CN111558932B - 一种基于3d打印技术的气动仿尺蠖软体机器人 - Google Patents
一种基于3d打印技术的气动仿尺蠖软体机器人 Download PDFInfo
- Publication number
- CN111558932B CN111558932B CN202010286638.1A CN202010286638A CN111558932B CN 111558932 B CN111558932 B CN 111558932B CN 202010286638 A CN202010286638 A CN 202010286638A CN 111558932 B CN111558932 B CN 111558932B
- Authority
- CN
- China
- Prior art keywords
- trunk
- head part
- arc
- tail
- tail part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
- B25J9/065—Snake robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/14—Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
- B25J9/142—Programme-controlled manipulators characterised by positioning means for manipulator elements fluid comprising inflatable bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
- B29C64/268—Arrangements for irradiation using laser beams; using electron beams [EB]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/379—Handling of additively manufactured objects, e.g. using robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2075/00—Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0005—Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Robotics (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
Abstract
本发明涉及软体机器人,特指一种基于3D打印技术的气动仿尺蠖软体机器人。头部部件和尾部部件位于躯干部件两端,头部部件和尾部部件均为实心体,头部部件和尾部部件底端均设置同方向三角状立足,头部部件和尾部部件的另一端分别与躯干部件两端密封相连。躯干部件呈弧形,横截面呈正方形,躯干部件中开有弧型空腔,弧型空腔由5个在同一平面内的梯形空腔连接而成形成复合M型空腔,复合M型空腔以躯干部件中心竖轴成轴对称分布,躯干部件上开有导气孔用于输入气体。本发明中采用气动与空腔变形构成冗余驱动,实现软体机器人的弯曲形变,通过给予躯干内部空腔输气放气,促进复合M型空腔膨胀收缩来控制软体机器人的运动前进步幅。
Description
技术领域
本发明涉及3D打印及软体机器人领域,特别涉及一种基于3D打印技术的气动仿尺蠖软体机器人。
背景技术
为了提高传统机器人的柔性,研究者们为其增加更多的自由度,形成超冗余度机器人,使其具有一定的连续变形能力,例如蛇形机器人、仿象鼻机械臂等。超冗余度机器人的环境适应能力大幅提高,但其零部件仍是刚体,对于改变自身形态及尺寸大小是无法做到的。随着柔性及弹性材料的不断的开发与应用,软体机器人逐渐进入人们的研究视野。通过模仿自然界的软体动物,研究学者们将柔性材料与弹性材料制造成软体机器人,理论上其具有无限多自由度和连续变形能力,可在大范围之内任意改变自身形状和尺寸,具有无限种构型使其末端执行器到达工作空间中的任意一点,具有广泛应用前景。
目前,软体机器人的本体制造法主要基于成型技术,包括形状沉积法(ShapeDeposition Manufacturing,SDM)、熔融沉积成型、纳米复合材料沉积、纳米压印、激光消融、微注射成型等。Tufts大学Barry A.Trimmer实验室研制的仿毛虫(烟草天蛾幼虫)软体机器人就是采用了形状沉积法(SDM)制造,通过沉积-去除-沉积-微加工-埋入元件-沉积-去除-移除基体等一系列操作,才能得到软体机器人模型。该方法在制作时间以及制造精度上都有所欠缺。本发明另辟蹊径,通过选用液态光敏树脂,利用立体光固化(SLA)3D打印技术,不光有效提高了制造精度,也在一定程度上提升了传统制造软体机器人的效率,同时也省去了集成的繁琐步骤。
发明内容
本发明的目的是在现有软体机器人成型技术有所缺陷的基础上,提供一款基于3D打印制造,能够提高制造精度,提升制造效率,实现爬行、前进的气体驱动仿生尺蠖软体机器人。
为实现上述目的,本发明采取具体技术方案如下:
一种基于3D打印技术的气动仿尺蠖软体机器人,其特征为,所述气动仿尺蠖软体机器人包括头部部件、躯干部件及尾部部件。头部部件和尾部部件位于躯干部件两端,头部部件和尾部部件均为实心体,头部部件和尾部部件底端均设置同方向三角状立足,头部部件和尾部部件的另一端分别与躯干部件两端密封相连。躯干部件呈弧形,横截面呈正方形,躯干部件中开有弧型空腔,弧型空腔由5个在同一平面内的梯形空腔连接而成形成复合M型空腔,复合M型空腔以躯干部件中心竖轴成轴对称分布,用于进行存储外界气体发生形变,躯干部件上开有导气孔用于输入气体。
本发明的进一步改进,头部部件、躯干部件和尾部部件选材均采用3D打印的光固化弹性材料,全部软体机器人构型采用光固化3D打印进行完成。
本发明的进一步改进,躯干部件正中侧面添加导气孔用于外界气体的输入。
本发明的进一步改进,躯干内腔采用复合M型空腔作为鼓气囊,可在有限空间内有效增大鼓气面积,促进弹性材料形变,更好的完成动作驱动。
本发明的进一步改进,头部和尾部立足呈同方向三角形排列。
本发明的有益效果
(1)本发明中采用气动与空腔变形构成冗余驱动,实现软体机器人的弯曲形变;
(2)本发明中头部部件和尾部部件底面的三角状立足设置成同方向,实现软体机器人爬行前进功能。
(3)本发明中通过给予躯干内部空腔输气放气,促进复合M型空腔膨胀收缩来控制软体机器人的运动前进步幅。
(4)本发明一改往常普通制造技术,通过使用光敏树脂及立体光固化3D打印机,打印出用于制作软体机器人的一体化弹性体,在国内甚至是国外都是一种软体机器人制作的前沿方法,达成更新颖、更简便、更快速效果。
(5)本发明所选用的光敏树脂材料液态状态下流动性能好、打印分层薄、喷孔液滴控制和设备逐层精度控制的原因,打印出来的模型外观效果细腻、成型精度高。
附图说明
图1为本发明所述的基于3D打印技术的气动仿尺蠖软体机器人的完整构型。
图2为本发明所述的基于3D打印技术的气动仿尺蠖软体机器人的头部及尾部底部立足的排列图及形状。
图中:
软体机器人外表面:1-1:导气孔;1-2:尾部立足;1-3:头部立足
软体机器人内部结构:2-1:复合M型空腔
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
首先采用三维设计软件设计出一个结构一体化的三维模型,该模型包括头部部件、躯干部件及尾部部件。头部部件及尾部部件均为四棱柱体结构,头部部件及尾部部件底面分别设置有横截面为三角形的立足群组,三角朝向全部相同,用于抓地爬行。在躯干部件中部开有复合M型空腔2-1,在躯干部件正中侧面开有一个导气孔1-1,与复合M型空腔2-1内部相连通,目的是用于外界气体对内部空腔有一个交换循环过程。然后采用立体光固化3D打印机将光敏树脂打印出上述三维模型的弹性体结构,待打印完成取出弹性体后经过清洗、擦拭、固化、晾干、修剪支架工序,从而得到相应模型。利用外部气泵通过导气管连接导气孔1-1,进一步的,通过打入气体,气体填充量为复合M型空腔容积的200%,输入的气体不断填充复合M型空腔2-1,促进复合M型空腔2-1膨胀,空腔2-1内部不断膨胀。空腔2-1开始膨胀时,躯干部件中部会渐渐向上拱起,进一步的,拖动头部部件和尾部部件向中间收缩,但是由于头部立足1-3,尾部立足1-2设置成同方向,故头部部件不会移动,而尾部部件会进行收缩;同理,当吸回气体时,复合M型空腔2-1开始收缩时,躯干部件中部会渐渐下降,进一步的,推动头部部件进行移动,而尾部部件不会移动,通过上述过程的循环便可实现软体机器人的爬行前进功能。所述外界条件包括气泵及导气管。
实施例一:
所述的软体机器人三维模型设计过程为:采用Solidworks软件设计出磁流体驱动仿尺蠖机器人三维模型,该模型包括头部部件、躯干部件和尾部部件,如图1所示。头部部件及尾部部件尺寸为20mmX20mmX30mm,弧形躯干部件截面尺寸为20mmX20mm,弧长为130mm,头部部件至尾部部件水平总长为120mm。如图1、图2所示,在头部部件及尾部部件底面分别设置有横截面为三角形的头部立足1-3与尾部立足1-2,其中2个三棱柱(4mmX2mmX4mm)为一组,头部部件和尾部部件底面分别设置4组,三角朝向全部相同,用于抓地爬行。头部部件和尾部部件的分别与躯干部件两端密封相连接,躯干部件带有一定弯曲角度(弧型角度值为135°),躯干部件内部设计有由5个在同一平面内的梯形空腔相连接组成的复合M型空腔2-1,复合M型空腔2-1整体的下底弧长为90mm,每一段梯形空腔上底为10mm,高为14mm。躯干部件中间侧面开有导气孔,孔深2mm,与复合M型空腔内部相连通,用于外界气体的交换。躯干部件复合M型空腔部分贴近软体表面的壁厚均为3mm。
实施例二:
所述的仿尺蠖软体机器人3D打印制造过程为:采用的3D打印方式为光固化立体成形(SLA),以聚氨酯丙烯酸酯(PUA)和2,4,6(三甲基苯甲酰基)二苯基氧化膦(TOP)分别作为光敏树脂的预聚物和光引发剂,将两者以质量分数95%和5%调配成光敏树脂;设置3D打印机打印模型的切片厚度为0.1mm,同时将设计好的三维模型导入3D打印设备(预热至30℃开始打印,自动加热至35℃维持恒温,激光特性:EN 60825-1:2007认证的1级激光产品405nm紫激光、250mW激光;激光光斑尺寸:140μm;剥离机理:刮水器滑动剥离工艺),完成软体机器人整体结构的成型(打印时间取决于模型的大小及其结构复杂度)。待打印完成取出弹性体后经过清洗、擦拭、固化、晾干、修剪支架工序,从而得到相应模型。将气泵导气管与导气孔1-1相连。
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (3)
1.一种基于3D打印技术的气动仿尺蠖软体机器人,其特征为,所述气动仿尺蠖软体机器人包括头部部件、躯干部件及尾部部件;头部部件和尾部部件位于躯干部件两端,头部部件和尾部部件均为实心体,头部部件和尾部部件底端均设置同方向三角状立足,头部部件和尾部部件的另一端分别与躯干部件两端密封相连;躯干部件呈弧形,躯干部件中开有弧型空腔,弧型空腔由5个在同一平面内的梯形空腔连接而成形成复合M型空腔,用于进行存储外界气体发生形变,躯干部件上开有导气孔用于输入气体;
复合M型空腔以躯干部件中心竖轴成轴对称分布;
气体填充量为复合M型空腔容积的200%;
头部部件和尾部部件为四棱柱几何体,弧型躯干横截面呈正方形,头部部件和尾部部件下方立足为三棱柱几何体群;头部部件及尾部部件尺寸为20mm×20mm×30mm,弧形躯干部件截面尺寸为20mm×20mm,弧长为130mm,头部部件至尾部部件水平总长为120mm;在头部部件及尾部部件底面分别设置有横截面为三角形的三棱柱立足群,其中2个三棱柱为一组,三棱柱尺寸4mm×2mm×4mm,头部部件和尾部部件底面分别设置4组,三角朝向全部相同,用于抓地爬行;复合M型空腔整体的下底弧长为90mm,每一段梯形空腔上底长为10mm,高为14mm;导气孔孔深2mm,躯干部件复合M型空腔部分贴近软体表面的壁厚均为3mm。
2.如权利要求1所述的一种基于3D打印技术的气动仿尺蠖软体机器人,其特征为,头部部件、躯干部件和尾部部件选材均采用3D打印的光固化弹性材料。
3.如权利要求2所述的一种基于3D打印技术的气动仿尺蠖软体机器人,其特征为,3D打印制造过程为:采用光固化立体成形(SLA)方式,以聚氨酯丙烯酸酯(PUA)和2,4,6-三甲基苯甲酰基二苯基氧化膦(TOP)分别作为光敏树脂的预聚物和光引发剂,将两者以质量分数95%和5%调配成光敏树脂;设置3D打印机打印模型的切片厚度为0.1mm,同时将设计好的三维模型导入3D打印设备,预热至30℃开始打印,自动加热至35℃维持恒温,激光特性:EN60825-1:2007认证的1级激光产品405nm紫激光、250mW激光;激光光斑尺寸:140μm;剥离机理:刮水器滑动剥离工艺,完成软体机器人整体结构的成型,待打印完成取出弹性体后经过清洗、擦拭、固化、晾干、修剪支架工序,从而得到相应模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010286638.1A CN111558932B (zh) | 2020-04-13 | 2020-04-13 | 一种基于3d打印技术的气动仿尺蠖软体机器人 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010286638.1A CN111558932B (zh) | 2020-04-13 | 2020-04-13 | 一种基于3d打印技术的气动仿尺蠖软体机器人 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111558932A CN111558932A (zh) | 2020-08-21 |
CN111558932B true CN111558932B (zh) | 2023-06-13 |
Family
ID=72073012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010286638.1A Active CN111558932B (zh) | 2020-04-13 | 2020-04-13 | 一种基于3d打印技术的气动仿尺蠖软体机器人 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111558932B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112936253A (zh) * | 2021-02-02 | 2021-06-11 | 深圳大学 | 一种气囊驱动的柔性机械臂 |
CN113681542B (zh) * | 2021-08-23 | 2023-08-18 | 江苏大学 | 一种基于液晶弹性体的软体机器人 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107283826A (zh) * | 2017-06-28 | 2017-10-24 | 南京理工大学 | 一种基于紫外光固化的固体推进剂3d打印成型方法 |
CN108891496A (zh) * | 2018-06-19 | 2018-11-27 | 哈尔滨工程大学 | 一种气动仿蚯蚓软体机器人 |
WO2018232386A1 (en) * | 2017-06-16 | 2018-12-20 | Temple University-Of The Commonwealth System Of Higher Education | Climbing soft robotics |
CN109176501A (zh) * | 2018-09-12 | 2019-01-11 | 江苏科技大学 | 仿尺蠖软体机器人 |
CN109533066A (zh) * | 2018-10-22 | 2019-03-29 | 武汉大学 | 一种仿生软体机器人 |
CN110126256A (zh) * | 2019-05-24 | 2019-08-16 | 中南大学 | 一种仿生贝壳材料的制备方法 |
-
2020
- 2020-04-13 CN CN202010286638.1A patent/CN111558932B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018232386A1 (en) * | 2017-06-16 | 2018-12-20 | Temple University-Of The Commonwealth System Of Higher Education | Climbing soft robotics |
CN107283826A (zh) * | 2017-06-28 | 2017-10-24 | 南京理工大学 | 一种基于紫外光固化的固体推进剂3d打印成型方法 |
CN108891496A (zh) * | 2018-06-19 | 2018-11-27 | 哈尔滨工程大学 | 一种气动仿蚯蚓软体机器人 |
CN109176501A (zh) * | 2018-09-12 | 2019-01-11 | 江苏科技大学 | 仿尺蠖软体机器人 |
CN109533066A (zh) * | 2018-10-22 | 2019-03-29 | 武汉大学 | 一种仿生软体机器人 |
CN110126256A (zh) * | 2019-05-24 | 2019-08-16 | 中南大学 | 一种仿生贝壳材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111558932A (zh) | 2020-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111558932B (zh) | 一种基于3d打印技术的气动仿尺蠖软体机器人 | |
Yap et al. | A review of 3D printing processes and materials for soft robotics | |
MacCurdy et al. | Printable hydraulics: A method for fabricating robots by 3D co-printing solids and liquids | |
KR100771169B1 (ko) | 다중 배열 노즐세트를 이용한 조형장치 및 방법 | |
CN104647753B (zh) | 立体打印方法 | |
CN104582939B (zh) | 具有扩展的打印体积的添加物制造系统以及其的使用方法 | |
Glynn et al. | Fabricate 2011: Making Digital Architecture | |
CN104108184B (zh) | 一种基于快速成形技术的复杂结构智能材料器件的制造方法 | |
CN103774859B (zh) | 一种基于bim建筑模型的水泥砂浆砌体自动建造装置及其工作方法 | |
ATE371533T1 (de) | Verfahren zur herstellung dreidimensionalen formteilen | |
CN105619379A (zh) | 一种软体仿人手指及其制备方法 | |
TWI571379B (zh) | 立體成型裝置 | |
CN113997388B (zh) | 一种自适应模具设计系统及方法 | |
CN112549055A (zh) | 一种仿人气动式软体机器手指 | |
CN103341591A (zh) | 一种基于选择性失效制作铸型的3d打印方法 | |
CN106064480A (zh) | 一种3d打印模具及其打印方法 | |
CN108943705A (zh) | 一种应用平板打印机的砂型3d快速成型设备 | |
CN106738810B (zh) | 一种适用于真空辅助成形工艺的万用模具 | |
JP2018118431A (ja) | 樹脂成形装置および樹脂成形方法 | |
Dong et al. | Application of 3D Printing Technology in Soft Robots | |
CN112896474B (zh) | 一种四分区压力驱动柔性仿生鱼及其制作方法 | |
Karelin et al. | Development of a Modular Reconfigurable Mold for Prototyping of Hollow Microneedles | |
CN201525122U (zh) | 三维中空吹塑成型机 | |
CN105538610B (zh) | 一种能注塑带弧形内孔的塑胶零件的模具 | |
CN111688893B (zh) | 一种气动驱动仿魟鱼波动推进软体机器人及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |