CN111533682B - Process for preparing paroxetine and analogues thereof - Google Patents
Process for preparing paroxetine and analogues thereof Download PDFInfo
- Publication number
- CN111533682B CN111533682B CN202010482067.9A CN202010482067A CN111533682B CN 111533682 B CN111533682 B CN 111533682B CN 202010482067 A CN202010482067 A CN 202010482067A CN 111533682 B CN111533682 B CN 111533682B
- Authority
- CN
- China
- Prior art keywords
- compound
- formula
- reaction
- chiral
- paroxetine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 title abstract description 31
- AHOUBRCZNHFOSL-UHFFFAOYSA-N Paroxetine hydrochloride Natural products C1=CC(F)=CC=C1C1C(COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-UHFFFAOYSA-N 0.000 title abstract description 31
- 229960002296 paroxetine Drugs 0.000 title abstract description 31
- 150000001875 compounds Chemical class 0.000 claims abstract description 97
- 238000006243 chemical reaction Methods 0.000 claims abstract description 51
- 238000002360 preparation method Methods 0.000 claims abstract description 18
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 12
- 239000003054 catalyst Substances 0.000 claims abstract description 11
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 claims abstract description 10
- 230000009467 reduction Effects 0.000 claims abstract description 8
- -1 piperidine compound Chemical class 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 11
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 11
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine Substances NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 5
- 125000001424 substituent group Chemical group 0.000 claims description 5
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 claims description 4
- 125000004199 4-trifluoromethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C(F)(F)F 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 4
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 238000005580 one pot reaction Methods 0.000 claims description 3
- 238000007363 ring formation reaction Methods 0.000 claims description 3
- NQRYJNQNLNOLGT-UHFFFAOYSA-N tetrahydropyridine hydrochloride Natural products C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 3
- 125000006276 2-bromophenyl group Chemical group [H]C1=C([H])C(Br)=C(*)C([H])=C1[H] 0.000 claims description 2
- 125000006275 3-bromophenyl group Chemical group [H]C1=C([H])C(Br)=C([H])C(*)=C1[H] 0.000 claims description 2
- 125000004179 3-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(Cl)=C1[H] 0.000 claims description 2
- 238000007259 addition reaction Methods 0.000 claims description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 2
- 239000000543 intermediate Substances 0.000 abstract description 16
- 239000012535 impurity Substances 0.000 abstract description 13
- 230000002194 synthesizing effect Effects 0.000 abstract description 9
- 238000003786 synthesis reaction Methods 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 125000003386 piperidinyl group Chemical group 0.000 abstract description 4
- 231100000331 toxic Toxicity 0.000 abstract description 4
- 230000002588 toxic effect Effects 0.000 abstract description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 42
- 238000005160 1H NMR spectroscopy Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 101100132433 Arabidopsis thaliana VIII-1 gene Proteins 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 238000010898 silica gel chromatography Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 229940126062 Compound A Drugs 0.000 description 4
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 150000003053 piperidines Chemical class 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 238000010520 demethylation reaction Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 125000003709 fluoroalkyl group Chemical group 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 3
- 239000005711 Benzoic acid Substances 0.000 description 2
- 125000001313 C5-C10 heteroaryl group Chemical group 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 239000000935 antidepressant agent Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 230000017858 demethylation Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 2
- 125000004001 thioalkyl group Chemical group 0.000 description 2
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XUKUURHRXDUEBC-SXOMAYOGSA-N (3s,5r)-7-[2-(4-fluorophenyl)-3-phenyl-4-(phenylcarbamoyl)-5-propan-2-ylpyrrol-1-yl]-3,5-dihydroxyheptanoic acid Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-SXOMAYOGSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000006570 (C5-C6) heteroaryl group Chemical group 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- 208000020401 Depressive disease Diseases 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- UIOFUWFRIANQPC-JKIFEVAISA-N Floxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(F)C=CC=C1Cl UIOFUWFRIANQPC-JKIFEVAISA-N 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- LUSZGTFNYDARNI-UHFFFAOYSA-N Sesamol Natural products OC1=CC=C2OCOC2=C1 LUSZGTFNYDARNI-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- NTBIYBAYFBNTCD-UHFFFAOYSA-N dibenzoyl 2,3-dihydroxybutanedioate Chemical compound C=1C=CC=CC=1C(=O)OC(=O)C(O)C(O)C(=O)OC(=O)C1=CC=CC=C1 NTBIYBAYFBNTCD-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 238000010829 isocratic elution Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- IMAKHNTVDGLIRY-UHFFFAOYSA-N methyl prop-2-ynoate Chemical compound COC(=O)C#C IMAKHNTVDGLIRY-UHFFFAOYSA-N 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 description 1
- 229940067157 phenylhydrazine Drugs 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229960000948 quinine Drugs 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/92—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with a hetero atom directly attached to the ring nitrogen atom
- C07D211/98—Nitrogen atom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0272—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
- B01J31/0274—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0272—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
- B01J31/0275—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 also containing elements or functional groups covered by B01J31/0201 - B01J31/0269
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B53/00—Asymmetric syntheses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/07—Optical isomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
The invention provides a preparation method for synthesizing paroxetine and analogues thereof, and provides an intermediate compound for synthesizing paroxetine and analogues thereof:the invention creatively adopts the steps of firstly constructing a chiral center, then being adjacent according to the position of two chiral centers to be constructed, and receiving a first chiral group Rb(e.g., 4-F-phenyl) steric hindrance, and the desired trans product is formed more efficiently without the use of a chiral catalyst during the reduction. With R being employed from the beginning of the reaction2NH-as an N-protecting group on the piperidine ring, avoiding the use of methyl protection leads to unavoidable demethylationThree toxic methyl-containing impurities are generated; the invention opens up a brand new reaction route for the synthesis of the paroxetine and the analogues thereof, and improves the yield and the chiral purity of the product; meanwhile, intermediates for synthesizing paroxetine and analogues thereof are enriched.
Description
Technical Field
The invention relates to the technical field of organic synthesis, and particularly relates to a preparation method of paroxetine and analogues thereof.
Background
Substituted piperidines having bimanual centers are often used for the treatment of depression and other diseases, for example, patent document CN1256692A describes in claim 1a compound having formula I and its pharmaceutically acceptable salts, and claim 13 describes the use of such compounds in the preparation of antidepressant drugs. CN1256692A the formula of the compound of formula I is as follows:
of the class of drugs that are on the market, the most successful is paroxetine. Paroxetine (parooxetine) is an antidepressant drug developed by Kurarin Schker (GSK) in the United states and approved for marketing in 1992, with a peak global sales of up to $ 33 billion. After the patent is over in 2006, a plurality of imitation medicines come into the market in China, the largest three of them are Zhejiang Huahai medicine industry, Zhejiang Hengjian medicine industry and Beijing Wansheng medicine industry, and the domestic sales in 2018 still have 9 hundred million yuan. The structural formula of paroxetine is as follows:
the piperidine ring of the drug has two adjacent chiral centers, and both asymmetric catalytic reaction and chiral resolution are difficult. The existing synthesis method of paroxetine generally comprises the steps of firstly synthesizing a racemate and then carrying out chiral resolution by using a resolving agent to establish a chiral center, wherein the synthesis route is shown as the following figure:
the heart of this reaction route is chiral resolution and protection of secondary amino groups with methyl groups. In the resolution, the first CN1096054A uses enzyme to assist resolution, the WO0146148a1 and the WO0129032a1 use (-) dibenzoyl tartrate as a resolving agent to resolve in a composite solvent such as methanol, acetone and toluene, the CN101974604A uses enzyme to resolve in an ionic liquid, and the yield of the above methods is about 40%.
The methyl group is introduced from the starting N-methylmalonic acid monoester in the preparation of compound 1, see paragraph 0005 of the specification of CN 104892491A. Since the secondary amino group participates in the reaction when the intermediate 3 is reacted to prepare the intermediate 4, the secondary amino group needs to be protected objectively, and other cheap raw materials are not found, and no attention is paid to the improvement of the position since the route is disclosed so far.
The existing synthesis method of paroxetine has the following problems:
1. due to N-CH3The bond energy between the two is high, so that violent reaction conditions cannot be used in order to avoid destroying C-O bonds in molecules, and the final step of demethylation cannot be completely reacted easily. The presence of N-CH in the final product3Wherein impurities II and B are described in chinese pharmacopoeia, impurities G is described in european pharmacopoeia, and impurities B is described in us pharmacopoeia. In particular, impurity II, which differs from the paroxetine molecule by only one methyl group, results in difficulty in removal, greatly increasing production costs.
2. In the second step, a chiral center is established by utilizing a traditional resolution mode, the compound 2 has two chiral centers, four chiral compounds with different configurations exist, and the resolved target product compound 3 is only one of the chiral compounds, so that although technical personnel exhaust various efforts in the last thirty years, the cost of a resolved solvent is only reduced, the yield can only reach about 40 percent at most, and the improvement is difficult in the future, so that the serious waste of resources is caused;
3. the reduction of the carbonyl group in the first amide step requires the use of strong reducing agents, such as Lithium Aluminum Hydride (LAH) and the like, which are relatively demanding to operate: low temperature and no water are required, and quenching is needed after reaction; but also generates a large amount of aluminum salt waste, and has large environmental protection pressure.
In view of the problems of the above routes, although it is very difficult to construct two chiral centers in a one-step reaction, and the skilled person has also tried chiral synthesis, the results are not ideal, for example, CN104892491A uses quinine and other groups as an assistant, and only the optical purity of the prepared intermediate 1 is improved, and then the intermediate still needs to be resolved; CN105418502A requires expensive rare earth metal catalyst and chiral auxiliary agent for generating two chiral centers at the same time, and the route still introduces N-CH3。
Based on the above problems of the existing methods for synthesizing paroxetine and analogues thereof, a brand new synthetic route needs to be designed, and the development of a preparation method of paroxetine and analogues thereof, which has few toxic impurities, high yield, mild conditions and low cost, is a technical problem to be solved urgently at present.
Disclosure of Invention
Therefore, the technical problem to be solved by the invention is to overcome the defects of the synthesis method of paroxetine and analogues thereof in the prior art, so as to provide a preparation method of paroxetine and analogues thereof, a key intermediate used in the preparation method and a synthesis method of the intermediate.
Therefore, the invention provides the following technical scheme:
the invention provides a chiral center-containing piperidine compound of formula XI or IV, having the structure shown below:
wherein R isaIs selected from-COOR1or-CH2OR3;
R1Is selected from C1-8Straight or branched alkyl, C3-8A cycloalkyl group; preferably C1-4Straight or branched alkyl, C5-6Ring ofAn alkyl group; the alkyl or cycloalkyl group may be substituted by F, unsubstituted or by F, trifluoromethyl, C1-3Alkyl substituted phenyl; more preferred R1Is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, cyclopentyl, cyclohexyl or benzyl;
R2selected from unsubstituted or substituted 5-to 10-membered aryl, heteroaryl, preferably unsubstituted or substituted phenyl;
R3selected from H, C1-8Straight or branched alkyl, C3-8Any one of a cycloalkyl group, an unsubstituted or substituted 5-10 membered aryl group, an unsubstituted or substituted 5-10 membered heteroaryl group, an unsubstituted or substituted benzyl group, preferably an unsubstituted or substituted phenyl group;
R2and R3By "substituted" in the definition of groups is meant that 1 to 5H on the group are selected from C1-4Alkyl, thioalkyl, alkoxy, fluoroalkyl, F, Cl, Br, hydroxyl, nitro, amino, methanesulfonyl, tetrahydronaphthyl orSubstitution;
Rbselected from unsubstituted or substituted by C1-4Alkyl radical, C1-4Alkoxy radical, C1-4Fluoroalkyl, hydroxy, F, Cl, Br, methylthio or C6-10Aralkoxy substituted phenyl.
Further, R2Is phenyl, 4-methoxyphenyl, 4-trifluoromethylphenyl or 3-bromophenyl.
Further, RbIs 4-fluorophenyl, 4-chlorophenyl, 4-trifluoromethylphenyl, 4-methoxyphenyl, 3-chlorophenyl, 3-nitrophenyl, 2-bromophenyl or 2-chloro-4-fluorophenylPreferably 4-fluorophenyl.
When Rb is p-fluorophenyl and R3 is H orWhen compounds of formula XI or IV are intermediates in the synthesis of paroxetine.
Preferred examples of chiral center-containing piperidine compounds of formula XI or IV are the following compounds:
the invention further provides a preparation method for preparing the compound shown in the formula X by using the compound shown in the formula IV, which comprises the following steps:
step 1: the compound of formula IV is reduced to obtain a compound of formula VII,
step 2: further reduction of the compound of formula VII gives a compound of formula VIII,
and step 3: reaction of a compound of formula VIII to prepare a compound of formula IX,
and 4, step 4: removal of R from a Compound of formula IX2-NH-to give a compound of formula X,
the definition of the substituents appearing in the above compounds is the same as that of the chiral center-containing piperidine compounds of the formula XI or IV.
In step 1, a silane reducing agent is used, the reaction solvent can be an organic solvent such as dichloromethane, acetonitrile, tetrahydrofuran, etc., the reaction temperature is-20 to 30 ℃, the reaction is preferably carried out at room temperature (25 ℃), the reaction requires an acidic environment, and the reaction can be carried out by using trifluoroacetic acid, BF, etc3.Et2And O.
In step 2, borohydride or aluminum hydride, such as sodium borohydride or diisobutylaluminum hydride, is used as a reducing agent, and the reaction solvent may be an organic solvent such as dichloromethane, acetonitrile, tetrahydrofuran, etc., and the reaction temperature is-20 to 30 ℃.
In step 3, one of the reactants may be activated first and then reacted, and the activation method may be methanesulfonic acid esterification or the like.
In the step 4, Zn/HAc conditions are adopted, and the reaction is carried out at room temperature.
The invention also provides a preparation method of the compound shown in the formula IV, which comprises the following reaction steps:
step 1: firstly, a compound of a formula I and a compound of a formula II react to generate an alkenyl hydrazine intermediate V, wherein the structural formula of the intermediate compound V is as follows:
step 2: the intermediate V is not purified, and directly undergoes addition and cyclization reaction with the compound shown in the formula III under the action of a chiral catalyst to obtain a compound shown in the formula IV;
optionally, step 1 and step 2 may be accomplished using a one-pot process,
the definition of the substituents appearing in the above compounds is the same as that of the chiral center-containing piperidine compounds of the formula XI or IV.
In the step 1, reacting at room temperature, and using ethanol as a solvent;
in step 2, using an aprotic solvent, such as acetonitrile and toluene as a solvent, reacting under weak acidic conditions, providing a weak acidic environment can use an organic weak acid, such as benzoic acid;
further, the chiral catalyst has the following structure:
wherein R is4Is straight-chain or branched C1-4Alkyl groups of (a);
R5is unsubstituted or substituted 5-6 membered heteroaryl or phenyl which may be substituted by alkyl, alkoxy, fluoroalkyl, F or Cl having 1-4 carbon atoms, preferably R5Is phenyl; r4Is methyl, isopropyl or ethyl.
The present invention also provides a process for preparing a compound of formula VII using a compound of formula IV, comprising the steps of:
the compound of formula IV is reduced to obtain the compound of formula VII, the reaction does not need to use chiral catalyst, and the definition of the substituent group appearing in the compound is the same as that of the piperidine compound containing chiral center shown in formula XI or IV.
A process for preparing a compound of formula XI starting from a compound of formula IV comprising the steps of:
wherein: when R isaIs selected from-CH2OR3And R is3When the formula is H, the compound in the formula XI is a VIII compound,
when R isaIs selected from-CH2OR3And R is3Is C1-8Straight or branched alkyl, C3-8Any one of a cycloalkyl group, an unsubstituted or substituted 5-10 membered aryl group, an unsubstituted or substituted 5-10 membered heteroaryl group, an unsubstituted or substituted benzyl group, preferably an unsubstituted or substituted phenyl group; "substituted" means that 1 to 5H on the group are selected from C1-4Alkyl, thioalkyl, alkoxy, fluoroalkyl, F, Cl, Br, hydroxyl, nitro, amino, methanesulfonyl, tetrahydronaphthyl orSubstitution; in this case, the compound of formula XI is the compound of formula IX;
step 1: the compound of formula IV is reduced to obtain a compound of formula VII,
step 2: further reduction of the compound of formula VII gives a compound of formula VIII,
and optionally step 3: reaction of a compound of formula VIII to prepare a compound of formula IX,
r appearing in the above-mentioned compound1、R2And RbSubstituents as defined in any one of claims 1 to 4.
The present invention also provides paroxetine and analogues thereof of formula X prepared using a compound of formula IV, which is free of the following N-methylated impurities:
the technical scheme of the invention has the following advantages:
1. the technical problem solved by the invention is that the existing method for synthesizing paroxetine or analogues thereof needs to use a resolving agent for resolution when constructing a chiral center, so that the yield is low, and the resources are seriously wasted; meanwhile, because N on the piperidine ring is relatively active, a stable protecting group (-CH) needs to be introduced in the preparation process3) However, the protecting group (-CH)3) At the time of removal, due to N-CH3The bond energy between the two is high, so that severe reaction conditions cannot be used for avoiding damaging C-O bonds in molecules; this results in incomplete demethylation and the inevitable presence of three methyl-bearing toxic impurities (impurity II, impurity B and impurity G) in the final product, especially impurities II and B having a polarity similar to that of the desired paroxetine or the like, which makes removal difficult. The improvement of the existing method for synthesizing paroxetine and analogues thereof is only limited to the optimization of the two synthetic routes, and basically has no effect;
the invention departs from the synthesis idea of the prior art that either the resolution of a resolving agent or the simultaneous construction of two chiral centers is required, creatively adopts the steps of firstly constructing one chiral center and then constructing the chiral center according to the requirementAre positioned adjacent to each other and are subjected to a first chiral group Rb(e.g., 4-F-phenyl) steric hindrance, and the desired trans product is formed more efficiently without the use of a chiral catalyst during the reduction. With R being employed from the beginning of the reaction2NH-as N-protecting group on the piperidine ring, R is removed in contrast to demethylation2The NH-group reaction condition is milder, three toxic impurities containing methyl are fundamentally avoided, and the yield is high. In addition, the invention also avoids the use of strong reducing agent in the prior art, and has low operation requirement and low environmental protection pressure. Therefore, the invention opens up a brand new reaction route for the synthesis of the paroxetine and the analogues thereof, and improves the yield and the chiral purity of the product; meanwhile, intermediates for synthesizing paroxetine and analogues thereof are enriched.
2. The preparation method for synthesizing paroxetine and analogues thereof provided by the invention has the advantages of mild operation conditions, high yield, low cost, less toxic impurities, no generation of a large amount of solid wastes and contribution to industrial production.
3. The preparation method of the compound shown in the formula IV provided by the invention comprises the steps of firstly generating an alkenyl hydrazine intermediate by adopting propiolic acid ester substances shown in the formula I and hydrazine substances shown in the formula IIThe intermediate is not required to be separated and purified, and is continuously subjected to addition and cyclization with the alpha, beta-unsaturated aldehyde compound shown in the formula III under the action of a chiral catalyst to generate a compound shown in the formula IV, wherein chiral carbon connected with-OH is partially racemized; and RbThe connected chiral carbon is in a single configuration (the ee value is 96-99 percent); by adopting the strategy of firstly constructing a chiral center, the subsequent reaction is not influenced, the chirality of the compound shown in the formula IV is relatively exclusive, and the utilization rate of raw materials is high.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, and it is obvious that the drawings in the following description are some embodiments of the present invention, and other drawings can be obtained by those skilled in the art without creative efforts.
FIG. 1 is a chiral liquid phase diagram of compound B of example 1 of the present invention;
FIG. 2 is a chiral liquid phase diagram of Compound A of example 1 of the present invention;
FIG. 3 is a drawing of Compound A of example 1 of the present invention1HNMR;
FIG. 4 is a drawing of Compound B of example 1 of the present invention1HNMR;
FIG. 5 shows the VII-1 compound obtained in example 14 of the present invention1HNMR;
FIG. 6 is a drawing showing the preparation of VIII-1 compound obtained in example 16 of the present invention1HNMR;
FIG. 7 shows the preparation of a compound IX-1 according to example 18 of the present invention1HNMR;
FIG. 8 is a graph of paroxetine prepared according to example 19 of the present invention1HNMR。
Detailed Description
The following examples are provided to further understand the present invention, not to limit the scope of the present invention, but to provide the best mode, not to limit the content and the protection scope of the present invention, and any product similar or similar to the present invention, which is obtained by combining the present invention with other prior art features, falls within the protection scope of the present invention.
The examples do not show the specific experimental steps or conditions, and can be performed according to the conventional experimental steps described in the literature in the field. The reagents or instruments used are not indicated by manufacturers, and are all conventional reagent products which can be obtained commercially.
All compounds defined in the present invention can be synthesized according to the preparation methods of the following examples.
The detection conditions of the chiral liquid phase chromatogram HPLC in each example are as follows:
a chiral column with a Chiralpak IC model is adopted, and a mobile phase is n-hexane: isopropanol 90: 10, isocratic elution, detection wavelength 254nm, flow rate 1.0ml/min, column temperature: at 25 ℃.
Example 1
This example provides a compound of formula IV, which is prepared according to the following equation:
adding 75mL of ethanol, methyl propiolate I-1(27.5mmol) and phenylhydrazine II-1(27.5mmol) into a reaction bottle in sequence, reacting for 4h at room temperature, concentrating to remove the ethanol, and then adding 75mL of acetonitrile, alpha, beta-unsaturated aldehyde III-1(33.0mmol), benzoic acid (2.75mmol) and catalyst VI-1(2.75mmol) into the concentrated solution in sequence; reacting at room temperature for 35h, concentrating the reaction solution after the reaction is finished, and purifying by silica gel column chromatography to obtain a product IV-1 with the yield of 89% and ee of 98%.
Wherein the ee value refers to the ee value of chiral carbon 1, and 1 chiral center is successfully constructed in the reaction. The chiral carbon 2 is divided into two configurations, so the reaction yields a mixture of trans and cis, in 89% overall yield. The configuration of the chiral carbon 2 has no influence on the subsequent synthesis of paroxetine and analogues thereof, because the hydroxyl group is reduced in the subsequent reaction. Therefore, the trans-and cis-products do not need to be separated in actual production.
Isolation of IV-1 from example 1 gave compounds A and B of the following configuration: the liquid phase and nuclear magnetic spectrum of compound B are shown in figures 1 and 4, and the liquid phase and nuclear magnetic spectrum of compound A are shown in figures 2 and 3, which are identified to indicate that the configuration of IV-1 is correct in the invention.
Of Compound A in IV-11H NMR(400MHz,CDCl3)δ:7.61(s,1H),7.25–7.20(m,2H),7.19–7.14(m,2H),6.96(t,J=8.8Hz,2H),6.91(t,J=7.2Hz,1H),6.75(d,J=7.6Hz,2H),6.32(s,1H),4.65(td,J=6.4,3.6Hz,1H),3.91(t,J=6.4Hz,1H),3.58(d,J=6.0Hz,1H),3.51(s,3H),2.20(dt,J=13.6,6.4Hz,1H),2.10(ddd,J=13.6,7.6,3.6Hz,1H);
HRMS-ESI(m/z):[M+H]+343.1445。
Of compounds B in IV-11H NMR(400MHz,CDCl3)δ7.82(s,1H),7.34–7.24(m,4H),7.06–7.01(m,2H),6.93(t,J=7.4Hz,1H),6.75(d,J=7.7Hz,2H),6.37(s,1H),4.82(d,J=10.3Hz,1H),4.12(d,J=6.8Hz,1H),3.66(s,3H),2.54(dt,J=14.3,2.1Hz,1H),2.36(ddd,J=14.3,6.5,3.7Hz,1H),1.84(d,J=10.3Hz,1H);
HRMS-ESI(m/z):[M+H]+343.1445。
Example 2
the yield of the product IV-1 was 87% and the ee value was 97%.
Examples 3 to 13
Examples 3-13 were prepared identically to example 2, except that the substrates, compounds I, II and III, and the solvent added after the first concentration were different, as shown in Table 1 below.
TABLE 1 substrates and results of the reactions of examples 3-13
R1 | R2 | Rb | Solvent(s) | Yield% | ee% | [M+H]+ | |
Example 3 | Me | Ph | 4-Cl-Ph | Acetonitrile | 99 | 98 | 359.1163 |
Example 4 | Me | Ph | 4-Cl-Ph | Toluene | 81 | 99 | 359.1163 |
Example 5 | Me | Ph | Ph | Acetonitrile | 99 | 97 | 325.1547 |
Example 6 | Me | Ph | 4-OMe-Ph | Acetonitrile | 99 | 97 | 355.1658 |
Example 7 | Me | Ph | 4-CF3-Ph | Acetonitrile | 96 | 97 | 393.1425 |
Example 8 | Me | Ph | 3-Cl-Ph | Acetonitrile | 98 | 97 | 359.115 |
Example 9 | Me | Ph | 3-NO2-Ph | Acetonitrile | 93 | 98 | 370.1403 |
Example 10 | Me | Ph | 2-Cl-4-F-Ph | Acetonitrile | 93 | 98 | 377.1069 |
Example 11 | Me | 4-CF3-Ph | 4-F-Ph | Acetonitrile | 80 | 96 | -- |
Example 12 | Me | 3-Br-Ph | 4-F-Ph | Acetonitrile | 86 | 96 | -- |
Example 13 | Et | Ph | 4-F-Ph | Acetonitrile | 90 | 96 | -- |
Example 14
This example provides a compound of formula VII, which is prepared according to the following equation:
into the reaction flask were added 250mL of methylene chloride, IV-1(23.9mmol), triethylsilane (52.6mmol) and trifluoroacetic acid (52.6mmol) in this order. The reaction was carried out at room temperature for 24 hours. Washing the reaction solution after the reaction by saturated sodium bicarbonate aqueous solution, extracting by ethyl acetate, concentrating, purifying by silica gel column chromatography to obtain a product VII-1 with the yield of 75 percent,1h NMR is shown in FIG. 5.
VII-1 of1H NMR(400MHz,CDCl3)δ7.33–7.12(m,4H),7.06–6.95(m,2H),6.95–6.87(m,2H),6.82(s,1H),4.47(s,1H),3.43(s,4H),3.31(d,J=8.8Hz,1H),3.07–2.92(m,1H),2.91–2.71(m,1H),2.55–2.26(m,2H),2.09–1.77(m,2H);
HRMS-ESI(m/z):[M+H]+329.1666。
Example 15
This example is similar to example 14, except that BF was used3.Et2O instead of trifluoroacetic acid, gave VII-1 in 71% yield.
Example 16
This example provides a compound of formula VIII, which is prepared according to the following equation:
adding 0.5mL of tetrahydrofuran, 0.22mmol of sodium borohydride, 0.22mmol of lithium chloride and VII-1(0.03mmol) into a reaction bottle at room temperature in sequence; and then heating to 66 ℃ and reacting for 6 hours, and washing the reaction solution after the reaction is finished, extracting with ethyl acetate, concentrating, and purifying by silica gel column chromatography to obtain a product VIII-1 with the yield of 99%. Of VIII-11H NMR is shown in FIG. 6.
Of VIII-11H NMR(400MHz,CDCl3)δ:7.25–7.16(m,4H),7.02(t,J=8.8Hz,2H),6.94(d,J=7.6Hz,2H),6.81(t,J=7.2Hz,1H),4.45(s,1H),3.51–3.44(m,1H),3.40(dt,J=10.8,4.4Hz,1H),3.35–3.22(m,2H),2.40(td,J=11.2,4.0Hz,1H),2.29(td,J=10.8,2.0Hz,1H),2.21(t,J=10.8Hz,1H),2.17–2.06(m,1H),1.96(qd,J=12.4,3.2Hz,1H),1.86(dq,J=13.2,4.0Hz,1H),1.13(t,J=5.6Hz,1H);
HRMS-ESI(m/z):[M+H]+301.1713。
Example 17
This example provides an alternative method for preparing compounds of formula VIII-1:
40mL of tetrahydrofuran, VII-1(8.0mmol) and diisobutylaluminum hydride (40.0mmol) were added to the reaction flask in this order at-20 ℃; the reaction was carried out at-20 ℃ for 20 min. After the reaction is finished, washing, filtering, concentrating and purifying the reaction solution by silica gel column chromatography to obtain the product VIII-1 with the yield of 99%.
Example 18
This example provides a compound of formula IX, which is prepared according to the following equation:
adding 10mL of dichloromethane, VIII-1(1.0mmol) and triethylamine (1.5mmol) into a reaction bottle in sequence at room temperature, then cooling to 0 ℃ and dropwise adding methanesulfonyl chloride (1.2 mmol); reacting at room temperature for 40min, washing the reaction solution after the reaction is finished with water, and concentrating to obtain a mesylate intermediate product. Dissolving the mesylate intermediate (1.0mmol) in 1mL DMSO, sequentially adding sesamol (1.5mmol) and potassium hydroxide (2.0mmol), reacting at room temperature for 3h, washing the reaction solution after the reaction is finished, extracting with ethyl acetate, concentrating, and purifying by silica gel column chromatography to obtain product IX-1 with yield of 88% of IX-11H NMR is shown in FIG. 7.
Of IX-11H NMR(400MHz,CDCl3)δ7.28–7.10(m,4H),7.03–6.89(m,4H),6.79(t,J=6.8Hz,1H),6.59(d,J=8.4Hz,1H),6.32(s,1H),6.10(d,J=8.4Hz,1H),5.82(s,2H),4.45(s,1H),3.52(t,J=9.2Hz,2H),3.47–3.37(m,1H),3.30(d,J=10.4Hz,1H),2.57-2.45(m,1H),2.38–2.21(m,3H),2.05–1.90(m,1H),1.91–1.80(m,1H);
HRMS-ESI(m/z):[M+H]+421.1915。
Example 19
This example provides a method for preparing paroxetine, which comprises the following reaction equation:
adding 0.5mL of acetic acid, 0.1mmol of IX-1(0.1mmol) and 0.5mmol of zinc powder into a reaction bottle in sequence at room temperature; and then reacting at room temperature for 6 hours, filtering the reaction solution after the reaction is finished by using diatomite, neutralizing by using a saturated sodium bicarbonate aqueous solution, extracting by using ethyl acetate, concentrating and purifying by using silica gel column chromatography to obtain the paroxetine product, wherein the yield is 98%. Process for preparation of paroxetine1H NMR is shown in FIG. 8.
Process for preparation of paroxetine1H NMR(400MHz,CDCl3)δ:7.16(dd,J=8.0,5.6Hz,2H),6.96(t,J=8.8Hz,2H),6.60(d,J=8.8Hz,1H),6.32(d,J=2.4Hz,1H),6.10(dd,J=8.4,2.0Hz,1H),5.85(s,2H),4.98(bs,1H),3.60–3.48(m,2H),3.43(dd,J=8.4,6.4Hz,1H),3.33(d,J=8.4Hz,1H),2.90–2.74(m,2H),2.67(td,J=11.2,4.0Hz,1H),2.30-2.14(m,1H),1.98-1.75(m,2H);
HRMS-ESI(m/z):[M+H]+330.1513。
It should be understood that the above examples are only for clarity of illustration and are not intended to limit the embodiments. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. And are neither required nor exhaustive of all embodiments. And obvious variations or modifications of the invention may be made without departing from the spirit or scope of the invention.
Claims (6)
1. A chiral center-containing piperidine compound of formula XI or IV having the structure shown below:
R1Selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl;
R2selected from phenyl, 4-methoxyphenyl, 4-trifluoromethylphenyl or 3-bromophenyl;
Rbselected from phenyl, 4-fluorophenyl, 4-chlorophenyl, 4-trifluoromethylphenyl, 4-methoxyphenyl, 3-chlorophenyl, 3-nitrophenyl, 2-bromophenyl, 2-chloro-4-fluorophenyl.
2. A compound of claim 1, wherein R isbIs 4-fluorophenyl.
3. A process for preparing a compound of formula X using a compound of formula IV, comprising the steps of:
step 1: the compound of formula IV is reduced to obtain a compound of formula VII,
step 2: further reduction of the compound of formula VII gives a compound of formula VIII,
and step 3: reaction of a compound of formula VIII to prepare a compound of formula IX,
and 4, step 4: removal of R from a Compound of formula IX2-NH-to give a compound of formula X,
R appearing in the above-mentioned compound1、R2And RbSubstituents as defined in claim 1 or 2The above-mentioned processes are described.
4. A process for the preparation of a compound of formula IV, characterized in that the reaction steps are as follows:
step 1: firstly, a compound of a formula I and a compound of a formula II react to generate an alkenyl hydrazine intermediate V, wherein the structural formula of the intermediate compound V is as follows:
step 2: the intermediate V is not purified, and directly undergoes addition and cyclization reaction with the compound shown in the formula III under the action of a chiral catalyst to obtain a compound shown in the formula IV,
optionally, step 1 and step 2 may be accomplished using a one-pot process,
the substituents present in the above compounds are as defined in claim 1 or 2;
the chiral catalyst has the following structure:
wherein R is5Is phenyl; r4Is methyl, isopropyl or ethyl.
6. A process for preparing a compound of formula XI starting from a compound of formula IV comprising the steps of:
wherein: when R isaIs selected from-CH2OR3And R is3When the formula is H, the compound in the formula XI is a VIII compound,
when R isaIs selected from-CH2OR3And R is3Is composed ofIn this case, the compound of formula XI is the compound of formula IX;
step 1: the compound of formula IV is reduced to obtain a compound of formula VII,
step 2: further reduction of the compound of formula VII gives a compound of formula VIII,
and optionally step 3: reaction of a compound of formula VIII to prepare a compound of formula IX,
r appearing in the above-mentioned compound1、R2And RbSubstituents as defined in claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010482067.9A CN111533682B (en) | 2020-05-29 | 2020-05-29 | Process for preparing paroxetine and analogues thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010482067.9A CN111533682B (en) | 2020-05-29 | 2020-05-29 | Process for preparing paroxetine and analogues thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111533682A CN111533682A (en) | 2020-08-14 |
CN111533682B true CN111533682B (en) | 2022-03-01 |
Family
ID=71972362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010482067.9A Active CN111533682B (en) | 2020-05-29 | 2020-05-29 | Process for preparing paroxetine and analogues thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111533682B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0190496A2 (en) * | 1984-12-13 | 1986-08-13 | Beecham Group Plc | Piperidine derivatives having a gastro-intestinal activity |
WO2007072150A2 (en) * | 2005-12-20 | 2007-06-28 | Pfizer Products Inc. | Piperidine derivatives |
CN102414205A (en) * | 2009-05-05 | 2012-04-11 | 弗·哈夫曼-拉罗切有限公司 | Isoxazole-pyrazole derivatives |
CN104039777A (en) * | 2012-01-31 | 2014-09-10 | 卫材R&D管理有限公司 | Paroxetine derivative |
CN108025002A (en) * | 2015-09-02 | 2018-05-11 | 特维娜有限公司 | Delta opiate receptor modulating compound containing hexa-atomic aza heterocycles, it is used and preparation method |
-
2020
- 2020-05-29 CN CN202010482067.9A patent/CN111533682B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0190496A2 (en) * | 1984-12-13 | 1986-08-13 | Beecham Group Plc | Piperidine derivatives having a gastro-intestinal activity |
WO2007072150A2 (en) * | 2005-12-20 | 2007-06-28 | Pfizer Products Inc. | Piperidine derivatives |
CN102414205A (en) * | 2009-05-05 | 2012-04-11 | 弗·哈夫曼-拉罗切有限公司 | Isoxazole-pyrazole derivatives |
CN104039777A (en) * | 2012-01-31 | 2014-09-10 | 卫材R&D管理有限公司 | Paroxetine derivative |
CN108025002A (en) * | 2015-09-02 | 2018-05-11 | 特维娜有限公司 | Delta opiate receptor modulating compound containing hexa-atomic aza heterocycles, it is used and preparation method |
Non-Patent Citations (6)
Title |
---|
A Novel Bromine-Containing Paroxetine Analogue Provides Mechanistic Clues for Binding Ambiguity at the Central Primary Binding Site of the Serotonin Transporter;Rachel D. Slack 等;《ACS Chem. Neurosci.》;20190819;第10卷;3946-3952 * |
Enantioselective Organocatalytic Aza-Ene-Type Domino Reaction Leading to 1,4-Dihydropyridines;Artur Noole等;《The Journal of Organic Chemistry》;20110215;第76卷;1538-1545 * |
Enantioselective organocatalytic domino synthesis of tetrahydropyridin-2-ols;Jie-Ping Wan等;《Chem. Commun.》;20120822;第48卷;10049-10051 * |
Monomethyl Ether Derivatives of 7,8-Dihydroxy- and 8,9-Dihydroxy-4-n -propyl-l,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinolines as Possible Products of Metabolism by Catechol-O-methyltransferase;Joseph G. Cannon;《J. Med. Chem.》;19901231;第33卷;2000-2006 * |
Organocatalytic Asymmetric Inverse-Electron-Demand Aza-Diels-Alder Reaction of N-Sulfonyl-1-aza-1,3-butadienes and Aldehydes;Bo Han等;《Angew. Chem. Int. Ed.》;20081020;第47卷;9971-9974 * |
Organocatalytic Hantzsch Type Reaction Using Aryl Hydrazines,Propiolic Acid Esters and Enals: Enantioselective Synthesis of Paroxetine;Lu Chen等;《Adv. Synth. Catal.》;20201104;第362卷;5385-5390 * |
Also Published As
Publication number | Publication date |
---|---|
CN111533682A (en) | 2020-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07309834A (en) | Production of diarylprolinol enantiomerically pure | |
AP708A (en) | Processes and intermediates for preparing 1-Benzyl-4-((5,6-Dimethoxy-1-Incanon)-2-Y1) Methylpiperidine. | |
CN101754761A (en) | compositions, synthesis, and methods of using quinolinone based atypical antipsychotic agents | |
CN114957078A (en) | Preparation method of deuterated pharmaceutical intermediate | |
EP3156391A1 (en) | Method for preparing sitagliptin intermediate via asymmetrical reduction method | |
WO2005044805A1 (en) | A novel process for preparing donepezil and its derivatives | |
CN111533682B (en) | Process for preparing paroxetine and analogues thereof | |
US8765668B2 (en) | Methods of synthesis of β-aminobutyryl substituted compounds | |
US8569492B2 (en) | Method for preparing halofuginone derivative | |
WO2007144487A2 (en) | Dual molecules containing a peroxide derivative, their synthesis and therapeutic uses | |
JP2001270865A (en) | Method for producing ethanesulfonylpiperidine derivative | |
KR100939347B1 (en) | Synthetic Method of optically pure S-3-hydroxypyrrolidine | |
CN108997199B (en) | Synthesis method of tofacitinib intermediate (3R,4R) -1-benzyl-N, 4-dimethylpiperidine-3-amine | |
EP2419407B1 (en) | Improved process for the preparation of fluvastatin and salts thereof | |
JPH0570412A (en) | Production of optically active beta-amino alcohol | |
JP2006312626A (en) | Method for producing optically active amino alcohol | |
WO2015121452A1 (en) | A new method for producing nebivolol hydrochloride of high purity | |
CN113754715B (en) | Optical selective process synthesis method of (5R) -5-hydroxyl triptolide | |
CN114736134B (en) | (R) -beta-hydroxyaryl propionamide derivative and preparation method thereof | |
JP2000072744A (en) | Production of pyrrolidinylhydroxamic acid compound | |
JPH0550499B2 (en) | ||
CN102924452B (en) | Synthesis method of 5, 6, 7, 8-tetrahydro-2H-pyrido[3, 4-c]pyridazine-3-ketone | |
CN111362824B (en) | Process for the preparation of 2- (aminomethyl) -N, N-diethyl-1-phenylcyclopropanecarboxamide and salts thereof | |
CN107033090A (en) | A kind of preparation method of 1,2,3,4 tetrahydrochysene cinnolines | |
JPH01287064A (en) | Production of optically active aminopropanol derivative |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |