CN111554467A - Vector magnet structure - Google Patents
Vector magnet structure Download PDFInfo
- Publication number
- CN111554467A CN111554467A CN202010418744.0A CN202010418744A CN111554467A CN 111554467 A CN111554467 A CN 111554467A CN 202010418744 A CN202010418744 A CN 202010418744A CN 111554467 A CN111554467 A CN 111554467A
- Authority
- CN
- China
- Prior art keywords
- coil
- magnet
- vector
- axis
- dct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005404 monopole Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 abstract description 8
- 238000011160 research Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种磁体结构,特别是关于一种矢量场磁体结构。The present invention relates to a magnet structure, in particular to a vector field magnet structure.
背景技术Background technique
在材料科学研究中,材料物性的多物理场耦合分析是多学科交叉研究的一大热门方向。随着科学技术的发展,除了对材料本征的力学结构特性分析外,电磁耦合分析是一重要分支,它是给受测样品提供一背景电磁场,对于某些具有磁各向异性的材料,通常还需要在研究过程中改变样品与磁场方向的夹角,过程实现方式有:固定方向磁场+样品旋转或固定样品+磁场方向旋转。In materials science research, multi-physics coupling analysis of material properties is a popular direction for multi-disciplinary research. With the development of science and technology, in addition to the analysis of the intrinsic mechanical and structural characteristics of materials, electromagnetic coupling analysis is an important branch. It provides a background electromagnetic field for the sample to be tested. For some materials with magnetic anisotropy, usually It is also necessary to change the angle between the sample and the direction of the magnetic field during the research process. The process is realized in the following ways: fixed-direction magnetic field + sample rotation or fixed sample + magnetic field direction rotation.
矢量磁体是能够产生方向可旋转磁场的一种磁体。矢量磁体通过静态地电流控制而非机械结构旋转的方法实现磁场方向的旋转,这为实验提供了许多可能性。矢量场磁体是由三维坐标系中非同向的两对或三对二极磁体组合而成,如图1~图4所示,目前市场上的矢量磁体所用二极磁体结构,常见的有螺线管对、跑道线圈对以及马鞍型线圈对组成的二极磁体。A vector magnet is a type of magnet that produces a directional rotatable magnetic field. The vector magnet realizes the rotation of the magnetic field direction by means of static ground current control rather than mechanical structure rotation, which provides many possibilities for experiments. The vector field magnet is composed of two or three pairs of dipole magnets that are not in the same direction in a three-dimensional coordinate system. As shown in Figure 1 to Figure 4, the current vector magnets on the market use dipole magnet structures. A two-pole magnet composed of a line tube pair, a racetrack coil pair, and a saddle coil pair.
上述不同类型的二极磁体在组合过程中,需要设计较复杂的骨架起到支撑各线圈之间的位置分布及装配,优点是易于实现,技术成熟,缺点是磁体体积大,激磁效率较低,好场区范围小,精度差,如要求具有圆柱样品通道的螺管型二极磁体,场质量好于±3.5%的区域球半径只有21mm,拥有相同规格样品通道的跑道型二极磁体好场区范围更小。In the combination process of the above-mentioned different types of dipole magnets, it is necessary to design a more complex skeleton to support the position distribution and assembly between the coils. The advantages are that it is easy to implement and the technology is mature. The good field area is small and the accuracy is poor, if required to have The solenoid-type dipole magnet with the cylindrical sample channel has a spherical radius of only 21mm in the area where the field quality is better than ±3.5%, and the track-type dipole magnet with the same sample channel has a smaller field area.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明的目的是提供一种结构紧凑,样品空间大,好场区大且分辨率高的矢量场磁体结构。In view of the above problems, the purpose of the present invention is to provide a vector field magnet structure with compact structure, large sample space, large good field area and high resolution.
为了解决上述问题,本发明采用的技术方案为:一种矢量磁体结构,该磁体结构包括第一线圈、第二线圈和/或第三线圈;In order to solve the above problems, the technical solution adopted in the present invention is: a vector magnet structure, the magnet structure includes a first coil, a second coil and/or a third coil;
所述第一线圈采用一对极头沿X轴方向放置的DCT二极线圈,用以产生沿X轴方向分布的Bx矢量磁场;The first coil adopts a pair of DCT diode coils with pole heads placed along the X-axis direction to generate a Bx vector magnetic field distributed along the X-axis direction;
所述第二线圈采用一对极头沿Y轴方向放置的DCT二极线圈,用于产生沿Y轴方向分布的By矢量磁场,其中,所述第二线圈设置在所述第一线圈外侧,使其空间上呈现所述第二线圈包覆所述第一线圈的结构;The second coil adopts a pair of DCT diode coils whose pole heads are placed along the Y-axis direction to generate a By vector magnetic field distributed along the Y-axis direction, wherein the second coil is arranged outside the first coil, making it spatially present a structure in which the second coil wraps the first coil;
所述第三线圈,用于产生沿Z轴方向分布的Bz矢量磁场;the third coil is used to generate a Bz vector magnetic field distributed along the Z-axis direction;
其中,XYZ为笛卡尔坐标系,Z轴为所述DCT二极线圈的中心轴方向,所述DCT 二极线圈极头方向为Y轴,所述DCT二极线圈极间对称面上垂直于Z轴的方向为X 轴。Wherein, XYZ is a Cartesian coordinate system, the Z axis is the direction of the central axis of the DCT two-pole coil, the direction of the pole head of the DCT two-pole coil is the Y-axis, and the symmetry plane between the poles of the DCT two-pole coil is perpendicular to Z The direction of the axis is the X axis.
上述的矢量磁体结构,进一步地,所述第三线圈放置在所述第二线圈外侧组成矢量磁体,空间结构上呈现套于所述第一线圈和第二线圈的线圈组合;In the above-mentioned vector magnet structure, further, the third coil is placed outside the second coil to form a vector magnet, and the spatial structure presents a coil combination sleeved on the first coil and the second coil;
或者所述第三线圈与第一线圈和第二线圈同骨架,所述第三线圈在轴向加持所述第一线圈和第二线圈组成矢量磁体;Or the third coil has the same skeleton as the first coil and the second coil, and the third coil supports the first coil and the second coil in the axial direction to form a vector magnet;
或者所述第三线圈内嵌于所述第一线圈内部组成矢量磁体。Or the third coil is embedded in the first coil to form a vector magnet.
上述的矢量磁体结构,进一步地,所述第三线圈采用螺管型磁体、跑道型磁体或马鞍型磁体。In the above-mentioned vector magnet structure, further, the third coil adopts a solenoid type magnet, a racetrack type magnet or a saddle type magnet.
上述的矢量磁体结构,进一步地,所述DCT二极线圈包括由两个单极线圈围设成的筒式电磁线,所述筒式电磁线固化在骨架上形成筒式磁体结构,所述单极线圈之间串联连接;其中,每一所述单极线圈包括间隔环绕设置的N匝电磁线圈,其中,N为整数,是设定的单极线圈的总电磁线匝数。The above-mentioned vector magnet structure, further, the DCT two-pole coil includes a cylindrical magnet wire surrounded by two monopole coils, and the cylindrical magnet wire is solidified on the skeleton to form a cylindrical magnet structure, and the single-pole magnet wire is formed. The pole coils are connected in series; wherein each of the monopole coils includes N turns of electromagnetic coils arranged around at intervals, wherein N is an integer, which is the total number of electromagnetic turns of the set monopole coils.
上述的矢量磁体结构,进一步地,所述筒式电磁线的电流密度J在环向分布近似呈cos(θ)的规律分布,即jz=j0cos(θ),其中,j0为通过电磁线横截面内的电流密度,jz为环向分布的等效电流密度Z分量,θ指以X轴为起始轴,绕Z轴逆时针旋转的角度。In the above-mentioned vector magnet structure, further, the current density J of the cylindrical magnet wire is approximately distributed in the circular direction with a regular distribution of cos(θ), that is, j z =j 0 cos(θ), where j 0 is the pass through The current density in the cross section of the electromagnetic wire, j z is the Z component of the equivalent current density distributed in the ring direction, and θ refers to the counterclockwise rotation angle around the Z axis with the X axis as the starting axis.
上述的矢量磁体结构,进一步地,所述筒式电磁线在环向的位置分布满足流函数sin(θ)=(i-1/2)/N,其中,i为电磁线序号,为{1,N}之间的任意整数。The above-mentioned vector magnet structure, further, the position distribution of the cylindrical electromagnetic wire in the circumferential direction satisfies the flow function sin(θ)=(i-1/2)/N, wherein, i is the serial number of the electromagnetic wire, which is {1 , any integer between N}.
上述的矢量磁体结构,进一步地,电流线角度分布θi=Arcsin((i-1/2)/N)。In the above-mentioned vector magnet structure, further, the current line angle distribution θ i =Arcsin((i-1/2)/N).
上述的矢量磁体结构,进一步地,所述筒式电磁线各匝的直边段坐标为(Rcos(θi), Rsin(θi),z),其中,R为电磁线在极坐标系下分布的半径,筒式电磁线各匝连续要求的弧段其坐标z满足流函数:In the above-mentioned vector magnet structure, further, the coordinates of the straight side segments of each turn of the cylindrical magnet wire are (Rcos(θ i ), Rsin(θ i ), z), where R is the magnet wire in the polar coordinate system The radius of the distribution, the arc segment required for each turn of the cylindrical magnet wire to be continuous, and its coordinate z satisfies the flow function:
cos(π·(z-hl)/(2·he))·sin(θ)=(i-1/2)/N,cos(π·(z-hl)/(2·he))·sin(θ)=(i-1/2)/N,
其中,hl指直边段长度的一半,he指线圈弧段在z方向的最大长度。Among them, hl refers to half the length of the straight side segment, and he refers to the maximum length of the coil arc segment in the z direction.
上述的矢量磁体结构,进一步地,所述DCT二极线圈可以多层嵌套组合实现功能增强需求,即采用多个同轴不同R的DCT二极线圈组合成具有设定磁场要求的磁体,多层组合DCT二极线圈可采用串联或并联连接加电,也可各自独立加电,其中,R为电磁线在极坐标系下分布的半径。In the above-mentioned vector magnet structure, further, the DCT diode coils can be combined in multiple layers to achieve functional enhancement requirements, that is, a plurality of coaxial DCT diode coils with different Rs are used to form a magnet with set magnetic field requirements. The layer-combined DCT diode coils can be connected in series or in parallel to be energized, or they can be energized independently, where R is the radius of the electromagnetic wire distributed in the polar coordinate system.
上述的矢量磁体结构,进一步地,所述第一线圈、第二线圈和第三线圈均采用超导线缆制作;或者,所述第一线圈、第二线圈和第三线圈均采用低导电性能的常规线缆制作。In the above-mentioned vector magnet structure, further, the first coil, the second coil and the third coil are all made of superconducting cables; or, the first coil, the second coil and the third coil are all made of low electrical conductivity conventional cable production.
本发明由于采取以上技术方案,其具有以下优点:The present invention has the following advantages due to taking the above technical solutions:
1、本发明采用由Discrete Cosine Theta(DCT:离散电流余弦分布)型线圈和螺管组成的矢量场磁体,DCT二极线圈结构因其类三角函数分布的电流密度空间布置,可在孔区产生高质量的二极场,如同为200mm温孔区域要求的DCT型二极线圈,场质量好于±3.5%的区域半径可高达50mm,此类磁体类筒型的结构易于多层嵌套实现功能增强需求,也易于同其他结构类型的磁体集成,使矢量磁体结构具有结构紧凑,样品空间大,好场区大,分辨率高等特点;1. The present invention adopts a vector field magnet composed of Discrete Cosine Theta (DCT: discrete current cosine distribution) type coils and solenoids. The DCT two-pole coil structure can be generated in the hole area due to the spatial arrangement of the current density distributed by a trigonometric function. High-quality diode field, like the DCT-type diode coil required for the 200mm temperature hole area, the radius of the area where the field quality is better than ±3.5% can be as high as 50mm, the cylindrical structure of this type of magnet is easy to achieve multi-layer nesting To enhance the demand, it is also easy to integrate with other types of magnets, so that the vector magnet structure has the characteristics of compact structure, large sample space, large good field area and high resolution;
2、本发明采用超导技术可实现高磁场以及三维全空间旋转磁场,可适用于高精度大样品矢量场要求的技术领域。2. The present invention adopts superconducting technology to realize high magnetic field and three-dimensional full-space rotating magnetic field, and is applicable to the technical field requiring high-precision large sample vector field.
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。在整个附图中,用相同的附图标记表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments. The drawings are for the purpose of illustrating preferred embodiments only and are not to be considered limiting of the invention. The same reference numerals are used to refer to the same parts throughout the drawings. In the attached image:
图1为现有矢量磁体的一种常见结构示意图;1 is a schematic diagram of a common structure of an existing vector magnet;
图2为圆环型(螺管)结构磁体示意图;Fig. 2 is a schematic diagram of a ring-shaped (coil) structure magnet;
图3为跑道型结构磁体示意图;3 is a schematic diagram of a racetrack-type structure magnet;
图4(a)和(b)均为马鞍型结构磁体示意图;Figures 4(a) and (b) are schematic diagrams of saddle-type magnets;
图5为本发明由三组方向相互垂直的矢量磁场叠加实现所需矢量磁场的示意图;Fig. 5 is the schematic diagram that the present invention realizes the required vector magnetic field by the superposition of three sets of vector magnetic fields whose directions are perpendicular to each other;
图6为本发明第一线圈和第二线圈组合而成的可实现平面旋转矢量磁场的二维空间矢量磁体结构。FIG. 6 is a structure of a two-dimensional space vector magnet that can realize a plane rotating vector magnetic field, which is formed by combining the first coil and the second coil of the present invention.
图7为本发明第一线圈、第二线圈和第三线圈组合而成的可实现三维空间矢量磁场的三维空间矢量磁体结构。FIG. 7 is a three-dimensional space vector magnet structure that can realize a three-dimensional space vector magnetic field, which is formed by combining the first coil, the second coil and the third coil of the present invention.
图8为本发明DCT型结构二极磁体示意图;其中,8 is a schematic diagram of a DCT-type structure dipole magnet of the present invention; wherein,
附图标记为:The reference numbers are:
1、第一线圈,11、单极线圈,2、第二线圈,3、第三线圈。1. First coil, 11. Monopolar coil, 2. Second coil, 3. Third coil.
具体实施方式Detailed ways
下面将参照附图更详细地描述本发明的示例性实施方式。虽然附图中显示了本发明的示例性实施方式,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present invention are shown in the drawings, it should be understood that the present invention may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that the present invention will be more thoroughly understood, and will fully convey the scope of the present invention to those skilled in the art.
应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”以及“具有”是包含性的,并且因此指明所陈述的特征、步骤、操作、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、步骤、操作、元件、部件、和/或它们的组合。文中描述的方法步骤、过程、以及操作不解释为必须要求它们以所描述或说明的特定顺序执行,除非明确指出执行顺序。还应当理解,可以使用另外或者替代的步骤。It is to be understood that the terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms "a," "an," and "the" can also be intended to include the plural forms unless the context clearly dictates otherwise. The terms "comprising", "comprising" and "having" are inclusive and thus indicate the presence of stated features, steps, operations, elements and/or components, but do not preclude the presence or addition of one or more other features , steps, operations, elements, components, and/or combinations thereof. Method steps, procedures, and operations described herein are not to be construed as requiring that they be performed in the particular order described or illustrated, unless an order of performance is explicitly indicated. It should also be understood that additional or alternative steps may be used.
尽管可以在文中使用术语第一、第二、第三等来描述多个元件、部件、区域、层和/或部段,但是,这些元件、部件、区域、层和/或部段不应被这些术语所限制。这些术语可以仅用来将一个元件、部件、区域、层或部段与另一区域、层或部段区分开。除非上下文明确地指出,否则诸如“第一”、“第二”之类的术语以及其它数字术语在文中使用时并不暗示顺序或者次序。因此,以下讨论的第一元件、部件、区域、层或部段在不脱离示例实施方式的教导的情况下可以被称作第二元件、部件、区域、层或部段。Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be restricted by these terms. These terms may only be used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as "first," "second," and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of example embodiments.
为了便于描述,可以在文中使用空间相对关系术语来描述如图中示出的一个元件或者特征相对于另一元件或者特征的关系,这些相对关系术语例如为“内侧”、“外侧”、“下面”、“上面”等。这种空间相对关系术语意于包括除图中描绘的方位之外的在使用或者操作中装置的不同方位。For ease of description, spatially relative terms such as "inboard", "outboard", "below" may be used herein to describe the relationship of one element or feature to another element or feature as shown in the figures ", "above", etc. This spatially relative term is intended to include different orientations of the device in use or operation other than the orientation depicted in the figures.
本实施例中XYZ坐标系可采用笛卡尔右手坐标系,也可采用笛卡尔左手坐标系,本实施例以图8例,本实施例定义Z轴为DCT线圈圆柱骨架的中心轴方向,通常亦为样品沿长度位置放置的方向,DCT二极线圈极头方向为Y轴,DCT二极线圈极间对称面上垂直于Z轴的方向为X轴,当然为了描述方便,本实施例的X轴、Y轴和Z 轴仅作为三个坐标轴的区分性阐述,实际使用中不应被上述名称所限制,可以根据实际需要定义各坐标轴的名称。In this embodiment, the XYZ coordinate system can be a Cartesian right-handed coordinate system or a Cartesian left-handed coordinate system. In this embodiment, Fig. 8 is used as an example. In this embodiment, the Z-axis is defined as the direction of the central axis of the cylindrical skeleton of the DCT coil. is the direction in which the sample is placed along the length position, the direction of the pole head of the DCT diode coil is the Y axis, and the direction perpendicular to the Z axis on the symmetry plane between the DCT diode coils is the X axis. Of course, for the convenience of description, the X axis in this embodiment is , Y-axis, and Z-axis are only used as a distinguishing description of the three coordinate axes, and should not be limited by the above names in actual use, and the names of each coordinate axis can be defined according to actual needs.
如图5~7所示,本实施例提供的矢量磁体结构包括第一线圈1、第二线圈2和/ 或第三线圈3。As shown in FIGS. 5 to 7 , the vector magnet structure provided in this embodiment includes a
第一线圈1采用一对极头沿X轴方向放置的DCT二极线圈,位于矢量磁体结构的最内侧,用以产生沿X轴方向分布的Bx矢量磁场,其中,极头为多极磁体磁力线聚集的某个空间位置,例如螺管型二极磁体,其极头分别为两个螺管的几何中心区域, DCT二极线圈其极头为最内侧电流环所包围的区域。The
第二线圈2采用一对极头沿Y轴方向放置的DCT二极线圈,设置在第一线圈1 外侧,第二线圈2呈包覆第一线圈1的形式,用于产生沿Y轴方向分布的By矢量磁场。The
第三线圈3采用一个或多个常规线圈,在磁体孔径区域产生一个沿Z轴方向分布矢量磁场;遵循紧凑结构的原则,可以设置在第二线圈2外侧(空间结构上呈现套于第一线圈1和第二线圈2的线圈组合),或与第一线圈1和第二线圈2线圈同骨架(Z 方向上第三线圈的两个线圈结构加持着第一线圈1和第二线圈2),或内嵌于第一线圈 Bx内部,用于产生沿Z轴方向分布的Bz矢量磁场;优选地,第三线圈3可以采用圆环型(螺管)、跑道型、马鞍型磁体或其他类型磁体,只要能够在温孔区产生具有一定空间分布和场质量的恒方向磁场即可,上述三组线圈共同组成三维矢量磁体结构。The
本发明的一些实施例中,第一线圈1、第二线圈2和第三线圈3可两两结合,实现二维平面矢量场磁体,例如第一线圈1和第二线圈2组合可得到在XY平面旋转变化的矢量磁场;另外,第一线圈1、第二线圈2和第三线圈3还可以共同组成的矢量磁体为三维立体矢量磁体,可在内孔空间得到类长方体分布的三维矢量磁场分布。In some embodiments of the present invention, the
本发明的一些实施例中,第一线圈1和第二线圈2均采用DCT二极线圈结构,通常两个线圈的磁场方向相互垂直。In some embodiments of the present invention, both the
如图8所示,DCT二极线圈结构包括两单极线圈11围设成筒式电磁线,其中,筒式电磁线固化在圆柱骨架上形成筒式磁体结构,单极线圈11之间相互串联连接,每一单极线圈11包括间隔环绕设置的N匝电磁线圈,其中,N为正整数,是指设定的单极线圈11的总电磁线匝数,筒式电磁线分布易于实现不同DCT二极线圈的嵌套,即易于实现性能增强或者组合功能设计,即可以采用多个同轴不同R的DCT二极线圈组合成具有设定磁场要求的磁体,多层组合DCT二极线圈可采用串联或并联连接加电,也可各自独立加电,其中,R为电磁线在极坐标系下分布的半径。As shown in FIG. 8 , the DCT two-pole coil structure includes two
DCT线圈结构以离散电流线位置的方式近似实现电流密度的cos(mθ)分布需求,其中,筒式电磁线的等效电流密度jz在环向分布近似呈cos(mθ)规律分布,即jz=j0cos(θ),其中,j0为通过电磁线横截面的电流密度,jz为环向分布的等效电流密度Z分量,为纯2m极磁场真正所需的电流。m指线圈由2m个单极构成,m=1时,可设计得到一个在电磁线所包围(gap)空间以较高均匀度分布的二极磁场,即得到DCT二极线圈,θ指以X轴为起始轴,绕Z轴逆时针旋转的角度。筒式电磁线在环向(指沿θ增长的方向)的位置分布满足流函数sin(mθ)=(i-1/2)/N,i为电磁线序号,为{1,N}之间的任意整数;θ为对应于第i匝电磁线的位置角度。通过流函数可得到2m极磁场所需的电流线角度分布θi=Arcsin((i-1/2)/N)/m。The DCT coil structure approximately realizes the cos( mθ ) distribution requirement of the current density in the form of discrete current line positions. z = j 0 cos(θ), where j 0 is the current density passing through the cross-section of the magnet wire, j z is the Z component of the equivalent current density distributed in the hoop direction, and is the actual current required by a pure 2m-pole magnetic field. m means that the coil is composed of 2m monopoles. When m=1, a dipole magnetic field can be designed with a high uniformity distribution in the space surrounded by the electromagnetic line (gap), that is, the DCT dipole coil is obtained, and θ means X The axis is the starting axis, the angle of counterclockwise rotation around the Z axis. The position distribution of the cylindrical magnet wire in the circumferential direction (referring to the direction of θ growth) satisfies the flow function sin(mθ)=(i-1/2)/N, where i is the serial number of the magnet wire, which is between {1, N} Any integer of ; θ is the position angle corresponding to the ith turn of the electromagnetic wire. The current line angle distribution θ i =Arcsin((i-1/2)/N)/m required for the 2m-pole magnetic field can be obtained through the flow function.
由此,筒式电磁线各匝的直边段坐标为(Rcos(mθi),Rsin(mθi),z),R为电磁线在极坐标下的分布半径;筒式电磁线各匝连续要求的弧段,其坐标z满足流函数: cos(π·(z-hl)/(2·he))·sin(mθ)=(i-1/2)/N,以修正非无限长线圈的尾场效应,从而使磁体的整体积分场质量最佳,其中,hl指直边段长度的一半;he指线圈弧段在z方向的最大长度;弧段电磁线位置可依需求设置不同的流函数,例如相邻匝一致间距分布(相邻匝间距始终保持一致)或弧段最远端等间距分布等(仅对弧段最远端匝间距控制,以保证最佳匝密度而不至匝间空间干涉)。当然,DCT二极线圈结构的线圈的层匝、运行电流、最高磁场、线圈长度等参数具体依用户物理要求进行设计,如图6所示, DCT二极线圈的层匝N=40,电流密度J0=594A/mm2,骨架半径R=100mm,好场区磁场By=0.5T,磁体长度L=500。Therefore, the coordinates of the straight side segment of each turn of the cylindrical magnet wire are (Rcos(mθ i ), Rsin(mθ i ), z), and R is the distribution radius of the magnet wire in polar coordinates; each turn of the cylindrical magnet wire is continuous The required arc segment whose coordinate z satisfies the flow function: cos(π·(z-hl)/(2·he))·sin(mθ)=(i-1/2)/N, to correct the non-infinite coil Therefore, the overall integral field quality of the magnet is the best. Among them, hl refers to half the length of the straight side segment; he refers to the maximum length of the coil arc segment in the z direction; the position of the arc segment electromagnetic line can be set differently according to requirements. Flow functions, such as the uniform spacing distribution of adjacent turns (the spacing between adjacent turns is always consistent) or the equal spacing distribution at the farthest end of the arc, etc. (only the turn spacing at the farthest end of the arc is controlled to ensure the best turn density without inter-turn space interference). Of course, parameters such as layer turns, operating current, maximum magnetic field, and coil length of the coil of the DCT diode coil structure are specifically designed according to the physical requirements of the user. As shown in Figure 6, the layer turns of the DCT diode coil N=40, the current density J 0 =594A/mm 2 , skeleton radius R=100mm, good field magnetic field By=0.5T, magnet length L=500.
本发明的一些实施例中,第一线圈1、第二线圈2和第三线圈3分别单独供电,用户可依据测试标定的手册数据控制电源得到所需大小、方向的矢量磁场,亦可通过传感器闭环反馈调整得到所需磁场,如图6所示,是由相互垂直布置的第一线圈1和第二线圈2组成的二维XY平面矢量磁体,现实验测得当仅给第一线圈1通I=150A 电流时,温孔中心区域可产生(0.5T,0T,0T)的矢量磁场,同样测得仅给第二线圈 2通I=150A电流时,温孔中心区域产生(0T,0.5T,0T)的矢量磁场,那么需要在温孔中心区域产生(0.5T,0.5T,0T)的矢量磁场时,只要同时给第一线圈1和第二线圈2通I=150A的电流即可,以此为例,可以根据需要进行选择。In some embodiments of the present invention, the
本发明的一些实施例中,第一线圈1、第二线圈2和第三线圈3的电磁线可使用铜、铝等低导电性能的常规导线缆制作,亦可用包括NbTi,Nb3Sn等在内的超导线缆制作。In some embodiments of the present invention, the magnet wires of the
本发明的一些实施例中,第一线圈1、第二线圈2和第三线圈3可共用同一支撑骨架,也可各自单独分立,最后组装成矢量磁体,支撑骨架的具体结构不做限定,可以根据实际情况采用相应结构。In some embodiments of the present invention, the
本发明的一些实施例中,三组线圈磁场方向夹角亦可以非垂直,以适应特殊磁场要求的磁体,具体可以根据实际要求进行确定。In some embodiments of the present invention, the included angles of the magnetic field directions of the three groups of coils may also be non-vertical, so as to adapt to magnets with special magnetic field requirements, which can be determined according to actual requirements.
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式和制作工艺等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。The above-mentioned embodiments are only used to illustrate the present invention, and the structure, connection method and manufacturing process of each component can be changed to some extent. Any equivalent transformation and improvement based on the technical solution of the present invention should not be used. Excluded from the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010418744.0A CN111554467B (en) | 2020-05-18 | 2020-05-18 | Vector magnet structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010418744.0A CN111554467B (en) | 2020-05-18 | 2020-05-18 | Vector magnet structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111554467A true CN111554467A (en) | 2020-08-18 |
CN111554467B CN111554467B (en) | 2024-09-24 |
Family
ID=72000852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010418744.0A Active CN111554467B (en) | 2020-05-18 | 2020-05-18 | Vector magnet structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111554467B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114050017A (en) * | 2021-11-19 | 2022-02-15 | 安徽宽腾科技有限公司 | A three-dimensional magnetic field generator |
CN114089426A (en) * | 2021-05-26 | 2022-02-25 | 华北科技学院(中国煤矿安全技术培训中心) | An improved U-shaped spiral source transient electromagnetic full-space orientation detection method |
CN120072458A (en) * | 2025-04-27 | 2025-05-30 | 华中科技大学 | A fingerprint-shaped vector magnet and its acquisition method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1465128A (en) * | 2001-07-31 | 2003-12-31 | 爱信Aw株式会社 | Motor manufacturing method |
JP2013206635A (en) * | 2012-03-27 | 2013-10-07 | Natl Inst Of Radiological Sciences | Deflection electromagnet coil design method, deflection electromagnet coil design device, superconducting electromagnet, accelerator, and coil arrangement optimization program |
US20180158586A1 (en) * | 2012-12-06 | 2018-06-07 | Advanced Magnet Lab, Inc. | Method for forming saddle coil and other conductor assemblies |
CN108535666A (en) * | 2018-03-28 | 2018-09-14 | 深圳市启荣科技发展有限责任公司 | Any direction motion vector uniform magnetic field generating means and control system |
CN211907130U (en) * | 2020-05-18 | 2020-11-10 | 中国科学院近代物理研究所 | A vector magnet structure |
-
2020
- 2020-05-18 CN CN202010418744.0A patent/CN111554467B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1465128A (en) * | 2001-07-31 | 2003-12-31 | 爱信Aw株式会社 | Motor manufacturing method |
JP2013206635A (en) * | 2012-03-27 | 2013-10-07 | Natl Inst Of Radiological Sciences | Deflection electromagnet coil design method, deflection electromagnet coil design device, superconducting electromagnet, accelerator, and coil arrangement optimization program |
US20180158586A1 (en) * | 2012-12-06 | 2018-06-07 | Advanced Magnet Lab, Inc. | Method for forming saddle coil and other conductor assemblies |
CN108535666A (en) * | 2018-03-28 | 2018-09-14 | 深圳市启荣科技发展有限责任公司 | Any direction motion vector uniform magnetic field generating means and control system |
CN211907130U (en) * | 2020-05-18 | 2020-11-10 | 中国科学院近代物理研究所 | A vector magnet structure |
Non-Patent Citations (1)
Title |
---|
徐厚昌;朱银锋;吴维越;: "FAIR工程中CR二极超导磁体样机的结构分析", 低温与超导, no. 04, 24 April 2009 (2009-04-24) * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114089426A (en) * | 2021-05-26 | 2022-02-25 | 华北科技学院(中国煤矿安全技术培训中心) | An improved U-shaped spiral source transient electromagnetic full-space orientation detection method |
CN114089426B (en) * | 2021-05-26 | 2023-11-10 | 华北科技学院(中国煤矿安全技术培训中心) | Improved U-shaped spiral source transient electromagnetic full-space directional detection method |
CN114050017A (en) * | 2021-11-19 | 2022-02-15 | 安徽宽腾科技有限公司 | A three-dimensional magnetic field generator |
CN114050017B (en) * | 2021-11-19 | 2025-01-21 | 合肥墨测科技有限公司 | A device for generating a three-dimensional magnetic field |
CN120072458A (en) * | 2025-04-27 | 2025-05-30 | 华中科技大学 | A fingerprint-shaped vector magnet and its acquisition method |
Also Published As
Publication number | Publication date |
---|---|
CN111554467B (en) | 2024-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111554467A (en) | Vector magnet structure | |
Goodzeit et al. | The double-helix dipole-a novel approach to accelerator magnet design | |
CN111477424B (en) | A multi-dimensional vector field magnet structure | |
CN107670181B (en) | A Tilt Solenoid for a Gantry Magnet | |
EP2681750B1 (en) | Double helix conductor | |
US9406421B2 (en) | System configuration using a double helix conductor | |
CN104819712B (en) | A kind of magnetic compensation loop construction part for miniature nuclear magnetic resonance gyroscope | |
JP3662220B2 (en) | Improved magnet | |
CN102967835B (en) | For the spiral gradient coil of MR imaging apparatus | |
EP2250652A1 (en) | Helical coil design and process for direct fabrication from a conductive layer | |
JP2006116300A5 (en) | ||
CN101435857A (en) | Cylinder surface even field coil of magnetic nuclear resonance spectrometer and design method thereof | |
CN211907130U (en) | A vector magnet structure | |
US8040136B2 (en) | NMR solenoidal coil for RF field homogeneity | |
US7427908B1 (en) | Magnetic shimming configuration with optimized turn geometry and electrical circuitry | |
US5088185A (en) | Method for manufacturing gradient coil system for a nuclear magnetic resonance tomography apparatus | |
WO2011109929A1 (en) | Superconductive magnet generating rotating magnetic field | |
JP4155605B2 (en) | Saddle type multi-turn RF coil for NMR probe | |
CN111477423A (en) | A DCT superconducting magnet structure | |
JP2004273568A (en) | Superconductive magnet | |
CN212365636U (en) | A DCT superconducting magnet structure | |
CN113204834B (en) | Electromagnetic derotation device, design method and spacecraft | |
CN114743754B (en) | A Low Power Consumption Compact Room Temperature Bitter Type Strong Magnet | |
CN115113118A (en) | Magnetic resonance equipment, superconducting shimming coil and manufacturing method thereof | |
CN119103047A (en) | A hybrid magnetic circuit assembly for a multi-fluid adaptive high-power Hall thruster |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |