片的位移是施加到超声换能器的电功率的函数,因此可以根据检测到的组织的胶原蛋白/弹性蛋白比来调制提供给超声换能器的电功率。在下面更详细讨论的另一个示例中,可以根据组织相对于端部执行器的位置来调制夹持臂施加在组织上的力。本文描述了用于识别或参数化组织的各种技术,并且更多细节可以在例如2018年6月30日提交的美国临时专利申请号62/692,768(标题为“智能能量装置(SMART ENERGYDEVICES)”,其公开内容以引用方式全文并入本文)中找到。
通过阻抗变化确定组织位置
重新参见图23,根据本公开的至少一个方面,示出了端部执行器1122,该端部执行器包括超声刀片1128和夹持臂1140。图55为根据本公开的至少一个方面的超声端部执行器1122的底视图,其示出了夹持臂1140和超声刀片1128并且描绘了定位在超声端部执行器1122内的组织。可以根据组织所位于的区域或区,诸如远侧区域130420和近侧区域130422来描述在夹持臂1140和超声刀片1128之间的组织的定位。
现在参考图23和55,如本文所述,超声端部执行器1122将组织抓握在超声刀片1128和夹持臂1140之间。一旦组织被抓握,就可激活超声发生器(例如,结合图22所述的发生器1100)以向超声换能器施加功率,该超声换能器经由超声波导声学上耦合到超声刀片1128。施加到超声换能器的功率可在能量水平的治疗或非治疗范围内。在施加功率的非治疗范围内,所得超声刀片1128的位移不会影响或最小程度地影响所抓握的组织,以便不凝固或切割组织。非治疗激发对于确定超声换能器的阻抗可能特别有用,该阻抗将基于端部执行器1122处存在的多种状况(包括例如组织类型、端部执行器内的组织位置、不同组织类型的比率和超声刀片的温度以及其它状况)而变化。本文描述了多种这些状况。超声换能器的阻抗由下式给出
如本文所述。一旦使用非治疗超声能量水平确定超声端部执行器1122处的状况,就可基于所确定的端部执行器1122状况来施加治疗超声能量,以优化组织治疗、有效密封、横切和持续时间以及与特定外科手术相关联的其它变量。治疗能量足以凝固和切割组织。
在一个方面,本公开提供了控制过程诸如算法来确定位于如图23和55中所示的超声端部执行器1122的钳口内(即,在夹持臂1140和超声刀片1128之间)的组织的厚度和类型。有关检测由端部执行器1122抓握的物体的各种状态和性质的其它细节在下面美国临时专利申请号62/692,768(标题为“智能能量装置(SMART ENERGY DEVICES)”)的标题“确定钳口状态”中讨论。
图56为根据本公开的至少一个方面的描绘在预定超声发生器功率水平增加的范围内作为组织在超声端部执行器1122内的位置的函数的超声换能器阻抗变化的图形表示130000。水平轴130004表示组织位置,而竖直轴130002表示换能器阻抗(Ω)。沿水平轴130004的各种限制(诸如第一限制或近侧限制130010和第二限制或远侧限制130012)可以描绘或对应于超声端部执行器1122内抓握的组织的不同位置。对近侧组织位置和远侧组织位置的描绘在图55中示意性地示出(即,近侧部分130422和远侧部分130420)。图130006、130008表示当施加到超声换能器的功率从最小或第一非治疗功率水平L1变化到最大或第二非治疗功率水平L2时换能器阻抗Ω的变化。换能器阻抗Ω的变化越大,所得图将越接近远侧限制130012。因此,组织的位置对应于所得图相对于各种限制(例如,近端限制130010和远端限制130012)的位置。在第一个图130006中,δ1表示当组织位于端部执行器1122的近侧部分130422处时换能器阻抗的变化。这可以从第一个图130006没有超过近侧限制130010这一事实看出。在第二个图130008中,δ2表示当组织位于端部执行器1122的远侧端部130012处时换能器阻抗的变化。这可以从第一个图130006超过近侧限制130010和/或位于远侧限制130012附近这一事实看出。如由图130006、130008所示,δ2比δ1大得多。
当向超声换能器施加功率(电压和电流)(例如,不足以切割或凝固组织的功率)以在非治疗范围内激活超声刀片1128时,测量所得的换能器阻抗(Ω)是组织在端部执行器1122的钳口内的位置的有用指标,无论是在超声刀片1128的远侧端部130420还是近侧端部130422,如图55中所示。当施加到超声换能器的非治疗功率水平从最小功率水平(例如,L1)变化到最大功率水平(例如,L2)时,可以基于换能器阻抗的变化δ确定组织在端部执行器1122内的位置。在一些方面,施加到超声换能器的一种或多种非治疗功率水平可以使超声刀片1128以感测幅值或低于最小治疗幅值(例如,在超声刀片1128的远侧端部和/或近侧端部处小于或等于35μm)振动。阻抗的计算先前在本公开中讨论过。当施加第一功率水平L1时,对第一换能器阻抗Z1进行测量,这提供了初始测量值;当施加的功率增加到第二功率水平L2时,同样对阻抗Z2进行后续测量。在一个方面,第一功率水平L1=0.2A,第二功率水平L2=0.4A或为第一功率水平L1的两倍,同时电压保持恒定。基于所施加的功率水平,超声刀片1128的所得纵向位移幅值提供了端部执行器1122的钳口内的组织位置的指示。在一个示例性具体实施中,第一功率水平L1在远侧端部130420处产生35μm的纵向位移幅值,在近侧端部130422处产生15μm的纵向位移幅值。此外,在该示例中,第二功率水平L2在远侧端部130420处产生70μm的纵向幅值,在近侧端部130422处产生35μm的纵向幅值。一种算法可以计算第一测量值和第二测量值之间的换能器阻抗的差值δ,以找到阻抗变化ΔZg(t)。相对于组织位置绘制阻抗的变化δ,并且该变化显示更高的阻抗变化表示分布在端部执行器1122的远侧端部130012处的组织位置,并且更低的阻抗变化表示分布在近侧端部130010处的组织位置。总之,如果随着功率水平从L1增加到L2,阻抗发生较大变化,则组织在端部执行器1122内仅定位在远侧;总如果随着功率水平从L1增加到L2,阻抗仅发生较小变化,则组织将更多地分布在端部执行器1122内。
图57为根据本公开的至少一个方面的描绘相对于组织在超声端部执行器内的位置作为时间的函数的超声换能器阻抗变化的图形表示130050。水平轴130054表示时间(t),竖直轴130052表示在第一测量值和第二测量值之间的换能器阻抗的变化(δ)。曲线图130060、130066描绘了相对于组织在夹持臂1140的咬合内的近侧位置和远侧位置的换能器阻抗的变化(δ)与时间(t)的关系。对于近侧组织位置和远侧组织位置,施加夹持臂1140力以将组织保持在超声端部执行器1122中,并且在施加第一低功率水平和测量换能器阻抗之前施加延迟时间段。随后,系统施加第二更高功率水平并再次测量阻抗。应当理解,施加到超声换能器的第一功率水平和第二功率水平都是非治疗功率水平。由发生器或外科器械的处理器或控制电路部分(例如,图21中的处理器902或图18中的控制电路760)执行的算法可以计算近侧组织位置和远侧组织位置的第一功率水平和第二功率水平之间的换能器阻抗的差值(δ)。如关于第一个曲线图130060所示,如果换能器阻抗的差值(δ)低于第一阈值130056,则算法确定组织位于端部执行器1122的近侧部分130422中。在第一个曲线图130060中,测量值之间的换能器阻抗的差值随时间增加130062,直到其稳定或保持130064低于第一阈值130056为止。如关于第一个曲线图130066所示,如果换能器阻抗的差值(δ)高于第二阈值130058,则算法确定组织位于端部执行器1122的远侧部分130420中。在第二个曲线图130066中,测量值之间的换能器阻抗的差值随时间增加130068,直到其稳定或保持130070高于第二阈值130058为止。如果换能器阻抗的差值(δ)介于第一阈值130056和第二阈值130058之间,则算法确定组织位于端部执行器1122的中间部分130424中,例如位于端部执行器的近侧部分和远侧部分之间。
图58为根据本公开的至少一个方面的描绘识别施加到器械的非治疗功率范围内的操作以确定组织定位的控制程序或逻辑配置的过程130100的逻辑流程图。过程130100可以由外科器械的处理器或控制电路(诸如图18的控制电路760)或发生器(诸如图21的处理器902)执行。为了简洁起见,过程130100将被描述为由处理器执行,但是应当理解,以下描述涵盖前述变型。
根据过程130100的一个方面,处理器施加控制信号以闭合夹持臂1140,从而捕获夹持臂1140和超声刀片1128之间的组织。在夹持臂1140闭合到组织上之后,处理器等待预定的延迟时间段以使组织松弛并放弃一些水分含量。在延迟时间段之后,处理器将施加到超声换能器的功率水平设定130102为第一非治疗功率水平。任选地,过程130100的一个方面包括反馈控制可以用于验证第一功率被设定为低于治疗功率水平。在该方面,处理器确定130106第一功率水平是否小于治疗功率水平。如果第一功率水平不小于治疗功率水平,则过程130100沿着“否”分支继续,并且处理器减小130108所施加的功率并循环,直到第一功率水平小于治疗功率水平为止。然后,过程130100沿着“是”分支继续,并且处理器测量130110超声换能器的对应于第一功率水平的第一阻抗Zg1(t)。然后,处理器将施加到超声换能器的功率水平设定130112为第二非治疗功率水平,其中第二功率大于第一功率水平并且低于治疗功率水平。同样,任选地,反馈控制可以用于验证第二功率水平不仅大于第一功率水平而且还低于治疗功率水平。在该方面,处理器确定130114第二功率水平是否小于治疗功率水平。如果第二功率大于治疗功率水平,则过程130100沿着“否”分支继续,并且处理器降低130108第二功率水平并循环,直到其低于治疗功率水平阈值。然后,过程130100沿着“是”分支继续,并且处理器测量130116超声换能器的对应于第二功率水平的第二阻抗Zg2(t)。可以使用如本文讨论的多种技术来测量超声换能器的阻抗。然后,处理器计算130118所施加的第一功率水平和第二功率水平之间的换能器阻抗的差值:
δ=Zg2(t)-Zg1(t)。
然后,处理器向用户提供130120组织位置的指示。处理器可以经由外科器械的输出装置(例如,视觉反馈装置(诸如图31中所描绘的显示器)、音频反馈装置和/或触觉反馈装置)、显示器135(图3)或可通信地连接到外科器械和/或发生器1100的输出装置2140(图27B)的外科集线器106的其它输出装置(例如,视觉反馈装置、音频反馈装置和/或触觉反馈装置)来指示组织位置。
处理器将换能器阻抗的差值与第一阈值和第二阈值进行比较,其中如图57所示,如果换能器阻抗的差值(δ)低于第一阈值130056,则算法确定组织位于端部执行器1122的近侧部分130422中,并且如果换能器阻抗的差值(δ)高于第二阈值130058,则算法确定组织位于端部执行器1122的远侧部分130420中。如果换能器阻抗的差值(δ)介于第一阈值130056和第二阈值130058之间,则算法确定组织位于端部执行器1122的中间部分130424中,例如位于端部执行器1122的近侧部分130422和远侧部分130420之间。根据所描述的过程,超声换能器的阻抗可以用于区分位于端部执行器1122的远侧位置、近侧位置或中间位置的组织的百分比,然后施加合适的治疗功率水平。
基于组织定位的无开关模式
在各个方面,超声器械的反应可基于组织是否存在于端部执行器内、位于端部执行器内的组织的类型或者位于端部执行器内的组织的可压缩性或组成。因此,发生器或超声外科器械可包含和/或执行指令以执行算法,以控制将组织夹持在端部执行器的钳口中和激活超声换能器以治疗组织之间的时间。如果未感测到组织,则可为超声发生器激活按钮或踏板分配不同的含义以执行不同的功能。在一个方面,一种高级能量装置可将对端部执行器的钳口内组织的存在的检测用作用于激活超声换能器的队列,从而开始组织凝固周期。在另一个方面,压缩特性和态势感知可使装置能够自动激活,以便还针对所感测的组织类型来调节算法的参数。例如,除非感测到组织与端部执行器的钳口接触,否则高级发生器可忽略按钮或脚踏板的激活。这种配置将消除无意中激活队列,从而使得可以以更简单的方式操作装置。
因此,高级发生器(诸如结合图1-42所述的高级发生器)和/或外科器械(诸如本公开通篇所述的超声外科器械)可被配置为在无开关模式下操作。在无开关模式下,在感测到或检测到端部执行器的钳口中存在组织时,超声装置在凝固模式下自动激活。在一个方面,当在自动能量激活模式(或“无开关”模式)下操作时,控制超声外科器械的激活的控制算法可以被配置为与不在无开关模式下操作时被激活相比,最初向超声器械施加更少的能量。此外,超声发生器或器械可以被配置为确定与位于端部执行器的钳口中的组织的接触以及该组织的类型。基于感测到或检测到端部执行器的钳口中存在组织,由发生器或超声器械的处理器或控制电路执行的控制算法可以使超声器械在无开关模式下运行,并且可以调节算法以实现端部执行器的钳口中的组织的最佳整体凝固。在其它方面,代替自动激活外科器械和/或发生器,除非在端部执行器中检测到组织的存在,否则由发生器或超声器械的处理器或控制电路执行的控制算法可以防止发生器或超声器械激活。
在一个方面,本公开提供了一种算法,该算法由位于发生器或手持式超声器械中的处理器或控制电路执行,以确定组织的存在以及位于端部执行器的钳口内的组织的类型。在一个方面,该控制算法可以被配置为经由本文所述的用于确定组织位置的技术来确定组织位于端部执行器内,如下文在标题“经由电极连续性确定组织位置(DETERMININGTISSUE LOCATION VIA ELECTRODE CONTINUITY)”下所述。例如,控制算法可以被配置为根据电极之间是否存在任何连续性来确定组织是否位于端部执行器内(如下文所述),并因此在检测到组织时自动激活外科器械(例如,通过使与外科器械耦合的发生器开始向外科器械施加功率)或允许激活外科器械。当外科器械和/或发生器在无开关模式下操作时,该控制算法可以进一步被配置为以特定的功率水平激活外科器械,该特定的功率水平可或可不与外科器械的标准初始激活功率水平不同。在一些方面,控制算法可以被配置为根据组织的特定类型或组成来激活外科器械或允许激活外科器械,这可以经由例如下文在标题“根据IR表面反射率和比辐射率确定组织胶原蛋白与弹性蛋白比率(DETERMINING TISSUECOLLAGEN-TO-ELASTIN RATIO ACCORDING TO IR SURFACE REFLECTANCE ANDEMISSIVITY)”下所述的技术来检测。例如,该控制算法可以被配置为在已经抓握具有高胶原蛋白组成的组织时激活外科器械,但是在已经抓握具有高弹性蛋白组成的组织时不一定激活外科器械。在一些方面,控制算法可以被配置为经由例如下文在标题“经由电极连续性确定组织位置(DETERMINING TISSUE LOCATION VIA ELECTRODE CONTINUITY)”下所述的技术根据所抓握的组织是否位于端部执行器内的特定位置或者端部执行器是否已经抓握特定的组织量来激活外科器械或允许激活外科器械。例如,该控制算法可以被配置为在所抓握的组织覆盖端部执行器的特定百分比时激活外科器械。又如,该控制算法可以被配置为当所抓握的组织位于端部执行器的远侧端部时激活外科器械。
在其它方面,控制算法可以被配置为经由如2018年4月19日提交的美国临时专利申请序列号62/659,900(标题为集线器通信的方法(METHOD OF HUB COMMUNICATION),其以引用方式全文据此并入)在标题“态势感知(SITUATIONAL AWARENESS)”下所述的态势感知系统来确定端部执行器是否已经抓握组织、组织类型或组成以及端部执行器或组织的其它特征。在这些方面,与外科器械和/或发生器连接的外科集线器106(图1-11)可以从外科器械、发生器和/或手术室中使用的其它医疗装置接收数据,并且关于正在执行的外科手术或其特定步骤作出推断。因此,态势感知系统可以在任何给定时刻或步骤推断是否正在操作组织以及正在操作的组织的类型,然后控制算法可以相应地控制外科器械,包括相应地自动激活外科器械。例如,该控制算法可以被配置为在端部执行器所抓握的组织对应于态势感知系统所预期的组织类型或组织组成时自动激活外科器械或允许激活外科器械。
具有检测器械是否正在接触组织以及在接触时是什么类型的组织的能力,超声器械可以在无开关操作模式下操作,其中基于超声器械的感测能力允许操作。在一些方面,控制算法可以被配置为除非感测到组织与外科器械的钳口/端部执行器接触,否则忽略激活按钮、脚踏板以及耦合到发生器和/或超声外科器械的其它输入装置的致动,从而防止意外激活器械。在一些方面,控制算法可以被配置为根据是否感测到组织与外科器械的钳口/端部执行器接触而将为激活按钮、脚踏板以及耦合到发生器和/或超声外科器械的其它输入装置分配不同的含义。例如,当端部执行器中存在组织时,控制算法可以被配置为响应于致动激活按钮而激活外科器械;然而,当端部执行器内不存在组织时,该控制算法可以被配置为在致动激活按钮时执行一些不同的动作或辅助动作。
能够确定端部执行器的钳口中不存在组织允许器械更改为无开关模式,然后当随后检测到组织时启动自动凝固操作周期,从而使得器械的正常运行时间使用更大,并允许使用者基于其预测能力继续进行。除了能够检测组织的存在之外,还能够检测组织的类型允许算法调节和计算最佳凝固机会。
根据组织组成调谐超声系统
在各个方面,超声外科器械可以包括处理器或控制电路,该处理器或控制电路执行自适应超声刀片控制算法,以检测由端部执行器或在端部执行器处抓握的组织的组成,并相应地控制超声换能器和/或超声刀片的操作参数。组织组成可以包括例如组织中胶原蛋白与弹性蛋白的比率、组织的刚度或组织的厚度。由自适应超声刀片控制算法控制或调节的操作参数可以包括例如超声刀片的幅值、超声刀片的温度或热通量等。自适应超声刀片控制算法可以由位于发生器或外科器械中的控制电路或处理器执行。
在下面更详细地描述的一个示例中,自适应超声刀片控制算法可以被配置为根据组织的胶原蛋白与弹性蛋白的比率来控制超声刀片的幅值。可以经由多种技术(诸如下文所述的那些技术)来确定组织的胶原蛋白与弹性蛋白的比率。在下面更详细地描述的另一个示例中,自适应超声刀片控制算法可以被配置为控制超声换能器/超声刀片,以使组织的胶原蛋白含量越低,加温时间越长并且超声刀片的最终温度越低。
根据频率偏移确定组织胶原蛋白与弹性蛋白的比率
在各个方面,控制算法可以被配置为通过检测超声刀片的自然频率和超声刀片波形的偏移来确定组织的胶原蛋白与弹性蛋白的比率(例如,以调谐超声刀片的远侧末端的幅值)。例如,结合图1-54所述的技术可用于检测位于超声器械的端部执行器中的组织的胶原蛋白与弹性蛋白的比率。在一个方面,本公开提供了一种自适应超声刀片控制算法,以检测超声刀片的自然频率和波形的偏移,从而检测与超声刀片接触的组织的组成。在另一方面,该自适应超声刀片控制算法可被配置为检测组织的胶原蛋白和弹性蛋白组成含量,并且基于检测到的组织的胶原蛋白含量来调节超声刀片的治疗热通量。本文结合图1-54描述了用于基于位于超声器械的端部执行器的钳口中的组织类型来监测超声刀片的自然频率的偏差的技术。因此,为了本公开简洁和清楚起见,这里将不重复这类技术。
可通过监测超声刀片的自然频率的偏移并将自然频率与查询表进行比较来确定弹性蛋白与胶原蛋白的比率。查找表可以存储在存储器(例如,图31的存储器3326)中,并且包含弹性蛋白与胶原蛋白的比率以及根据经验确定的特定比的对应自然频率偏移。
根据IR表面反射率和比辐射率确定组织胶原蛋白与弹性蛋白的比率
在各个方面,控制算法可以被配置为通过确定组织的IR反射率来确定组织的胶原蛋白与弹性蛋白之比(例如,以调谐超声刀片的远侧末端的幅值)。例如,图59示出了超声系统130164,该超声系统包括耦合到超声器械130150的超声发生器130152。超声器械130150经由超声波导130154耦合到超声端部执行器130400。超声发生器130152可与超声器械130150成一体,或者可使用有线或无线电/电子耦合技术连接到超声器械130150。根据本公开的至少一个方面,超声外科器械130150的端部执行器130400包括位于夹持臂130402(例如,钳口构件)上的IR传感器。超声发生器130152和/或超声器械130150可通过无线或有线连接耦合到外科集线器130160和/或云130162,如结合图1-11所述。
图60示出了根据本公开的至少一个方面的IR反射率检测传感器电路130409,该电路可与超声端部执行器130400的夹持臂130402一体安装或形成,以检测组织组成。IR传感器电路130409包括IR源130416(例如,IR发射器)和IR检测器130418(例如,IR接收器)。IR源130416耦合到电压源V。当控制电路130420闭合开关SW1时,通过R2产生电流。当闭合开关SW1时,IR源130416朝向组织130410(例如,夹持或位于夹持臂130402和超声刀片130404之间的组织)发射IR能量。一些发射的IR能量被组织130410吸收,一些发射的IR能量通过组织130410传输,并且一些发射的IR能量被组织130410反射。IR检测器130418接收被组织130410反射的IR能量,并产生输出电压Vo或信号,该电压或信号被施加到控制电路130420以供处理。
参考图59和60,在一个方面,超声发生器130152包括控制电路130420,以驱动位于超声端部执行器130400的夹持臂130402上或该夹持臂中的IR源130416和IR检测器130418。在其它方面,超声器械130150包括控制电路130420,以驱动位于超声端部执行器130400的夹持臂130402上或该夹持臂中的IR源130416和IR检测器130418。在任一方面,当组织130410被抓握在超声刀片130404和夹持臂130402之间时,通过闭合开关SW1来由控制电路130420对IR源130416通电,例如用IR能量照亮组织。在一个方面,IR检测器130418产生与组织130410反射的IR能量成比例的电压Vo。IR源130416发射的总IR能量等于组织130410反射的IR能量、组织130410吸收的IR能量和穿过组织130410的IR能量之和,加上任何损失。因此,控制电路130420或处理器可被配置为通过IR检测器130418检测到的IR能量的量相对于IR源130416发射的IR能量的总量来检测组织130410的胶原蛋白含量。算法考虑了组织130410吸收和/或通过该组织传输的能量的量,以确定组织130410的胶原蛋白含量。对IR源130416和IR检测器130418以及算法进行校准,以使用IR反射率原理提供对组织130410的胶原蛋白含量的有用测量。
图60中所示的IR反射率检测传感器电路130409提供了IR表面反射率和发射率,以确定弹性蛋白与胶原蛋白的比率。IR反射率可用于确定用于调谐超声换能器的幅值的组织组成。折射率是控制IR光的光相关反射的光学常数。折射率可用于区分组织类型。例如,已经表明折射率对比可区分正常肝组织和肝转移。折射率可以用作组织分化的绝对或比较量度。
一种比较方法采用能量解剖装置诸如超声刀片130404,例如以确定确切的比率(如上所述),然后使用该指数作为基线来预测所有进一步致动的胶原蛋白比率。这样,内窥镜可基于胶原蛋白比率来更新解剖装置(例如,超声刀片130404)。解剖装置可以在每次致动时对预测进行微调,以进行实际的胶原蛋白变性击发。一种替代方法可采用具有查找表的绝对指数,该绝对指数可以区分表面不规则性和表面下胶原蛋白浓度。有关组织的IR折射率特性的其它信息可以在以下文献中找到:新鲜切除的人肝脏组织的可见光到近红外折射率特性:标记肝脏恶性肿瘤(Visible To Near-Infrared Refractive Properties OfFreshly-Excised Human-Liver Tissues:Marking Hepatic Malignancies);PanagiotisGiannios、Konstantinos G.Toutouzas、Maria Matiatou、Konstantinos Stasinos、Manousos M.Konstadoulakis、George C.Zografos和Konstantinos Moutzourisa;Sci.Rep.2016;6:27910(其以引用方式据此并入本文)。
在其它方面,超声解剖装置可以被配置为与胶原蛋白比率成比例地改变超声刀片控制算法的理想温度。例如,可以基于从控制电路130420接收的胶原蛋白比率来修改超声刀片温度控制算法。作为一个特定示例,超声刀片温度控制算法可以被配置为降低保持超声刀片130404的温度集,并增加超声刀片130404与组织130410接触的保持时间,以使抓握的组织130410中的胶原蛋白的浓度更高。又如,可以基于胶原蛋白比率来修改算法循环通过完全激活的等待时间。结合图43-54描述了用于超声刀片的各种温度控制算法。
图61为根据本公开的一个方面的包括夹持臂130402和超声刀片130404的超声端部执行器130400的剖视图。夹臂130402包括IR反射率检测传感器电路130409a、130409b,这些电路可与超声端部执行器130400的夹持臂130402一体安装或形成,以检测组织130410的组成。IR反射率检测传感器电路130409a、130409b可安装在柔性电路基板130412上,该柔性电路基板在图62中以平面图示出。柔性电路基板130412包括三个细长元件130408a、130408b、130408c,IR反射率检测传感器电路130409a、130409b和IR传感器130414a、130414b安装在这些细长元件上。IR传感器130414a、130414b可包括如图60中所示的IR源130416和IR检测器130418。
图63为描绘测量IR反射率以确定组织组成从而调谐超声换能器的幅值的控制程序或逻辑配置的过程130200的逻辑流程图。过程130200可以由外科器械的处理器或控制电路(诸如图18的控制电路760)或发生器(诸如图21的处理器902)执行。为了简洁起见,过程130200将被描述为由控制电路执行,但是应当理解,以下描述涵盖前述变型。
因此,参考图1-54和图59-63,在一个方面,控制电路对IR源130416通电130202,以向超声器械130150的端部执行器13400中夹持的组织130410施加IR能量。然后,控制电路经由IR检测器130418检测130204由组织130410反射的IR能量。因此,控制电路基于检测到的由组织130410反射的IR能量来确定130206组织130410的胶原蛋白与弹性蛋白的比率。控制电路基于确定的组织的胶原蛋白/弹性蛋白比率来调节130208超声刀片温度控制算法,如标题为“智能能量装置(SMART ENERGY DEVICES)”的美国临时专利申请号62/692,768中所讨论的。在一个方面,可根据IR光源130416的反射率来检测组织130410的胶原蛋白含量。在另一个方面,组织130410的胶原蛋白含量越低,加温时间越长并且超声刀片130404的最终温度越低。在另一个方面,组织130410组成可为组织厚度或刚度,并且可以用于影响超声刀片换能器控制程序。
可通过监测组织的IR反射率并将检测到的IR反射率与查询表进行比较来确定弹性蛋白与胶原蛋白的比率。查找表可以存储在存储器(例如,图31的存储器3326)中,并且包含弹性蛋白与胶原蛋白的比率以及根据经验确定的特定比的对应IR反射率。
根据胶原蛋白转变点确定组织胶原蛋白与弹性蛋白的比率
不同类型的组织由不同量的结构蛋白(诸如胶原蛋白和弹性蛋白)组成,这些结构蛋白为不同类型的组织提供不同的特性。当向组织施加热量(例如,通过超声刀片)时,结构蛋白变性,这会影响组织完整性和其它组织特性。然而,结构蛋白在不同的已知温度处变性。例如,胶原蛋白在弹性蛋白之前变性。因此,通过检测组织的特性在什么温度处变化,可以推断出组织组成(例如,组织中胶原蛋白与弹性蛋白的比率)。在各个方面,控制算法可以被配置为通过确定组织的胶原蛋白转变点来确定组织的胶原蛋白与弹性蛋白的比率。该控制算法继而可以根据所确定的组织组成来控制外科器械的各种操作参数,诸如超声刀片的幅值。在一个方面,控制算法可以通过测量夹持臂致动构件的位置及其位移的变化率同时保持夹持臂上的负载恒定来确定组织的胶原蛋白转变点。在另一个方面,控制算法可以通过直接测量组织/刀片界面的温度以识别胶原蛋白/弹性蛋白百分比来确定组织的胶原蛋白转变点。
图16-19示意性地示出了机动化夹持臂闭合机构。图40为根据本公开的一个方面的分段电路7401的系统图7400,该分段电路包括多个独立操作的电路区段7402、7414、7416、7420、7424、7428、7434、7440,而图35为根据本公开的一个方面的具有马达控制功能的外科器械的各个部件的电路图。例如,图35示出了包括闭合动力传动系统7934的驱动机构7930,该闭合动力传动系统被配置为闭合钳口构件以利用端部执行器抓握组织。图38-39示出了用于控制钳口构件(诸如超声端部执行器的夹持臂部分)的闭合速率的控制系统12950、12970,其中图38为根据本公开的一个方面的控制系统12950的示图,该控制系统被配置为在闭合构件朝远侧推进以闭合夹持臂从而以期望的速率施加闭合力负载时提供闭合构件的逐渐闭合,并且图39示出了根据本公开的一个方面的比例积分微分(PID)控制器反馈控制系统12970。因此,在以下对包括机动化夹持臂控制器以控制夹持臂的闭合速率和/或位置的超声系统的描述中,应参考图16-19和38-41。
在一个方面,控制算法可以被配置为检测所抓握的组织的胶原蛋白转变点,因此通过控制超声换能器驱动信号的相位和/或幅值或者夹持臂的闭合速率来控制到组织的超声能量递送。例如,在一个方面,控制算法可以被配置为根据胶原蛋白转变点来控制由夹持臂施加到组织上的力。这可通过测量夹持臂致动部件的位置及其变化率同时在与特定器械类型相对应的设定操作范围(例如,130-180psi)内的接合压力内保持夹持臂的负载恒定来实现。
图64A为根据本公开的至少一个方面的当闭合夹持臂1140以识别胶原蛋白转变点时夹持臂1140(图23)的位移与时间的关系的图形表示130250。图64B为图64A中所示的图形表示130250的放大部分130256。水平轴130254表示时间(例如,以秒为单位),而竖直轴130252表示夹持臂位移δ(例如,以毫米为单位)。在一个方面,控制算法可以被配置为根据组织的胶原蛋白转变点在超声刀片1128(图23)加热组织时控制由夹持臂1140施加到组织的负载(例如,通过控制夹持臂1140的闭合速率)。在一个此类方面,控制算法被配置为闭合夹持臂1140,直到夹持臂负载达到阈值为止,该阈值可以包括特定值(例如,4.5磅)或值范围(例如,3.5至5磅的范围内)。在那时,控制算法设定夹持臂位移变化率阈值θ,并监测夹持臂1140的位移。只要夹持臂位移的变化率保持在预定的负极限内(即,低于阈值θ),控制算法就可以确定组织低于转变温度。如图64A和64B的图形表示所示,当控制算法确定夹持臂位移变化率超过阈值θ时,控制算法可以确定已经达到胶原蛋白的熔融温度。
在一个方面,一旦控制算法确定已经达到转变温度,则控制算法可以被配置为相应地改变超声器械的操作。例如,控制算法可以将外科器械从(夹持臂1140的)负载控制切换到温度控制。在另一个方面,控制算法可以在已经达到胶原蛋白转变温度之后保持对夹持臂的负载控制,并且监测何时已经达到夹持臂位移变化率阈值。第二夹持臂位移变化率阈值可以对应于例如弹性蛋白的转变温度。夹持臂位移随时间变化的曲线130258中胶原蛋白和/或弹性蛋白转变温度的位置可以被称为曲线130258中的“膝部”。因此,在该方面,控制算法可以被配置为根据是否已经达到第二夹持臂位移变化率阈值(或弹性蛋白“膝部”)来改变超声器械的操作,并且相应地改变超声器械的操作。例如,当检测到曲线130258中的弹性蛋白膝部时,控制算法可以将外科器械从(夹持臂1140的)负载控制切换到温度控制。
对于其中弹性蛋白具有不同熔融温度的胶原蛋白,对于45℃和50℃之间的给定热通量,胶原蛋白转变应当是恒定的。此外,随着胶原蛋白吸收热量,温度应变平坦。在一些方面,控制算法可以被配置为在特定温度附近或在温度范围(例如,胶原蛋白和/或弹性蛋白转变的预期温度范围)内以更高的速率对夹持臂和/或夹持臂位移构件的位置进行采样,以便准确地确定所监测的事件何时发生。
在图64A和64B中所描绘的方面,当在时间tm处检测到胶原蛋白转变点时,控制算法用于将外科器械从负载控制更改为温度控制。如投影曲线130260中所示,在不将外科器械改变为温度控制的情况下,夹持臂位移将呈几何增加。在一个方面,在达到阈值θ之后,如由曲线130258的平坦部分所示,在温度控制模式下操作的控制算法降低超声换能器驱动信号的幅值以改变由超声刀片1128产生的热通量。在一些方面,控制算法可以被配置为在特定时间段之后增加超声换能器驱动信号的幅度,以例如测量温度增加的速率,从而确定何时达到弹性蛋白转变温度。因此,随着夹持臂闭合速率接近下一个膝部(即弹性蛋白膝部),夹持臂闭合速率会降低。夹持臂1140的负载控制可能是有益的,因为在一些情况下,它可以提供容器的最佳密封。
图65为根据本公开的至少一个方面的描绘检测胶原蛋白转变点以控制夹持臂的闭合速率或超声换能器的幅值的控制程序或逻辑配置的过程130300的逻辑流程图。过程130300可以由位于外科器械或发生器中的控制电路或处理器执行。因此,执行过程130300的控制电路测量130302夹持臂致动构件的位置及其变化率,同时保持夹持臂上的负载恒定。如前所述,在一个方面,夹持臂上的负载保持在超声外科器械设定的合适范围(130-180psi)内的接合压力内。一旦钳口承受特定夹持臂负载(例如,4.5磅)或夹持臂负载在特定范围内(例如,3.5-5磅),控制电路就设定130304夹持臂位移变化率并在一段时间内监测夹持臂致动构件的位置,以使夹持臂位移变化率保持在预定的负极限内(对应于组织低于胶原蛋白转变温度)。因此,控制确定130306夹持臂位移变化率是否超过设定的阈值,或者换句话讲,确定组织是否已经达到转变温度。如果已经达到转变温度,则过程130300沿着“是”分支进行,并且控制电路将外科器械切换130308到温度控制(例如,控制超声换能器以降低或保持超声刀片的温度)。在一个方面,控制电路继续监测胶原蛋白转变温度。另选地,在图65中所描绘的方面,如果尚未达到转变温度,则过程130300沿“否”分支进行,并且控制电路保持130310对夹持臂1140的负载控制,并监测夹持臂位移变化率以确定何时发生所抓握的组织的下一个转变点(例如,弹性蛋白转变点)。控制电路可以这样做,以便例如防止组织的温度升高超过弹性蛋白转变温度。
应当理解,对于给定的热通量(45℃-50℃),胶原蛋白转变应当是恒定的。还应当理解,在一些情况下,对夹持臂1140的负载控制可以为特定类型的组织(例如,血管)提供最佳密封。在发生胶原蛋白转变的时间段内,组织的温度应变平坦,同时胶原蛋白吸收热量。控制电路可以被配置为调制在特定温度或在感兴趣温度(例如,转变温度)附近收集数据点的速率。此外,控制电路可以调谐超声换能器驱动信号的幅度,以控制在外科手术过程中的不同点处由超声刀片1128产生的热通量。例如,控制电路可以在胶原蛋白转变期间减小超声换能器幅值。又如,控制电路可以增加超声换能器幅值,以测量弹性蛋白膝部发生时温度升高的速率。应当理解,随着接近弹性蛋白膝部,温度变化的速率将降低。
在另一个方面,控制算法可以被配置为检测胶原蛋白转变温度以识别所抓握组织的胶原蛋白/弹性蛋白百分比。如上所述,然后控制算法可以根据所识别的所抓握组织的组成来控制外科器械的各种操作参数。
图66为根据本公开的至少一个方面的识别胶原蛋白转变温度点以识别胶原蛋白/弹性蛋白比率的图形表示130350。竖直轴130352表示超声换能器阻抗,而水平轴130632表示组织温度。超声换能器阻抗的变化率偏移的点以经验确定的方式对应于组织的胶原蛋白/组织组成。例如,如果超声换能器阻抗的变化率在第一温度130362处偏移,则组织组成为100%胶原蛋白。相应地,如果超声换能器阻抗的变化率在第二温度130364处偏移,则组织组成为100%弹性蛋白。如果超声换能器阻抗的变化率在第一温度130362和第二温度130364之间偏移,则组织组成为胶原蛋白和弹性蛋白的混合物。
胶原蛋白转变温度可用于直接识别组织中的胶原蛋白/弹性蛋白百分比,并且控制算法可以被配置为相应地调节超声装置的操作。如图66中所示,曲线130356表示超声换能器阻抗和组织温度之间的经验关系。如由曲线130356所示,超声换能器的阻抗(Z)在组织接触区域处作为温度(T)的函数以第一变化率(斜率)线性增加。在曲线中的点130358处所示的胶原蛋白转变温度处,作为温度(T)的函数的阻抗变化率(Z)降低到第二变化率。在曲线130356的斜率改变的点130358处,胶原蛋白与弹性蛋白比率可以对应于经验确定的温度130360(例如,85%)。在一个方面,执行前述算法的控制电路或处理器可以被配置为确定超声换能器阻抗速率变化的温度,然后从存储器(例如,查询表)中检索对应的组织组成(例如,胶原蛋白百分比、弹性蛋白百分比或胶原蛋白/弹性蛋白比率)。
图67为根据本公开的至少一个方面的用于根据超声换能器阻抗的变化来识别组织的组成的过程130450的逻辑流程图。过程130450可以由位于例如外科器械或发生器中的处理器的控制电路执行。因此,控制电路监测130452作为温度(T)的函数的超声换能器的阻抗(Z)。如前所述,可通过本文描述的算法来推断组织和超声刀片的界面处的温度(T)。控制电路确定130454超声换能器阻抗的变化率ΔZ/ΔT。随着超声刀片/组织界面处的温度升高,阻抗(Z)以第一速率线性增加,如图66中所示。因此,控制电路确定130456斜率ΔZ/ΔT是否已经改变(例如,已经减小)。如果斜率ΔZ/ΔT没有改变,则过程130450沿着“否”分支进行并继续确定130454斜率ΔZ/ΔT。如果斜率ΔZ/ΔT已经改变,则控制电路确定130458已经达到胶原蛋白转变温度。
可通过监测组织的胶原蛋白转变点并将检测到的胶原蛋白转变点与查询表进行比较来确定弹性蛋白与胶原蛋白的比率。查找表可以存储在存储器(例如,图31的存储器3326)中,并且包含弹性蛋白与胶原蛋白的比率以及根据经验确定的特定比的对应胶原蛋白转变点。
根据组织位置调节夹持臂力
在各个方面,控制算法可以被配置为确定组织在端部执行器内或相对于端部执行器的位置,并相应地调节夹持臂力。在一个方面,可以通过测量夹持臂上的压缩力负载以及组织在钳口内的位置(例如,组织沿着超声刀片的长度定位的位置)来识别或参数化组织。在一个方面,测量夹持臂上达到初始测量的负载的时间,然后测量组织上的压缩率,以确定组织的可压缩性与位于整个钳口的长度上的组织的数量之间的关系。在进行负载控制时,监测夹持臂致动器的位置变化率,作为确定组织可压缩性并因此确定组织类型/疾病状态的方式。
图68为根据本公开的至少一个方面的超声刀片130404上的压缩负载的分布的图形表示130500。竖直轴130502表示由夹持臂1140施加到组织的力,而水平轴130504表示位置。超声刀片130404的尺寸被设定成使得沿着刀片的长度存在周期性的节点和波腹。节点/波腹的位置由超声换能器在超声刀片130404中引起的超声位移的波长确定。超声换能器由合适幅度和频率的电信号驱动。如本领域中已知的,节点是超声刀片130404的最小位移或零位移的点,而波腹是超声刀片130404的最大位移的点。
在图形表示130500中,超声刀片130404被表示为使得节点和波腹沿着水平轴130504与它们的对应位置对准。图形表示130500包括第一曲线130506和第二曲线130508。如由曲线130506、130508中的任一者所表示,施加到超声刀片130404的压缩力从超声刀片130404的近侧端部到超声刀片130404的远侧端部呈指数下降。因此,与位于更靠近超声刀片130404的近侧端部的组织130410相比,位于超声刀片130404的远侧端部的组织130410经受低得多的压缩力。第一曲线130506可以表示夹持臂1140的默认闭合,其中施加到远侧组织130410的合力为F1。通常,不能在没有考虑的情况下广泛地增加由夹持臂1140施加到组织130410的力的量,因为随后过多的力会施加到沿着超声刀片130404位于近侧的组织130410。然而,通过监测沿着超声刀片130404的组织130410的位置(例如,如上文在标题“通过阻抗变化确定组织位置”下和下文在标题“通过电极连续性确定组织位置”下所讨论的),与图68中所示的情况一样,在组织130410仅位于超声刀片130404的远侧端部的情况下,控制算法可以放大由夹持臂1140施加到组织130410的力。例如,第二曲线130508可以表示夹持臂1140的修改闭合,其中控制算法确定组织130410仅位于超声刀片130404的远侧端部处,并且对应地将由夹持臂1140施加到远侧组织130410的力增加到F2(F2>F1)。
图69为根据本公开的一个方面的施加到组织的压力与时间的关系的图形表示130520。竖直轴130522表示施加到组织的压力(例如,以N/mm2为单位),而水平轴130524表示时间。第一曲线130526表示在未放大的情况下施加到远侧组织130410的正常或默认压缩力。在夹持臂1140的默认闭合期间,施加到组织130410的压缩力在初始斜升期之后保持在恒定值。第二曲线130528表示施加到远侧组织130410以补偿仅存在远侧组织130410的放大压缩力。在夹持臂1140的修改闭合中,与默认闭合相比,压力增加130530,直到最终放大压缩力恢复130532到正常压缩水平,以防止烧穿/熔穿夹持臂1140垫。
通过电极连续性确定组织位置
在各个方面,控制算法可以被配置为根据跨沿着端部执行器的一个或多个钳口定位的双极(即,正和负)电极阵列上的电连续性来确定组织在端部执行器内或相对于端部执行器的位置。可通过双极电极阵列检测到的组织的位置可以对应于组织相对于一个或多个钳口的特定位置和/或被组织覆盖的一个或多个钳口的百分比。在一个方面,正电极和负电极被物理间隙隔开,使得当组织桥接正电极和负电极时在电极之间建立电连续性。正电极和负电极以矩阵或阵列配置,使得处理器或控制电路可以被配置为通过监测或扫描电极阵列来检测组织位于正电极和负电极之间的位置。在一个方面,双极电极阵列可以沿着端部执行器的一个钳口定位。因此,耦合到双极电极阵列的控制电路或处理器可以被配置为检测相邻电极之间的电连续性以检测与其抵靠的组织的存在。在另一方面,双极电极阵列可以沿着端部执行器的相对钳口定位。因此,耦合到双极电极阵列的控制电路或处理器可以被配置为检测相对钳口之间的电连续性,以检测在它们之间的组织的存在。
确定一个或多个钳口的哪个表面区域覆盖有组织允许控制算法针对端部执行器抓握的组织的量确定适当的接合压力,然后计算对应的夹持臂负载。夹持臂负载可以用施加的压力(例如,130-180psi)或施加的力(例如,3.5-5磅或标称4.5磅)表示。在一些方面,双极电极阵列可以从单极或双极RF电外科发生器向正电极和负电极递送功率。发生器功率输出可为多种常数、变量或最小值(例如,45W、35W或5W),与外科器械和/或发生器相关联的各种变量(例如,超声刀片的幅值或夹持臂力)的函数,或由用于根据其功率曲线控制发生器(例如,在发生器的斜升期间)的算法指定。
图70示出了根据本公开的至少一个方面的包括用于检测组织位置的单钳口电极阵列的端部执行器130400。在所描绘的方面,端部执行器130400包括第一钳口130430和第二钳口130432,该第一钳口具有设置在其上的电极阵列130431。电极阵列130431包括耦合到能量源诸如RF发生器的电极130429。端部执行器130400可以包括用于超声外科器械(其中第二钳口130432是例如超声刀片1128(图23))的端部执行器、用于电外科器械的端部执行器、用于外科缝合和切割器械的端部执行器等等。第二钳口130432可以包括例如超声刀片1128(图23)或电外科或外科缝合和切割器械的配合钳口。在所描绘的方面,电极阵列130431包括以大致人字形图案布置的12个电极130429;然而,电极阵列130431中的电极130429的数量、形状和布置仅出于例示目的。因此,电极阵列130431可以包括电极130429的各种数量、形状和/或布置。例如,可以根据用于检测组织位置的期望分辨率来调节电极130429的数量。
在一个方面,电极阵列130431可以包括电极130429,这些电极被物理间隙隔开并且极性交替或耦合到能量源的相对端子(即,供电端子和返回端子)。例如,在所描绘的方面,偶数编号的电极130429可以是第一极性(例如,正极性或耦合到功率源的供电端子),而奇数编号的电极130429可以是第二极性(例如,负极性或耦合到功率源的返回端子)。因此,当组织130410接触相邻电极130429时,组织130410以物理方式和电方式桥接双极电极130429并且允许电流在它们之间流动。可以通过由耦合到电极阵列130431的控制电路或处理器执行的控制算法来检测双极电极130429之间的电流流动,从而允许控制电路或处理器检测组织130410的存在。
电极阵列130431对组织的检测可以由激活矩阵以图形方式表示。例如,图71示出了指示根据图70中所描绘的电极阵列130431的组织130410的位置的激活矩阵130550。竖直轴130554和水平轴130555均表示电极阵列130431的电极130429,其中沿着轴130554、130555的数字表示对应编号的电极130429。激活区域130552指示对应电极130429之间存在连续性的地方,即存在组织130410的地方。在图70中,在第一电极、第二电极和第三电极130429上存在组织130410,并且如上所述,在一些方面,电极130429的极性可以交替。因此,在第一电极和第二电极130429与第二电极和第三电极130429之间存在电连续性。应当注意,在该描述的方面,第一电极和第三电极130429之间将不存在连续性,因为它们将具有相同的极性。这些电极130429之间的连续性由激活矩阵130550中的激活区域130552以图形方式表示。还应当注意,由激活区域130552界定的区域130553没有被表示为被激活,因为在该描述的方面,电极130429不能与其自身连续。由耦合到电极阵列130431的控制电路或处理器执行的控制算法可以被配置为推断组织130410在端部执行器130400内的位置(因为电极130429的位置是已知的)、端部执行器130400的被组织130410覆盖的钳口130430、130432的比例等等,因为组织位置对应于已经建立电连续性的特定电极130429。
图72示出了根据本公开的至少一个方面的包括用于检测组织位置的双钳口电极阵列的端部执行器130400。在所描绘的方面,端部执行器130400包括第一钳口130430和第二钳口130432,该第一钳口具有设置在其上的第一电极阵列130431,该第二钳口具有设置在其上的第二电极阵列130433。电极阵列130431、130433各自包括耦合到能量源诸如RF发生器的电极130429。端部执行器130400可以包括用于电外科器械的端部执行器、用于外科缝合和切割器械的端部执行器等等。如上所述,电极130429的数量、形状和/或布置可以在各个方面变化。例如,在图75中,电极阵列130431、130433以重叠的平铺或矩形图案布置。
在一个方面,电极阵列130431、130433的相对电极130429被物理间隙隔开,并且每个电极阵列130431、130433具有相反的极性或耦合到相对的端子(即,电供电端子和返回端子)。例如,在所描绘的方面,第一电极阵列130431可以是第一极性(例如,正极性或耦合到功率源的供电端子),而第二电极阵列130433可以是第二极性(例如,负极性或耦合到功率源的返回端子)。因此,当组织130410接触相对电极阵列130431、130433中的每一个的电极130429时,组织130410以物理方式和电方式桥接双极电极130429并允许电流在它们之间流动。可以通过由耦合到电极阵列130431、130433的控制电路或处理器执行的控制算法来检测双极电极130429之间的电流流动,从而允许控制电路或处理器检测组织130410的存在。
如上所述,激活矩阵可以以图形方式表示组织的存在。例如,图73示出了指示如图74中所描绘的组织130410的位置的激活矩阵130556。竖直轴130557表示第一电极阵列130431的电极130429,而水平轴130558表示第二电极阵列130433的电极130429,其中沿轴130557、130558的数字表示每个电极阵列130431、130433的对应编号的电极130429。激活区域130552指示对应电极130429之间存在连续性的地方,即存在组织130410的地方。在图74中,组织130410抵靠第一电极阵列130431的第一电极130431a、第二电极130431b和第三电极130431c以及第二电极阵列130433的第一电极130433a、第二电极130433b和第三电极130433c定位。因此,当电流可以在相对的电极阵列130431、130433的这些电极组之间流动时,在这些相对的电极组中的每一组之间存在电连续性。由于所抓握的组织130410的位置而在其间存在连续性的电极由图73的激活矩阵130556中的激活区域130552以图形方式表示。此外,因为组织130410未抵靠第一电极阵列130431的第四电极130431d、第五电极130431e和第六电极130431f以及第二电极阵列130433的第四电极130433d、第五电极130433e和第六电极130433f定位,所以这些电极之间没有电连续性。由耦合到电极阵列130431、130433的控制电路或处理器执行的控制算法可以被配置为推断组织130410在端部执行器130400内的位置(因为电极130429的位置是已知的,如图74中所示)、端部执行器130400的被组织130410覆盖的钳口130430、130432的比例等等,因为组织位置对应于已经建立电连续性的特定电极130429。在所描绘的示例中,第一电极阵列130431和第二电极阵列130433的激活电极是重叠的电极130429,并且在它们之间存在组织130410。
在另一方面,端部执行器可以被配置为以变化的频率传输多个信号或声脉冲,并且电极阵列可以耦合到电路,该电路包括可以各自通过频率变换检测一个或多个特定频率信号的信号的对应带通滤波器。电极阵列电路的各个部分可以包括调谐到不同频率的带通滤波器。因此,由端部执行器抓握的组织的位置对应于特定的检测到的信号。可以例如以非治疗频率(例如,以高于RF电外科器械的治疗频率范围的频率)传输信号。电极阵列电路可以包括例如柔性电路。
图75示出了根据本公开的至少一个方面的端部执行器130400,该端部执行器包括具有第一分段电极阵列130431的第一钳口130430以及具有第二分段电极阵列130433的第二钳口130432。此外,图76示出了覆盖第二钳口130432的由端部执行器130400抓握的组织130410。在一个方面,第一电极阵列130431被配置为以各种频率(例如,非治疗频率)传输信号,并且第二电极阵列130433被配置为接收通过由端部执行器130400抓握的组织130410的信号(即,当组织130410接触两个电极阵列130431、130433时)。如图77所示,第二电极阵列130433可以包括分段电极阵列电路130600,其中每个电路区段包括耦合到第二电极阵列130433的每个电极130602的带通滤波器130601。每个带通滤波器130601可以包括一个或多个电容器130604和一个或多个电感器130606,其中可以选择电容器130604和电感器130606的数量、布置和值以将每个带通滤波器130601调谐到特定频率或频带。由于组织130410充当电极阵列130431、130433之间的信号传导介质,并且第二电极阵列130433的不同部分被调谐为检测变化频率的信号(经由不同调谐的带通滤波器130601),因此由耦合到电极阵列130431、130433的控制电路或处理器执行的控制算法可以被配置为根据由此检测到的信号来推断组织130410的位置。在所描绘的方面,电极阵列130431、130433包括以大致平铺的图案布置且具有半圆形端部区段的六个电极区段130602;然而,电极阵列130431、130433中的电极130602的数量、形状和布置仅出于例示目的。因此,电极阵列130431、130433可以包括电极130602的各种数量、形状和/或布置。例如,可以根据用于检测组织位置的期望分辨率来调节电极130602的数量。
图78为根据本公开的至少一个方面的对应于图76中所抓握的组织130410的频率响应的图形表示130650。竖直轴130652表示幅值,而水平轴130654表示RF频率。在一个方面,第二电极阵列130433包括调谐到由第一中心频率fS1(例如,5MHz)定义的频带的第一电极电路区段130602a、调谐到由第二中心频率fS2(例如,10MHz)定义的频带的第二电极电路区段130602b、调谐到由第三中心频率fS3(例如,15MHz)定义的频带的第三电极电路区段130602c以及调谐到由第四中心频率fS4(例如,20MHz)定义的频带的第四电极电路区段130602d。如图78中所描绘,感测频带限定高于由fT1(例如,300kHz)至fT2(例如,500kHz)限定的治疗频率范围130656和/或优选的治疗频率(例如,350kHz)的感测频率范围130658。在一个方面,感测频率范围130658中的中心感测频率fS1、fS2、fS3、fS4各自相隔限定的频率值(例如,5MHz)。此外,尽管感测频率范围130658被示出为包括四个感测频带,但这仅出于例示目的。在所描绘的示例中,所抓握的组织130410正在接触第二电极电路区段130602b、第三电极电路区段130602c和第四电极电路区段130602d。因此,检测到的频率响应包括每个对应频率处的峰值130655b、130655c、130655d。因此,控制算法可以根据检测到的频率响应来推断组织130410的位置,即控制电路可以确定组织130410定位在端部执行器130400内,使得其与第二电极电路区段130602b、第三电极电路区段130602c和第四电极电路区段130602d,而不是与其它电路区段接触。因此,控制算法可以推断组织130410相对于端部执行器130400的钳口130430、130432的位置和/或与组织130410接触的钳口130430、130432的百分比。
自适应超声刀片温度监测
在一个方面,自适应超声刀片控制算法可用于基于超声刀片的温度来调节超声系统的各种操作参数。由自适应超声刀片控制算法控制或调节的操作参数可以包括例如超声刀片的幅值、驱动超声换能器的控制信号、由夹持臂施加的压力等等。自适应超声刀片控制算法可以由位于发生器或外科器械中的控制电路或处理器执行。
在下面更详细描述的一个示例中,自适应超声刀片控制算法动态地监测超声刀片的温度,并相应地调节超声刀片的幅值和/或提供给超声换能器的信号。在下面更详细描述的另一个示例中,自适应超声刀片控制算法动态地监测超声刀片的温度并相应地调节夹持臂压力。自适应超声刀片控制算法可以经由各种技术(诸如通过分析超声换能器的频谱,如上文在标题“温度推断”下所述)来测量超声刀片的温度。用于确定超声刀片温度的其它技术采用非接触式成像。这些和其它技术在本文中详细描述,并且另外的细节可以在标题为“智能能量装置(SMART ENERGY DEVICES)”的美国临时专利申请号62/692,768中找到。
根据温度调节超声系统参数
在一个方面,自适应超声刀片控制算法可以被配置为基于超声刀片的温度来调节超声系统的操作参数。如上文在标题“温度推断”下所讨论的,超声刀片/换能器的自然频率随温度移动,因此可以根据被施加以驱动超声换能器的电压信号和电流信号之间的相位角来推断超声刀片的温度。此外,超声刀片温度对应于组织温度。在一些方面,自适应超声刀片控制算法可以被配置为检测超声刀片温度并根据该温度来调制外科器械的操作参数。操作参数可以包括例如超声换能器驱动信号的频率、超声刀片的幅值(其可以例如对应于提供给超声换能器的电流的量值或幅值)、由夹持臂施加的压力等等。自适应超声刀片控制算法可以由位于发生器或外科器械中的控制电路或处理器执行。
因此,在一个方面,自适应超声刀片控制算法检测超声刀片的谐振频率(如前文在标题“温度推断”下所述),然后监测随时间变化的谐振频率,以检测谐振频率波形的模态偏移。谐振波形的偏移可以与系统变化的发生(诸如超声刀片温度的升高)相关。在一些方面,自适应超声刀片控制算法可以被配置为调节超声驱动信号的幅度,并因此调节超声刀片位移的幅度,以测量组织的温度。在其它方面,自适应超声刀片控制算法可以被配置为根据超声刀片和/或组织的温度来控制超声驱动信号的幅度,并因此控制超声刀片位移的幅度,以将超声刀片和/或组织的温度保持在预定温度处或预定阈值内(例如,如果超声刀片的温度变得过高,则允许超声刀片冷却)。在其它方面,自适应超声刀片控制算法可以被配置为调制电外科器械的RF功率和波形,以例如根据组织阻抗、组织温度和/或超声刀片温度来最小化温度过冲或改变超声刀片热通量。例如,已经参考图95-100描述了关于这些和其它功能的更多细节。
图79为根据本公开的至少一个方面的作为驱动频率和超声刀片温度漂移的函数的超声换能器系统的频率的图形表示130700。水平轴130704表示施加到超声系统(例如,超声换能器和/或超声刀片)的驱动频率(例如,以Hz为单位),并且竖直轴130702表示所得阻抗相位角(例如,以rad为单位)。第一曲线130706表示在正常或环境温度处超声系统的特征谐振波形。如在第一曲线130706中可以看出,超声系统在以激励频率fe驱动时是同相的(因为阻抗相位角为0rad或接近0rad)。因此,fe表示在环境温度处超声系统的谐振频率。第二曲线130708表示当已经升高超声系统的温度时超声系统的特征波形。如图79中所示,随着超声系统的温度升高,超声刀片和超声换能器的特征波形(由第一曲线130706所描绘)向左偏移例如到更低的频率范围。由于超声系统频率波形偏移,超声系统在以激励频率fe驱动时不再是同相的。相反,谐振频率已经偏移降低为f'e。因此,耦合到超声系统的控制电路可以通过检测超声系统的谐振频率的变化和/或检测超声系统在以先前确定的谐振频率驱动时何时是异相的来检测或推断超声系统的温度变化。
因此,在一些方面,耦合到超声系统的控制电路可以被配置为根据所推断的超声系统的温度来控制由发生器施加到超声系统的驱动信号,以保持超声系统同相。保持超声系统同相可以用于例如控制超声系统的温度。如上所述,随着超声刀片和/或超声换能器的温度升高,电压和电流信号处于同相的谐振频率从正常温度处的fe(例如,55.5kHz)转换为f'e。因此,随着超声系统的温度升高,控制电路可以控制发生器将驱动超声系统的频率从fe转换为f'e,以将超声系统与发生器驱动信号保持同相。对于自适应超声刀片控制算法的其它描述,请参见上文与图43A-54相关的描述。
图80为根据本公开的至少一个方面的作为时间的函数的超声换能器的温度的图形表示130750。竖直轴130752表示超声换能器的温度,而水平轴130754表示时间。在一个方面,当超声换能器温度(由曲线130756表示)达到或超过温度阈值T1时,自适应超声刀片控制算法控制超声换能器将超声换能器的温度维持在阈值温度T1处或低于该阈值温度。自适应超声刀片控制算法可以例如通过调制施加到超声换能器的功率和/或驱动信号来控制超声换能器的温度。用于控制超声刀片/换能器温度的算法和技术的其它描述可以在标题“反馈控制”和“具有温度控制的超声密封算法”以及在2018年3月8日提交的美国临时专利申请号62/640,417(标题为“超声装置中的温度控制及其控制系统(TEMPERATURE CONTROL INULTRASONIC DEVICE AND CONTROL SYSTEM THEREFOR)”,其公开内容以引用方式据此并入本文)中发现。
图81为根据本公开的至少一个方面的作为超声刀片的温度的函数的基于移动谐振频率的超声刀片的温度的谐振频率的模态偏移的图形表示。在第一曲线130800中,竖直轴130802表示谐振频率(Δf)的变化,而水平轴130804表示发生器的超声换能器驱动频率。在第二曲线130810、第三曲线130820和第四曲线130830中,竖直轴130812、130822、130832分别表示频率(f)、电流(I)和温度(T),而水平轴130814、130824、130834表示时间(t)。第一曲线130810表示由于温度变化引起的超声系统的频移。第二曲线130820表示超声换能器中的电流或幅度调整,以便保持稳定的频率和温度。第三曲线130830表示组织和/或超声系统的温度变化。该组曲线130800、130810、130820、130830一起展示被配置为控制超声系统的温度的控制算法的功能。
控制算法可以被配置为在超声系统的温度接近温度阈值T1时控制超声系统(例如,超声换能器和/或超声刀片)。在一个方面,控制算法可以被配置为根据超声系统的谐振频率是否已经下降阈值ΔfR来确定接近或已经达到温度阈值T1。如第一曲线130800所示,对应于阈值温度T1的频率阈值变化ΔfR可以反过来是超声系统的驱动频率fD的函数(由曲线130806表示)。如第二曲线130810和第四曲线130830所示,随着组织和/或超声刀片的温度升高(由温度曲线130836表示),谐振频率相应地降低(由频率曲线130816表示)。当温度曲线130836在时间t1处接近温度阈值T1(例如,130℃)时,谐振频率已经从f1下降到f2,使谐振频率达到控制算法的频率阈值变化ΔfR,从而使控制算法起作用以稳定超声系统温度。因此通过监测超声系统的谐振频率变化,自适应超声刀片控制算法可以监测超声系统的温度。此外,自适应超声刀片控制算法可以被配置为调节(例如,减小)施加到超声换能器的电流或者以其它方式调节超声刀片的幅值(由电流曲线130826表示),以在温度达到或超过阈值T1时稳定组织和/或超声刀片温度和/或谐振频率。
在另一方面,自适应超声刀片控制算法可以被配置为在温度达到或超过阈值T1时调节(例如,减小)由夹持臂施加到组织的压力。在各个其它方面,自适应超声刀片控制算法可以被配置为根据温度来调节与超声系统相关联的多种其它操作参数。在另一方面,自适应超声刀片控制算法可以被配置为监测多个温度阈值。例如,第二温度阈值T2可以表示例如夹持臂的熔融温度或失效温度。因此,自适应超声刀片控制算法可以被配置为根据已经达到或超过的特定温度阈值采取相同或不同的动作。
在各个方面,除了或代替前述技术,可采用非接触式成像来确定超声刀片的温度。例如,可采用短波热成像法来通过经由CMOS成像传感器从静止的周围地面对刀片进行成像来测量叶片温度。可采用超声波导或超声刀片温度的热成像非接触式监测来控制组织温度。在其它方面,可采用非接触式成像来确定超声刀片的表面状况和饰面,以通过近IR检测技术来改善组织和/或超声刀片的温度。
确定钳口状态
超声能量递送的挑战在于,在错误的材料或错误的组织上施加超声声音会导致装置失效,例如夹臂垫烧穿或超声刀片断裂。还希望在不在钳口中添加附加传感器的情况下检测什么位于超声装置的端部执行器的钳口中以及钳口的状态。将传感器定位在超声端部执行器的钳口中具有可靠性、成本和复杂性方面的挑战。
根据本公开的至少一个方面,可采用超声光谱智能刀片算法技术基于被配置为驱动超声换能器刀片的超声换能器的阻抗来估计钳口的状态(夹持臂垫烧穿、钉、断裂刀片、钳口中的骨、钳口中的组织、钳口闭合时的背切等)。绘制阻抗Za(t)、量值|Z|和相位作为频率f的函数。
动态力学分析(DMA,也称为动态力学光谱学或简称为力学光谱学)是一种用于研究和表征材料的技术。将正弦应力施加到材料上,并测量材料中的应变,从而可以确定材料的复数模量。应用于超声装置的光谱学包括通过频率扫描(复合信号或传统频率扫描)来激发超声刀片的末端,以及测量在每个频率下产生的复阻抗。将超声换能器在一定频率范围内的复阻抗测量值用于分类器或模型中,以推断超声端部执行器的特征。在一个方面,本公开提供了一种用于确定超声端部执行器(夹持臂、钳口)的状态以驱动超声装置中的自动化(诸如禁用功率以保护装置、执行自适应算法、检索信息、识别组织等)的技术。
图82为根据本公开的至少一方面的具有端部执行器的多种不同状态和状况的超声装置的光谱132030,其中阻抗Zg(t)、量值|Z|和相位被绘制为频率f的函数。光谱图132030在三维空间中绘制,其中频率(Hz)沿x轴绘制,相位(Rad)沿y轴绘制,量值(欧姆)沿z轴绘制。
在不同条件和状态的频率范围内,对不同钳口咬合和装置状态的频谱分析会产生不同的复杂阻抗特征图案(指纹)。当绘制时,每个状态或条件在3D空间中都具有不同的特征图案。这些特征图案可用于估计端部执行器的条件和状态。图82示出了空气132032、夹持臂垫132034、羚羊皮132036、钉132038和断裂刀片132040的光谱。羚羊皮132036可用于表征不同类型的组织。
可以通过在超声换能器上施加低功率电信号以产生超声刀片的非治疗激发来评估光谱图132030。低功率电信号可以以扫描或复合傅立叶级数的形式施加,以使用FFT在串联(扫描)或并联(复合信号)频率范围内测量超声换能器上的阻抗
新数据的分类方法
对于每种特征图案,可以将参数线拟合为使用多项式、傅立叶级数或方便的任何其它形式的参数公式进行训练所使用的数据。然后接收新的数据点,并通过使用从该新的数据点到已拟合为特征图案训练数据的轨迹的欧几里得垂直距离度该新的数据点进行分类。该新的数据点到每个轨迹(每个轨迹表示不同状态或状况)的垂直距离用于将该点分配给某一状态或状况。
可以将训练数据中每个点到拟合曲线的距离的概率分布用于估计正确分类的新数据点的概率。这实质上在拟合轨迹的每个新数据点处在垂直于拟合轨迹的平面中构造了二维概率分布。然后,可以基于新数据点的正确分类概率将该新数据点包括在训练集中,以形成自适应学习分类器,该分类器可以轻松检测状态的高频变化,但可以适应系统性能缓慢发生的偏差,诸如装置变脏或垫磨损。
图83为根据本公开的至少一个方面的一组3D训练数据集(S)的曲线图132042的图形表示,其中超声换能器阻抗Zg(t)、量值|Z|和相位被绘制为频率f的函数。3D训练数据集(S)曲线132042在三维空间中以图形方式描绘,其中相位(Rad)沿x轴绘制,频率(Hz)沿y轴绘制,量值(欧姆)沿z轴绘制,并且参数傅立叶级数被拟合到3D训练数据集(S)。用于数据分类的方法基于3D训练数据集(S0用于生成曲线图132042)。
拟合到3D训练数据集(S)的参数傅立叶级数由下式给出:
对于新的点从到的垂直距离为:
当:
则:
D=D⊥
可以将D的概率分布用于估计属于组S的数据点的概率。
控制
基于在激活超声换能器/超声刀片之前、期间或之后测量的数据分类,可以实现多种自动化任务和安全措施。类似地,也可以在一定程度上推断位于端部执行器中的组织的状态以及超声刀片的温度,并将它们用于更好地向用户通知超声装置的状态或保护关键结构等。在提交于2018年3月8日的共同拥有的美国临时专利申请号62/640,417(其标题为超声装置中的温度控制及其控制系统(TEMPERATURE CONTROL IN ULTRASONIC DEVICE ANDCONTROL SYSTEM THEREFOR),其以引用方式全文并入本文)中描述了超声刀片的温度控制。
类似地,当超声刀片极有可能接触夹持臂垫时(例如,它们之间没有组织),或者如果超声刀片有可能已经断裂或超声刀片有可能接触金属(例如,钉),则可以减少功率递送。此外,如果钳口闭合并且在超声刀片和夹持臂垫之间没有检测到任何组织,则不允许反向切割。
整合其它数据以改进分类
可以将该系统与传感器、用户、患者指标、环境因素等提供的其它信息结合使用,方式是通过使用概率函数和卡尔曼滤波器将来自该过程的数据与上述数据进行组合。给定不同置信度的大量不确定测量结果,卡尔曼滤波器确定状态或状况发生的最大可能性。由于该方法允许将概率分配给新分类的数据点,因此该算法的信息可以利用卡尔曼滤波器中的其它测量值或估计值来实现。
图84为根据本公开的至少一个方面的描绘基于复阻抗特征图案(指纹)来确定钳口状况的控制程序或逻辑配置的逻辑流程图132044。在基于复阻抗特征图案(指纹)确定钳口状况之前,用参考复阻抗特征图案或表征各种钳口状况的训练数据集(S)(包括但不限于如图82中所示的空气132032、夹持臂垫132034、羚羊皮132036、钉132038、断裂刀片132040,以及多种组织类型和状况)填充数据库。可将羚羊皮(干燥或湿润、全字节或末端)用于表征不同类型的组织。如下获得用于生成参考复阻抗特征图案或训练数据集(S)的数据点:通过向超声换能器施加子治疗驱动信号,将驱动频率在预定范围频率内从低于共振扫描到高于共振,测量每个频率下的复阻抗并记录数据点。然后使用多种数值方法(包括多项式曲线拟合、傅立叶级数和/或参数公式)将数据点拟合为曲线。本文描述了拟合为参考复阻抗特征图案或训练数据集(S)的参数傅里叶级数。
一旦生成参考复阻抗特征图案或训练数据集(S),超声器械就测量新的数据点,对新的点进行分类,并确定是否应将新的数据点添加到参考复阻抗特征图案或训练数据集(S)。
现在转到图84的逻辑流程图,在一个方面,处理器或控制电路测量132046超声换能器的复阻抗,其中复阻抗定义为处理器或控制电路接收132048复阻抗测量数据点,并将该复阻抗测量数据点与参考复阻抗特征图案中的数据点进行比较132050。处理器或控制电路基于比较分析的结果对该复阻抗测量数据点进行分类132052,并基于比较分析的结果分配132054端部执行器的状态。
在一个方面,处理器或控制电路从联接到处理器的数据库或存储器接收参考复阻抗特征图案。在一个方面,处理器或控制电路如下生成参考复阻抗特征图案。联接到处理器或控制电路的驱动电路向超声换能器施加非治疗驱动信号,该非治疗驱动信号以初始频率开始,以最终频率结束,并且处于其间的多个频率下。处理器或控制电路测量每个频率下的超声换能器的阻抗,并存储与每个阻抗测量值相对应的数据点。处理器或控制电路曲线拟合多个数据点,以生成表示参考复阻抗特征图案的三维曲线,其中量值|Z|和相位被绘制为频率f的函数。曲线拟合包括多项式曲线拟合、傅立叶级数和/或参数公式。
在一个方面,处理器或控制电路接收新的阻抗测量数据点,并使用从该新的阻抗测量数据点到已拟合为参考复阻抗特征图案的轨迹的欧几里得垂直距离来对该新的阻抗测量数据点进行分类。处理器或控制电路估计对新的阻抗测量数据点进行正确分类的概率。处理器或控制电路基于所估计的对新的阻抗测量数据点进行正确分类的概率将新的阻抗测量数据点添加到参考复阻抗特征图案。在一个方面,处理器或控制电路基于训练数据集(S)对数据进行分类,其中训练数据集(S)包括多个复阻抗测量数据,并且曲线使用参数傅里叶级数来拟合训练数据集(S),其中S在本文定义,并且其中将概率分布用于估计属于组S的新的阻抗测量数据点的概率。
关于确定或估计钳口或整体外科器械的状态的其它细节可以在标题为“智能能量装置(SMART ENERGY DEVICES)”的美国临时专利申请号62/692,768中找到。
态势感知
现在参见图85,其示出了例如描绘集线器诸如外科集线器106或206(图1-11)的态势感知的时间轴5200。时间轴5200是说明性的外科规程以及外科集线器106、206可以从外科规程中每个步骤从数据源接收的数据导出的背景信息。时间轴5200描绘了护士、外科医生和其它医疗人员在肺段切除规程期间将采取的典型步骤,从建立手术室开始到将患者转移到术后恢复室为止。
态势感知外科集线器106、206在整个外科规程过程中从数据源接收数据,包括每次医疗人员利用与外科集线器106、206配对的模块化装置时生成的数据。外科集线器106、206可以从配对的模块化装置和其它数据源接收该数据,并且在接收新数据时不断导出关于正在进行的规程的推论(即,背景信息),诸如在任何给定时间执行规程的哪个步骤。外科集线器106、206的态势感知系统能够例如记录与用于生成报告的过程相关的数据,验证医务人员正在采取的步骤,提供可能与特定过程步骤相关的数据或提示(例如,经由显示屏),基于背景调节模块化装置(例如,激活监测器,调节医学成像装置的视场(FOV),或者改变超声外科器械或RF电外科器械的能量水平),以及采取上述任何其它此类动作。
作为该示例性规程中的第一步5202,医院工作人员从医院的EMR数据库中检索患者的EMR。基于EMR中的选择的患者数据,外科集线器106、206确定待执行的规程是胸腔规程。
第二步5204,工作人员扫描用于规程的进入的医疗用品。外科集线器106、206与在各种类型的规程中使用的用品列表交叉引用扫描的用品,并确认供应的混合物对应于胸腔规程。另外,外科集线器106、206还能够确定规程不是楔形规程(因为进入的用品缺乏胸腔楔形规程所需的某些用品,或者在其它方面不对应于胸腔楔形规程)。
第三步5206,医疗人员经由可通信地连接到外科毂集线器106、206的扫描器来扫描患者带。然后,外科集线器106、206可基于所扫描的数据来确认患者的身份。
第四步5208,医务工作人员打开辅助设备。所利用的辅助设备可根据外科规程的类型和外科医生待使用的技术而变化,但在此示例性情况下,它们包括排烟器、吹入器和医学成像装置。当激活时,作为其初始化过程的一部分,作为模块化装置的辅助设备可以自动与位于模块化装置特定附近的外科集线器106、206配对。然后,外科集线器106、206可通过检测在该术前阶段或初始化阶段期间与其配对的模块化装置的类型来导出关于外科规程的背景信息。在该具体示例中,外科集线器106、206确定外科规程是基于配对模块化装置的该特定组合的VATS规程。基于来自患者的EMR的数据的组合,规程中使用的医疗用品的列表以及连接到集线器的模块化装置的类型,外科集线器106、206通常可推断外科小组将执行的具体规程。一旦外科集线器106、206知道正在执行什么具体规程,则外科集线器106、206便可从存储器或云中检索该规程的步骤,并且然后交叉参照其随后从所连接的数据源(例如,模块化装置和患者监测装置)接收的数据,以推断外科团队正在执行的外科规程的什么步骤。
第五步5210,工作人员成员将EKG电极和其它患者监测装置附接到患者。EKG电极和其它患者监测装置能够与外科集线器106、206配对。当外科集线器106、206开始从患者监测装置接收数据时,外科集线器106、206因此确认患者在手术室中。
第六步5212,医疗人员诱导患者麻醉。外科集线器106、206可基于来自模块化装置和/或患者监测装置的数据(包括例如EKG数据、血压数据、呼吸机数据、或它们的组合)推断患者处于麻醉下。在第六步5212完成时,肺分段切除规程的术前部分完成,并且手术部分开始。
第七步5214,折叠正在操作的患者肺部(同时通气切换到对侧肺)。例如,外科集线器106、206可从呼吸机数据推断出患者的肺已经塌缩。外科集线器106、206可推断规程的手术部分已开始,因为其可将患者的肺部塌缩的检测与规程的预期步骤(可先前访问或检索)进行比较,从而确定使肺塌缩是该特定规程中的手术步骤。
第八步5216,插入医疗成像装置(例如,内窥镜),并启动来自医疗成像装置的视频。外科集线器106、206通过其与医疗成像装置的连接来接收医疗成像装置数据(即,视频或图像数据)。在接收到医疗成像装置数据之后,外科集线器106、206可确定外科规程的腹腔镜式部分已开始。另外,外科集线器106、206可确定正在执行的特定规程是分段切除术,而不是叶切除术(注意,楔形规程已经基于外科集线器106、206基于在规程的第二步5204处所接收的数据而排除)。来自医疗成像装置124(图2)的数据可用于以多种不同的方式确定与正在执行的规程类型相关的背景信息,包括通过确定医疗成像装置相对于患者解剖结构的可视化取向的角度,监测所利用的医疗成像装置的数量(即,被激活并与外科集线器106、206配对),以及监测所利用的可视化装置的类型。例如,一种用于执行VATS肺叶切除术的技术将摄像机放置在隔膜上方的患者胸腔的下前拐角中,而一种用于执行VATS分段切除术的技术将摄像机相对于分段裂缝放置在前肋间位置。例如,使用模式识别或机器学习技术,可对态势感知系统进行训练,以根据患者解剖结构的可视化识别医疗成像装置的定位。作为另一个示例,一种用于执行VATS肺叶切除术的技术利用单个医疗成像装置,而用于执行VATS分段切除术的另一种技术利用多个摄像机。作为另一示例,一种用于执行VATS分段切除术的技术利用红外光源(其可作为可视化系统的一部分可通信地耦合到外科集线器)以可视化不用于VATS肺部切除术中的分段裂隙。通过从医疗成像装置跟踪这些数据中的任何或所有,外科集线器106、206因此可确定正在进行的外科规程的具体类型和/或用于特定类型的外科规程的技术。
第九步5218,外科团队开始规程的解剖步骤。外科集线器106、206可推断外科医生正在解剖以调动患者的肺,因为其从RF发生器或超声发生器接收指示正在击发能量器械的数据。外科集线器106、206可将所接收的数据与外科规程的检索步骤交叉,以确定在过程中的该点处(即,在先前讨论的规程步骤完成之后)击发的能量器械对应于解剖步骤。在某些情况下,能量器械可为安装到机器人外科系统的机械臂的能量工具。
第十步5220,外科团队继续进行规程的结扎步骤。外科集线器106、206可推断外科医生正在结扎动脉和静脉,因为其从外科缝合和切割器械接收指示器械正在被击发的数据。与先前步骤相似,外科集线器106、206可通过将来自外科缝合和切割器械的数据的接收与该过程中的检索步骤进行交叉引用来推导该推论。在某些情况下,外科器械可以是安装到机器人外科系统的机器人臂的外科工具。
第十一步5222,执行规程的分段切除术部分。外科集线器106、206可推断外科医生正在基于来自外科缝合和切割器械的数据(包括来自其仓的数据)横切软组织。仓数据可对应于例如由器械击发的钉的大小或类型。由于不同类型的钉用于不同类型的组织,因此仓数据可指示正被缝合和/或横切的组织的类型。在这种情况下,被击发的钉的类型用于软组织(或其它类似的组织类型),这允许外科集线器106、206推断规程的分段切除术部分正在进行。
然后执行第十二步5224节点解剖步骤。外科集线器106、206可基于从发生器接收的指示正在击发RF或超声器械的数据来推断外科团队正在解剖节点并且执行泄漏测试。对于该特定规程,在横切软组织后使用的RF或超声器械对应于节点解剖步骤,该步骤允许外科集线器106、206进行此类推论。应当指出的是,外科医生根据规程中的具体步骤定期在外科缝合/切割器械和外科能量(即,RF或超声)器械之间来回切换,因为不同器械更好地适于特定任务。因此,其中使用缝合/切割器械和外科能量器械的特定序列可指示外科医生正在执行的规程的步骤。此外,在某些情况下,机器人工具可用于外科规程中的一个或多个步骤,并且/或者手持式外科器械可用于外科规程中的一个或多个步骤。一个或多个外科医生可例如在机器人工具和手持式外科器械之间交替和/或可同时使用装置。在第十二步5224完成时,切口被闭合并且规程的术后部分开始。
第十三步5226,反向麻醉患者。例如,外科集线器106、206可基于例如呼吸机数据(即,患者的呼吸率开始增加)推断出患者正在从麻醉中醒来。
最后,第十四步5228是医疗人员从患者移除各种患者监测装置。因此,当集线器从患者监测装置丢失EKG、BP和其它数据时,外科集线器106、206可推断患者正在被转移到恢复室。如从该示例性规程的描述可以看出,外科集线器106、206可根据从可通信地耦合到外科集线器106、206的各种数据源接收的数据来确定或推断给定外科规程的每个步骤何时发生。
态势感知在2018年4月19日提交的美国临时专利申请序列号62/659,900(标题为集线器通信的方法(METHOD OF HUB COMMUNICATION),其以引用方式全文并入本文)中进一步描述。在某些情况下,机器人外科系统(包括本文所公开的各种机器人外科系统)的操作可由集线器106、206基于其态势感知和/或来自其部件的反馈和/或基于来自云102的信息来控制。
尽管已举例说明和描述了多个形式,但是申请人的意图并非将所附权利要求的范围约束或限制在此类细节中。在不脱离本公开的范围的情况下,可实现对这些形式的许多修改、变化、改变、替换、组合和等同物,并且本领域技术人员将想到这些形式的许多修改、变化、改变、替换、组合和等同物。此外,另选地,可将与所描述的形式相关联的每个元件的结构描述为用于提供由所述元件执行的功能的器件。另外,在公开了用于某些部件的材料的情况下,也可使用其它材料。因此,应当理解,上述具体实施方式和所附权利要求旨在涵盖属于本发明所公开的形式范围内的所有此类修改形式、组合和变型形式。所附权利要求旨在涵盖所有此类修改、变化、改变、替换、修改和等同物。
上述具体实施方式已经由使用框图、流程图和/或示例阐述了装置和/或方法的各种形式。只要此类框图、流程图和/或示例包含一个或多个功能和/或操作,本领域的技术人员就要将其理解为此类框图、流程图和/或示例中的每个功能和/或操作都可以单独和/或共同地通过多种硬件、软件、固件或实际上它们的任何组合来实施。本领域的技术人员将会认识到,本文公开的形式中的一些方面可作为在一台或多台计算机上运行的一个或多个计算机程序(如,作为在一个或多个计算机系统上运行的一个或多个程序),作为在一个或多个处理器上运行的一个或多个程序(如,作为在一个或多个微处理器上运行的一个或多个程序),作为固件,或作为实际上它们的任何组合全部或部分地在集成电路中等效地实现,并且根据本发明,设计电子电路和/或编写软件和/或硬件的代码将在本领域技术人员的技术范围内。另外,本领域的技术人员将会认识到,本文所述主题的机制能够作为多种形式的一个或多个程序产品进行分布,并且本文所述主题的示例性形式适用,而不管用于实际进行分布的信号承载介质的具体类型是什么。
用于编程逻辑以执行各种所公开的方面的指令可存储在系统内的存储器内,诸如动态随机存取存储器(DRAM)、高速缓存、闪存存储器或其它存储器。此外,指令可经由网络或通过其它计算机可读介质来分发。因此,机器可读介质可包括用于存储或传输以机器(例如,计算机)可读形式的信息的机构,但不限于软盘、光学盘、光盘、只读存储器(CD-ROM)、磁光盘、只读存储器(ROM)、随机存取存储器(RAM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、磁卡或光卡、闪存存储器、或经由电信号、光学信号、声学信号或其它形式的传播信号(例如,载波、红外信号、数字信号等)在因特网上传输信息时使用的有形的、机器可读存储装置。因此,非暂态计算机可读介质包括适于以机器(例如,计算机)可读的形式存储或传输电子指令或信息的任何类型的有形机器可读介质。
如本文任一方面所用,术语“控制电路”可指例如硬连线电路系统、可编程电路系统(例如,计算机处理器,该计算机处理器包括一个或多个单独指令处理内核、处理单元,处理器、微控制器、微控制器单元、控制器、数字信号处理器(DSP)、可编程逻辑装置(PLD)、可编程逻辑阵列(PLA)、场可编程门阵列(FPGA))、状态机电路系统、存储由可编程电路系统执行的指令的固件、以及它们的任何组合。控制电路可以集体地或单独地实现为形成更大系统的一部分的电路系统,例如集成电路(IC)、专用集成电路(ASIC)、片上系统(SoC)、台式计算机、膝上型计算机、平板计算机、服务器、智能电话等。因此,如本文所用,“控制电路”包括但不限于具有至少一个离散电路的电子电路、具有至少一个集成电路的电子电路、具有至少一个专用集成电路的电子电路、形成由计算机程序配置的通用计算设备的电子电路(如,至少部分地实施本文所述的方法和/或设备的由计算机程序配置的通用计算机,或至少部分地实施本文所述的方法和/或设备的由计算机程序配置的微处理器)、形成存储器设备(如,形成随机存取存储器)的电子电路,和/或形成通信设备(如,调节解调器、通信开关或光电设备)的电子电路。本领域的技术人员将会认识到,可以模拟或数字方式或它们的一些组合实施本文所述的主题。
如本文的任何方面所用,术语“逻辑”可指被配置为执行前述操作中的任一者的应用程序、软件、固件和/或电路系统。软件可体现为记录在非暂态计算机可读存储介质上的软件包、代码、指令、指令集和/或数据。固件可体现为在存储器装置中硬编码(例如,非易失性)的代码、指令或指令集和/或数据。
如本文任一方面所用,术语“部件”、“系统”、“模块”等可指计算机相关实体、硬件、硬件和软件的组合、软件或执行中的软件。
如本文任一方面中所用,“算法”是指导致所需结果的有条理的步骤序列,其中“步骤”是指物理量和/或逻辑状态的操纵,物理量和/或逻辑状态可(但不一定)采用能被存储、转移、组合、比较和以其它方式操纵的电或磁信号的形式。常用于指这些信号,如位、值、元素、符号、字符、术语、数字等。这些和类似的术语可与适当的物理量相关联并且仅仅是应用于这些量和/或状态的方便的标签。
网络可包括分组交换网络。通信装置可能够使用所选择的分组交换网络通信协议来彼此通信。一个示例性通信协议可包括可允许使用传输控制协议/因特网协议(TCP/IP)进行通信的以太网通信协议。以太网协议可符合或兼容电气和电子工程师学会(IEEE)于2008年12月发布的名为“IEEE 802.3标准”的以太网标准和/或本标准的更高版本。另选地或附加地,通信装置可能够使用X.25通信协议彼此通信。X.25通信协议可符合或符合国际电信联盟电信标准化部门(ITU-T)颁布的标准。另选地或附加地,通信装置可能够使用帧中继通信协议彼此通信。帧中继通信协议可符合或符合国际电话和电话协商委员会(CCITT)和/或美国国家标准学会(ANSI)发布的标准。另选地或附加地,收发器可能够使用异步传输模式(ATM)通信协议彼此通信。ATM通信协议可符合或兼容ATM论坛于2001年8月发布的名为“ATM-MPLS网络互通2.0”的ATM标准和/或该标准的更高版本。当然,本文同样设想了不同的和/或之后开发的连接取向的网络通信协议。
除非上述公开中另外明确指明,否则可以理解的是,在上述公开中,使用术语如“处理”、“估算”、“计算”、“确定”、“显示”的讨论是指计算机系统或类似的电子计算装置的动作和进程,其操纵表示为计算机系统的寄存器和存储器内的物理(电子)量的数据并将其转换成相似地表示为计算机系统存储器或寄存器或其它此类信息存储、传输或显示装置内的物理量的其它数据。
一个或多个部件在本文中可被称为“被配置为”、“可配置为”、“可操作/可操作地”、“适于/可适于”、“能够”、“可适形/适形于”等。本领域的技术人员将会认识到,除非上下文另有所指,否则“被配置为”通常可涵盖活动状态的部件和/或未活动状态的部件和/或待机状态的部件。
术语“近侧”和“远侧”在本文中是相对于操纵外科器械的柄部部分的临床医生来使用的。术语“近侧”是指最靠近临床医生的部分,术语“远侧”是指远离临床医生定位的部分。还应当理解,为简洁和清楚起见,本文可结合附图使用诸如“竖直”、“水平”、“上”和“下”等空间术语。然而,外科器械在许多方向和位置中使用,并且这些术语并非限制性的和/或绝对的。
本领域的技术人员将认识到,一般而言,本文、以及特别是所附权利要求(例如,所附权利要求的正文)中所使用的术语通常旨在为“开放”术语(例如,术语“包括”应解释为“包括但不限于”,术语“具有”应解释为“至少具有”,术语“包含”应解释为“包含但不限于”等)。本领域的技术人员还应当理解,如果所引入权利要求叙述的具体数目为预期的,则这样的意图将在权利要求中明确叙述,并且在不存在这样的叙述的情况下,不存在这样的意图。例如,为有助于理解,下述所附权利要求可含有对介绍性短语“至少一个”和“一个或多个”的使用以引入权利要求。然而,对此类短语的使用不应视为暗示通过不定冠词“一个”或“一种”引入权利要求表述将含有此类引入权利要求表述的任何特定权利要求限制在含有仅一个这样的表述的权利要求中,甚至当同一权利要求包括介绍性短语“一个或多个”或“至少一个”和诸如“一个”或“一种”(例如,“一个”和/或“一种”通常应解释为意指“至少一个”或“一个或多个”)的不定冠词时;这也适用于对用于引入权利要求表述的定冠词的使用。
另外,即使明确叙述引入权利要求叙述的特定数目,本领域的技术人员应当认识到,此种叙述通常应解释为意指至少所叙述的数目(例如,在没有其它修饰语的情况下,对“两个叙述”的裸叙述通常意指至少两个叙述、或两个或更多个叙述)。此外,在其中使用类似于“A、B和C中的至少一者等”的惯例的那些情况下,一般而言,此类构造意在具有本领域的技术人员将理解所述惯例的意义(例如,“具有A、B和C中的至少一者的系统”将包括但不限于具有仅A、仅B、仅C、A和B一起、A和C一起、B和C一起和/或A、B和C一起等的系统)。在其中使用类似于“A、B或C中的至少一者等”的惯例的那些情况下,一般而言,此类构造意在具有本领域的技术人员将理解所述惯例的意义(例如,“具有A、B或C中的至少一者的系统”应当包括但不限于具有仅A、仅B、仅C、A和B一起、A和C一起、B和C一起和/或A、B和C一起等的系统)。本领域的技术人员还应当理解,通常,除非上下文另有指示,否则无论在具体实施方式、权利要求或附图中呈现两个或更多个替代术语的转折性词语和/或短语应理解为涵盖包括所述术语中的一者、所述术语中的任一个或这两个术语的可能性。例如,短语“A或B”通常将被理解为包括“A”或“B”或“A和B”的可能性。
对于所附的权利要求,本领域的技术人员将会理解,其中表述的操作通常可以任何顺序进行。另外,尽管以一个或多个序列出了各种操作流程图,但应当理解,可以不同于所示顺序的其它顺序执行各种操作,或者可同时执行所述各种操作。除非上下文另有规定,否则此类替代排序的示例可包括重叠、交错、中断、重新排序、增量、预备、补充、同时、反向,或其它改变的排序。此外,除非上下文另有规定,否则像“响应于”、“相关”这样的术语或其它过去式的形容词通常不旨在排除此类变体。
值得一提的是,任何对“一个方面”、“一方面”、“一范例”、“一个范例”的提及均意指结合所述方面所述的具体特征件、结构或特征包括在至少一个方面中。因此,在整个说明书的各种位置出现的短语“在一个方面”、“在一方面”、“在一范例中”、“在一个范例中”不一定都指同一方面。此外,具体特征件、结构或特征可在一个或多个方面中以任何合适的方式组合。
本说明书提及和/或在任何申请数据表中列出的任何专利申请,专利,非专利公布或其它公开材料均以引用方式并入本文,只要所并入的材料在此不一致。因此,并且在必要的程度下,本文明确列出的公开内容代替以引用方式并入本文的任何冲突材料。据称以引用方式并入本文但与本文列出的现有定义、陈述或其它公开材料相冲突的任何材料或其部分,将仅在所并入的材料和现有的公开材料之间不产生冲突的程度下并入。
概括地说,已经描述了由采用本文所述的概念产生的许多有益效果。为了举例说明和描述的目的,已经提供了一个或多个形式的上述具体实施方式。这些具体实施方式并非意图为详尽的或限定到本发明所公开的精确形式。可以按照上述教导内容对本发明进行修改或变型。选择和描述的一个或多个形式是为了说明原理和实际应用,从而使本领域的普通技术人员能够利用适用于预期的特定用途的各种形式和各种修改形式。与此一同提交的权利要求书旨在限定完整范围。
本文所述主题的各个方面在以下编号的实施例中陈述:
实施例1:一种确定位于超声外科器械的端部执行器中的组织的位置的方法,该超声外科器械包括超声换能器,该端部执行器包括声学上耦合到超声换能器的超声刀片。该方法包括:由控制电路向超声换能器施加第一功率水平;由所述控制电路测量所述超声换能器的对应于所述第一功率水平的第一阻抗测量值;由所述控制电路向所述超声换能器施加第二功率水平;由所述控制电路测量所述超声换能器的对应于所述第二功率水平的第二阻抗测量值;由所述控制电路计算所述第一阻抗测量值和所述第二阻抗测量值之间的超声换能器阻抗的差值;由所述控制电路将所述超声换能器阻抗的所述差值与第一阈值进行比较;并且由控制电路基于第一阈值确定定位在端部执行器内的组织的位置。
实施例2:如实施例1的方法,其中,第一功率水平小于第二功率水平。
实施例3:如实施例1或2的方法,其中,第一功率水平和第二功率水平低于治疗功率水平,其中治疗功率水平为足以使超声刀片凝固和横切组织的功率水平。
实施例4:如实施例1-3中任一项的方法,其中,第一功率水平为0.2安培。
实施例5:如实施例1-4中任一项的方法,其中,第二功率水平为第一功率水平的两倍。
实施例6:如实施例1-5中任一项的方法,其中,第一功率水平和第二功率水平使超声换能器以小于35μm的幅值振动超声刀片。
实施例7:如实施例1-6中任一项的方法,还包括由控制电路基于组织在端部执行器内的位置而向超声换能器施加治疗功率水平,其中治疗功率水平为足以使超声刀片凝固和横切组织的功率水平。
实施例8:如实施例1-7中任一项的方法,还包括:由控制电路将超声换能器阻抗的差值与第二阈值进行比较;并且由控制电路根据超声换能器阻抗的差值相对于第一阈值和第二阈值来确定定位在端部执行器内的组织是在近侧位置、中间位置还是远侧位置。
实施例9:一种能够连接到发生器的超声外科器械。该超声外科器械包括端部执行器,该端部执行器包括超声刀片、声学上耦合到超声刀片的超声换能器,以及耦合到超声换能器的控制电路。超声换能器被配置为响应于来自发生器的驱动信号而使超声刀片超声振动。控制电路被配置为:经由超声发生器向超声换能器施加变化的功率水平,测量超声换能器的对应于变化的功率水平的阻抗,并且根据超声换能器的阻抗之间的差值相对于阈值来确定定位在端部执行器内的组织的位置。
实施例10:如实施例9的超声外科器械,其中,控制电路被配置为在第一功率水平和第二功率水平之间改变施加到超声换能器的功率水平。
实施例11:如实施例10的超声外科器械,其中,第一功率水平和第二功率水平低于治疗功率水平,其中治疗功率水平为足以使超声刀片凝固和横切组织的功率水平。
实施例12:如实施例10或11的超声外科器械,其中,第一功率水平为0.2安培。
实施例13:如实施例10-12中任一项的超声外科器械,其中,第二功率水平为第一功率水平的两倍。
实施例14:如实施例10-13中任一项的超声外科器械,其中,第一功率水平和第二功率水平使超声换能器以小于35μm的幅值振动超声刀片。
实施例15:如实施例9-14中任一项的超声外科器械,其中,控制电路被进一步配置为基于组织在端部执行器内的位置而向超声换能器施加治疗功率水平,其中治疗功率水平为足以使超声刀片凝固和横切组织的功率水平。
实施例16:如实施例9-15中任一项的超声外科器械,其中,阈值包括第一阈值。控制电路被进一步配置为:将超声换能器的阻抗之间的差值与第二阈值进行比较,并且根据超声换能器的阻抗之间的差值相对于第一阈值和第二阈值来确定定位在端部执行器内的组织是在近侧位置、中间位置还是远侧位置。
实施例17:一种能够连接到超声器械的超声发生器,该超声器械包括端部执行器、超声刀片以及声学上耦合到超声刀片的超声换能器。该超声发生器包括能够耦合到超声换能器的控制电路。控制电路被配置为:向超声换能器施加变化的功率水平,测量超声换能器的对应于变化的功率水平的阻抗,并且根据超声换能器的阻抗之间的差值相对于阈值来确定定位在端部执行器内的组织的位置。
实施例18:如实施例17的超声发生器,其中,控制电路被配置为在第一功率水平和第二功率水平之间改变施加到超声换能器的功率水平。
实施例19:如实施例18的超声发生器,其中,第一功率水平和第二功率水平低于治疗功率水平,其中治疗功率水平为足以使超声刀片凝固和横切组织的功率水平。
实施例20:如实施例18或19的超声发生器,其中,第一功率水平为0.2安培。
实施例21:如实施例18-20中任一项的超声发生器,其中,第二功率水平为第一功率水平的两倍。
实施例22:如实施例18-21中任一项的超声发生器,其中,第一功率水平和第二功率水平使超声换能器以小于35μm的幅值振动超声刀片。
实施例23:如实施例17-22中任一项的超声发生器,其中,控制电路被进一步配置为基于组织在端部执行器内的位置而向超声换能器施加治疗功率水平,其中治疗功率水平为足以使超声刀片凝固和横切组织的功率水平。
实施例24:如实施例17-23中任一项的超声发生器,其中,阈值包括第一阈值。控制电路被进一步配置为:将超声换能器的阻抗之间的差值与第二阈值进行比较,并且根据超声换能器的阻抗之间的差值相对于第一阈值和第二阈值来确定定位在端部执行器内的组织是在近侧位置、中间位置还是远侧位置。
Claims (14)
1.一种能够连接到发生器的超声外科器械,所述超声外科器械包括:
端部执行器,所述端部执行器包括超声刀片;
超声换能器,所述超声换能器声学上耦合到所述超声刀片,所述超声换能器被配置为响应于来自所述发生器的驱动信号而使所述超声刀片超声振动;以及
控制电路,所述控制电路耦合到所述超声换能器,所述控制电路被配置为:
经由所述发生器向所述超声换能器施加在第一功率水平和第二功率水平之间变化的功率水平;
测量所述超声换能器的对应于第一功率水平的第一阻抗和对应于第二功率水平的第二阻抗;并且
根据所述第一阻抗和所述第二阻抗之间的差值与阈值的比较来确定定位在所述端部执行器内的组织的位置。
2.根据权利要求1所述的超声外科器械,其中,所述控制电路被配置为在第一功率水平和第二功率水平之间改变施加到所述超声换能器的所述功率水平。
3.根据权利要求2所述的超声外科器械,其中,所述第一功率水平和所述第二功率水平低于治疗功率水平,其中所述治疗功率水平为足以使所述超声刀片凝固和横切所述组织的功率水平。
4.根据权利要求2所述的超声外科器械,其中,所述第二功率水平为所述第一功率水平的两倍。
5.根据权利要求2所述的超声外科器械,其中,所述第一功率水平和所述第二功率水平使所述超声换能器以小于35µm的幅值振动所述超声刀片。
6.根据权利要求1所述的超声外科器械,其中,所述控制电路被进一步配置为基于所述组织在所述端部执行器内的位置而向所述超声换能器施加治疗功率水平,其中所述治疗功率水平为足以使所述超声刀片凝固和横切所述组织的功率水平。
7.根据权利要求1所述的超声外科器械,其中,所述阈值包括第一阈值,其中所述控制电路被进一步配置为:
将第一阻抗和第二阻抗之间的差值与第二阈值进行比较;并且
根据所述差值与所述第一阈值和所述第二阈值的比较来确定定位在所述端部执行器内的所述组织是在近侧位置、中间位置还是远侧位置。
8.一种能够连接到超声器械的超声发生器,所述超声器械包括端部执行器、超声刀片以及声学上耦合到所述超声刀片的超声换能器,所述超声发生器包括:
能够耦合到所述超声换能器的控制电路,所述控制电路被配置为:
向所述超声换能器施加在第一功率水平和第二功率水平之间变化的功率水平;
测量所述超声换能器的对应于第一功率水平的第一阻抗和对应于第二功率水平的第二阻抗;并且
根据所述第一阻抗和所述第二阻抗之间的差值与阈值之间的比较来确定定位在所述端部执行器内的组织的位置。
9.根据权利要求8所述的超声发生器,其中,所述控制电路被配置为在第一功率水平和第二功率水平之间改变施加到所述超声换能器的所述功率水平。
10.根据权利要求9所述的超声发生器,其中,所述第一功率水平和所述第二功率水平低于治疗功率水平,其中所述治疗功率水平为足以使所述超声刀片凝固和横切所述组织的功率水平。
11.根据权利要求9所述的超声发生器,其中,所述第二功率水平为所述第一功率水平的两倍。
12.根据权利要求9所述的超声发生器,其中,所述第一功率水平和所述第二功率水平使所述超声换能器以小于35µm的幅值振动所述超声刀片。
13.根据权利要求8所述的超声发生器,其中,所述控制电路被进一步配置为基于所述组织在所述端部执行器内的所述位置而向所述超声换能器施加治疗功率水平,其中所述治疗功率水平为足以使所述超声刀片凝固和横切所述组织的功率水平。
14. 根据权利要求8所述的超声发生器,其中,所述阈值包括第一阈值,其中所述控制电路被进一步配置为:
将所述第一阻抗和所述第二阻抗之间的差值与第二阈值进行比较;并且
根据所述差值与所述第一阈值和所述第二阈值的比较来确定定位在所述端部执行器内的所述组织是在近侧位置、中间位置还是远侧位置。
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762611340P | 2017-12-28 | 2017-12-28 | |
US201762611339P | 2017-12-28 | 2017-12-28 | |
US201762611341P | 2017-12-28 | 2017-12-28 | |
US62/611,339 | 2017-12-28 | ||
US62/611,340 | 2017-12-28 | ||
US62/611,341 | 2017-12-28 | ||
US201862721995P | 2018-08-23 | 2018-08-23 | |
US62/721,995 | 2018-08-23 | ||
US16/115,208 US11179175B2 (en) | 2017-12-28 | 2018-08-28 | Controlling an ultrasonic surgical instrument according to tissue location |
US16/115,208 | 2018-08-28 | ||
PCT/IB2018/057934 WO2019130103A1 (en) | 2017-12-28 | 2018-10-12 | Controlling an ultrasonic surgical instrument according to tissue location |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111601562A CN111601562A (zh) | 2020-08-28 |
CN111601562B true CN111601562B (zh) | 2024-08-02 |
Family
ID=64184131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880084582.2A Active CN111601562B (zh) | 2017-12-28 | 2018-10-12 | 根据组织位置控制超声外科器械 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7258892B2 (zh) |
CN (1) | CN111601562B (zh) |
BR (1) | BR112020012933B1 (zh) |
MX (1) | MX2020006858A (zh) |
WO (1) | WO2019130103A1 (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101889858A (zh) * | 2010-07-12 | 2010-11-24 | 石平安 | 一种针刀微创术神经探测仪的设计及新用途 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7995045B2 (en) | 2007-04-13 | 2011-08-09 | Ethicon Endo-Surgery, Inc. | Combined SBI and conventional image processor |
US7982776B2 (en) | 2007-07-13 | 2011-07-19 | Ethicon Endo-Surgery, Inc. | SBI motion artifact removal apparatus and method |
WO2010088481A1 (en) | 2009-01-30 | 2010-08-05 | The Trustees Of Columbia University In The City Of New York | Controllable magnetic source to fixture intracorporeal apparatus |
US10098527B2 (en) | 2013-02-27 | 2018-10-16 | Ethidcon Endo-Surgery, Inc. | System for performing a minimally invasive surgical procedure |
US20140263552A1 (en) | 2013-03-13 | 2014-09-18 | Ethicon Endo-Surgery, Inc. | Staple cartridge tissue thickness sensor system |
US9949785B2 (en) * | 2013-11-21 | 2018-04-24 | Ethicon Llc | Ultrasonic surgical instrument with electrosurgical feature |
JP5905178B1 (ja) * | 2014-07-24 | 2016-04-20 | オリンパス株式会社 | 骨を処置するための、超音波システム、エネルギー源ユニット、及び、エネルギー源ユニットの作動方法 |
US10194972B2 (en) * | 2014-08-26 | 2019-02-05 | Ethicon Llc | Managing tissue treatment |
GB2535627B (en) * | 2015-01-14 | 2017-06-28 | Gyrus Medical Ltd | Electrosurgical system |
US10765470B2 (en) * | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
-
2018
- 2018-10-12 CN CN201880084582.2A patent/CN111601562B/zh active Active
- 2018-10-12 BR BR112020012933-0A patent/BR112020012933B1/pt active IP Right Grant
- 2018-10-12 WO PCT/IB2018/057934 patent/WO2019130103A1/en active Application Filing
- 2018-10-12 MX MX2020006858A patent/MX2020006858A/es unknown
- 2018-10-12 JP JP2020535183A patent/JP7258892B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101889858A (zh) * | 2010-07-12 | 2010-11-24 | 石平安 | 一种针刀微创术神经探测仪的设计及新用途 |
Also Published As
Publication number | Publication date |
---|---|
BR112020012933B1 (pt) | 2023-12-12 |
BR112020012933A2 (pt) | 2020-12-01 |
JP7258892B2 (ja) | 2023-04-17 |
JP2021509315A (ja) | 2021-03-25 |
CN111601562A (zh) | 2020-08-28 |
WO2019130103A1 (en) | 2019-07-04 |
MX2020006858A (es) | 2020-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12059169B2 (en) | Controlling an ultrasonic surgical instrument according to tissue location | |
US20230263548A1 (en) | Method for controlling smart energy devices | |
US11317937B2 (en) | Determining the state of an ultrasonic end effector | |
US11464535B2 (en) | Detection of end effector emersion in liquid | |
US11540855B2 (en) | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue | |
US11771487B2 (en) | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument | |
CN111526820B (zh) | 用于控制电外科器械的不同机电系统的机构 | |
CN111601564B (zh) | 评估超声端部执行器的状态以及用于此的控制系统 | |
CN111526821B (zh) | 确定超声端部执行器的状态 | |
CN110859658A (zh) | 超声端部执行器的温度控制以及用于其的控制系统 | |
CN112055568B (zh) | 基于能量模态自动调节压力的双极组合式装置 | |
CN111526816B (zh) | 检测端部执行器在液体中的出现 | |
CN111565658B (zh) | 根据频移确定超声机电系统的状态 | |
CN111542281B (zh) | 超声端部执行器的温度控制以及为此的控制系统 | |
CN111526819B (zh) | 经由超声系统确定组织组成 | |
CN111526817B (zh) | 根据组织的存在控制超声外科器械的激活 | |
CN111601562B (zh) | 根据组织位置控制超声外科器械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |