CN111609853B - 三维地图构建方法、扫地机器人及电子设备 - Google Patents
三维地图构建方法、扫地机器人及电子设备 Download PDFInfo
- Publication number
- CN111609853B CN111609853B CN201910138177.0A CN201910138177A CN111609853B CN 111609853 B CN111609853 B CN 111609853B CN 201910138177 A CN201910138177 A CN 201910138177A CN 111609853 B CN111609853 B CN 111609853B
- Authority
- CN
- China
- Prior art keywords
- sweeping robot
- map
- dimensional
- information
- dimensional map
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010408 sweeping Methods 0.000 title claims abstract description 178
- 238000010276 construction Methods 0.000 title claims abstract description 27
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 46
- 230000033001 locomotion Effects 0.000 claims description 63
- 238000007499 fusion processing Methods 0.000 claims description 13
- 238000013507 mapping Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 11
- 230000004807 localization Effects 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 3
- 241001417527 Pempheridae Species 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
- G01C21/206—Instruments for performing navigational calculations specially adapted for indoor navigation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
- G05D1/024—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0248—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means in combination with a laser
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Traffic Control Systems (AREA)
Abstract
本申请提供了一种三维地图的构建方法、扫地机器人及电子设备。该方法包括:步骤A,基于获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息,步骤B,基于确定的扫地机器人在当前位置的位姿信息与扫地机器人在当前位置获取的深度信息构建环境空间的三维子地图,步骤C,控制扫地机器人移动至符合预定条件的下一位置,执行步骤A与步骤B,并对构建的各个三维子地图进行融合处理得到合并三维地图,循环执行步骤C,直至得到的合并三维地图为环境空间的全局三维地图。即本申请构建的三维地图,与根据激光雷达构建的二维地图相比,提升了构建的地图包含信息的丰富性与构建的地图的准确性。
Description
技术领域
本申请涉及机器人技术领域,具体而言,本申请涉及一种三维地图构建方法、扫地机器人及电子设备。
背景技术
扫地机器人作为一种能够自动对待清扫区域进行清扫的智能电器,可以代替人对地面进行清扫,减少了人的家务负担,越来越受到人们的认可。扫地机器人的应用环境空间的地图构建是扫地机器人执行清扫工作的基础,如何构建扫地机器人的应用环境空间的地图成为一个关键问题。
同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术要解决的问题是:将一个机器人放入未知环境中的未知位置,是否有办法让机器人一边移动一边逐步描绘出与此环境完全一致的地图。目前,扫地机器人的应用环境空间的地图的构建是通过基于激光雷达的SLAM技术实现的,即仅根据通过扫地机器人的激光雷达得到的激光点云数据进行建图。然而,现有的仅基于激光雷达的SLAM建图方法,激光雷达仅能探测2D平面的障碍物信息,探测不到障碍物的垂直方向的信息,构建的地图为二维地图,所提供的环境空间的信息有限,且对于一些特殊的障碍物(如镂空结构的桌椅等),则不能通过激光雷达进行有效探测处理。因此,现有仅基于激光雷达的SLAM建图方法,存在构建的地图提供的信息少且建图准确性低的问题。
发明内容
本申请提供了一种三维地图构建方法、扫地机器人及电子设备,用于提升构建的环境空间的地图包含的信息的丰富性以及提升构建的地图的准确性,本申请采用的技术方案如下:
第一方面,本申请提供了一种三维地图的构建方法,该方法包括:
步骤A,基于获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息;
步骤B,基于确定的扫地机器人在当前位置的位姿信息与扫地机器人在当前位置获取的深度信息构建环境空间的三维子地图;
步骤C,控制扫地机器人移动至符合预定条件的下一位置,执行步骤A与步骤B,并对构建的各个三维子地图进行融合处理得到合并三维地图;
循环执行步骤C,直至得到的合并三维地图为环境空间的全局三维地图。
可选地,相应的点云匹配算法包括以下任一种:基于迭代最近邻算法;基于概率模型的相关性匹配算法。
可选地,控制扫地机器人移动至符合预定条件的下一位置,包括:
基于三维子地图或合并三维地图确定扫地机器人的移动信息,移动信息包括移动方向信息与移动距离信息;
基于移动信息控制扫地机器人移动至符合预定条件的下一位置。
进一步地,该方法还包括:
基于获取的激光点云数据通过同时定位与建图SLAM算法构建环境空间的二维子地图;
控制扫地机器人移动至符合预定条件的下一位置,包括:
基于二维子地图确定扫地机器人的移动信息,移动信息包括移动方向信息与移动距离信息;
基于移动信息控制扫地机器人移动至符合预定条件的下一位置。
进一步地,该方法还包括:
基于全局三维地图规划扫地机器人的工作路径,工作路径包括扫地机器人到达清扫目标区域的路线和/或扫地机器人对清扫目标区域进行清扫的路线。
可选地,全局三维地图包括各个障碍物和/或悬崖的三维信息,基于全局三维地图规划扫地机的工作路径,包括:
基于各个障碍物和/或悬崖的三维信息确定扫地机器人通过各个障碍物和/或悬崖的方式;
基于确定的通过各个障碍物和/或悬崖的方式规划扫地机器人的工作路径。
第二方面,提供了一种扫地机器人,该扫地机器人包括:深度相机、激光雷达传感器以及构建装置;
深度相机,用于获取扫地机器人在当前位置的深度信息;
激光雷达传感器,用于获取激光点云数据;
构建装置包括:
确定模块,用于基于通过激光雷达传感器获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息;
第一构建模块,用于基于确定模块确定的扫地机器人在当前位置的位姿信息与通过深度相机获取的扫地机器人在当前位置的深度信息构建环境空间的三维子地图;
控制模块,用于控制扫地机器人移动至符合预定条件的下一位置,执行确定模块与第一构建模块的执行过程,并对构建的各个三维子地图进行融合处理得到合并三维地图;
循环模块,用于循环执行控制模块的执行过程,直至得到的合并三维地图为环境空间的全局三维地图。
可选地,相应的点云匹配算法包括以下任一种:基于迭代最近邻算法;基于概率模型的相关性匹配算法。
可选地,控制模块包括第一确定单元与控制单元;
第一确定单元,用于基于三维子地图或合并三维地图确定扫地机器人的移动信息,移动信息包括移动方向信息与移动距离信息;
控制单元,用于基于移动信息控制扫地机器人移动至符合预定条件的下一位置。
进一步地,构建装置还包括第二构建模块;
第二构建模块,用于基于获取的激光点云数据通过同时定位与建图SLAM算法构建环境空间的二维子地图;
控制模块,用于基于二维子地图确定扫地机器人的移动信息,移动信息包括移动方向信息与移动距离信息,以及用于基于移动信息控制扫地机器人移动至符合预定条件的下一位置。
进一步地,构建装置还包括规划模块;
规划模块,用于基于全局三维地图规划扫地机器人的工作路径,工作路径包括扫地机器人到达清扫目标区域的路线和/或扫地机器人对清扫目标区域进行清扫的路线。
可选地,全局三维地图包括各个障碍物和/或悬崖的三维信息,规划模块包括第二确定单元与规划单元;
第二确定单元,用于基于各个障碍物和/或悬崖的三维信息确定扫地机器人通过各个障碍物和/或悬崖的方式;
规划单元,用于基于第二确定单元确定的通过各个障碍物和/或悬崖的方式规划扫地机器人的工作路径。
第三方面,本申请提供了一种电子设备,该电子设备包括:处理器和存储器;
存储器,用于存储操作指令;
处理器,用于通过调用操作指令,执行如本申请的第一方面的任一实施方式中所示的三维地图的构建方法。
第四方面,本申请提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本申请的第一方面的任一实施方式中所示的三维地图的构建方法。
本申请提供了一种三维地图构建方法、扫地机器人及电子设备,与现有技术仅基于激光雷达进行SLAM相比,本申请通过步骤A,基于获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息,步骤B,基于确定的扫地机器人在当前位置的位姿信息与扫地机器人在当前位置获取的深度信息构建环境空间的三维子地图,步骤C,控制扫地机器人移动至符合预定条件的下一位置,执行步骤A与步骤B,并对构建的各个三维子地图进行融合处理得到合并三维地图,循环执行步骤C,直至得到的合并三维地图为环境空间的全局三维地图。即本申请基于获取的深度信息与激光点云数据构建环境空间的三维地图,较构建的二维地图相比三维地图包含了障碍物在垂直方向的信息,因此三维地图较现有的仅基于激光雷达构建的二维地图包含了更多的环境空间的信息,与此同时,通过获取空间环境的深度信息的深度相机,能够探测到镂空结构的桌椅等通过激光雷达不能探测到的障碍物的信息,从而提升了构建的环境空间的地图的准确性。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的一种三维地图的构建方法的流程示意图;
图2为本申请实施例提供的一种扫地机器人的结构示意图;
图3为本申请实施例提供的另一种扫地机器人的结构示意图;
图4为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本发明的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
本申请的一个实施例提供了一种三维地图的构建方法,如图1所示,该方法包括:
步骤S101,基于获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息;
对于本申请实施例,扫地机器人配置有相应的激光雷达传感器,通过配置的激光雷达传感器可以获取激光点云数据,其中,该激光雷达传感器可以是单线激光雷达,也可以是多线激光雷达。
其中,点云匹配是通过计算得到完美的坐标变换,将处于不同视角下的点云数据经过旋转平移等刚性变换统一整合到指定坐标系之下的过程。换而言之,进行配准的两个点云,它们彼此之间可以通过旋转平移等这种位置变换完全重合,因此这两个点云属于刚性变换即形状大小是完全一样的,只是坐标位置不一样而已,点云配准就是求出两个点云之间的坐标位置变换关系。
具体地,可以通过相应的点云匹配算法对获取的激光点云数据进行相应的匹配处理,进而确定扫地机器人在当前位置的位姿信息。
步骤S102,基于确定的扫地机器人在当前位置的位姿信息与扫地机器人在当前位置获取的深度信息构建环境空间的三维子地图;
具体地,深度信息可以是通过扫地机器人配置的深度相机获取的深度图,其中,深度图中的各个像素点对应探测到的环境空间中障碍物的一个点,可以根据确定的扫地机器人的位姿信息,确定各个深度信息中各个像素点在世界坐标体系中的对应位置,从而构建出扫地机器人在当前位置处的三维子地图。其中,扫地机器人配置的深度相机可以是基于ToF的深度相机、RGB双目深度相机、结构光深度相机以及双目结构光深度相机中的任一种,此处不做限定。
步骤S103,控制扫地机器人移动至符合预定条件的下一位置,执行步骤S101与步骤S102,并对构建的各个三维子地图进行融合处理得到合并三维地图;
其中,当扫地机器人被放置于一个未知的环境中时,尚未有环境空间的地图,其初始符合预定条件的位置可以是随机确定的,可以是移动一定阈值距离到达的位置或移动一定阈值时间所到达的位置;待扫地机器人构建了相应的三维子地图或合并三维地图后,扫地机器人的后续符合预定条件位置可以根据构建的三维子地图或合并三维地图来确定的。
具体地,可以将构建的当前位置的三维子地图,与之前构建的各个三维子地图进行融合处理,得到合并三维地图;也可以将当前位置构建的三维子地图与之前融合处理得到的合并三维地图进行融合处理得到当前合并三维地图。其中,融合处理可以是对待融合处理的三维子地图进行拼接,其中,拼接过程中可以对重叠的地图部分进行删除。
步骤S104,循环执行步骤S103,直至得到的合并三维地图为环境空间的全局三维地图。
对于本申请实施例,循环执行步骤S103,直至得到的合并三维地图为环境空间的全局三维地图。其中,判断成功构建全局三维地图的方法:可以是基于相应的三维子地图或合并三维子地图,没有相应的符合预定条件的位置,也可以是在当前位置构建的三维子地图与之前构建的合并三维子地图或三维子地图完全重叠,还可以是基于前述两种方法的结合来综合判定是否成功构建全局三维地图。
本申请实施例提供了一种三维地图的构建方法,与现有技术仅基于激光雷达进行SLAM相比,本申请通过步骤A,基于获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息,步骤B,基于确定的扫地机器人在当前位置的位姿信息与扫地机器人在当前位置获取的深度信息构建环境空间的三维子地图,步骤C,控制扫地机器人移动至符合预定条件的下一位置,执行步骤A与步骤B,并对构建的各个三维子地图进行融合处理得到合并三维地图,循环执行步骤C,直至得到的合并三维地图为环境空间的全局三维地图。即本申请基于获取的深度信息与激光点云数据构建环境空间的三维地图,较构建的二维地图相比三维地图包含了障碍物在垂直方向的信息,因此三维地图较现有的仅基于激光雷达构建的二维地图包含了更多的环境空间的信息,与此同时,通过获取空间环境的深度信息的深度相机,能够探测到镂空结构的桌椅等通过激光雷达不能探测到的障碍物的信息,从而提升了构建的环境空间的地图的准确性。
本申请实施例提供了一种可能的实现方式,其中,相应的点云匹配算法包括但不限于以下任一种:基于迭代最近邻算法;基于概率模型的相关性匹配算法。
具体地,相应的点云匹配算法可以是基于迭代最近邻算法或基于概率模型的相关性匹配算法。
其中,基于迭代最近邻算法(Iterative Closest Point,ICP)确定扫地机器人在当前位置的位姿的过程可以是:1、分别对获取的两帧相邻激光点云数据进行特征提取;2、对相邻两帧激光点云数据进行关联特征点配对;3、采用分部迭代的方法求解相邻两帧激光点云数据的整体匹配参数旋转矩阵R和平移矩阵T;4、计算扫地机器人在相邻采样周期内的运动增量,确定扫地机器人在当前位置的位姿。其中,可以设置匹配阈值,滤除无效关联特征,以精确求取变换参数(R、T)。
其中,基于概率模型的相关性匹配算法从概率的思想出发,利用激光点云数据之间的相关性,在里程计提供的初始值的整个可信空间内进行搜索,寻找相邻两帧激光点云数据的最佳匹配,即相关系数最高情况下的刚体变换。
对于本申请实施例,通过基于迭代最近邻算法或基于概率模型的相关性匹配算法进行激光点云数据之间的匹配,解决了扫地机器人在当前位置的位姿信息的确定问题。
本申请实施例提供了一种可能的实现方式,具体地,步骤S103包括:
步骤S1031(图中未示出),基于三维子地图或合并三维地图确定扫地机器人的移动信息,移动信息包括移动方向信息与移动距离信息;
步骤S1032(图中未示出),基于移动信息控制扫地机器人移动至符合预定条件的下一位置。
其中,该符合预定条件的下一位置可以是根据构建的三维子地图或合并三维地图与扫地机器人配置的深度相机的有效探测范围确定的,如深度相机的有效探测范围是3m,可以确定扫地机器人当前方向2米的位置为符合预定条件的下一位置。
其中,也可以基于构建的三维子地图或合并三维地图,在相应的扫地机器人可到达但尚未到达的区域中确定的相应位置,如从当前已构建的地图中当前位置2米处存在相应的扫地机器人可通行的拐角,可在拐角区域确定相应的符合预定条件的下一位置。
具体地,可以根据构建的三维子地图或合并三维地图确定扫地机器人的移动信息,并基于该移动信息控制扫地机器人移动至符合预定条件的下一位置。
对于本申请实施例,解决了扫地机器人如何到达符合预定条件的下一位置,为构建该符合预定条件的下一位置处的三维子地图提供了基础。
本申请实施例提供了一种可能的实现方式,进一步地,该方法还包括:
步骤S105(图中未示出),基于获取的激光点云数据通过同时定位与建图SLAM算法构建环境空间的二维子地图;
步骤S103具体还包括:
步骤S1033(图中未示出),基于二维子地图确定扫地机器人的移动信息,移动信息包括移动方向信息与移动距离信息;
步骤S1034(图中未示出),基于移动信息控制扫地机器人移动至符合预定条件的下一位置。
其中,同时定位与建图(Simultaneous Localization and Mapping,SLAM)问题可以描述为:将一个机器人放入未知环境中的未知位置,是否有办法让机器人一边移动一边逐步描绘出此环境完全一致的地图。
具体地,可以控制扫地机器人配置的激光雷达传感器进行360度旋转,获取扫地机器人在环境空间中的激光点云数据,基于扫地机器人获取的激光点云数据通过SLAM算法可构建环境空间的局部的二维子地图。具体地,可以基于构建的环境空间的二维子地图,控制扫地机器人移动至符合预定条件的下一位置。
对于本申请实施例,解决了扫地机器人如何到达符合预定条件的下一位置,为构建该符合预定条件的下一位置处的三维子地图提供了基础。
本申请实施例提供了一种可能的实现方式,进一步地,该方法还包括:
步骤S106(图中未示出),基于全局三维地图规划扫地机器人的工作路径,工作路径包括扫地机器人到达清扫目标区域的路线和/或扫地机器人对清扫目标区域进行清扫的路线。
具体地,可以根据接收到的清扫指令,可以根据构建的环境空间的全局三维地图规划扫地机器人的工作路径,其中,该工作路径可以包括扫地机器人到达清扫区域的路线和/或扫地机器人对清扫目标区域如何进行清扫的路线。
对于本申请实施例,基于构建的全局三维地图,规划扫地机器人的工作路径,解决了扫地机器人行进的导航问题。
本申请实施例提供了一种可能的实现方式,具体地,全局三维地图包括各个障碍物和/或悬崖的三维信息,步骤S106的基于全局三维地图规划扫地机器人的工作路径,包括:
步骤S1061(图中未示出),基于各个障碍物和/或悬崖的三维信息确定扫地机器人通过各个障碍物和/或悬崖的方式;
具体地,可以基于各个障碍物的三维信息确定通过各个障碍物的方式,如当根据某一障碍物的三维信息(如障碍物的高度为3厘米)确定可直接越过该障碍物时,确定通过该障碍物的方式为越过障碍物,当根据某一障碍物的语义信息(如障碍物的高度为10厘米)确定无法直接越过该障碍物时,可确定通过该障碍物的方式为绕过障碍物。
具体地,可以基于各个悬崖的三维信息确定通过各个悬崖的方式,如可根据悬崖的深度与宽度信息确定通过悬崖的方式为越过悬崖或回避悬崖。
步骤S1062(图中未示出),基于确定的通过各个障碍物和/或悬崖的方式规划扫地机器人的工作路径。
具体地,可以根据确定的通过各个障碍物和/或悬崖的方式规划扫地机器人的工作规划,如当通过障碍物的方式为越过障碍物时,不需对相应的行进路径进行调整,当通过障碍物的方式为绕过障碍物时,制定相应的绕过路线,对行进路径进行调整。
对于本申请实施例,根据通过各个障碍物和/或悬崖的方式规划扫地机器人的工作路径,解决了如何规划扫地机器人的行进路径的问题。
本申请实施例还提供了一种扫地机器人,如图2所示,该扫地机器人20可以包括:深度相机201、激光雷达传感器202以及构建装置203;
深度相机201,用于获取扫地机器人在当前位置的深度信息;
激光雷达传感器202,用于获取激光点云数据;
构建装置203包括:
确定模块2031,用于基于通过激光雷达传感器202获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息;
第一构建模块2032,用于基于确定模块2031确定的扫地机器人在当前位置的位姿信息与通过深度相机201获取的扫地机器人在当前位置的深度信息构建环境空间的三维子地图;
控制模块2033,用于控制扫地机器人移动至符合预定条件的下一位置,执行确定模块2031与第一构建模块2032的执行过程,并对构建的各个三维子地图进行融合处理得到合并三维地图;
循环模块2034,用于循环执行控制模块2033的执行过程,直至得到的合并三维地图为环境空间的全局三维地图。
本实施例提供了一种扫地机器人,与现有技术仅基于激光雷达进行SLAM相比,本申请通过步骤A,基于获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息,步骤B,基于确定的扫地机器人在当前位置的位姿信息与扫地机器人在当前位置获取的深度信息构建环境空间的三维子地图,步骤C,控制扫地机器人移动至符合预定条件的下一位置,执行步骤A与步骤B,并对构建的各个三维子地图进行融合处理得到合并三维地图,循环执行步骤C,直至得到的合并三维地图为环境空间的全局三维地图。即本申请基于获取的深度信息与激光点云数据构建环境空间的三维地图,较构建的二维地图相比三维地图包含了障碍物在垂直方向的信息,因此三维地图较现有的仅基于激光雷达构建的二维地图包含了更多的环境空间的信息,与此同时,通过获取空间环境的深度信息的深度相机,能够探测到镂空结构的桌椅等通过激光雷达不能探测到的障碍物的信息,从而提升了构建的环境空间的地图的准确性。
本实施例的扫地机器人可执行本申请上述实施例中提供的一种三维地图的构建方法,其实现原理相类似,此处不再赘述。
本申请实施例提供了另一种扫地机器人,如图3所示,本实施例的扫地机器人30包括:深度相机301、激光雷达传感器302以及构建装置303;
深度相机301,用于获取扫地机器人在当前位置的深度信息;
其中,图3中的深度相机301与图2中的深度相机201的功能相同或者相似。
激光雷达传感器302,用于获取激光点云数据;
其中,图3中的激光雷达传感器302与图2中的激光雷达传感器202的功能相同或者相似。
构建装置303包括:
确定模块3031,用于基于通过激光雷达传感器302获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息;
其中,图3中的确定模块3031与图2中的确定模块2031的功能相同或者相似。
第一构建模块3032,用于基于确定模块3031确定的扫地机器人在当前位置的位姿信息与通过深度相机301获取的扫地机器人在当前位置的深度信息构建环境空间的三维子地图;
其中,图3中的第一构建模块3032与图2中的第一构建模块2032的功能相同或者相似。
控制模块3033,用于控制扫地机器人移动至符合预定条件的下一位置,执行确定模块3031与第一构建模块3032的执行过程,并对构建的各个三维子地图进行融合处理得到合并三维地图;
其中,图3中的控制模块3033与图2中的控制模块2033的功能相同或者相似。
循环模块3034,用于循环执行控制模块3033的执行过程,直至得到的合并三维地图为环境空间的全局三维地图。
其中,图3中的循环模块3034与图2中的循环模块2034的功能相同或者相似。
本申请实施例提供了一种可能的实现方式,其中,相应的点云匹配算法包括以下任一种:基于迭代最近邻算法;基于概率模型的相关性匹配算法。
对于本申请实施例,通过基于迭代最近邻算法或基于概率模型的相关性匹配算法进行激光点云数据之间的匹配,解决了扫地机器人在当前位置的位姿信息的确定问题。
本申请实施例提供了一种可能的实现方式,具体地,控制模块3033包括第一确定单元30331与控制单元30332;
第一确定单元30331,用于基于三维子地图或合并三维地图确定扫地机器人的移动信息,移动信息包括移动方向信息与移动距离信息;
控制单元30332,用于基于移动信息控制扫地机器人移动至符合预定条件的下一位置。
对于本申请实施例,解决了扫地机器人如何到达符合预定条件的下一位置,为构建该符合预定条件的下一位置处的三维子地图提供了基础。
本申请实施例提供了一种可能的实现方式,进一步地,构建装置303还包括第二构建模块3035;
第二构建模块3035,用于基于获取的激光点云数据通过同时定位与建图SLAM算法构建环境空间的二维子地图;
控制模块3033,具体用于基于二维子地图确定扫地机器人的移动信息,移动信息包括移动方向信息与移动距离信息,以及用于基于移动信息控制扫地机器人移动至符合预定条件的下一位置。
对于本申请实施例,解决了扫地机器人如何到达符合预定条件的下一位置,为构建该符合预定条件的下一位置处的三维子地图提供了基础。
本申请实施例提供了一种可能的实现方式,进一步地,构建装置303还包括规划模块3036;
规划模块3036,用于基于全局三维地图规划扫地机器人的工作路径,工作路径包括扫地机器人到达清扫目标区域的路线和/或扫地机器人对清扫目标区域进行清扫的路线。
对于本申请实施例,基于构建的全局三维地图,规划扫地机器人的工作路径,解决了扫地机器人行进的导航问题。
本申请实施例提供了一种可能的实现方式,具体地,全局三维地图包括各个障碍物和/或悬崖的三维信息,规划模块3036包括第二确定单元30361与规划单元30362;
第二确定单元30361,用于基于各个障碍物和/或悬崖的三维信息确定扫地机器人通过各个障碍物和/或悬崖的方式;
规划单元30362,用于基于第二确定单元确定的通过各个障碍物和/或悬崖的方式规划扫地机器人的工作路径。
对于本申请实施例,根据通过各个障碍物和/或悬崖的方式规划扫地机器人的工作路径,解决了如何规划扫地机器人的行进路径的问题。
本申请实施例提供了一种扫地机器人,与现有技术仅基于激光雷达进行SLAM相比,本申请通过步骤A,基于获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息,步骤B,基于确定的扫地机器人在当前位置的位姿信息与扫地机器人在当前位置获取的深度信息构建环境空间的三维子地图,步骤C,控制扫地机器人移动至符合预定条件的下一位置,执行步骤A与步骤B,并对构建的各个三维子地图进行融合处理得到合并三维地图,循环执行步骤C,直至得到的合并三维地图为环境空间的全局三维地图。即本申请基于获取的深度信息与激光点云数据构建环境空间的三维地图,较构建的二维地图相比三维地图包含了障碍物在垂直方向的信息,因此三维地图较现有的仅基于激光雷达构建的二维地图包含了更多的环境空间的信息,与此同时,通过获取空间环境的深度信息的深度相机,能够探测到镂空结构的桌椅等通过激光雷达不能探测到的障碍物的信息,从而提升了构建的环境空间的地图的准确性。
本申请实施例提供的扫地机器人适用于上述方法实施例,在此不再赘述。
本申请实施例提供了一种电子设备,如图4所示,图4所示的电子设备40包括:处理器4001和存储器4003。其中,处理器4001和存储器4003相连,如通过总线4002相连。进一步地,电子设备40还可以包括收发器4004。需要说明的是,实际应用中收发器4004不限于一个,该电子设备400的结构并不构成对本申请实施例的限定。
其中,处理器4001应用于本申请实施例中,用于实现图2或图3所示的深度相机、激光雷达传感器、以及构建装置的功能。收发器4004包括接收机和发射机。
处理器4001可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器4001也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
总线4002可包括一通路,在上述组件之间传送信息。总线4002可以是PCI总线或EISA总线等。总线4002可以分为地址总线、数据总线、控制总线等。为便于表示,图4中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器4003可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器4003用于存储执行本申请方案的应用程序代码,并由处理器4001来控制执行。处理器4001用于执行存储器4003中存储的应用程序代码,以实现图2或图3所示实施例提供的扫地机器人的功能。
本申请实施例提供了一种电子设备适用于上述方法实施例。在此不再赘述。
本申请实施例提供了一种电子设备,与现有技术仅基于激光雷达进行SLAM相比,本申请通过步骤A,基于获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息,步骤B,基于确定的扫地机器人在当前位置的位姿信息与扫地机器人在当前位置获取的深度信息构建环境空间的三维子地图,步骤C,控制扫地机器人移动至符合预定条件的下一位置,执行步骤A与步骤B,并对构建的各个三维子地图进行融合处理得到合并三维地图,循环执行步骤C,直至得到的合并三维地图为环境空间的全局三维地图。即本申请基于获取的深度信息与激光点云数据构建环境空间的三维地图,较构建的二维地图相比三维地图包含了障碍物在垂直方向的信息,因此三维地图较现有的仅基于激光雷达构建的二维地图包含了更多的环境空间的信息,与此同时,通过获取空间环境的深度信息的深度相机,能够探测到镂空结构的桌椅等通过激光雷达不能探测到的障碍物的信息,从而提升了构建的环境空间的地图的准确性。
本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述实施例中所示的方法。
本申请实施例提供了一种计算机可读存储介质,与现有技术仅基于激光雷达进行SLAM相比,本申请通过步骤A,基于获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息,步骤B,基于确定的扫地机器人在当前位置的位姿信息与扫地机器人在当前位置获取的深度信息构建环境空间的三维子地图,步骤C,控制扫地机器人移动至符合预定条件的下一位置,执行步骤A与步骤B,并对构建的各个三维子地图进行融合处理得到合并三维地图,循环执行步骤C,直至得到的合并三维地图为环境空间的全局三维地图。即本申请基于获取的深度信息与激光点云数据构建环境空间的三维地图,较构建的二维地图相比三维地图包含了障碍物在垂直方向的信息,因此三维地图较现有的仅基于激光雷达构建的二维地图包含了更多的环境空间的信息,与此同时,通过获取空间环境的深度信息的深度相机,能够探测到镂空结构的桌椅等通过激光雷达不能探测到的障碍物的信息,从而提升了构建的环境空间的地图的准确性。
本申请实施例提供了一种计算机可读存储介质适用于上述方法实施例。在此不再赘述。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以上仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
Claims (12)
1.一种三维地图的构建方法,其特征在于,包括:
步骤A,基于获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息;
步骤B,基于确定的所述扫地机器人在当前位置的位姿信息与所述扫地机器人在当前位置获取的深度信息构建环境空间的三维子地图;
步骤C,控制所述扫地机器人移动至符合预定条件的下一位置,执行步骤A与步骤B,并对构建的各个三维子地图进行融合处理得到合并三维地图;
循环执行步骤C,直至得到的合并三维地图为所述环境空间的全局三维地图;
该方法还包括:基于获取的所述激光点云数据通过同时定位与建图SLAM算法构建环境空间的二维子地图;
所述控制所述扫地机器人移动至符合预定条件的下一位置,包括:
基于所述二维子地图确定所述扫地机器人的移动信息,所述移动信息包括移动方向信息与移动距离信息;
基于所述移动信息控制所述扫地机器人移动至符合预定条件的下一位置;
其中,所述符合预定条件的下一位置是根据构建的所述三维子地图或所述合并三维地图与扫地机器人配置的深度相机的有效探测范围确定,且所述符合预定条件的下一位置在扫地机器人可到达但尚未到达的区域中确定。
2.根据权利要求1所述的方法,其特征在于,所述相应的点云匹配算法包括以下任一种:基于迭代最近邻算法;基于概率模型的相关性匹配算法。
3.根据权利要求1所述的方法,其特征在于,所述控制所述扫地机器人移动至符合预定条件的下一位置,包括:
基于所述三维子地图或所述合并三维地图确定所述扫地机器人的移动信息,所述移动信息包括移动方向信息与移动距离信息;
基于所述移动信息控制所述扫地机器人移动至符合预定条件的下一位置。
4.根据权利要求1-3所述的方法,其特征在于,该方法还包括:
基于所述全局三维地图规划所述扫地机器人的工作路径,所述工作路径包括所述扫地机器人到达清扫目标区域的路线和/或所述扫地机器人对清扫目标区域进行清扫的路线。
5.根据权利要求4所述的方法,其特征在于,所述全局三维地图包括各个障碍物和/或悬崖的三维信息,所述基于所述全局三维地图规划所述扫地机的工作路径,包括:
基于所述各个障碍物和/或悬崖的三维信息确定所述扫地机器人通过各个障碍物和/或悬崖的方式;
基于确定的通过各个障碍物和/或悬崖的方式规划所述扫地机器人的工作路径。
6.一种扫地机器人,其特征在于,该扫地机器人包括:深度相机、激光雷达传感器以及构建装置;
所述深度相机,用于获取所述扫地机器人在当前位置的深度信息;
所述激光雷达传感器,用于获取激光点云数据;
所述构建装置包括:
确定模块,用于基于通过激光雷达传感器获取的激光点云数据通过相应的点云匹配算法确定扫地机器人在当前位置的位姿信息;
第一构建模块,用于基于所述确定模块确定的所述扫地机器人在当前位置的位姿信息与通过所述深度相机获取的所述扫地机器人在当前位置的深度信息构建环境空间的三维子地图;
控制模块,用于控制所述扫地机器人移动至符合预定条件的下一位置,执行所述确定模块与所述第一构建模块的执行过程,并对构建的各个三维子地图进行融合处理得到合并三维地图;
循环模块,用于循环执行所述控制模块的执行过程,直至得到的合并三维地图为所述环境空间的全局三维地图;
所述构建装置还包括第二构建模块;
所述第二构建模块,用于基于获取的所述激光点云数据通过同时定位与建图SLAM算法构建环境空间的二维子地图;
所述控制模块,用于基于所述二维子地图确定所述扫地机器人的移动信息,所述移动信息包括移动方向信息与移动距离信息,以及用于基于所述移动信息控制所述扫地机器人移动至符合预定条件的下一位置;
其中,所述符合预定条件的下一位置是根据构建的所述三维子地图或所述合并三维地图与扫地机器人配置的深度相机的有效探测范围确定,且所述符合预定条件的下一位置在扫地机器人可到达但尚未到达的区域中确定。
7.根据权利要求6所述的扫地机器人,其特征在于,所述相应的点云匹配算法包括以下任一种:基于迭代最近邻算法;基于概率模型的相关性匹配算法。
8.根据权利要求6所述的扫地机器人,其特征在于,所述控制模块包括第一确定单元与控制单元;
所述第一确定单元,用于基于所述三维子地图或所述合并三维地图确定所述扫地机器人的移动信息,所述移动信息包括移动方向信息与移动距离信息;
所述控制单元,用于基于所述移动信息控制所述扫地机器人移动至符合预定条件的下一位置。
9.根据权利要求6-8所述的扫地机器人,其特征在于,所述构建装置还包括规划模块;
所述规划模块,用于基于所述全局三维地图规划所述扫地机器人的工作路径,所述工作路径包括所述扫地机器人到达清扫目标区域的路线和/或所述扫地机器人对清扫目标区域进行清扫的路线。
10.根据权利要求9所述的扫地机器人,其特征在于,所述全局三维地图包括各个障碍物和/或悬崖的三维信息,所述规划模块包括第二确定单元与规划单元;
所述第二确定单元,用于基于所述各个障碍物和/或悬崖的三维信息确定所述扫地机器人通过各个障碍物和/或悬崖的方式;
所述规划单元,用于基于所述第二确定单元确定的通过各个障碍物和/或悬崖的方式规划所述扫地机器人的工作路径。
11.一种电子设备,其特征在于,其包括处理器和存储器;
所述存储器,用于存储操作指令;
所述处理器,用于通过调用所述操作指令,执行上述权利要求1-5中任一项所述的三维地图的构建方法。
12.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现上述权利要求1-5中任一项所述的三维地图的构建方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910138177.0A CN111609853B (zh) | 2019-02-25 | 2019-02-25 | 三维地图构建方法、扫地机器人及电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910138177.0A CN111609853B (zh) | 2019-02-25 | 2019-02-25 | 三维地图构建方法、扫地机器人及电子设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111609853A CN111609853A (zh) | 2020-09-01 |
CN111609853B true CN111609853B (zh) | 2024-08-23 |
Family
ID=72195671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910138177.0A Active CN111609853B (zh) | 2019-02-25 | 2019-02-25 | 三维地图构建方法、扫地机器人及电子设备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111609853B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111966109B (zh) * | 2020-09-07 | 2021-08-17 | 中国南方电网有限责任公司超高压输电公司天生桥局 | 基于柔性直流换流站阀厅的巡检机器人定位方法及装置 |
CN115177178B (zh) * | 2021-04-06 | 2024-10-15 | 美智纵横科技有限责任公司 | 一种清扫方法、装置和计算机存储介质 |
CN113674351B (zh) * | 2021-07-27 | 2023-08-08 | 追觅创新科技(苏州)有限公司 | 一种机器人的建图方法及机器人 |
CN114636416B (zh) * | 2022-05-07 | 2022-08-12 | 深圳市倍思科技有限公司 | 机器人绘图方法、装置、机器人及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108073167A (zh) * | 2016-11-10 | 2018-05-25 | 深圳灵喵机器人技术有限公司 | 一种基于深度相机与激光雷达的定位与导航方法 |
CN109087393A (zh) * | 2018-07-23 | 2018-12-25 | 汕头大学 | 一种构建三维地图的方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008186207A (ja) * | 2007-01-30 | 2008-08-14 | Hitachi Ltd | 動体シミュレーション向け地図処理装置 |
CN103885443B (zh) * | 2012-12-20 | 2017-02-08 | 联想(北京)有限公司 | 用于即时定位与地图构建单元的设备、系统和方法 |
CN104764457B (zh) * | 2015-04-21 | 2017-11-17 | 北京理工大学 | 一种用于无人车的城市环境构图方法 |
CN105354875B (zh) * | 2015-09-25 | 2018-01-23 | 厦门大学 | 一种室内环境二维与三维联合模型的构建方法和系统 |
CN105843223B (zh) * | 2016-03-23 | 2018-11-20 | 东南大学 | 一种基于空间词袋模型的移动机器人三维建图与避障方法 |
CN106052674B (zh) * | 2016-05-20 | 2019-07-26 | 青岛克路德机器人有限公司 | 一种室内机器人的slam方法和系统 |
CN106127739B (zh) * | 2016-06-16 | 2021-04-27 | 华东交通大学 | 一种结合单目视觉的rgb-d slam方法 |
CN107144292B (zh) * | 2017-06-08 | 2019-10-25 | 杭州南江机器人股份有限公司 | 一种运动设备的里程计方法以及里程计装置 |
CN108958232A (zh) * | 2017-12-07 | 2018-12-07 | 炬大科技有限公司 | 一种基于深度视觉的移动扫地机器人slam装置及算法 |
CN108337915A (zh) * | 2017-12-29 | 2018-07-27 | 深圳前海达闼云端智能科技有限公司 | 三维建图方法、装置、系统、云端平台、电子设备和计算机程序产品 |
CN108608466A (zh) * | 2018-02-26 | 2018-10-02 | 北京克路德人工智能科技有限公司 | 一种双目相机和激光雷达联合的机器人定位方法 |
CN108594825A (zh) * | 2018-05-31 | 2018-09-28 | 四川斐讯信息技术有限公司 | 基于深度相机的扫地机器人控制方法及系统 |
CN108303099B (zh) * | 2018-06-14 | 2018-09-28 | 江苏中科院智能科学技术应用研究院 | 基于三维视觉slam的无人机室内自主导航方法 |
CN108931245B (zh) * | 2018-08-02 | 2021-09-07 | 上海思岚科技有限公司 | 移动机器人的局部自定位方法及设备 |
-
2019
- 2019-02-25 CN CN201910138177.0A patent/CN111609853B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108073167A (zh) * | 2016-11-10 | 2018-05-25 | 深圳灵喵机器人技术有限公司 | 一种基于深度相机与激光雷达的定位与导航方法 |
CN109087393A (zh) * | 2018-07-23 | 2018-12-25 | 汕头大学 | 一种构建三维地图的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111609853A (zh) | 2020-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113110457B (zh) | 在室内复杂动态环境中智能机器人的自主覆盖巡检方法 | |
CN112000754B (zh) | 地图构建方法、装置、存储介质及计算机设备 | |
KR102693581B1 (ko) | 시각적 로봇 기반의 과거 지도 이용 방법 | |
CN111609853B (zh) | 三维地图构建方法、扫地机器人及电子设备 | |
CN111609852A (zh) | 语义地图构建方法、扫地机器人及电子设备 | |
KR101372482B1 (ko) | 이동 로봇의 경로 계획 방법 및 장치 | |
CN109163722B (zh) | 一种仿人机器人路径规划方法及装置 | |
CN111679664A (zh) | 基于深度相机的三维地图构建方法及扫地机器人 | |
CN111679661A (zh) | 基于深度相机的语义地图构建方法及扫地机器人 | |
Jaspers et al. | Multi-modal local terrain maps from vision and lidar | |
Holz et al. | Sancta simplicitas-on the efficiency and achievable results of SLAM using ICP-based incremental registration | |
CN114812539B (zh) | 地图探索、地图使用方法、装置、机器人和存储介质 | |
CN107305125A (zh) | 一种地图构建方法及终端 | |
CN114911228A (zh) | 机器人路径规划方法、装置及机器人 | |
Holz et al. | Continuous 3D sensing for navigation and SLAM in cluttered and dynamic environments | |
CN115494834A (zh) | 机器人路径规划方法、装置及机器人 | |
Edlinger et al. | Exploration of an indoor-environment by an autonomous mobile robot | |
CN106292656A (zh) | 一种环境建模方法及装置 | |
CN114034299A (zh) | 一种基于主动激光slam的导航系统 | |
CN111609854A (zh) | 基于多个深度相机的三维地图构建方法及扫地机器人 | |
Li et al. | An overview on sensor map based localization for automated driving | |
CN111679663A (zh) | 三维地图构建方法、扫地机器人及电子设备 | |
Chen et al. | An enhanced dynamic Delaunay triangulation-based path planning algorithm for autonomous mobile robot navigation | |
CN110967029B (zh) | 一种建图方法、装置及智能机器人 | |
Li et al. | Object-aware view planning for autonomous 3-D model reconstruction of buildings using a mobile robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |