CN111509035A - Low-cost high-performance groove type power semiconductor device and preparation method thereof - Google Patents
Low-cost high-performance groove type power semiconductor device and preparation method thereof Download PDFInfo
- Publication number
- CN111509035A CN111509035A CN202010351900.6A CN202010351900A CN111509035A CN 111509035 A CN111509035 A CN 111509035A CN 202010351900 A CN202010351900 A CN 202010351900A CN 111509035 A CN111509035 A CN 111509035A
- Authority
- CN
- China
- Prior art keywords
- substrate
- cell
- region
- groove
- trench
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 255
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 1631
- 210000000746 body region Anatomy 0.000 claims abstract description 41
- 239000002184 metal Substances 0.000 claims description 183
- 230000007704 transition Effects 0.000 claims description 104
- 238000002513 implantation Methods 0.000 claims description 79
- 238000002161 passivation Methods 0.000 claims description 76
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 76
- 239000012535 impurity Substances 0.000 claims description 68
- 229920005591 polysilicon Polymers 0.000 claims description 66
- 238000000034 method Methods 0.000 claims description 51
- 150000002500 ions Chemical class 0.000 claims description 41
- 238000005468 ion implantation Methods 0.000 claims description 29
- 238000002347 injection Methods 0.000 claims description 21
- 239000007924 injection Substances 0.000 claims description 21
- 230000000149 penetrating effect Effects 0.000 claims description 21
- 238000005530 etching Methods 0.000 claims description 16
- 238000009413 insulation Methods 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 5
- 238000001465 metallisation Methods 0.000 claims description 4
- 230000001413 cellular effect Effects 0.000 claims 30
- 230000015556 catabolic process Effects 0.000 abstract description 15
- 239000010410 layer Substances 0.000 description 468
- 229920002120 photoresistant polymer Polymers 0.000 description 118
- 238000000206 photolithography Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 239000007943 implant Substances 0.000 description 8
- 230000005684 electric field Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000010953 base metal Substances 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0291—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/109—Reduced surface field [RESURF] PN junction structures
Landscapes
- Electrodes Of Semiconductors (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明涉及一种沟槽型功率半导体器件及其制备方法,尤其是一种低成本高性能沟槽型功率半导体器件及其制备方法,属于沟槽型功率半导体器件的技术领域。在衬底元胞第二沟槽与终端区间设置至少一个衬底第二导电类型注入区后,能防止耐压时在衬底元胞第二沟槽的槽底发生击穿,充分增加终端区的耐压,能降低衬底终端第二导电类型体区的结深要求,提高设计的自由度,使得功率半导体器件具有更高的击穿电压和可靠性,或者在相同的击穿电压下,可以进一步减少器件的面积,降低成本,同时提高功率半导体器件的可靠性。
The invention relates to a trench type power semiconductor device and a preparation method thereof, in particular to a low-cost high-performance trench type power semiconductor device and a preparation method thereof, belonging to the technical field of trench type power semiconductor devices. After at least one implanted region of the second conductivity type of the substrate is arranged between the second trench of the substrate cell and the terminal area, it can prevent breakdown at the bottom of the second trench of the substrate cell during withstand voltage, and fully increase the terminal area The withstand voltage can reduce the junction depth requirement of the second conductivity type body region of the substrate terminal, improve the degree of freedom of design, and make the power semiconductor device have higher breakdown voltage and reliability, or under the same breakdown voltage, The area of the device can be further reduced, the cost can be reduced, and the reliability of the power semiconductor device can be improved at the same time.
Description
技术领域technical field
本发明涉及一种沟槽型功率半导体器件及其制备方法,尤其是一种低成本高性能沟槽型功率半导体器件及其制备方法,属于沟槽型功率半导体器件的技术领域。The invention relates to a trench type power semiconductor device and a preparation method thereof, in particular to a low-cost high-performance trench type power semiconductor device and a preparation method thereof, belonging to the technical field of trench type power semiconductor devices.
背景技术Background technique
目前,功率半导体器件飞速发展,一方面,IGBT(Insulated Gate BipolarTransistor)以及VDMOS的技术不断革新,以实现优异的性能;另一方面,低成本也成为功率半导体发展的追求目标。功率半导体加工费用中,掩膜版的成本以及相应的光刻工艺往往是主要的,因此,降低掩膜版数量成为降低器件成本的关键。多数的情况是,高性能器件与低成本之间往往是折中的关系,除非出现新的器件、工艺方法等等。At present, power semiconductor devices are developing rapidly. On the one hand, the technology of IGBT (Insulated Gate Bipolar Transistor) and VDMOS are constantly innovating to achieve excellent performance; on the other hand, low cost has also become the pursuit goal of power semiconductor development. In the processing cost of power semiconductors, the cost of the mask and the corresponding photolithography process are often the main factors. Therefore, reducing the number of masks becomes the key to reducing the cost of the device. In most cases, there is often a trade-off between high-performance devices and low cost, unless new devices, process methods, etc. appear.
如图1~图9为现有沟槽型功率半导体器件正面结构的具体制备工艺步骤剖视图,以N型功率半导体器件为例,具体地,FIG. 1 to FIG. 9 are cross-sectional views of the specific preparation process steps of the front surface structure of the existing trench-type power semiconductor device, taking an N-type power semiconductor device as an example, specifically,
如图1所示,提供N型的半导体基板1,并在半导体基板1的正面上涂覆基板第一光刻胶层2,利用基板第一掩模版3对基板第一光刻胶层2进行光刻,以得到贯通基板第一光刻胶层2的基板第一光刻胶层窗口6。利用基板第一光刻胶层2以及基板第一光刻胶层窗口6对半导体基板1进行沟槽刻蚀,以得到位于半导体基板1内的基板元胞沟槽4以及位于基板终端沟槽5。As shown in FIG. 1 , an N-
如图2所示,采用本技术领域常用的技术手段去除基板第一光刻胶层2,在半导体基板1的正面进行热氧化,能得到覆盖基板元胞沟槽4侧壁以及底壁上的基板元胞沟槽绝缘氧化层7,以及覆盖基板终端沟槽5侧壁以及底壁上的基板终端沟槽绝缘氧化层9。As shown in FIG. 2 , the first photoresist layer 2 of the substrate is removed by using technical means commonly used in the technical field, and thermal oxidation is performed on the front surface of the
在得到基板元胞沟槽绝缘氧化层7以及基板终端沟槽绝缘氧化层9后,在半导体基板1的正面进行导电多晶硅淀积,以得到填充在基板元胞沟槽4内的基板元胞沟槽多晶硅体8以及填充在基板终端沟槽5内的基板终端沟槽导电多晶硅10,基板元胞沟槽多晶硅体8通过基板元胞沟槽绝缘氧化层7与基板元胞沟槽4的侧壁以及底壁绝缘隔离;基板终端沟槽多晶硅体10通过基板终端沟槽绝缘氧化层9能与基板终端沟槽5的侧壁以及底壁绝缘隔离。After the substrate cell trench insulating
如图3所示,在上述半导体基板1的正面进行P型杂质离子注入,以在半导体基板1的上部得到基板P型层11,所述基板P型层11贯通半导体基板1的正面,基板P型层11从半导体基板1的正面垂直向下延伸,基板P型层11位于基板元胞沟槽4、基板终端沟槽5相对应槽底的上方。As shown in FIG. 3 , P-type impurity ion implantation is performed on the front surface of the
如图4所示,在上述半导体基板1的正面涂覆得到基板第二光刻胶层12,并利用基板第二掩模版13对基板第二光刻胶层12进行光刻。As shown in FIG. 4 , the second
如图5所示,利用上述基板第二光刻胶层12对半导体基板1的遮挡,对所述半导体基板1的正面进行P型杂质离子、N型杂质离子注入以及推阱,以在半导体基板1的中心区得到基板P型基区15以及位于所述基板P型基区15上方的基板N+源区16,基板N+源区16与基板P型基区15邻接,且基板P型基区15位于基板元胞沟槽4槽底的上方。同时,在得到基板P型基区15后,利用半导体基板1终端区的基板P型层11能得到基板P型体区14。As shown in FIG. 5 , the
如图6所示,去除上述基板第二光刻胶层12,并在上述半导体基板1的正面淀积绝缘介质层,以得到覆盖半导体基板1正面上的基板绝缘介质层17。在得到基板绝缘介质层17后,在所述基板绝缘介质层17上涂覆得到基板第三光刻胶层18,利用基板第三掩模版19能对基板第三光刻胶层18进行光刻,以得到若干贯通基板第三光刻胶层18的基板第三光刻胶层窗口20。As shown in FIG. 6 , the second
如图7所示,利用上述基板第三光刻胶层18以及基板第三光刻胶层窗口20对基板绝缘介质层17进行刻蚀,以得到贯通基板绝缘介质层17的基板源极接触孔21,所述基板源极接触孔21与基板第三光刻胶层窗口20正对应,基板源极接触孔21还贯通基板绝缘介质层17下方的基板N+源区16。As shown in FIG. 7 , the substrate insulating
如图8所示,去除上述基板第三光刻胶层18,并在半导体基板1正面上方进行金属淀积,以得到覆盖基板绝缘介质层17下方的基板正面金属层。As shown in FIG. 8 , the above-mentioned third
在得到基板正面金属层后,在基板正面金属层上涂覆得到基板第四光刻胶层21,并利用基板第四掩模版22对基板第四光刻胶层21进行光刻,以得到贯通所述基板第四光刻胶层21的基板第四光刻胶层窗口24。After the metal layer on the front side of the substrate is obtained, the fourth
利用基板第四光刻胶层21以及基板第四光刻胶层窗口24对基板正面金属层进行刻蚀,以得到贯通基板正面金属层的基板正面金属层窗口23,通过基板正面金属层窗口23能将基板正面金属层分割得到基板正面元胞金属层65以及基板正面终端金属层68,其中基板正面元胞金属层65能与基板N+源区16以及基板P型基区15欧姆接触,基板终端金属层20位于半导体基板1中心区的外圈。The metal layer on the front side of the substrate is etched by using the fourth
如图9所示,在上述半导体基板1的正面上方淀积钝化材料,以在半导体基板1的正面得到基板钝化层25,所述基板钝化层25覆盖在基板正面元胞金属层65以及基板正面终端金属层68上。As shown in FIG. 9 , a passivation material is deposited on the front side of the
在基板钝化层25上涂覆得到基板第五光刻胶层26,利用基板第五掩模版27对基板第五光刻胶层26进行光刻,以得到贯通基板第五光刻胶层26的基板第五光刻胶层窗口28,利用基板第五光刻胶层26以及基板第五光刻胶层窗口28对基板钝化层25进行刻蚀,以得到贯通基板钝化层25的基板钝化层窗口29,利用基板钝化层窗口29能使得基板正面元胞金属层65露出。The fifth photoresist layer 26 of the substrate is obtained by coating on the
在进行上述步骤后,需要将基板第五光刻胶层26去除,并在半导体基板1的背面进行所需的背面工艺,以得到所需背面结构,根据背面结构的不同,能制备得到IGBT器件或MOSFET器件。After the above steps are performed, the fifth photoresist layer 26 of the substrate needs to be removed, and a required backside process is performed on the backside of the
由上述具体的工艺步骤可知,在半导体基板1的上部先制备基板P型层11,然后通过基板P型层11能形成基板P型基区15以及基板P型体区14,而基板P型层11是通过P型杂质离子注入在半导体基板1整个正面得到。为了实现比较高的击穿电压,基板P型层11推阱后的结深与基板元胞沟槽4、基板终端沟槽5在半导体基板1内的深度不能相差太多,否则,制备得到半导体器件容易在邻近基板终端沟槽5的基板元胞沟槽4的底部发生击穿,如图10中的击穿区域30。It can be seen from the above specific process steps that the substrate P-
当通过增加基板P型层11的结深实现提高终端击穿电压的时,基板元胞区内的基本P型基区15的结深也会相应增加,这会导致器件的元胞区的沟道长度增加以及JFET效应显现,从而导致器件的导通压降增加。因此,最接近的现有技术在实现最小导通压降和最高BV之间存在折中关系,无法同时达到最优值。When the terminal breakdown voltage is improved by increasing the junction depth of the P-
发明内容SUMMARY OF THE INVENTION
本发明的目的是克服现有技术中存在的不足,提供一种低成本高性能沟槽型功率半导体器件及其制备方法,其能实现更高的击穿电压,提高功率半导体器件工作的可靠性,与现有工艺兼容。The purpose of the present invention is to overcome the deficiencies in the prior art, and to provide a low-cost, high-performance trench-type power semiconductor device and a preparation method thereof, which can achieve higher breakdown voltage and improve the reliability of the power semiconductor device operation. , compatible with existing processes.
按照本发明提供的技术方案,所述低成本高性能沟槽型功率半导体器件,包括具有第一导电类型的半导体衬底、设置于所述半导体衬底中心区的元胞区以及设置于半导体衬底上且位于元胞区外圈的终端区;所述元胞区内的元胞采用沟槽结构;According to the technical solution provided by the present invention, the low-cost high-performance trench-type power semiconductor device includes a semiconductor substrate with a first conductivity type, a cell region disposed in the central region of the semiconductor substrate, and a cell region disposed in the semiconductor substrate The terminal area on the bottom and located in the outer circle of the cell area; the cell in the cell area adopts a groove structure;
在所述功率半导体器件的俯视平面上,元胞区的元胞包括呈环状的衬底元胞第二沟槽以及若干位于所述环状的衬底元胞第二沟槽内圈的衬底元胞第一沟槽,终端区位于环状的衬底元胞第二沟槽的外圈;On the top plan view of the power semiconductor device, the cell of the cell region includes a second trench in the annular substrate cell and a plurality of liners located in the inner circumference of the second trench in the annular substrate cell the first groove of the bottom cell, and the terminal area is located on the outer ring of the second groove of the annular substrate cell;
在所述功率半导体器件的截面上,在衬底元胞第一沟槽的两侧设置衬底第二导电类型基区以及位于所述衬底第二导电类型基区上方的衬底第一导电类型源区,衬底第二导电类型基区位于衬底元胞第一沟槽、衬底元胞第二沟槽相应槽底的上方,且衬底第二导电类型基区、衬底第一导电类型源区均与所邻近的衬底元胞第一沟槽相应的侧壁接触;On the cross section of the power semiconductor device, the second conductive type base region of the substrate and the first conductive substrate located above the second conductive type base region of the substrate are provided on both sides of the first trench of the substrate cell type source region, the base region of the second conductivity type of the substrate is located above the corresponding groove bottom of the first trench of the substrate cell and the second trench of the substrate cell, and the base region of the second conductivity type of the substrate, the first trench of the substrate cell The conductive type source regions are all in contact with the corresponding sidewalls of the first trenches of the adjacent substrate cells;
在所述功率半导体器件的截面上,在衬底元胞第二沟槽邻近衬底元胞第一沟槽的外侧壁与相应的衬底第二导电类型基区以及衬底第一导电类型源区接触,衬底元胞第二沟槽邻近终端区的侧壁与终端区之间设置至少一个衬底第二导电类型注入区,且衬底元胞第二沟槽邻近终端区的外侧壁与邻近的衬底第二导电类型注入区接触,衬底第二导电类型注入区在半导体衬底内的深度大于衬底元胞第一沟槽、衬底元胞第二沟槽在所述半导体衬底内的深度;On the cross section of the power semiconductor device, the second trench in the substrate cell is adjacent to the outer sidewall of the first trench in the substrate cell and the corresponding base region of the second conductivity type of the substrate and the source of the first conductivity type of the substrate At least one implanted region of the second conductivity type of the substrate is arranged between the sidewall of the second trench of the substrate cell adjacent to the termination region and the termination region, and the second trench of the substrate cell is adjacent to the outer sidewall of the termination region and the termination region. The second conductive type implanted region of the adjacent substrate is in contact, and the depth of the second conductive type implanted region of the substrate in the semiconductor substrate is greater than that of the first trench of the substrate cell and the second trench of the substrate cell in the semiconductor substrate the depth of the bottom;
在半导体衬底正面的上方设置衬底正面元胞金属层,所述衬底正面元胞金属层能与衬底第二导电类型基区、衬底第一导电类型源极区以及与衬底元胞第二沟槽侧壁接触的衬底第二导电类型注入区欧姆接触。A cell metal layer on the front side of the substrate is arranged above the front side of the semiconductor substrate, and the cell metal layer on the front side of the substrate can be connected with the base region of the second conductivity type of the substrate, the source region of the first conductivity type of the substrate, and the element of the substrate. The second conductive type implanted region of the substrate contacted by the second trench sidewall of the cell is ohmically contacted.
在衬底元胞第一沟槽、衬底元胞第二沟槽相应的内侧壁以及底壁均覆盖有衬底元胞绝缘氧化层,且在衬底元胞第一沟槽、衬底元胞第二沟槽内还填充有衬底元胞沟槽多晶硅;填充在衬底元胞第一沟槽内的衬底元胞沟槽多晶硅通过所填充衬底元胞第一沟槽内的衬底元胞绝缘氧化层与所填充的衬底元胞第一沟槽的内侧壁以及底壁绝缘隔离,填充在衬底元胞第二沟槽内的衬底元胞沟槽多晶硅通过所填充衬底元胞第二沟槽内的衬底元胞绝缘氧化层与所填充的衬底元胞第二沟槽的内侧壁以及底壁绝缘隔离;Corresponding inner sidewalls and bottom walls of the first trench of the substrate cell and the second trench of the substrate cell are covered with an insulating oxide layer of the substrate cell, and the first trench of the substrate cell and the corresponding inner sidewall and bottom wall of the substrate cell are covered with an insulating oxide layer of the substrate cell. The second trench is also filled with substrate cell trench polysilicon; the substrate cell trench polysilicon filled in the first trench of the substrate cell passes through the liner in the filled first trench of the substrate cell The bottom cell insulating oxide layer is insulated from the inner sidewall and bottom wall of the filled first trench of the substrate cell, and the substrate cell trench polysilicon filled in the second trench of the substrate cell passes through the filled lining The substrate cell insulating oxide layer in the second trench of the bottom cell is insulated and isolated from the inner sidewall and bottom wall of the filled second trench of the substrate cell;
衬底元胞第一沟槽、衬底元胞第二沟槽相对应的槽口通过覆盖半导体衬底正面上的衬底绝缘介质层覆盖,且衬底元胞第一沟槽内的衬底元胞沟槽多晶硅、衬底元胞第二沟槽内的衬底元胞沟槽多晶硅通过衬底绝缘介质层能与衬底正面元胞金属层绝缘隔离。The slots corresponding to the first trench of the substrate cell and the second trench of the substrate cell are covered by the substrate insulating medium layer covering the front surface of the semiconductor substrate, and the substrate in the first trench of the substrate cell The cell trench polysilicon and the substrate cell trench polysilicon in the second trench of the substrate cell can be insulated and isolated from the cell metal layer on the front side of the substrate through the substrate insulating medium layer.
所述衬底正面元胞金属层支撑在衬底绝缘介质层上,且在衬底绝缘介质层上还设置衬底正面终端金属层,所述衬底正面终端金属层、衬底正面元胞金属层通过衬底金属钝化层间隔,且衬底金属钝化层支撑在所述衬底正面终端金属层与衬底正面元胞金属层上;The substrate front cell metal layer is supported on the substrate insulating medium layer, and the substrate front terminal metal layer is also provided on the substrate insulating medium layer, the substrate front terminal metal layer, the substrate front cell metal layer The layers are separated by a base metal passivation layer, and the base metal passivation layer is supported on the terminal metal layer on the front side of the substrate and the cell metal layer on the front side of the substrate;
还包括贯通所述衬底金属钝化层的衬底钝化层窗口,通过衬底钝化层窗口能使得与所述衬底钝化层窗口对应的衬底正面元胞金属层露出。It also includes a substrate passivation layer window penetrating the substrate metal passivation layer, and the substrate front surface cell metal layer corresponding to the substrate passivation layer window can be exposed through the substrate passivation layer window.
在所述功率半导体器件的截面上,所述终端区包括至少一个衬底终端沟槽以及位于所述衬底终端沟槽两侧的衬底终端第二导电类型体区,所述衬底终端第二导电类型体区位于衬底终端沟槽、衬底元胞第一沟槽、衬底元胞第二沟槽相对应槽底的上方;On the cross section of the power semiconductor device, the termination region includes at least one substrate termination trench and substrate termination second conductivity type body regions located on both sides of the substrate termination trench, the substrate termination first The two-conductivity-type body region is located above the trench bottom corresponding to the substrate terminal trench, the first trench of the substrate cell, and the second trench of the substrate cell;
在衬底终端沟槽的侧壁以及底壁设置衬底终端绝缘氧化层,在设有衬底终端绝缘氧化层的衬底终端沟槽内填充有衬底终端沟槽多晶硅,所述衬底终端沟槽多晶硅通过衬底终端绝缘氧化层与所述衬底终端沟槽的侧壁以及底壁绝缘隔离;所述衬底终端沟槽的槽口由衬底绝缘介质层覆盖。A substrate terminal insulating oxide layer is provided on the sidewall and bottom wall of the substrate terminal trench, and the substrate terminal trench with the substrate terminal insulating oxide layer is filled with polysilicon. The trench polysilicon is insulated and isolated from the sidewall and bottom wall of the substrate termination trench through the substrate termination insulating oxide layer; the notch of the substrate termination trench is covered by the substrate insulating dielectric layer.
在功率半导体器件的截面上,元胞区内还包括元胞边缘过渡区沟槽,所述元胞边缘过渡区沟槽位于衬底元胞第二沟槽与终端区之间,衬底第二导电类型注入区在半导体衬底内的深度大于所述元胞边缘过渡区沟槽在半导体衬底内的深度,且与衬底元胞第二沟槽侧壁接触的衬底第二导电类型注入区包覆所述元胞边缘过渡区沟槽的外侧壁;On the cross section of the power semiconductor device, the cell region further includes a cell edge transition region trench, and the cell edge transition region trench is located between the second cell trench and the termination region of the substrate, and the substrate second trench The depth of the conductive type implanted region in the semiconductor substrate is greater than the depth of the cell edge transition region trench in the semiconductor substrate, and the second conductive type implantation of the substrate is in contact with the sidewall of the second trench of the substrate cell the outer sidewall of the cell edge transition zone trench is covered by the zone;
元胞边缘过渡区沟槽的槽底位于衬底第二导电类型基区的下方,在元胞边缘过渡区沟槽的内侧壁以及底壁上均设置衬底元胞绝缘氧化层,在设置衬底元胞绝缘氧化层的元胞边缘过渡区沟槽内还填充有衬底元胞沟槽多晶硅,所述衬底元胞沟槽多晶硅通过元胞边缘过渡区沟槽内的衬底元胞绝缘氧化层与所在的元胞边缘过渡区沟槽的侧壁以及底壁绝缘隔离。The groove bottom of the cell edge transition region trench is located below the base region of the second conductivity type of the substrate, the substrate cell insulating oxide layer is provided on the inner sidewall and the bottom wall of the cell edge transition region trench, and the substrate cell insulation oxide layer is arranged on the inner sidewall and the bottom wall of the cell edge transition region trench. The cell edge transition region trench of the bottom cell insulating oxide layer is also filled with substrate cell trench polysilicon, and the substrate cell trench polysilicon is insulated by the substrate cell in the cell edge transition region trench. The oxide layer is insulated from the sidewall and bottom wall of the trench in the transition region of the cell edge where it is located.
一种低成本高性能沟槽型功率半导体器件的制备方法,所述制备方法包括如下步骤:A preparation method of a low-cost high-performance trench type power semiconductor device, the preparation method comprises the following steps:
步骤1、提供具有第一导电类型的半导体衬底,并对所述半导体衬底的正面进行所需的沟槽刻蚀,以在半导体衬底的元胞区内得到衬底元胞第一沟槽以及衬底元胞第二沟槽,衬底元胞第二沟槽邻近终端区;
步骤2、在上述衬底元胞第一沟槽、衬底元胞第二沟槽内设置衬底元胞绝缘氧化层,且在衬底元胞第一沟槽、衬底元胞第二沟槽内还填充有衬底元胞沟槽多晶硅;在所述衬底元胞绝缘氧化层覆盖衬底元胞第一沟槽、衬底元胞第二沟槽相对应的侧壁以及底壁;Step 2. Disposing an insulating oxide layer of the substrate cell in the first trench of the substrate cell and the second trench of the substrate cell, and in the first trench of the substrate cell and the second trench of the substrate cell The groove is also filled with substrate cell trench polysilicon; the insulating oxide layer of the substrate cell covers the side walls and bottom walls corresponding to the first trench of the substrate cell, the second trench of the substrate cell, and the bottom wall;
填充在衬底元胞第一沟槽内的衬底元胞沟槽多晶硅通过所填充衬底元胞第一沟槽内的衬底元胞绝缘氧化层与所填充的衬底元胞第一沟槽的侧壁以及底壁绝缘隔离,填充在衬底元胞第二沟槽内的衬底元胞沟槽多晶硅通过所填充衬底元胞第二沟槽内的衬底元胞绝缘氧化层与所填充的衬底元胞第二沟槽的侧壁以及底壁绝缘隔离;The substrate cell trench polysilicon filled in the first trench of the substrate cell passes through the substrate cell insulating oxide layer in the filled substrate cell first trench and the filled substrate cell first trench The sidewall and bottom wall of the groove are insulated and isolated, and the polysilicon of the substrate cell trench filled in the second trench of the substrate cell is connected to the insulating oxide layer of the substrate cell in the second trench of the filled substrate cell through the substrate cell insulating oxide layer. The sidewall and bottom wall of the filled second trench of the substrate cell are insulated and isolated;
步骤3、在半导体衬底内制备衬底第二导电类型基区、衬底第一导电类型源区以及至少一个衬底第二导电类型注入区;其中,衬底第二导电类型基区位于衬底元胞第一沟槽、衬底元胞第二沟槽相应槽底的上方,衬底第一导电类型源区位于衬底第二导电类型基区上方,衬底第二导电类型注入区位于衬底元胞第二沟槽与终端区之间,衬底第二导电类型注入区在半导体衬底内的深度大于衬底元胞第一沟槽、衬底元胞第二沟槽在半导体衬底内的深度;
邻近衬底元胞第二沟槽的衬底第二导电类型注入区与衬底元胞第二沟槽邻近终端区的外侧壁接触,衬底元胞第二沟槽邻近衬底元胞第一沟槽的外侧壁与衬底第二导电类型基区以及衬底第一导电类型源区接触,衬底元胞第一沟槽的外侧壁均与相应的衬底第二导电类型基区以及衬底第一导电类型源区接触;The implanted region of the second conductivity type of the substrate adjacent to the second trench of the substrate cell is in contact with the outer sidewall of the second trench of the substrate cell adjacent to the termination region, and the second trench of the substrate cell is adjacent to the first trench of the substrate cell The outer sidewall of the trench is in contact with the second conductive type base region of the substrate and the first conductive type source region of the substrate, and the outer sidewalls of the first trench of the substrate cell are all in contact with the corresponding second conductive type base region of the substrate and the substrate. bottom first conductivity type source contact;
步骤4、在上述半导体衬底的正面进行介质层淀积,以得到覆盖半导体衬底正面的衬底绝缘介质层;对衬底绝缘介质层进行接触孔刻蚀,以得到贯通衬底绝缘介质层的衬底源极接触孔;Step 4: Deposition a dielectric layer on the front side of the above-mentioned semiconductor substrate to obtain a substrate insulating dielectric layer covering the front side of the semiconductor substrate; perform contact hole etching on the substrate insulating dielectric layer to obtain a through-substrate insulating dielectric layer The substrate source contact hole;
步骤5、在上述半导体衬底的正面进行金属淀积,以得到衬底正面金属层,所述衬底正面金属层覆盖在衬底绝缘介质层上,对衬底正面金属层刻蚀后,能得到衬底正面元胞金属层以及衬底正面终端金属层,衬底正面元胞金属层、衬底正面终端金属层覆盖在衬底绝缘介质层上,且衬底正面元胞金属层还填充在衬底源极接触孔内;填充在衬底源极接触孔内的衬底正面元胞金属层与衬底第二导电类型基区、衬底第一导电类型源区以及与衬底元胞第二沟槽侧壁接触的衬底第二导电类型注入区欧姆接触;In
步骤6、在上述半导体衬底的正面进行钝化层淀积,以得到衬底金属钝化层,所述衬底金属钝化层覆盖在衬底正面元胞金属层、衬底正面终端金属层上,且利用衬底金属钝化层能间隔衬底正面元胞金属层与衬底正面终端金属层;Step 6, depositing a passivation layer on the front side of the above-mentioned semiconductor substrate to obtain a substrate metal passivation layer, the substrate metal passivation layer covering the cell metal layer on the front side of the substrate and the terminal metal layer on the front side of the substrate on the substrate, and the substrate metal passivation layer can be used to separate the front surface cell metal layer of the substrate and the front terminal metal layer of the substrate;
步骤7、对上述衬底金属钝化层进行刻蚀,以得到贯通衬底金属钝化层的衬底金属钝化层窗口,通过衬底金属钝化层窗口能使得与所述衬底金属钝化层窗口对应的衬底正面元胞金属层露出;Step 7: Etch the above-mentioned substrate metal passivation layer to obtain a substrate metal passivation layer window passing through the substrate metal passivation layer. The front cell metal layer of the substrate corresponding to the chemical layer window is exposed;
步骤8、在上述半导体衬底的背面进行所需的背面工艺,以在半导体衬底的背面得到所需的衬底背面结构。Step 8. Perform a required backside process on the backside of the semiconductor substrate to obtain a required substrate backside structure on the backside of the semiconductor substrate.
在对半导体衬底进行沟槽刻蚀时,还能得到位于终端区内的衬底终端沟槽,且在衬底终端沟槽内制备得到衬底终端绝缘氧化层以及填充在所述衬底终端沟槽内的衬底终端沟槽多晶硅,所述衬底终端沟槽多晶硅通过衬底终端绝缘氧化层与所在衬底终端沟槽的内侧壁以及底壁绝缘隔离;When trench etching is performed on the semiconductor substrate, a substrate termination trench located in the termination region can also be obtained, and the substrate termination insulating oxide layer is prepared in the substrate termination trench and filled in the substrate termination The substrate terminal trench polysilicon in the trench, the substrate terminal trench polysilicon is insulated and isolated from the inner sidewall and bottom wall of the substrate terminal trench where it is located through the substrate terminal insulating oxide layer;
步骤3中,在制备得到衬底第二导电类型基区时,还同时能得到贯穿终端区的衬底终端第二导电类型体区,所述衬底终端第二导电类型体区位于衬底终端沟槽的槽底上方,衬底终端第二导电类型体区的掺杂浓度小于衬底第二导电类型基区的掺杂浓度。In
对步骤3,具体包括如下步骤:For
步骤3.1、在半导体衬底正面的上方进行第二导电类型杂质离子的注入,以在衬底元胞第二沟槽与邻近元胞区的衬底终端沟槽间制备得到至少一个衬底第二导电类型注入区,且邻近衬底元胞第二沟槽的衬底第二导电类型注入区与衬底元胞第二沟槽邻近终端区的侧壁接触,所述衬底第二导电类型注入区在半导体衬底内的深度大于衬底元胞第一沟槽、衬底元胞第二沟槽以及衬底终端沟槽在半导体衬底内的深度;Step 3.1. Perform the implantation of impurity ions of the second conductivity type above the front surface of the semiconductor substrate to prepare at least one substrate second trench between the second trench of the substrate cell and the substrate terminal trench of the adjacent cell region. a conductivity type implanted region, and the substrate second conductivity type implanted region adjacent to the second trench of the substrate cell is in contact with the sidewall of the substrate cell second trench adjacent to the termination region, the substrate second conductivity type implanted The depth of the region in the semiconductor substrate is greater than the depths of the first trench of the substrate cell, the second trench of the substrate cell and the substrate terminal trench in the semiconductor substrate;
步骤3.2、在上述半导体衬底的正面再次进行第二导电类型杂质离子注入,以得到贯穿半导体衬底的衬底第二导电类型层,所述衬底第二导电类型层位于衬底元胞第一沟槽、衬底元胞第二沟槽以及衬底终端沟槽相应槽底的上方;In step 3.2, the second conductivity type impurity ion implantation is performed again on the front surface of the above-mentioned semiconductor substrate to obtain a substrate second conductivity type layer that penetrates the semiconductor substrate, and the substrate second conductivity type layer is located on the first substrate cell. a trench, a second trench of the substrate cell, and above the corresponding trench bottom of the substrate terminal trench;
步骤3.3、在上述半导体衬底上方进行第一导电类型杂质离子注入以及第二导电类型杂质离子注入,利用注入的第二导电类型杂质离子与元胞区内的衬底第二导电类型层能在得到位于元胞区内的衬底第二导电类型基区,利用注入的第一导电类型杂质离子能得到位于衬底第二导电类型基区上方的衬底第一导电类型源区,所述衬底第一导电类型源区与衬底第二导电类型基区邻接;同时,利用终端区内的衬底第二导电类型层能得到衬底终端第二导电类型体区。Step 3.3. Perform the first conductivity type impurity ion implantation and the second conductivity type impurity ion implantation on the above-mentioned semiconductor substrate, and use the implanted second conductivity type impurity ions and the second conductivity type layer of the substrate in the cell area to be in the cell area. The second conductive type base region of the substrate located in the cell region is obtained, and the first conductive type source region of the substrate located above the second conductive type base region of the substrate can be obtained by using the implanted impurity ions of the first conductive type. The bottom first conductive type source region is adjacent to the substrate second conductive type base region; meanwhile, the substrate termination second conductive type body region can be obtained by using the substrate second conductive type layer in the termination region.
对步骤3,具体包括如下步骤:For
步骤3.a、在上述半导体衬底的正面进行第二导电类型杂质离子注入,以得到贯穿半导体衬底的衬底第二导电类型层,所述衬底第二导电类型层位于衬底元胞第一沟槽、衬底元胞第二沟槽以及衬底终端沟槽相应槽底的上方;Step 3.a. Perform ion implantation of impurities of the second conductivity type on the front surface of the semiconductor substrate to obtain a second conductivity type layer of the substrate that penetrates the semiconductor substrate, and the second conductivity type layer of the substrate is located in the cell of the substrate Above the corresponding groove bottom of the first trench, the second trench of the substrate cell and the substrate terminal trench;
步骤3.b、在上方半导体衬底正面的上方再次进行第二导电类型杂质离子的注入,以在衬底元胞第二沟槽与邻近元胞区的衬底终端沟槽间制备得到至少一个衬底第二导电类型注入区,且邻近衬底元胞第二沟槽的衬底第二导电类型注入区与衬底元胞第二沟槽邻近终端区的侧壁接触,所述衬底第二导电类型注入区在半导体衬底内的深度大于衬底元胞第一沟槽、衬底元胞第二沟槽以及衬底终端沟槽在半导体衬底内的深度;Step 3.b. Perform the implantation of impurity ions of the second conductivity type again above the front surface of the upper semiconductor substrate to prepare at least one element between the second trench of the substrate cell and the substrate terminal trench of the adjacent cell region. The implanted region of the second conductivity type of the substrate, and the implanted region of the second conductivity of the substrate adjacent to the second trench of the substrate cell is in contact with the sidewall of the second trench of the substrate cell adjacent to the termination region, the substrate first The depth of the two-conductivity-type implantation region in the semiconductor substrate is greater than the depths of the first trench in the substrate cell, the second trench in the substrate cell, and the substrate terminal trench in the semiconductor substrate;
步骤3.c、在上述半导体衬底上方进行第一导电类型杂质离子注入以及第二导电类型杂质离子注入,利用注入的第二导电类型杂质离子与元胞区内的衬底第二导电类型层能在得到位于元胞区内的衬底第二导电类型基区,利用注入的第一导电类型杂质离子能得到位于衬底第二导电类型基区上方的衬底第一导电类型源区,所述衬底第一导电类型源区与衬底第二导电类型基区邻接;同时,利用终端区内的衬底第二导电类型层能得到衬底终端第二导电类型体区。Step 3.c, performing the first conductivity type impurity ion implantation and the second conductivity type impurity ion implantation on the above-mentioned semiconductor substrate, using the implanted second conductivity type impurity ions and the second conductivity type layer of the substrate in the cell area The second conductive type base region of the substrate located in the cell region can be obtained, and the first conductive type source region of the substrate located above the second conductive type base region of the substrate can be obtained by using the implanted first conductive type impurity ions, so The first conductive type source region of the substrate is adjacent to the second conductive type base region of the substrate; meanwhile, the second conductive type body region of the substrate terminal can be obtained by using the second conductive type layer of the substrate in the terminal region.
在对半导体衬底进行沟槽刻蚀时,还能得到位于元胞区内的元胞边缘过渡区沟槽,所述元胞边缘过渡区沟槽位于衬底元胞第二沟槽与终端区之间,衬底第二导电类型注入区在半导体衬底内的深度大于所述元胞边缘过渡区沟槽在半导体衬底内的深度,且与衬底元胞第二沟槽侧壁接触的衬底第二导电类型注入区包覆所述元胞边缘过渡区沟槽的外侧壁;When trench etching is performed on the semiconductor substrate, a cell edge transition region trench located in the cell region can also be obtained, and the cell edge transition region trench is located in the second trench and the terminal region of the substrate cell In between, the depth of the implanted region of the second conductivity type of the substrate in the semiconductor substrate is greater than the depth of the cell edge transition region trench in the semiconductor substrate, and the depth of the cell in contact with the sidewall of the second trench of the substrate cell The second conductivity type implantation region of the substrate covers the outer sidewall of the cell edge transition region trench;
元胞边缘过渡区沟槽的槽底位于衬底第二导电类型基区的下方,在元胞边缘过渡区沟槽的内侧壁以及底壁上均设置衬底元胞绝缘氧化层,在设置衬底元胞绝缘氧化层的元胞边缘过渡区沟槽内还填充有衬底元胞沟槽多晶硅,所述衬底元胞沟槽多晶硅通过元胞边缘过渡区沟槽内的衬底元胞绝缘氧化层与所在的元胞边缘过渡区沟槽的侧壁以及底壁绝缘隔离。The groove bottom of the cell edge transition region trench is located below the base region of the second conductivity type of the substrate, the substrate cell insulating oxide layer is provided on the inner sidewall and the bottom wall of the cell edge transition region trench, and the substrate cell insulation oxide layer is arranged on the inner sidewall and the bottom wall of the cell edge transition region trench. The cell edge transition region trench of the bottom cell insulating oxide layer is also filled with substrate cell trench polysilicon, and the substrate cell trench polysilicon is insulated by the substrate cell in the cell edge transition region trench. The oxide layer is insulated from the sidewall and bottom wall of the trench in the transition region of the cell edge where it is located.
所述“第一导电类型”和“第二导电类型”两者中,对于N型功率半导体器件,第一导电类型指N型,第二导电类型为P型;对于P型功率半导体器件,第一导电类型与第二导电类型所指的类型与N型功率半导体器件正好相反。In both the "first conductivity type" and the "second conductivity type", for N-type power semiconductor devices, the first conductivity type refers to N-type, and the second conductivity type is P-type; for P-type power semiconductor devices, the first conductivity type refers to N-type. A conductivity type and a second conductivity type refer to types that are just opposite to N-type power semiconductor devices.
本发明的优点:在衬底元胞第二沟槽与终端区间设置至少一个衬底第二导电类型注入区后,邻近衬底元胞第二沟槽的衬底第二导电类型注入区与所述衬底元胞第二沟槽邻近终端区的外侧壁接触,增加衬底第二导电类型注入区可以缓解衬底元胞第二沟槽、元胞边缘过渡区沟槽底部电场集中,降低衬底元胞第二沟槽、元胞边缘过渡区沟槽底部的电场强度,防止在衬底元胞第二沟槽底部、元胞边缘过渡区沟槽底部过早击穿,充分增加终端区的耐压,能降低衬底终端第二导电类型体区的结深要求,提高设计的自由度,使得功率半导体器件具有更高的击穿电压和可靠性,或者在相同的击穿电压下,可以进一步减少器件的面积,降低成本,同时提高功率半导体器件的可靠性。The advantages of the present invention are as follows: after at least one implanted region of the second conductivity type of the substrate is arranged between the second trench and the terminal of the substrate cell, the implanted region of the second conductivity type of the substrate adjacent to the second trench of the substrate cell and all the implanted regions of the second conductivity of the substrate are provided. The second trench of the substrate cell is in contact with the outer sidewall of the terminal region adjacent to the substrate cell, and the addition of the second conductivity type implantation region of the substrate can alleviate the electric field concentration at the bottom of the trench bottom of the second trench of the substrate cell and the cell edge transition region, and reduce the impact of the substrate cell. The electric field strength at the bottom of the second trench of the bottom cell and the bottom of the trench in the transition region of the cell edge prevents premature breakdown at the bottom of the second trench of the substrate cell and the bottom of the trench in the transition region of the cell edge, and fully increases the electrical field in the terminal region. Withstanding voltage, it can reduce the junction depth requirement of the second conductive type body region of the substrate terminal, improve the degree of freedom of design, and make power semiconductor devices have higher breakdown voltage and reliability, or under the same breakdown voltage, can The area of the device is further reduced, the cost is reduced, and the reliability of the power semiconductor device is improved at the same time.
附图说明Description of drawings
图1~图9为现有功率半导体器件的具体制备工艺步骤图,其中FIG. 1 to FIG. 9 are specific manufacturing process steps diagrams of the existing power semiconductor devices, wherein
图1为制备得到基板元胞沟槽以及基板终端沟槽后的剖视图。FIG. 1 is a cross-sectional view of a substrate cell trench and a substrate terminal trench after preparation.
图2为制备得到基板元胞沟槽多晶硅以及基板终端沟槽多晶硅后的剖视图。FIG. 2 is a cross-sectional view of the substrate cell trench polysilicon and the substrate terminal trench polysilicon after preparation.
图3为制备得到基板P型层后的剖视图。FIG. 3 is a cross-sectional view of the substrate after the P-type layer is prepared.
图4为制备得到对基板第二光刻胶层光刻后的剖视图。FIG. 4 is a cross-sectional view of the second photoresist layer on the substrate after photolithography is prepared.
图5为制备得到基板P基区、基板N+源区以及基板P型体区后的剖视图。5 is a cross-sectional view of a substrate P base region, a substrate N+ source region and a substrate P-type body region after preparation.
图6为得到基板第三光刻胶层窗口后的剖视图。FIG. 6 is a cross-sectional view after obtaining a third photoresist layer window of the substrate.
图7为得到基板源极接触孔后的剖视图。FIG. 7 is a cross-sectional view of a substrate source contact hole obtained.
图8为得到基板正面金属层窗口后的剖视图。FIG. 8 is a cross-sectional view after obtaining a metal layer window on the front side of the substrate.
图9为得到基板钝化层窗口后的剖视图。FIG. 9 is a cross-sectional view after obtaining the substrate passivation layer window.
图10为现有功率半导体器件发生击穿位置的示意图。FIG. 10 is a schematic diagram of a breakdown position of a conventional power semiconductor device.
图11~图21为本发明功率半导体器件的具体制备工艺步骤剖视图,其中11 to 21 are cross-sectional views of specific manufacturing process steps of the power semiconductor device of the present invention, wherein
图11为本发明制备得到衬底元胞第一沟槽、衬底元胞第二沟槽以及衬底终端沟槽后的剖视图。FIG. 11 is a cross-sectional view of the first trench in the substrate cell, the second trench in the substrate cell, and the terminal trench in the substrate prepared by the present invention.
图12为本发明得到衬底元胞沟槽多晶硅以及衬底终端沟槽多晶硅后的剖视图。12 is a cross-sectional view of the present invention after obtaining the substrate cell trench polysilicon and the substrate terminal trench polysilicon.
图13为本发明得到衬底P+注入区后的剖视图。FIG. 13 is a cross-sectional view of the present invention after obtaining the P+ implantation region of the substrate.
图14为本发明得到衬底P型层后的剖视图。FIG. 14 is a cross-sectional view of the present invention after obtaining the P-type layer of the substrate.
图15为本发明对衬底第二光刻胶层光刻后的剖视图。FIG. 15 is a cross-sectional view of the second photoresist layer of the substrate after photolithography according to the present invention.
图16为本发明得到衬底P型基区、衬底N+源区以及衬底P型体区后的剖视图。16 is a cross-sectional view of the substrate P-type base region, the substrate N+ source region and the substrate P-type body region obtained by the present invention.
图17为本发明得到衬底第三光刻胶层窗口后的剖视图。FIG. 17 is a cross-sectional view of the present invention after obtaining the window of the third photoresist layer of the substrate.
图18为本发明得到衬底源极接触孔后的剖视图。FIG. 18 is a cross-sectional view after the substrate source contact hole is obtained according to the present invention.
图19为本发明得到衬底正面金属层窗口后的剖视图。FIG. 19 is a cross-sectional view of the present invention after obtaining a metal layer window on the front side of the substrate.
图20为本发明得到衬底钝化层窗口后的剖视图。FIG. 20 is a cross-sectional view after the substrate passivation layer window is obtained in the present invention.
图21为本发明去除衬底第六光刻胶层后的剖视图。21 is a cross-sectional view of the present invention after removing the sixth photoresist layer of the substrate.
图22为本发明在元胞区内设置元胞边缘过渡区沟槽时的剖视图。FIG. 22 is a cross-sectional view of the present invention when a cell edge transition region trench is provided in the cell region.
附图标记说明:1-半导体基板、2-基板第一光刻胶层、3-基板第一掩模版、4-基板元胞沟槽、5-基板终端沟槽、6-基板第一光刻胶层窗口、7-基板元胞沟槽绝缘氧化层、8-基板元胞沟槽多晶硅体、9-基板终端沟槽绝缘氧化层、10-基板终端沟槽导电多晶硅、11-基板P型层、12-基板第二光刻胶层、13-基板第二掩模版、14-基板P型体区、15-基板P型基区、16-基板N+源区、17-基板绝缘介质层、18-基板第三掩模版、20-基板第三光刻胶层窗口、21-基板第四光刻胶层、22-基板第四掩模版、23-基板正面金属层窗口、24-基板第四光刻胶层窗口、25-基板钝化层、26-基板第五光刻胶层、27-基板第五掩模版、28-基板第五光刻胶层窗口、29-基板钝化层窗口、30-击穿区域、31-半导体衬底、32-衬底第一光刻胶层、33-衬底元胞第一沟槽、34-衬底终端沟槽、35-衬底第一光刻胶层窗口、36-衬底元胞沟槽多晶硅、37-衬底元胞绝缘氧化层、38-衬底终端沟槽多晶硅、39-衬底终端绝缘氧化层、40-衬底第二光刻胶层、41-衬底第二光刻胶层窗口、42-衬底P+注入区、43-衬底P型层、44-衬底第三光刻胶层、45-衬底第三掩模版、46-衬底第三光刻胶层窗口、47-衬底P型基区、48-衬底N+源区、49-衬底终端P型体区、50-衬底绝缘介质层、51-衬底第四光刻胶层、52-衬底第四掩模版、53-衬底第四光刻胶层窗口、54-衬底源极接触孔、55-衬底正面终端金属层、56-衬底第五光刻胶层、57-衬底第五掩模版、58-衬底第五光刻胶层窗口、59-衬底正面金属层窗口、60-衬底金属钝化层、61-衬底第六光刻胶层、62-衬底第六掩模版、63-衬底第六光刻胶层窗口、64-衬底钝化层窗口、65-基板正面元胞金属层、66-衬底正面元胞金属层、67-衬底元胞第二沟槽、68-基板正面终端金属层、69-衬底第一掩模版以及70-元胞边缘过渡区沟槽。Description of reference numerals: 1-semiconductor substrate, 2-substrate first photoresist layer, 3-substrate first mask, 4-substrate cell trench, 5-substrate terminal trench, 6-substrate first lithography Adhesive layer window, 7-substrate cell trench insulating oxide layer, 8-substrate cell trench polysilicon body, 9-substrate terminal trench insulating oxide layer, 10-substrate terminal trench conductive polysilicon, 11-substrate P-type layer , 12-substrate second photoresist layer, 13-substrate second mask, 14-substrate P-type body region, 15-substrate P-type base region, 16-substrate N+ source region, 17-substrate insulating medium layer, 18-substrate P-type base region -Substrate third mask, 20-substrate third photoresist layer window, 21-substrate fourth photoresist layer, 22-substrate fourth mask, 23-substrate front metal layer window, 24-substrate fourth light Resist layer window, 25-substrate passivation layer, 26-substrate fifth photoresist layer, 27-substrate fifth mask, 28-substrate fifth photoresist layer window, 29-substrate passivation layer window, 30 -Breakdown region, 31-semiconductor substrate, 32-substrate first photoresist layer, 33-substrate cell first trench, 34-substrate terminal trench, 35-substrate first photoresist Layer window, 36-substrate cell trench polysilicon, 37-substrate cell insulating oxide layer, 38-substrate terminal trench polysilicon, 39-substrate terminal insulating oxide layer, 40-substrate second photoresist layer, 41-substrate second photoresist layer window, 42-substrate P+ injection region, 43-substrate P-type layer, 44-substrate third photoresist layer, 45-substrate third mask, 46-substrate third photoresist layer window, 47-substrate P-type base region, 48-substrate N+ source region, 49-substrate terminal P-type body region, 50-substrate insulating dielectric layer, 51-liner Bottom fourth photoresist layer, 52-substrate fourth mask, 53-substrate fourth photoresist layer window, 54-substrate source contact hole, 55-substrate front terminal metal layer, 56-liner Bottom fifth photoresist layer, 57-substrate fifth mask, 58-substrate fifth photoresist layer window, 59-substrate front metal layer window, 60-substrate metal passivation layer, 61-lining Bottom sixth photoresist layer, 62-substrate sixth mask, 63-substrate sixth photoresist layer window, 64-substrate passivation layer window, 65-substrate front cell metal layer, 66-lining Bottom front cell metal layer, 67-substrate cell second trench, 68-substrate front terminal metal layer, 69-substrate first mask and 70-cell edge transition region trench.
具体实施方式Detailed ways
下面结合具体附图和实施例对本发明作进一步说明。The present invention will be further described below with reference to the specific drawings and embodiments.
如图21所示:为了能实现更高的击穿电压,提高功率半导体器件工作的可靠性,以N型沟槽型功率半导体器件为例,本发明包括具有N导电类型的半导体衬底31、设置于所述半导体衬底31中心区的元胞区以及设置于半导体衬底31上且位于元胞区外圈的终端区;所述元胞区内的元胞采用沟槽结构;As shown in FIG. 21: In order to achieve higher breakdown voltage and improve the reliability of power semiconductor devices, taking N-type trench type power semiconductor devices as an example, the present invention includes a
在所述功率半导体器件的俯视平面上,元胞区的元胞包括呈环状的衬底元胞第二沟槽67以及若干位于所述环状的衬底元胞第二沟槽67内圈的衬底元胞第一沟槽33,终端区位于环状的衬底元胞第二沟槽67的外圈;On the top plan view of the power semiconductor device, the cells of the cell region include a
在所述功率半导体器件的截面上,在衬底元胞第一沟槽33的两侧设置衬底P型基区47以及位于所述衬底P型基区47上方的衬底N+源区48,衬底P型基区47位于衬底元胞第一沟槽33、衬底元胞第二沟槽67相应槽底的上方,且衬底P型基区47、衬底N+源区48均与所邻近的衬底元胞第一沟槽33相应的侧壁接触;On the cross section of the power semiconductor device, a substrate P-
在所述功率半导体器件的截面上,在衬底元胞第二沟槽67邻近衬底元胞第一沟槽33的外侧壁与相应的衬底P型基区47以及衬底N+源区48接触,衬底元胞第二沟槽67邻近终端区的侧壁与终端区之间设置至少一个衬底P+注入区42,且衬底元胞第二沟槽67邻近终端区的外侧壁与邻近的衬底P+注入区42接触,衬底P+注入区42在半导体衬底31内的深度大于衬底元胞第一沟槽33、衬底元胞第二沟槽67在所述半导体衬底31内的深度;On the cross section of the power semiconductor device, the
在半导体衬底31正面的上方设置衬底正面元胞金属层66,所述衬底正面元胞金属层66能与衬底P型基区47、衬底N+源极区48以及与衬底元胞第二沟槽67侧壁接触的衬底P+注入区42欧姆接触。A substrate front
具体地,半导体衬底1可以采用本技术领域常用的半导体材料,如硅等,具体材料类型可以根据实际需要进行选择,此处不再赘述。一般地,在半导体衬底1的中心区能形成元胞区,而在元胞区的外圈能形成终端区,元胞区与终端区在功率半导体中的具体作用,以及元胞区与终端区间的具体配合均与现有相一致,具体为本技术领域人员所熟知,此处不再赘述。Specifically, the
本发明实施例中,元胞区的元胞采用沟槽结构,具体地,元胞区内的元胞包括衬底元胞第一沟槽33以及衬底元胞第二沟槽67,其中,在所述功率半导体器件的截面上,衬底元胞第二沟槽67邻近终端区,即在元胞区的中心区均为衬底元胞第一沟槽33,衬底元胞第二沟槽67在衬底元胞第一沟槽33与终端区之间,衬底元胞第二沟槽67邻近终端区。在功率半导体器件的俯视图上,终端区环绕包围元胞区,而在元胞区内,环形的衬底元胞第二沟槽67邻近终端区,而衬底元胞第一沟槽33位于环形的衬底元胞第二沟槽67的内圈,衬底元胞第二沟槽67内圈的衬底元胞第一沟槽33的数量根据实际的需要进行选择,具体与现有沟槽型功率半导体器件相一致,此处不再赘述。In the embodiment of the present invention, the cells in the cell region adopt a trench structure. Specifically, the cells in the cell region include the
在功率半导体器件的截面上,在衬底元胞第一沟槽33的两侧均设置衬底P型基区47以及衬底N+源区48,衬底N+源区48位于衬底P型基区47上方,且衬底N+源区48与衬底P型基区47邻接,衬底N+源区48、衬底P型基区47与衬底第一元胞沟槽33外侧壁接触,即在衬底元胞第一沟槽33外侧壁上方均与衬底P型基区47以及衬底N+源区48接触。衬底P型基区47位于衬底元胞第一沟槽33的槽底上方,以及衬底元胞第二沟槽67槽底的上方。On the cross section of the power semiconductor device, a substrate P-
在功率半导体器件的截面上,衬底元胞第二沟槽67邻近衬底元胞第一沟槽33一侧的外侧壁与衬底P型基区47以及衬底N+源区48接触,同时,在衬底元胞第二沟槽67邻近终端区的一侧与终端区之间设置至少一个衬底P+注入区42,而邻近衬底元胞第二沟槽67的衬底P+注入区42与衬底元胞第二沟槽67邻近终端区的外侧壁接触。衬底P+注入区42在半导体衬底31的深度大于衬底元胞第一沟槽33、衬底元胞第二沟槽67在所述半导体衬底31内的深度,即衬底P+注入区42的底部位于衬底元胞第一沟槽33以及衬底元胞第二沟槽67相应槽底的下方。当存在多个衬底P+注入区42时,只有邻近衬底元胞第二沟槽67的衬底P+注入区42才与所述衬底元胞第二沟槽67邻近终端区的外侧壁接触。On the cross section of the power semiconductor device, the outer sidewall of the
在具体实施时,在衬底元胞第二沟槽67邻近终端区的一侧还可以设置衬底P型基区47和衬底N+源区48,当然,衬底元胞第二沟槽67邻近终端区一侧的衬底P型基区47与衬底元胞第一沟槽33两侧的衬底P型基区47采用同一工艺步骤形成,衬底元胞第二沟槽67邻近终端区一侧的衬底N+源区48与衬底元胞第一沟槽33两侧的衬底N+源区48采用同一工艺步骤得到。在衬底元胞第二沟槽67邻近终端区的一侧设置衬底P型基区47以及衬底N+源区48后,所述衬底P型基区47以及衬底N+源区48均与衬底元胞第二沟槽67邻近终端区的外侧壁接触。此外,在衬底元胞第二沟槽67邻近终端区的一侧设置衬底P型基区47以及衬底N+源区48后,相对应的衬底P型基区47、衬底N+源区48覆盖衬底P+注入区42的上部,且衬底P型基区47、衬底N+源区48与衬底P+注入区42接触。在功率半导体器件的俯视图上,衬底P+注入区42呈环形,衬底P+注入区42环绕衬底元胞第二沟槽67。当存在多个环形的衬底P+注入区42时,相邻的衬底P+注入区42间相互间隔。During specific implementation, the substrate P-
为了能形成功率半导体器件的源电极,在半导体衬底31的正面上方设置衬底正面元胞金属层66,衬底元胞金属层66与衬底P型基区47、衬底N+48以及与衬底元胞第二沟槽67外侧壁接触的衬底P+注入区42欧姆接触。当存在多个衬底P+注入区42时,除与衬底元胞第二沟槽67外侧壁接触的衬底P+注入区42与衬底正面元胞金属层66欧姆接触外,其余的衬底P+注入区42均需要与衬底正面元胞金属层66绝缘隔离。In order to form the source electrode of the power semiconductor device, a substrate front
进一步地,在衬底元胞第一沟槽33、衬底元胞第二沟槽67相应的内侧壁以及底壁均覆盖有衬底元胞绝缘氧化层37,且在衬底元胞第一沟槽33、衬底元胞第二沟槽67内还填充有衬底元胞沟槽多晶硅36;填充在衬底元胞第一沟槽33内的衬底元胞沟槽多晶硅36通过所填充衬底元胞第一沟槽33内的衬底元胞绝缘氧化层37与所填充的衬底元胞第一沟槽33的内侧壁以及底壁绝缘隔离,填充在衬底元胞第二沟槽67内的衬底元胞沟槽多晶硅36通过所填充衬底元胞第二沟槽67内的衬底元胞绝缘氧化层37与所填充的衬底元胞第二沟槽67的内侧壁以及底壁绝缘隔离;Further, the corresponding inner sidewalls and bottom walls of the
衬底元胞第一沟槽33、衬底元胞第二沟槽67相对应槽口通过覆盖半导体衬底31正面上的衬底绝缘介质层50覆盖,且衬底元胞第一沟槽33内的衬底元胞沟槽多晶硅36、衬底元胞第二沟槽67内的衬底元胞沟槽多晶硅36通过衬底绝缘介质层50能与衬底正面元胞金属层66绝缘隔离。The
本发明实施例中,在衬底元胞第一沟槽33的内侧壁以及底壁上设置衬底元胞绝缘氧化层37,同时,在衬底元胞第二沟槽67的内侧壁以及底壁上也设置衬底元胞绝缘氧化层37,衬底元胞绝缘氧化层37为二氧化硅层,衬底元胞绝缘氧化层37可以采用热氧化的方式同时生长在衬底元胞第一沟槽33内以及生长在衬底元胞第二沟槽67内。In the embodiment of the present invention, the substrate cell insulating
在衬底元胞第一沟槽33以及衬底元胞第二沟槽67内均填充有衬底元胞沟槽多晶硅36,所述衬底元胞沟槽多晶硅36为现有常用的导电多晶硅,其中,填充在衬底元胞第一沟槽33内的衬底元胞沟槽多晶硅36通过所填充衬底元胞第一沟槽33内的衬底元胞绝缘氧化层37与所填充的衬底元胞第一沟槽33的内侧壁以及底壁绝缘隔离,填充在衬底元胞第二沟槽67内的衬底元胞沟槽多晶硅36通过所填充衬底元胞第二沟槽67内的衬底元胞绝缘氧化层37与所填充的衬底元胞第二沟槽67的内侧壁以及底壁绝缘隔离。Both the
具体实施时,通过将衬底元胞第一沟槽33、衬底元胞第二沟槽67内的衬底元胞元胞沟槽多晶硅36引出后与栅极金属欧姆接触,以能得到功率半导体器件的栅电极,利用衬底元胞沟槽多晶硅36与栅极金属配合形成栅电极的具体形式与现有相一致,此处不再赘述。栅极金属与衬底正面元胞金属层66间相互绝缘隔离,栅极金属与衬底正面元胞金属层66间的具体位置关系等均与现有相一致,具体为本技术领域人员所熟知,此处不再赘述。In the specific implementation, the
本发明实施例中,元胞区内的元胞通过衬底正面元胞金属层66连接成一体,为了实现衬底正面元胞金属层66与衬底元胞沟槽多晶硅36间的绝缘隔离,在半导体衬底31的正面设置衬底绝缘介质层50,所述衬底绝缘介质层50为二氧化硅层,衬底绝缘介质层50覆盖在半导体衬底31的正面,从而利用衬底绝缘介质层50能覆盖衬底元胞第一沟槽33、衬底元胞第二沟槽67相对应的槽口,衬底正面元胞金属层66支撑在衬底绝缘介质层50,从而衬底正面元胞金属层66利用衬底绝缘介质层50与衬底元胞沟槽多晶硅36间的绝缘隔离。In the embodiment of the present invention, the cells in the cell area are connected together by the front
进一步地,所述衬底正面元胞金属层66支撑在衬底绝缘介质层50上,且在衬底绝缘介质层50上还设置衬底正面终端金属层55,所述衬底正面终端金属层66、衬底正面元胞金属层55通过衬底金属钝化层60间隔,且衬底金属钝化层60支撑在所述衬底正面终端金属层55与衬底正面元胞金属层66上;Further, the substrate front
还包括贯通所述衬底金属钝化层60的衬底钝化层窗口64,通过衬底钝化层窗口64能使得与所述衬底钝化层窗口64对应的衬底正面元胞金属层66露出。It also includes a substrate
本发明实施例中,在衬底绝缘介质层50上还设置衬底正面终端金属层55,衬底正面终端金属层55与衬底正面元胞金属层66为同一工艺步骤层,衬底正面终端金属层55与半导体衬底31的终端区对应,衬底正面终端金属层55、衬底正面元胞金属层66通过衬底金属钝化层60间隔,且衬底金属钝化层60支撑在所述衬底正面终端金属层55与衬底正面元胞金属层66上。衬底金属钝化层60可以采用现有常用的材料,如采用氮化硅,具体材料类型可以根据实际需要进行选择,此处不再赘述。In the embodiment of the present invention, the substrate front
为了能便于将衬底正面元胞金属层66引出,对衬底金属钝化层60进行刻蚀,以得到贯通衬底金属钝化层60的衬底钝化层窗口64,通过衬底钝化层窗口64能使得与所述衬底钝化层窗口64对应的衬底正面元胞金属层66露出,从而能方便将衬底正面元胞金属层66引出后形成功率半导体器件的源电极。In order to facilitate the extraction of the
进一步地,在所述功率半导体器件的截面上,所述终端区包括至少一个衬底终端沟槽34以及位于所述衬底终端沟槽34两侧的衬底终端P型体区49,所述衬底终端P型体区49位于衬底终端沟槽34、衬底元胞第一沟槽33、衬底元胞第二沟槽67相对应槽底的上方;Further, on the cross section of the power semiconductor device, the termination region includes at least one
在衬底终端沟槽34的内侧壁以及底壁设置衬底终端绝缘氧化层39,在设有衬底终端绝缘氧化层39的衬底终端沟槽34内填充有衬底终端沟槽多晶硅38,所述衬底终端沟槽多晶硅38通过衬底终端绝缘氧化层39与所述衬底终端沟槽34的内侧壁以及底壁绝缘隔离;所述衬底终端沟槽34的槽口由衬底绝缘介质层50覆盖。A substrate terminal insulating
本发明实施例中,在功率半导体器件的截面上,在终端区内设置至少一个衬底终端沟槽34,图21中示出了在终端区内设置二个衬底终端沟槽34的情况;则在功率半导体器件的俯视平面上,两个衬底终端沟槽34在终端区均呈环形。衬底终端P型体区49贯穿终端区,从而在衬底终端沟槽34的两侧均有衬底P型体区49,衬底P型体区49位于衬底终端沟槽34的槽底上方。一般地,衬底终端P型体区49在半导体衬底31的深度与衬底P型基区47在半导体衬底31内的深度相一致。In the embodiment of the present invention, on the cross section of the power semiconductor device, at least one
在衬底终端沟槽34的内侧壁以及底壁上设置衬底终端绝缘氧化层39,并在衬底终端沟槽34内填充衬底终端沟槽多晶硅38,填充在衬底终端沟槽34内的衬底终端沟槽多晶硅38通过所填充衬底终端沟槽34内的衬底终端绝缘氧化层39与所填充衬底终端沟槽34的内侧壁以及底壁绝缘隔离。当在半导体衬底31的正面设置衬底绝缘介质层50后,衬底绝缘介质层50同时能覆盖衬底终端沟槽34的槽口,同时衬底终端沟槽多晶硅38通过衬底绝缘介质层50能与终端区的衬底正面终端金属层55绝缘隔离。A substrate terminal insulating
具体实施时,所述衬底终端沟槽34、衬底元胞第一沟槽33以及衬底元胞第二沟槽67采用同一工艺步骤得到,从而,衬底终端沟槽34与衬底元胞第一沟槽33以及衬底元胞第二沟槽67在半导体衬底31内具有相同的深度。衬底元胞绝缘氧化层37与衬底终端绝缘氧化层39采用同一工艺步骤得到,衬底元胞沟槽多晶硅36与衬底终端沟槽多晶硅38采用同一工艺步骤得到。In specific implementation, the
本发明实施例中,在衬底元胞第二沟槽67与终端区间设置至少一个衬底P+注入区42后,邻近衬底元胞第二沟槽67的衬底P+注入区42与所述衬底元胞第二沟槽67邻近终端区的外侧壁接触,增加衬底P+注入区42可以缓解衬底元胞第二沟槽67底部电场集中、在元胞边缘过渡区沟槽70底部的电场集中,降低衬底元胞第二沟槽67底部的电场强度以及元胞边缘过渡区沟槽70底部的电场强度,防止在衬底元胞第二沟槽67底部以及元胞边缘过渡区沟槽70的底部过早击穿,充分增加终端区的耐压,能降低衬底终端P型体区49的结深要求,提高设计的自由度,使得功率半导体器件具有更高的击穿电压和可靠性,或者在相同的击穿电压下,可以进一步减少器件的面积,降低成本,同时提高功率半导体器件的可靠性。In the embodiment of the present invention, after at least one substrate
此外,在所述半导体衬底31的背面设置衬底背面结构,通过衬底背面结构能使得所述功率半导体器件为IGBT器件或功率MOSFET器件。In addition, a substrate backside structure is provided on the backside of the
本发明实施例中,IGBT器件、功率MOSFET器件可以采用相同的正面元胞结构,只有在半导体衬底31的背面设置所需的衬底背面结构,即可使得功率半导体器件为IGBT器件或功率MOSFET器件,具体利用衬底背面结构形成IGBT器件或功率MOSFET器件的形式与现有相一致,具体为本技术领域人员所熟知,此处不再赘述。In the embodiment of the present invention, the IGBT device and the power MOSFET device may adopt the same front cell structure, and only if the required substrate back surface structure is provided on the back surface of the
如图22所示,在功率半导体器件的截面上,元胞区内还包括元胞边缘过渡区沟槽70,所述元胞边缘过渡区沟槽70位于衬底元胞第二沟槽67与终端区之间,衬底P+注入区42在半导体衬底31内的深度大于所述元胞边缘过渡区沟槽70在半导体衬底31内的深度,且与衬底元胞第二沟槽67侧壁接触的衬底P+注入区42包覆所述元胞边缘过渡区沟槽70的外侧壁。As shown in FIG. 22, on the cross section of the power semiconductor device, the cell region further includes a cell edge
元胞边缘过渡区沟槽70的槽底位于衬底P型基区47的下方,在元胞边缘过渡区沟槽70的内侧壁以及底壁上均设置衬底元胞绝缘氧化层37,在设置衬底元胞绝缘氧化层37的元胞边缘过渡区沟槽70内还填充有衬底元胞沟槽多晶硅36,所述衬底元胞沟槽多晶硅36通过元胞边缘过渡区沟槽70内的衬底元胞绝缘氧化层37与所在的元胞边缘过渡区沟槽70的侧壁以及底壁绝缘隔离。The groove bottom of the cell edge
本发明实施例中,元胞边缘过渡区沟槽70与衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34为同一工艺步骤形成,元胞边缘过渡区沟槽70与衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34具有相同的深度。与衬底元胞第二沟槽67相比,元胞边缘过渡区沟槽70更靠近终端区。在功率半导体器件的截面上,元胞边缘过渡区沟槽70位于衬底元胞第二沟槽67与邻近元胞区的衬底终端沟槽34之间。In the embodiment of the present invention, the cell edge
由上述说明可知,元胞边缘过渡区沟槽70的槽底位于衬底P型基区47以及衬底终端P型体区49的下方,但元胞边缘过渡区沟槽70的槽底位于衬底P+注入区42底部的上方。本发明实施例中,元胞边缘过渡区沟槽70位于与衬底元胞第二沟槽67侧壁接触的衬底P+注入区42内,即元胞边缘过渡区沟槽70的外侧壁被与衬底元胞第二沟槽67侧壁接触的衬底P+注入区42包覆。当在衬底元胞第二沟槽67与终端区间设置至少一个衬底P+注入区42时,则元胞边缘过渡区沟槽70仅会在与衬底元胞第二沟槽67侧壁接触的衬底P+注入区42内。对于存在多个衬底P+注入区42的情况,相邻的衬底P+注入区42被衬底终端P型体区49间隔。It can be seen from the above description that the groove bottom of the cell edge
图22中,与衬底元胞第二沟槽67侧壁接触的衬底P+注入区42还包覆所述元胞边缘过渡区沟槽70的底壁。具体实施时,在制备衬底P+注入区42时,根据P型杂质离子的注入能量以及退火温度,能使得衬底P+注入区42能包覆元胞边缘过渡区沟槽70的外侧壁,或同时能包覆所述元胞边缘过渡区沟槽70的底壁。无论衬底P+注入区42是否包覆元胞边缘过渡区沟槽70的底壁,衬底P+注入区42在半导体衬底31的结深都要大于衬底元胞第一沟槽33、衬底元胞第二沟槽67以及元胞边缘过渡区沟槽70的深度,即衬底P+注入区42在半导体衬底31的底部位于衬底元胞第一沟槽33、衬底元胞第二沟槽67以及元胞边缘过渡区沟槽70的槽底下方。In FIG. 22 , the substrate
当存在多个衬底P+注入区42时,元胞边缘过渡区沟槽70仅在与衬底元胞第二沟槽67外侧壁接触的衬底P+注入区42内。此外,在与衬底元胞第二沟槽67外侧壁接触的衬底P+注入区42内还可存在多个元胞边缘过渡区沟槽70,相邻的元胞边缘过渡区沟槽70间由衬底P+注入区42间隔。When there are multiple substrate P+ implanted
由上述说明可知,元胞边缘过渡区沟槽70无法形成导电沟道,不会影响衬底元胞第一沟槽33、衬底元胞第二沟槽67的具体作用。It can be seen from the above description that the cell edge
如图11~图21所示,上述的功率半导体器件,可以通过下述工艺步骤制备得到,具体地,所述制备方法包括如下步骤:As shown in FIG. 11 to FIG. 21 , the above-mentioned power semiconductor device can be prepared by the following process steps. Specifically, the preparation method includes the following steps:
步骤1、提供具有N导电类型的半导体衬底31,并对所述半导体衬底31的正面进行所需的沟槽刻蚀,以在半导体衬底31的元胞区内得到衬底元胞第一沟槽33以及衬底元胞第二沟槽67,衬底元胞第二沟槽67在元胞区内邻近终端区;
如图11所示,半导体衬底31可以采用现有常用的半导体材料,如硅等,对于N型的功率半导体器件,半导体衬底31的导电类型为N型。在对半导体衬底31进行沟槽刻蚀时,需要先在半导体衬底31的正面涂覆得到衬底第一光刻胶层32,然后利用衬底第一掩模版69对衬底第一光刻胶层32进行光刻,以对衬底第一光刻胶层32进行图形化,得到贯通衬底第一光刻胶层32的衬底第一光刻胶层窗口36。As shown in FIG. 11 , the
在得到衬底第一光刻胶层窗口36后,利用衬底第一光刻胶层32以及衬底第一光刻胶层窗口36对半导体衬底31进行刻蚀,以得到衬底元胞第一沟槽33以及衬底元胞第二沟槽67,其中,衬底元胞第一沟槽33、衬底元胞第二沟槽67与衬底第一光刻胶层窗口36对应。After the first substrate
此外,当终端区也采用沟槽结构时,则还能同时得到衬底终端沟槽34,衬底终端沟槽34与衬底元胞第一沟槽33以及衬底元胞第二沟槽67具有相同的深度。终端区内衬底终端沟槽34的数量可以根据需要进行选择,图11的截面图中示出了中终端区内设置二个衬底终端沟槽34的情况。同理,元胞区内衬底元胞第一沟槽33的数量也可根据实际需要进行选择,但在截面图上,邻近终端区的衬底元胞第一沟槽33与邻近元胞区的衬底终端沟槽34间只有一个衬底元胞第二沟槽67。In addition, when the terminal region also adopts the trench structure, the
具体对半导体衬底31刻蚀得到衬底元胞第一沟槽33、衬底元胞第二沟道67以及衬底终端沟槽34的工艺过程以及工艺条件均可以采用现有常用的技术实现,具体为本技术领域人员所熟知。衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34的槽口均位于半导体衬底34的正面上,在得到衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34的槽口均位于半导体衬底34后,需要利用本技术领域常用的技术手段将衬底第一光刻胶层32去除。Specifically, the process and process conditions of etching the
为了能得到图22中的结构,在进行沟槽刻蚀时,还能得到元胞边缘过渡区沟槽70,即元胞边缘过渡区沟槽70与衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34为同一工艺步骤制备得到,具有相同的深度。In order to obtain the structure shown in FIG. 22, when performing trench etching, the cell edge
步骤2、在上述衬底元胞第一沟槽33、衬底元胞第二沟槽67内设置衬底元胞绝缘氧化层37,且在衬底元胞第一沟槽33、衬底元胞第二沟槽67内还填充有衬底元胞沟槽多晶硅36;在所述衬底元胞绝缘氧化层37覆盖衬底元胞第一沟槽33、衬底元胞第二沟槽67相对应的侧壁以及底壁;Step 2. Set the substrate cell insulating
填充在衬底元胞第一沟槽33内的衬底元胞沟槽多晶硅36通过所填充衬底元胞第一沟槽33内的衬底元胞绝缘氧化层37与所填充的衬底元胞第一沟槽33的侧壁以及底壁绝缘隔离,填充在衬底元胞第二沟槽67内的衬底元胞沟槽多晶硅36通过所填充衬底元胞第二沟槽67内的衬底元胞绝缘氧化层37与所填充的衬底元胞第二沟槽67的侧壁以及底壁绝缘隔离;The substrate
如图12所示,采用热氧化工艺,能在衬底元胞第一沟槽33、衬底元胞第二沟槽67内生长得到衬底元胞绝缘氧化层37,同时,能在衬底终端沟槽34内生长得到衬底终端绝缘氧化层39。As shown in FIG. 12 , using the thermal oxidation process, the substrate cell insulating
在得到衬底元胞绝缘氧化层37以及衬底终端绝缘氧化层39后,进行多晶硅材料的淀积,以得到填充在衬底元胞第一沟槽33、衬底元胞第二沟槽67内的衬底元胞沟槽多晶硅36;同时,能得到填充在衬底终端沟槽34内的衬底终端沟槽多晶硅38。After the substrate cell insulating
在得到元胞边缘过渡区沟槽70后,能在元胞边缘过渡区沟槽70的内侧壁以及底壁上生长得到衬底元胞绝缘氧化层37,并能在元胞边缘过渡区沟槽70内填充得到衬底元胞沟槽多晶硅36,元胞边缘过渡区沟槽70内的衬底元胞沟槽多晶硅36通过元胞边缘过渡区沟槽70内的衬底元胞绝缘氧化层37与所述元胞边缘过渡区沟槽70的内侧壁以及底壁绝缘隔离。After the cell edge
步骤3、在半导体衬底31内制备衬底P型基区47、衬底N+源区48以及至少一个衬底P+注入区42;其中,衬底P型基区47位于衬底元胞第一沟槽33、衬底元胞第二沟槽67相应槽底的上方,衬底N+源区48位于衬底P型基区47上方,衬底P+注入区42位于衬底元胞第二沟槽67与终端区之间,衬底P+注入区42在半导体衬底31内的深度大于衬底元胞第一沟槽33、衬底元胞第二沟槽67在半导体衬底31内的深度;
邻近衬底元胞第二沟槽67的衬底P+注入区42与衬底元胞第二沟槽67邻近终端区的侧壁接触,衬底元胞第二沟槽67邻近衬底元胞第一沟槽33的侧壁与衬底P型基区47以及衬底N+源区48接触,衬底元胞第一沟槽33的两侧壁分别与相应的衬底P型基区47以及衬底N+源区48接触;The substrate
本发明实施例中,制备得到衬底P型基区47、衬底N+源区48、衬底P+注入区42以及衬底终端P型体区49的具体工艺实现可以采用不同的工艺实现,具体可以根据实际需要进行选择。下面对具体的工艺过程进行说明。In the embodiment of the present invention, the specific process for preparing the substrate P-
如图13、图14、图15和图16所示,对步骤3,具体包括如下步骤:As shown in Figure 13, Figure 14, Figure 15 and Figure 16,
步骤3.1、在半导体衬底31正面的上方进行P型杂质离子的注入,以在衬底元胞第二沟槽67与邻近元胞区的衬底终端沟槽34间制备得到至少一个衬底P+注入区42,且邻近衬底元胞第二沟槽67的衬底P+注入区42与衬底元胞第二沟槽67邻近终端区的侧壁接触,所述衬底P+注入区42在半导体衬底31内的深度大于衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34在半导体衬底31内的深度;Step 3.1. Implantation of P-type impurity ions is performed above the front surface of the
如图13所示,在半导体衬底31的正面涂覆得到衬底第二光刻胶层40,采用衬底第二掩模版对衬底第二光刻胶层40进行光刻,以得到贯通衬底第二光刻胶层40的衬底第二光刻胶层窗口41。具体地,衬底第二光刻胶层窗口41与衬底元胞第二沟槽67与邻近元胞区的衬底终端沟槽34间。As shown in FIG. 13 , the
在得到衬底第二光刻胶层窗口41后,利用衬底第二光刻胶层40对半导体衬底31的遮挡,在半导体衬底31的上方进行P型杂质离子的注入,P型杂质离子的类型可以根据需要进行选择,具体为本技术领域人员所熟知。在进行P型杂质离子注入后进行推阱,以得到衬底P+注入区42,衬底P+注入区42与衬底第二光刻胶层窗口41正对应。在工艺后的俯视平面上,得到的衬底P+注入区42呈环形,衬底P+注入区42的数量可以根据实际需要进行选择。After the second
具体地,邻近衬底元胞第二沟槽67的衬底P+注入区42与衬底元胞第二沟槽67邻近终端区的侧壁接触,所述衬底P+注入区42在半导体衬底31内的深度大于衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34在半导体衬底31内的深度;即衬底P+注入区42的底部位于衬底元胞第二沟槽67的下方。在制备得到衬底P+注入区42后,利用本技术领域常用的技术手段将衬底第二光刻胶层40从半导体衬底31的正面去除。Specifically, the substrate
本发明实施例中,在制备得到衬底P+注入区42后,与衬底元胞第二沟槽67邻近终端区侧壁接触的衬底P+注入区42能实现对元胞边缘过渡区沟槽70包覆,即衬底P+注入区42能包覆元胞边缘过渡区沟槽70的外侧壁以及底壁,如图22所示。In the embodiment of the present invention, after the substrate
步骤3.2、在上述半导体衬底31的正面再次进行P型杂质离子注入,以得到贯穿半导体衬底31的衬底P型层43,所述衬底P型层43位于衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34相应槽底的上方;Step 3.2, perform P-type impurity ion implantation on the front surface of the above-mentioned
如图14所示,在上述半导体衬底31的正面再次进行P型杂质离子注入,以得到贯穿半导体衬底31的衬底P型层43,其中,衬底P型层43从半导体衬底31的正面垂直向下延伸,且衬底P型层43的底部位于衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34相应槽底的上方。衬底P型层43的掺杂浓度小于衬底P+注入区42的掺杂浓度。As shown in FIG. 14 , P-type impurity ion implantation is performed again on the front surface of the
步骤3.3、在上述半导体衬底31上方进行N型杂质离子注入以及P型杂质离子注入,利用注入的P型杂质离子与元胞区内的衬底P型层43能在得到位于元胞区内的衬底P型基区47,利用注入的N型杂质离子能得到位于衬底P型基区47上方的衬底N+源区48,所述衬底N+源区48与衬底P型基区47邻接;同时,利用终端区内的衬底P型层43能得到衬底终端P型体区49。Step 3.3, perform N-type impurity ion implantation and P-type impurity ion implantation on the above-mentioned
如图15所示,先在半导体衬底31的正面上涂覆得到衬底第三光刻胶层44,然后利用衬底第三掩模版45对衬底第三光刻胶层44进行光刻,以得到贯通衬底第三光刻胶层44的衬底第三光刻胶层窗口46,通过衬底第三光刻胶层窗口46能使得元胞区内的相应区域露出。图15中,与衬底元胞第二沟槽67的侧壁接触的衬底P+注入区42部分露出,当然,在具体实施时,可利用衬底第三光刻胶层44对衬底元胞第二沟槽67以及所有的衬底P+注入区42进行遮挡。As shown in FIG. 15 , the
得到衬底第三光刻胶层窗口46后,利用衬底第三光刻胶层44以及衬底第三光刻胶层窗口46在半导体衬底31正面上方进行N型杂质离子、以及P型杂质离子注入,并在注入后进行推阱,利用注入的P型杂质离子与元胞区内的衬底P型层43能在得到位于元胞区内的衬底P型基区47,利用注入的N型杂质离子能得到位于衬底P型基区47上方的衬底N+源区48,所述衬底N+源区48与衬底P型基区47邻接;同时,利用终端区内的衬底P型层43能得到衬底终端P型体区49。本发明实施例中,衬底P型基区47的掺杂浓度大于终端P型体区49的掺杂浓度,即衬底P型层43内未被注入P型杂质离子以及N型杂质离子的区域能形成衬底终端P型体区49。衬底P型基区47在半导体衬底31的深度与衬底终端P型体区49的深度相一致。After obtaining the third substrate
当与衬底元胞第二沟槽67侧壁接触的衬底P+注入区42存在未被衬底第三光刻胶层44遮挡的部分时,在N型杂质离子、P型杂质离子注入后,能得到与衬底P+注入区42的接触的衬底P型基区47以及衬底N+源区48。对与衬底元胞第二沟槽67侧壁相接触的衬底P+注入区42,则与衬底P+注入区42接触的衬底P型基区47、衬底N+源区48也与衬底元胞第二沟槽67邻近终端区的外壁接触。而当衬底P+注入区42全部被衬底第三光刻胶层44遮挡时,则在进行N型杂质离子、P型杂质离子注入时,不会影响衬底P+注入区42。图16中,示出了在衬底P+注入区42上形成衬底P型基区47以及衬底N+源区48的情况。由上述说明可知,对衬底元胞第二沟槽67与邻近元胞区的衬底终端沟槽34间存在多个衬底P+注入区42时,相邻的衬底P+注入区42由衬底终端P型体区49间隔,且衬底P+注入区42与通过间隔的衬底终端P型体区49接触。图16中,对仅存在一个衬底P+注入区42的情况,衬底P+注入区42与衬底终端P型体区49接触。图22中,元胞边缘过渡区沟槽70位于与衬底元胞第二沟槽67接触的衬底P+注入区42内,且在衬底元胞第二沟槽67邻近终端区的外侧壁还与衬底P型基区47以及衬底N+源区48接触。When there is a part of the substrate
上述工艺中,在进行N型杂质离子,P型杂质离子后,经过所需的退火工艺,即能同时形成衬底P型基区47以及衬底N+源区48,具体进行离子注入的工艺,以及退火的工艺均与现有相一致,具体工艺为本技术领域人员所熟知,此处不再赘述。此外,由于N+的退火温度不能太高,则在退火时,会限制衬底P型基区47的推阱深度。In the above process, after the N-type impurity ions and the P-type impurity ions are carried out, after the required annealing process, the substrate P-
为了能提高衬底P型基区47的推阱深度,可以在半导体衬底31的正面淀积衬底过渡介质层,并在衬底过渡介质层上涂覆过渡介质层光刻胶层,利用过渡介质层掩模版对过渡介质层光刻胶层光刻,得到图形化后的过渡介质层光刻胶层。利用图形化后的过渡介质层光刻胶层,对衬底过渡介质层进行刻蚀,以得到贯通衬底过渡介质层的衬底过渡介质层窗口。在得到衬底过渡介质层窗口后,在半导体衬底31正面上方进行P型杂质离子注入,在P型杂质离子注入后,去除过渡介质层光刻胶层并进行热推阱,以得到衬底P型基区47,此时,得到的衬底P型基区47的结深大于上述工艺得到的结深。在得到衬底P型基区47后,利用衬底过渡介质层在半导体衬底31的正面上方进行N型杂质离子注入,并在N型杂质离子注入后进行热推阱,能得到衬底N+源区48。在得到衬底N+源区48后,将衬底过渡介质层从半导体衬底31上去除;当然,根据实际需要也可以保留衬底过渡介质层,只要衬底过渡介质层不影响制备得到功率半导体器件即可,具体为本技术领域人员所熟悉,此处不再赘述。In order to improve the push-well depth of the P-
具体实施时,P型杂质离子注入条件、N型杂质杂离子的注入条件、P型杂质离子注入后的热推阱的过程以及N型杂质离子注入后的热推阱过程均与现有工艺相一致,如可以参考公开号为CN110047757A所公开的技术方案,具体工艺条件以及过程均为本技术领域人员所熟知,此处不再赘述。In specific implementation, the conditions for implanting P-type impurity ions, the implantation conditions for N-type impurity ions, the process of thermally pushing the well after P-type impurity ion implantation, and the process of thermally pushing the well after N-type impurity ion implantation are all the same as those of the prior art. Consistent, if you can refer to the technical solution disclosed in Publication No. CN110047757A, the specific process conditions and processes are well known to those skilled in the art, and will not be repeated here.
此外,还可以采用其他的工艺过程制备得到衬底P型基区47、衬底N+源区48、衬底P+注入区42以及衬底终端P型体区49;从而对步骤3,具体包括如下步骤:In addition, other processes can also be used to prepare the substrate P-
步骤3.a、在上述半导体衬底31的正面进行P型杂质离子注入,以得到贯穿半导体衬底31的衬底P型层43,所述衬底P型层43位于衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34相应槽底的上方;Step 3.a, perform P-type impurity ion implantation on the front surface of the above-mentioned
本发明实施例中,采用本技术领域常用的技术手段进行P型杂质离子的注入,以得到贯通半导体衬底31的衬底P型层43,衬底P型层43从半导体衬底31的正面垂直向下延伸。所述衬底P型层43位于衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34相应槽底的上方。In the embodiment of the present invention, the implantation of P-type impurity ions is performed by using technical means commonly used in the technical field, so as to obtain the substrate P-
步骤3.b、在上方半导体衬底31正面的上方再次进行P型杂质离子的注入,以在衬底元胞第二沟槽67与邻近元胞区的衬底终端沟槽34间制备得到至少一个衬底P+注入区42,且邻近衬底元胞第二沟槽67的衬底P+注入区42与衬底元胞第二沟槽67邻近终端区的侧壁接触,所述衬底P+注入区42在半导体衬底31内的深度大于衬底元胞第一沟槽33、衬底元胞第二沟槽67以及衬底终端沟槽34在半导体衬底内的深度;In step 3.b, the implantation of P-type impurity ions is performed again above the front surface of the
本发明实施例中,在得到衬底P型层43后,在半导体衬底31的正面涂覆得到衬底注入光刻胶层,利用衬底注入光刻胶层掩模版对所述衬底注入光刻胶层进行光刻,以得到图形化的衬底注入光刻胶层。利用衬底注入光刻胶层进行P型杂质离子的注入,以制备得到衬底P+注入区42,衬底P+注入区42的掺杂浓度大于衬底P型层43的掺杂浓度。得到衬底P+注入区42后,能得到与图14相一致的形式。In the embodiment of the present invention, after the substrate P-
步骤3.c、在上述半导体衬底31上方进行N型杂质离子注入以及P型杂质离子注入,利用注入的P型杂质离子与元胞区内的衬底P型层43能在得到位于元胞区内的衬底P型基区47,利用注入的N型杂质离子能得到位于衬底P型基区47上方的衬底N+源区48,所述衬底N+源区48与衬底P型基区47邻接;同时,利用终端区内的衬底P型层43能得到衬底终端P型体区49。Step 3.c, perform N-type impurity ion implantation and P-type impurity ion implantation on the above-mentioned
具体地,可以采用图15以及图16所示的过程制备得到衬底P型基区47以及衬底N+源区48与衬底终端P型体区49,具体可以参考上述说明,此处不再赘述。Specifically, the processes shown in FIG. 15 and FIG. 16 can be used to prepare the substrate P-
与图13~图16的工艺过程相比,步骤3.a~步骤3.c的工艺过程中,仅仅是先制备衬底P型层43,然后在制备衬底P+注入区42,其余的过程均与步骤3.1~步骤3.3相一致,具体可以参考上述说明,此处不再详述。此外,步骤3.a~步骤3.c的工艺过程中,元胞边缘过渡区沟槽70的情况,可以参考上述步骤3.1~步骤3.3中相应的说明,此处不再赘述。Compared with the process of FIG. 13 to FIG. 16 , in the process of step 3.a to step 3.c, only the substrate P-
步骤4、在上述半导体衬底31的正面进行介质层淀积,以得到覆盖半导体衬底31正面的衬底绝缘介质层50;对衬底绝缘介质层50进行接触孔刻蚀,以得到贯通衬底绝缘介质层50的衬底源极接触孔54;Step 4: Perform dielectric layer deposition on the front surface of the
具体地,衬底绝缘介质层50为二氧化硅层,具体可以采用本技术领域常用的技术手段淀积得到衬底绝缘介质层50,衬底绝缘介质层50覆盖在半导体衬底31的正面。Specifically, the substrate insulating
为了能得到衬底源极接触孔54,需要在衬底绝缘介质层50上涂覆得到衬底第四光刻胶层51,利用衬底第四掩模版对衬底第四光刻胶层51进行光刻,以得到贯通衬底第四光刻胶层51的衬底第四光刻胶层窗口53,以实现对衬底第四光刻胶层51进行所需的图形化,如图17所示。In order to obtain the substrate
利用衬底第四光刻胶层51以及衬底第四光刻胶层窗口53对衬底绝缘介质层50进行刻蚀,以得到衬底源极接触孔54。图18中,衬底源极接触孔54位于衬底元胞第一沟槽33的两侧,以及衬底元胞第二沟槽67邻近终端区的一侧。衬底源极接触孔54贯通衬底绝缘介质层50;对衬底元胞第一沟槽33两侧的衬底源极接触孔54,所述衬底源极接触孔54的孔底与衬底P型基区47对应;对衬底元胞第二沟槽67外侧的衬底源极接触孔54与衬底P+注入区42对应。当衬底元胞第二沟槽67邻近终端区的外侧壁与衬底P型基区47、衬底N+源区48接触时,则衬底元胞第二沟槽67外侧的衬底源极接触孔54需要与衬底P型基区47、衬底N+源区48对应。The substrate insulating
步骤5、在上述半导体衬底31的正面进行金属淀积,以得到衬底正面金属层,所述衬底正面金属层覆盖在衬底绝缘介质层50上,对衬底正面金属层刻蚀后,能得到衬底正面元胞金属层66以及衬底正面终端金属层55,衬底正面元胞金属层66、衬底正面终端金属层55覆盖在衬底绝缘介质层50上,且衬底正面元胞金属层66还填充在衬底源极接触孔54内;填充在衬底源极接触孔54内的衬底正面元胞金属层66与衬底P型基区47、衬底N+源区48以及与衬底元胞第二沟槽67侧壁接触的衬底P+注入区42欧姆接触;
具体地,采用本技术领域常用的技术手段淀积得到衬底正面金属层,衬底正面金属层覆盖在衬底绝缘介质层50上,还会填充在衬底源极接触孔54年。在衬底正面金属层上涂覆得到衬底第五光刻胶层56,利用衬底第五掩模版57对衬底第五光刻胶层56进行光刻,以得到贯通衬底第五光刻胶层56的衬底第五光刻胶层窗口58,以实现对衬底第五光刻胶层56进行图形化。Specifically, a metal layer on the front side of the substrate is deposited by using technical means commonly used in the technical field. The metal layer on the front side of the substrate covers the insulating
利用衬底第五光刻胶层56以及衬底第五光刻胶层窗口58对衬底正面金属层进行刻蚀,以得到贯通衬底正面金属层的衬底正面金属层窗口59,利用衬底正面金属层窗口59能将衬底正面金属层分割得到衬底正面元胞金属层66以及衬底正面终端金属层55;其中,衬底正面元胞金属层66还填充在衬底源极接触孔54内;填充在衬底源极接触孔54内的衬底正面元胞金属层66与衬底P型基区47、衬底N+源区48以及与衬底元胞第二沟槽67侧壁接触的衬底P+注入区42欧姆接触。The metal layer on the front side of the substrate is etched by using the fifth photoresist layer 56 of the substrate and the
对衬底元胞第二沟槽67,在衬底元胞第二沟槽67邻近终端区的侧壁与衬底P型基区47、衬底N+源区48以及衬底P+注入区42接触时,则衬底正面元胞金属层66需要与衬底元胞第二沟槽67邻近终端区侧壁的衬底P型基区47、衬底N+源区48以及衬底P+注入区42均欧姆接触,如图19所示。当衬底元胞第二沟槽67邻近终端区的侧壁仅与衬底P+注入区42接触时,则衬底正面元胞金属层66直接与衬底元胞第二沟槽67侧壁接触的衬底P+注入区42欧姆接触。For the
在得到衬底正面元胞金属层66以及衬底正面终端金属层65后,需哟啊将衬底第五光刻胶层56移除,衬底正面终端金属层65位于终端区的上方。After the
此外,在对衬底正面金属层刻蚀时,还能得到栅极金属,所述栅极金属与衬底元胞沟槽多晶硅36欧姆接触,利用栅极金属能形成功率半导体器件的栅电极。In addition, when the metal layer on the front side of the substrate is etched, a gate metal can be obtained. The gate metal is in 36 ohm contact with the substrate cell trench polysilicon, and the gate electrode of the power semiconductor device can be formed by using the gate metal.
步骤6、在上述半导体衬底31的正面进行钝化层淀积,以得到衬底金属钝化层60,所述衬底金属钝化层60覆盖在衬底正面元胞金属层66、衬底正面终端金属层55上,且利用衬底金属钝化层60能间隔衬底正面元胞金属层66与衬底正面终端金属层55;Step 6: Deposition a passivation layer on the front side of the above-mentioned
具体地,采用本技术领域常用的技术手段进行钝化层淀积,以得到衬底金属钝化层60,衬底金属钝化层60能填充在衬底正面金属层窗口59内,从而能实现对衬底正面元胞金属层66与衬底正面终端金属层55的分隔。Specifically, the passivation layer is deposited by using technical means commonly used in the technical field to obtain the substrate
步骤7、对上述衬底金属钝化层60进行刻蚀,以得到贯通衬底金属钝化层的衬底金属钝化层窗口64,通过衬底金属钝化层窗口64能使得与所述衬底金属钝化层窗口64对应的衬底正面元胞金属层66露出;Step 7: Etch the above-mentioned base
具体地,在衬底金属钝化层60上涂覆得到衬底第六光刻胶层61,利用衬底第六掩模版62对衬底第六光刻胶层61进行光刻,以得到贯通衬底第六光刻胶层61的衬底第六光刻胶层窗口63。利用衬底第六光刻胶层61以及衬底第六光刻胶层窗口63对衬底金属钝化层60进行刻蚀,以能得到衬底金属钝化层窗口64,衬底金属钝化层窗口64位于元胞区,通过衬底金属钝化层窗口64能使得与所述衬底金属钝化层窗口64对应的衬底正面元胞金属层66露出,如图20所示;通过衬底金属钝化层窗口64能方便将衬底正面元胞金属层66引出。Specifically, the sixth
在得到衬底金属钝化层窗口64后,需要将衬底第六光刻胶层61从衬底金属钝化层60上去除,从而完成功率半导体器件的正面工艺,如图21所示。After the substrate metal
步骤8、在上述半导体衬底31的背面进行所需的背面工艺,以在半导体衬底的背面得到所需的衬底背面结构。Step 8. Perform a required backside process on the backside of the
本发明实施例中,根据所需制备功率半导体器件的类型,进行所需的背面工艺,以得到衬底背面结构,具体背面工艺的过程以及衬底背面结构的具体形式均可以根据需要进行选择,具体为本技术领域人员所熟知,此处不再赘述。In the embodiment of the present invention, according to the type of the power semiconductor device to be prepared, the required backside process is performed to obtain the backside structure of the substrate. The specific backside process and the specific form of the backside structure of the substrate can be selected as required. The details are well known to those skilled in the art and will not be repeated here.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010351900.6A CN111509035B (en) | 2020-04-28 | 2020-04-28 | Low-cost high-performance groove type power semiconductor device and preparation method thereof |
PCT/CN2020/109412 WO2021217953A1 (en) | 2020-04-28 | 2020-08-17 | Trench-type power semiconductor device with low cost and high performance, and method for preparing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010351900.6A CN111509035B (en) | 2020-04-28 | 2020-04-28 | Low-cost high-performance groove type power semiconductor device and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111509035A true CN111509035A (en) | 2020-08-07 |
CN111509035B CN111509035B (en) | 2022-02-08 |
Family
ID=71864908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010351900.6A Active CN111509035B (en) | 2020-04-28 | 2020-04-28 | Low-cost high-performance groove type power semiconductor device and preparation method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111509035B (en) |
WO (1) | WO2021217953A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113380621A (en) * | 2021-04-07 | 2021-09-10 | 厦门士兰集科微电子有限公司 | Semiconductor device and method for manufacturing the same |
WO2021217953A1 (en) * | 2020-04-28 | 2021-11-04 | 南京芯长征科技有限公司 | Trench-type power semiconductor device with low cost and high performance, and method for preparing same |
CN115065350A (en) * | 2022-08-16 | 2022-09-16 | 深圳芯能半导体技术有限公司 | IGBT chip integrated with gate electrode Miller clamping function and preparation method thereof |
CN116487384A (en) * | 2023-06-07 | 2023-07-25 | 上海晶岳电子有限公司 | SGT MOS process TVS device and manufacturing method thereof |
WO2023206794A1 (en) * | 2022-04-29 | 2023-11-02 | 上海积塔半导体有限公司 | Manufacturing method for and structure of igbt device |
WO2024012455A1 (en) * | 2022-07-13 | 2024-01-18 | 无锡华润华晶微电子有限公司 | Insulated gate bipolar transistor and preparation method therefor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11423204B1 (en) * | 2021-04-14 | 2022-08-23 | Taiwan Semiconductor Manufacturing Company Limited | System and method for back side signal routing |
CN115084233B (en) * | 2022-07-21 | 2024-12-31 | 江苏中科君芯科技有限公司 | Composite terminal structure for power devices |
CN117238770B (en) * | 2023-11-01 | 2024-05-10 | 深圳市美浦森半导体有限公司 | Trench gate MOSFET device and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104637994A (en) * | 2013-11-13 | 2015-05-20 | 上海华虹宏力半导体制造有限公司 | Semiconductor device and manufacturing method |
CN110335895A (en) * | 2019-07-31 | 2019-10-15 | 上海昱率科技有限公司 | Power device and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106783984B (en) * | 2016-11-22 | 2021-12-03 | 全球能源互联网研究院 | Double-sided terminal structure, reverse conducting semiconductor device and preparation method thereof |
CN108155223B (en) * | 2017-12-29 | 2023-12-08 | 福建龙夏电子科技有限公司 | Trench diode device and forming method thereof |
CN111509035B (en) * | 2020-04-28 | 2022-02-08 | 南京芯长征科技有限公司 | Low-cost high-performance groove type power semiconductor device and preparation method thereof |
-
2020
- 2020-04-28 CN CN202010351900.6A patent/CN111509035B/en active Active
- 2020-08-17 WO PCT/CN2020/109412 patent/WO2021217953A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104637994A (en) * | 2013-11-13 | 2015-05-20 | 上海华虹宏力半导体制造有限公司 | Semiconductor device and manufacturing method |
CN110335895A (en) * | 2019-07-31 | 2019-10-15 | 上海昱率科技有限公司 | Power device and manufacturing method thereof |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021217953A1 (en) * | 2020-04-28 | 2021-11-04 | 南京芯长征科技有限公司 | Trench-type power semiconductor device with low cost and high performance, and method for preparing same |
CN113380621A (en) * | 2021-04-07 | 2021-09-10 | 厦门士兰集科微电子有限公司 | Semiconductor device and method for manufacturing the same |
WO2023206794A1 (en) * | 2022-04-29 | 2023-11-02 | 上海积塔半导体有限公司 | Manufacturing method for and structure of igbt device |
WO2024012455A1 (en) * | 2022-07-13 | 2024-01-18 | 无锡华润华晶微电子有限公司 | Insulated gate bipolar transistor and preparation method therefor |
CN115065350A (en) * | 2022-08-16 | 2022-09-16 | 深圳芯能半导体技术有限公司 | IGBT chip integrated with gate electrode Miller clamping function and preparation method thereof |
CN116487384A (en) * | 2023-06-07 | 2023-07-25 | 上海晶岳电子有限公司 | SGT MOS process TVS device and manufacturing method thereof |
CN116487384B (en) * | 2023-06-07 | 2024-11-22 | 上海晶岳电子有限公司 | A SGT MOS process TVS device and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN111509035B (en) | 2022-02-08 |
WO2021217953A1 (en) | 2021-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111509035B (en) | Low-cost high-performance groove type power semiconductor device and preparation method thereof | |
KR100415490B1 (en) | Power mos element and method for producing the same | |
JP4171268B2 (en) | Semiconductor device and manufacturing method thereof | |
CN105304692B (en) | Method for fabricating asymmetric polysilicon gates for optimized termination design in trench power MOSFETs | |
JP2004522319A (en) | Manufacturing of semiconductor devices with Schottky barrier | |
US11276777B2 (en) | Semiconductor structure and method for forming same | |
CN110676306B (en) | Low EMI deep trench isolation plane power semiconductor device and preparation method thereof | |
US6087224A (en) | Manufacture of trench-gate semiconductor devices | |
CN110419111B (en) | Self-aligned and Robust Insulated Gate Bipolar Transistor Devices | |
TW202215548A (en) | Ldmos transistor and manufacturing method thereof | |
CN113130633A (en) | Groove type field effect transistor structure and preparation method thereof | |
CN107731926B (en) | MOSFET device with improved withstand voltage range and preparation method thereof | |
CN107910270B (en) | Power semiconductor device and method for manufacturing the same | |
CN110600454B (en) | Low EMI deep trench isolation trench type power semiconductor device and preparation method thereof | |
US11075292B2 (en) | Insulated gate bipolar transistor, and manufacturing method therefor | |
CN110071043A (en) | A kind of preparation method of power semiconductor | |
CN112103334A (en) | Method of forming semiconductor device and structure thereof | |
CN113964038B (en) | Fabrication method of trench gate MOSFET device | |
TWI812995B (en) | Sic mosfet device and manufacturing method thereof | |
CN111933700B (en) | Power semiconductor device and method for manufacturing the same | |
CN115312601A (en) | MOSFET device and preparation method thereof | |
US20230268432A1 (en) | Manufacturing method of a semiconductor device | |
CN110444583B (en) | Low-cost high-reliability power semiconductor device and preparation method thereof | |
CN110047757A (en) | The preparation method of the trench-type power semiconductor device of low cost | |
CN110047758A (en) | A kind of preparation process of low cost trench-type power semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220906 Address after: Room 1106-3, No. 62, Suyuan Avenue, Jiangning Development Zone, Nanjing City, Jiangsu Province, 211100 (Jiangning Development Zone) Patentee after: Jiangsu Chip Long March Microelectronics Group Co.,Ltd. Patentee after: Nanjing Xinchangzheng Technology Co.,Ltd. Address before: 211100 block A2, Jiulong lake international enterprise headquarters park, No. 19, Suyuan Avenue, Jiangning District, Nanjing, Jiangsu Province (Jiangning Development Zone) Patentee before: Nanjing Xinchangzheng Technology Co.,Ltd. |
|
TR01 | Transfer of patent right |