[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111444645B - Harbor machine damage positioning method based on residual stress gap state - Google Patents

Harbor machine damage positioning method based on residual stress gap state Download PDF

Info

Publication number
CN111444645B
CN111444645B CN202010159712.3A CN202010159712A CN111444645B CN 111444645 B CN111444645 B CN 111444645B CN 202010159712 A CN202010159712 A CN 202010159712A CN 111444645 B CN111444645 B CN 111444645B
Authority
CN
China
Prior art keywords
residual stress
value
vulnerable
gap state
minute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010159712.3A
Other languages
Chinese (zh)
Other versions
CN111444645A (en
Inventor
朱林
周萌
王鹏
黄嘉铭
邱建春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202010159712.3A priority Critical patent/CN111444645B/en
Publication of CN111444645A publication Critical patent/CN111444645A/en
Application granted granted Critical
Publication of CN111444645B publication Critical patent/CN111444645B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/25Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种基于残余应力间隙状态的港机损伤定位方法,该方法包括如下步骤:S1、港机结构易损伤位置的确定;S2、港机易损伤位置实时最大残余应力区间值的确定;S3、港机实时残余应力间隙状态值的计算;S4、每个易损伤位置的间隙状态因子的确定;S5、基于残余应力间隙状态的港机损伤定位。该方法检测精度高,对于实现港机的损伤定位具有重要的现实意义。

Figure 202010159712

The invention discloses a damage location method for port machinery based on the gap state of residual stress. The method includes the following steps: S1. Determination of the easily damaged position of the port machine structure; S2. Determination of the real-time maximum residual stress interval value of the easily damaged position of the port machine ; S3, the calculation of the real-time residual stress gap state value of the port machine; S4, the determination of the gap state factor of each vulnerable position; S5, the damage location of the port machine based on the residual stress gap state. This method has high detection accuracy and has important practical significance for the damage location of port machinery.

Figure 202010159712

Description

一种基于残余应力间隙状态的港机损伤定位方法A damage location method for port machinery based on residual stress gap state

技术领域technical field

本发明涉及港机损伤定位方法,特别涉及一种基于残余应力间隙状态的港机损伤定位方法。The invention relates to a damage location method for a port machine, in particular to a damage location method for a port machine based on a residual stress gap state.

背景技术Background technique

随着社会的发展与国际间贸易合作的深化,港机已越来越成为深化两国港口间合作的重要工具。港口起重机是港口起吊货物的重要机械化工具,随着货物吞吐量的增加与工作载荷的极端化变化,其结构的损伤情况已成为使用者与检测人员的关注重点,也是国内外研究的重点。目前,大多损伤定位方法是基于工况下采集的声振特征展开的,受工况环境的影响较大,且不同声振特征指标间的差异无法充分反映港机结构的损伤位置,因此如何从港机结构本身在受载作用下反映出的自身结构内在性能入手对损伤位置进行精确定位是这一研究领域存在的共性问题。With the development of society and the deepening of international trade cooperation, HAECO has increasingly become an important tool for deepening cooperation between the ports of the two countries. Port cranes are an important mechanized tool for lifting cargo in ports. With the increase of cargo throughput and extreme changes in working load, the damage of its structure has become the focus of attention of users and inspectors, and it is also the focus of research at home and abroad. At present, most damage location methods are based on the acoustic and vibration characteristics collected under working conditions, which are greatly affected by the working environment, and the differences between different acoustic and vibration characteristic indicators cannot fully reflect the damage location of the port machinery structure. It is a common problem in this research field to accurately locate the damage location based on the internal performance of the port machinery structure itself under load.

发明内容Contents of the invention

发明目的:本发明目的是提供一种基于残余应力间隙状态的港机损伤定位方法。Purpose of the invention: The purpose of the invention is to provide a damage location method for port machinery based on the residual stress gap state.

技术方案:本发明提供一种基于残余应力间隙状态的港机损伤定位方法,包括如下步骤:Technical solution: The present invention provides a damage location method for port machinery based on residual stress gap state, which includes the following steps:

S1、港机结构易损伤位置的确定;S1. Determination of the easily damaged position of the port machinery structure;

S2、港机易损伤位置实时最大残余应力区间值的确定;S2. Determination of the real-time maximum residual stress interval value of the vulnerable position of the port machinery;

S3、港机实时残余应力间隙状态值的计算;S3. Calculation of the real-time residual stress gap state value of the port machinery;

S4、每个易损伤位置的间隙状态因子的确定;S4. Determination of the gap state factor of each vulnerable position;

S5、基于残余应力间隙状态的港机损伤定位。S5. Damage location of port machinery based on residual stress gap state.

进一步地,所述步骤S1的确定方法为:将港机整体的有限元分析模型导入到有限元分析软件中,对其进行网格化划分,然后根据港机的实际工况条件,对其进行约束条件的设置与载荷工况的施加,然后对港机有限元分析模型进行后处理,确定在实际工况条件下港机结构的各个易损伤位置,并根据分析结果在模型上进行标记,标记位置为m,m=1,2,3...。Further, the determination method of step S1 is: import the overall finite element analysis model of the port machinery into the finite element analysis software, perform grid division on it, and then perform The setting of constraint conditions and the application of load conditions, and then post-processing the finite element analysis model of the port machinery, determine the vulnerable positions of the port machinery structure under the actual working conditions, and mark on the model according to the analysis results, mark The position is m, m=1, 2, 3....

进一步地,所述步骤S2的确定方法为:结合S1中确定的多个实际工况条件下港机结构的易损伤位置,在实际港机结构上找到这些标记的位置,并在对应位置布置X射线残余应力测试仪,按照1分钟的时间间隔对每秒钟对应的残余应力值σmt进行测量,并计算第i分钟m号位置的结构残余应力值的等效区间值qim,i代表分钟标记,Further, the determination method of step S2 is: combining the vulnerable positions of the port machinery structure determined in S1 under the multiple actual working conditions, finding the positions of these marks on the actual port machinery structure, and arranging X The ray residual stress tester measures the residual stress value σ mt corresponding to each second at intervals of 1 minute, and calculates the equivalent interval value q im of the structural residual stress value at position m at the i-th minute, where i represents the minute mark,

Figure BDA0002404614650000021
Figure BDA0002404614650000021

其中,qim为m号损伤位置第i分钟的结构残余应力的等效区间值;C(σmt)max为第m个易损伤位置每分钟时间内测量的所有残余应力值的最大值;C(σmt)min为第m个易损伤位置每分钟时间内测量的所有残余应力值的最小值;

Figure BDA0002404614650000022
为第m个易损伤位置每分钟时间内测量的所有残余应力值的平均值;t为每分钟的秒数标记,Among them, q im is the equivalent interval value of structural residual stress at the i-th minute at the m-th damaged position; C(σ mt ) max is the maximum value of all residual stress values measured at the m-th vulnerable position per minute; C (σ mt ) min is the minimum value of all residual stress values measured in one minute at the mth vulnerable position;
Figure BDA0002404614650000022
is the average value of all residual stress values measured every minute at the mth vulnerable position; t is the second mark per minute,

Figure BDA0002404614650000023
Figure BDA0002404614650000023

在实际工况条件下实时对qim进行计算并记录。Calculate and record the q im in real time under actual working conditions.

进一步地,所述步骤S3的计算方法为:结合S2中计算的各个损伤位置的残余应力等效区间值qim对每个损伤位置在监测时间内的最大值C(qim)max与最小值C(qim)min进行识别,并记录每个损伤位置对应于C(qim)max的时间点为C(tm)max与对应于C(qim)min的时间点为C(tm)min,并在此基础上进一步计算每个易损伤位置的残余应力间隙状态值JmFurther, the calculation method of the step S3 is: combining the residual stress equivalent interval value q im of each damage position calculated in S2 to the maximum value C(q im ) max and the minimum value of each damage position within the monitoring time C(q im ) min for identification, and record the time point corresponding to C(q im ) max as C(t m ) max and the time point corresponding to C(q im ) min as C(t m ) min , and further calculate the residual stress gap state value J m of each vulnerable position on this basis,

Figure BDA0002404614650000024
Figure BDA0002404614650000024

其中,tm为每个损伤位置的总监测时间;qim为各个损伤位置的残余应力等效区间值;Jm为每个易损伤位置的残余应力间隙状态值;ε为复合向间隙均化系数;γ为损伤位置的奇异化系数;C(qim)max为每个损伤位置的残余应力等效区间值在监测时间内的最大值;C(qim)min为每个损伤位置的残余应力等效区间值在监测时间内的最小值,Among them, t m is the total monitoring time of each damage location; q im is the residual stress equivalent interval value of each damage location; J m is the residual stress gap state value of each vulnerable location; coefficient; γ is the singularization coefficient of the damage position; C(q im ) max is the maximum value of the residual stress equivalent interval value of each damage position within the monitoring time; C(q im ) min is the residual stress of each damage position The minimum value of the stress equivalent interval value within the monitoring time,

Figure BDA0002404614650000025
Figure BDA0002404614650000025

Figure BDA0002404614650000026
Figure BDA0002404614650000026

进一步地,所述在S4中确定的方法为:在S3中计算的港机实时残余应力间隙状态值的基础上,将每个易损伤位置所对应的残余应力间隙状态值Jm代入下式对每个位置的间隙状态因子值Ym进行计算,Further, the method determined in S4 is: on the basis of the real-time residual stress gap state value of the port machinery calculated in S3, the residual stress gap state value J m corresponding to each vulnerable position is substituted into the following formula The gap state factor value Y m for each position is calculated,

Figure BDA0002404614650000027
Figure BDA0002404614650000027

其中,Ym为每个位置的间隙状态因子值;Jm为每个易损伤位置的残余应力间隙状态值;C(Jm)max为每个易损伤位置的残余应力间隙状态值的最大值;C(Jm)min为每个易损伤位置的残余应力间隙状态值的最小值;γ为损伤位置的奇异化系数。Among them, Y m is the gap state factor value of each position; J m is the residual stress gap state value of each vulnerable position; C(J m ) max is the maximum value of the residual stress gap state value of each vulnerable position ; C(J m ) min is the minimum value of the residual stress gap state value of each vulnerable position; γ is the singularity coefficient of the damaged position.

进一步地,所述在S5中定位的方法为:在S4的基础上,提取所有间隙状态因子值Ym中超过1.73

Figure BDA0002404614650000031
的位置,即为港机中已出现潜在损伤的位置,Further, the positioning method in S5 is: on the basis of S4, extract all gap state factor values Y m exceeding 1.73
Figure BDA0002404614650000031
The position, that is, the position where potential damage has occurred in the port machine,

Figure BDA0002404614650000032
Figure BDA0002404614650000032

其中,

Figure BDA0002404614650000033
为所有易损伤位置的间隙状态因子值的平均值;Ym为每个位置的间隙状态因子值;m为易损伤位置编号;N为易损伤位置的个数。in,
Figure BDA0002404614650000033
is the average value of gap state factor values of all vulnerable positions; Y m is the gap state factor value of each position; m is the number of vulnerable positions; N is the number of vulnerable positions.

有益效果:本发明可以实现港机在工况条件下实时残余应力间隙状态的获取,通过间隙状态因子的顺位关系来确定主损伤区间,进而依靠顺位因子确定损伤极值量,有利于在港口起重机的工作过程中实时确定损伤的具体位置,从而更有效地提高港口机构损伤位置的定位精度。Beneficial effects: the present invention can realize the acquisition of the real-time residual stress gap state of the port machine under working conditions, determine the main damage interval through the sequence relationship of the gap state factors, and then determine the damage extreme value by the sequence factor, which is beneficial in The specific location of the damage is determined in real time during the working process of the port crane, so as to more effectively improve the positioning accuracy of the damage location of the port mechanism.

附图说明Description of drawings

图1为本发明方法流程图。Fig. 1 is a flow chart of the method of the present invention.

具体实施方式Detailed ways

如图1所示,本实施例的基于残余应力间隙状态的港机损伤定位方法,该方法包括以下步骤:As shown in Figure 1, the port machinery damage location method based on the residual stress gap state of the present embodiment, the method includes the following steps:

S1.港机结构易损伤位置的确定:S1. Determination of the vulnerable position of the port machinery structure:

将港机整体的有限元分析模型导入到ANSYS有限元分析软件中,对其进行网格化划分,然后根据港机的实际工况条件,对其进行约束条件的设置与载荷工况的施加,然后对港机有限元分析模型进行后处理,确定在实际工况条件下港机结构的各个易损伤位置,并根据分析结果在模型上进行标记,标记位置为m(m=1,2,3...)。Import the overall finite element analysis model of the port machinery into the ANSYS finite element analysis software, divide it into grids, and then set the constraint conditions and apply the load conditions according to the actual working conditions of the port machinery. Then post-process the finite element analysis model of the port machinery, determine the vulnerable positions of the port machinery structure under the actual working conditions, and mark on the model according to the analysis results, the mark position is m (m=1, 2, 3 ...).

S2.港机易损伤位置实时最大残余应力区间值的确定:S2. Determination of the real-time maximum residual stress interval value of the vulnerable position of the port machine:

结合S1中确定的多个实际工况条件下港机结构的易损伤位置,在实际港机结构上找到这些标记的位置,并在对应位置布置X射线残余应力测试仪,按照1分钟的时间间隔对每秒钟对应的残余应力值σmt进行测量,并计算第i分钟m号位置的结构残余应力值的等效区间值qim(i代表分钟标记)。Combined with the vulnerable positions of the port machinery structure determined in S1 under multiple actual working conditions, find the positions of these marks on the actual port machinery structure, and arrange the X-ray residual stress tester at the corresponding position, according to the time interval of 1 minute Measure the residual stress value σ mt corresponding to each second, and calculate the equivalent interval value q im of the structural residual stress value at position m at the i-th minute (i represents the minute mark).

Figure BDA0002404614650000034
Figure BDA0002404614650000034

其中,qim为m号损伤位置在第i分钟的结构残余应力值的等效区间值;C(σmt)max为第m个易损伤位置每分钟时间内测量的所有残余应力值的最大值;C(σmt)min为第m个易损伤位置每分钟时间内测量的所有残余应力值的最小值;

Figure BDA0002404614650000041
为第m个易损伤位置每分钟时间内测量的所有残余应力值的平均值;t为每分钟的秒数。Among them, q im is the equivalent interval value of the structural residual stress value of the m-th damaged position at the i-th minute; C(σ mt ) max is the maximum value of all residual stress values measured every minute at the m-th vulnerable position ; C(σ mt ) min is the minimum value of all residual stress values measured in one minute at the mth vulnerable position;
Figure BDA0002404614650000041
is the average value of all residual stress values measured at the mth vulnerable position every minute; t is the number of seconds per minute.

Figure BDA0002404614650000042
Figure BDA0002404614650000042

在实际工况条件下实时对qim进行计算并记录。Calculate and record the q im in real time under actual working conditions.

S3.港机实时残余应力间隙状态值的计算:S3. Calculation of the real-time residual stress gap state value of the port machinery:

结合S2中计算的各个损伤位置的残余应力等效区间值qim对每个损伤位置在监测时间内的最大值C(qim)max与最小值C(qim)min进行识别,并记录每个损伤位置对应于C(qim)max的时间点为C(tm)max与对应于C(qim)min的时间点为C(tm)minCombine the residual stress equivalent interval value q im of each damage position calculated in S2 to identify the maximum value C(q im ) max and the minimum value C(q im ) min of each damage position within the monitoring time, and record each The time point corresponding to C(q im ) max is C(t m ) max and the time point corresponding to C(q im ) min is C(t m ) min .

并在此基础上进一步计算每个易损伤位置的残余应力间隙状态值Jm And on this basis, the residual stress gap state value J m of each vulnerable position is further calculated

Figure BDA0002404614650000043
Figure BDA0002404614650000043

其中,tm为每个损伤位置的总监测时间;qim为各个损伤位置的残余应力等效区间值;Jm为每个易损伤位置的残余应力间隙状态值;ε为复合向间隙均化系数;γ为损伤位置的奇异化系数;C(qim)max为每个损伤位置的残余应力等效区间值在监测时间内的最大值;C(qim)min为每个损伤位置的残余应力等效区间值在监测时间内的最小值。Among them, t m is the total monitoring time of each damage location; q im is the residual stress equivalent interval value of each damage location; J m is the residual stress gap state value of each vulnerable location; coefficient; γ is the singularization coefficient of the damage position; C(q im ) max is the maximum value of the residual stress equivalent interval value of each damage position within the monitoring time; C(q im ) min is the residual stress of each damage position The minimum value of the stress equivalent interval value within the monitoring time.

Figure BDA0002404614650000044
Figure BDA0002404614650000044

Figure BDA0002404614650000045
Figure BDA0002404614650000045

S4.每个易损伤位置的间隙状态因子的确定:S4. Determination of gap state factor for each vulnerable position:

在S3中计算的港机实时残余应力间隙状态值的基础上,将每个易损伤位置所对应的残余应力间隙状态值Jm代入下式对每个位置的间隙状态因子值Ym进行计算。On the basis of the real-time residual stress gap state value calculated in S3, the residual stress gap state value J m corresponding to each vulnerable position is substituted into the following formula to calculate the gap state factor value Y m of each position.

Figure BDA0002404614650000046
Figure BDA0002404614650000046

其中,Ym为每个位置的间隙状态因子值;Jm为每个易损伤位置的残余应力间隙状态值;C(Jm)max为每个易损伤位置的残余应力间隙状态值的最大值;C(Jm)min为每个易损伤位置的残余应力间隙状态值的最小值;γ为损伤位置的奇异化系数。Among them, Y m is the gap state factor value of each position; J m is the residual stress gap state value of each vulnerable position; C(J m ) max is the maximum value of the residual stress gap state value of each vulnerable position ; C(J m ) min is the minimum value of the residual stress gap state value of each vulnerable position; γ is the singularity coefficient of the damaged position.

S5.基于残余应力间隙状态的港机损伤定位:S5. Damage location of port machinery based on residual stress gap state:

在S4的基础上,提取所有间隙状态因子值Ym中超过

Figure BDA0002404614650000051
的位置,即为港机中已出现潜在损伤的位置。On the basis of S4, extract all gap state factor values Y m exceeding
Figure BDA0002404614650000051
The position of the port machine is the position where potential damage has occurred in the port machine.

Figure BDA0002404614650000052
Figure BDA0002404614650000052

其中,

Figure BDA0002404614650000053
为所有易损伤位置的间隙状态因子值的平均值;Ym为每个位置的间隙状态因子值;m为易损伤位置编号;N为易损伤位置的个数。in,
Figure BDA0002404614650000053
is the average value of gap state factor values of all vulnerable positions; Y m is the gap state factor value of each position; m is the number of vulnerable positions; N is the number of vulnerable positions.

Claims (3)

1.一种基于残余应力间隙状态的港机损伤定位方法,其特征在于:包括如下步骤:1. A damage location method for port machinery based on residual stress gap state, characterized in that: comprising the steps: S1、港机结构易损伤位置的确定;S1. Determination of the easily damaged position of the port machinery structure; S2、港机易损伤位置实时最大残余应力值的确定;S2. Determination of the real-time maximum residual stress value at the vulnerable position of the port machinery; S3、港机实时残余应力间隙状态值的计算;S3. Calculation of the real-time residual stress gap state value of the port machinery; S4、每个易损伤位置的间隙状态因子的确定;S4. Determination of the gap state factor of each vulnerable position; S5、基于残余应力间隙状态的港机损伤定位,S5. Damage location of port machinery based on residual stress gap state, 所述步骤S3的计算方法为:结合S2中计算的m号易损伤位置在第i分钟的残余应力等效区间值qim对每个易损伤位置在监测时间内的最大值C(qim)max与最小值C(qim)min进行识别,并记录每个易损伤位置对应于C(qim)max的时间点为C(tm)max与对应于C(qim)min的时间点为C(tm)min,并在此基础上进一步计算每个易损伤位置的残余应力间隙状态值JmThe calculation method of the step S3 is: combining the residual stress equivalent interval value q im of the i-th minute of the m vulnerable position calculated in S2 to the maximum value C(q im ) of each vulnerable position within the monitoring time Max and the minimum value C(q im ) min are identified, and the time point corresponding to C(q im ) max for each vulnerable position is recorded as the time point corresponding to C(t m ) max and C(q im ) min is C(t m ) min , and on this basis, the residual stress gap state value J m of each vulnerable position is further calculated,
Figure FDA0004192866060000011
Figure FDA0004192866060000011
其中,tm为每个易损伤位置的总监测时间;qim为各个易损伤位置的残余应力等效区间值;Jm为每个易损伤位置的残余应力间隙状态值;ε为复合向间隙均化系数;γ为易损伤位置的奇异化系数;C(qim)max为每个易损伤位置的残余应力等效区间值在监测时间内的最大值;C(qim)min为每个易损伤位置的残余应力等效区间值在监测时间内的最小值,Among them, t m is the total monitoring time of each vulnerable position; q im is the residual stress equivalent interval value of each vulnerable position; J m is the residual stress gap state value of each vulnerable position; ε is the compound direction gap Homogenization coefficient; γ is the singularization coefficient of the vulnerable position; C(q im ) max is the maximum value of the residual stress equivalent interval value of each vulnerable position within the monitoring time; C(q im ) min is the maximum value of each The minimum value of the equivalent interval value of the residual stress at the vulnerable position within the monitoring time,
Figure FDA0004192866060000012
Figure FDA0004192866060000012
Figure FDA0004192866060000013
Figure FDA0004192866060000013
所述在S4中确定的方法为:在S3中计算的港机实时残余应力间隙状态值的基础上,将每个易损伤位置所对应的残余应力间隙状态值Jm代入下式对每个位置的间隙状态因子值Ym进行计算,The method determined in S4 is: on the basis of the real-time residual stress gap state value of the port machinery calculated in S3, the residual stress gap state value J m corresponding to each vulnerable position is substituted into the following formula for each position The gap state factor value Y m is calculated,
Figure FDA0004192866060000014
Figure FDA0004192866060000014
其中,Ym为每个位置的间隙状态因子值;Jm为每个易损伤位置的残余应力间隙状态值;C(Jm)max为每个易损伤位置的残余应力间隙状态值的最大值;C(Jm)min为每个易损伤位置的残余应力间隙状态值的最小值;γ为易损伤位置的奇异化系数,Among them, Y m is the gap state factor value of each position; J m is the residual stress gap state value of each vulnerable position; C(J m ) max is the maximum value of the residual stress gap state value of each vulnerable position ; C(J m ) min is the minimum value of the residual stress gap state value of each vulnerable position; γ is the singularity coefficient of the vulnerable position, 所述在S5中定位的方法为:在S4的基础上,提取所有间隙状态因子值Ym中超过
Figure FDA0004192866060000021
的位置,即为港机中已出现潜在损伤的位置,
The method for positioning in S5 is: on the basis of S4, extract all gap state factor values Y m exceeding
Figure FDA0004192866060000021
The position, that is, the position where potential damage has occurred in the port machine,
Figure FDA0004192866060000022
Figure FDA0004192866060000022
其中,
Figure FDA0004192866060000023
为所有易损伤位置的间隙状态因子值的平均值;Ym为每个位置的间隙状态因子值;m为易损伤位置编号;N为易损伤位置的个数。
in,
Figure FDA0004192866060000023
is the average value of gap state factor values of all vulnerable positions; Y m is the gap state factor value of each position; m is the number of vulnerable positions; N is the number of vulnerable positions.
2.根据权利要求1所述的基于残余应力间隙状态的港机损伤定位方法,其特征在于:所述步骤S1的确定方法为:将港机整体的有限元分析模型导入到有限元分析软件中,对其进行网格化划分,然后根据港机的实际工况条件,对其进行约束条件的设置与载荷工况的施加,然后对港机有限元分析模型进行后处理,确定在实际工况条件下港机结构的各个易损伤位置,并根据分析结果在模型上进行标记,标记位置为m,m=1,2,3...。2. The damage location method for port machinery based on residual stress gap state according to claim 1, characterized in that: the determination method of the step S1 is: importing the overall finite element analysis model of the port machinery into the finite element analysis software , carry out grid division on it, and then according to the actual working conditions of the port machinery, set the constraint conditions and apply the load conditions, and then post-process the finite element analysis model of the port machinery to determine the actual working conditions Each vulnerable position of the port machinery structure under the condition is marked on the model according to the analysis results, and the marked position is m, m=1, 2, 3.... 3.根据权利要求1所述的基于残余应力间隙状态的港机损伤定位方法,其特征在于:所述步骤S2的确定方法为:结合S1中确定的多个实际工况条件下港机结构的易损伤位置,在实际港机结构上找到这些标记的位置,并在对应位置布置X射线残余应力测试仪,按照1分钟的时间间隔对第i分钟内每秒钟对应的残余应力值σmt进行测量,并计算第i分钟m号位置的结构残余应力值的等效区间值qim,i代表分钟标记,3. The damage location method for port machinery based on the residual stress gap state according to claim 1, characterized in that: the determination method of the step S2 is: combining the structure of the port machinery under a plurality of actual working conditions determined in S1 For vulnerable positions, find the positions of these marks on the actual port machinery structure, and arrange an X-ray residual stress tester at the corresponding position, and measure the residual stress value σ mt corresponding to each second in the i-th minute at intervals of 1 minute Measure and calculate the equivalent interval value q im of the residual stress value of the structure at position m at the i-th minute, where i represents the minute mark,
Figure FDA0004192866060000024
Figure FDA0004192866060000024
其中,qim为m号易损伤位置在第i分钟的结构残余应力的等效区间值;C(σmt)max为第m个易损伤位置每分钟时间内测量的所有残余应力值的最大值;C(σmt)min为第m个易损伤位置每分钟时间内测量的所有残余应力值的最小值;
Figure FDA0004192866060000025
为第m个易损伤位置每分钟时间内测量的所有残余应力值的平均值;t为每分钟的秒数标记,
Among them, q im is the equivalent interval value of the structural residual stress at the i-th minute at the m-th vulnerable position; C(σ mt ) max is the maximum value of all residual stress values measured at the m-th vulnerable position every minute ; C(σ mt ) min is the minimum value of all residual stress values measured in one minute at the mth vulnerable position;
Figure FDA0004192866060000025
is the average value of all residual stress values measured every minute at the mth vulnerable position; t is the second mark per minute,
Figure FDA0004192866060000026
Figure FDA0004192866060000026
在实际工况条件下实时对qim进行计算并记录。Calculate and record the q im in real time under actual working conditions.
CN202010159712.3A 2020-03-09 2020-03-09 Harbor machine damage positioning method based on residual stress gap state Active CN111444645B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010159712.3A CN111444645B (en) 2020-03-09 2020-03-09 Harbor machine damage positioning method based on residual stress gap state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010159712.3A CN111444645B (en) 2020-03-09 2020-03-09 Harbor machine damage positioning method based on residual stress gap state

Publications (2)

Publication Number Publication Date
CN111444645A CN111444645A (en) 2020-07-24
CN111444645B true CN111444645B (en) 2023-06-20

Family

ID=71657426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010159712.3A Active CN111444645B (en) 2020-03-09 2020-03-09 Harbor machine damage positioning method based on residual stress gap state

Country Status (1)

Country Link
CN (1) CN111444645B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378999B (en) * 2020-10-28 2022-07-26 扬州大学 Port machine rail damage quantitative detection method based on centroid guide threshold

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081491A1 (en) * 2003-03-10 2004-09-23 Agellis Ab Method and device for determination of residual stresses
CN101270459A (en) * 2007-12-29 2008-09-24 大连交通大学 Method of Improving Fatigue Strength of Welded Joint after TIG Remelting of Weld Toe followed by Chilling Treatment
CN103359622A (en) * 2013-07-19 2013-10-23 中联重科股份有限公司 Crane and safety control system of boom thereof, and method, control device and system for detecting lateral bending amount of boom
CN103874807A (en) * 2011-09-20 2014-06-18 科技矿业企业有限公司 Stress and/or accumulated damage monitoring system
CN106815419A (en) * 2017-01-03 2017-06-09 东南大学 A kind of crane running status online evaluation method based on crack information prediction
CN107430637A (en) * 2015-03-05 2017-12-01 株式会社神户制钢所 Residual stress estimates method and residual stress estimating device
CN107844622A (en) * 2017-09-04 2018-03-27 湘潭大学 A kind of simply supported beam damage recognition methods based on faulted condition uniform load face curvature
CN109270170A (en) * 2018-11-21 2019-01-25 扬州大学 A kind of sensitivity amendment loading machine Structural Damage Identification considering Jie's scale
CN110133016A (en) * 2019-04-16 2019-08-16 平高集团有限公司 A Method of Welding Numerical Simulation Assisted X-ray Diffraction Detection of Residual Stress
CN110741136A (en) * 2017-06-20 2020-01-31 西门子公司 Extended life of power turbine disks exposed to corrosion damage in use

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081491A1 (en) * 2003-03-10 2004-09-23 Agellis Ab Method and device for determination of residual stresses
CN101270459A (en) * 2007-12-29 2008-09-24 大连交通大学 Method of Improving Fatigue Strength of Welded Joint after TIG Remelting of Weld Toe followed by Chilling Treatment
CN103874807A (en) * 2011-09-20 2014-06-18 科技矿业企业有限公司 Stress and/or accumulated damage monitoring system
CN103359622A (en) * 2013-07-19 2013-10-23 中联重科股份有限公司 Crane and safety control system of boom thereof, and method, control device and system for detecting lateral bending amount of boom
CN107430637A (en) * 2015-03-05 2017-12-01 株式会社神户制钢所 Residual stress estimates method and residual stress estimating device
CN106815419A (en) * 2017-01-03 2017-06-09 东南大学 A kind of crane running status online evaluation method based on crack information prediction
CN110741136A (en) * 2017-06-20 2020-01-31 西门子公司 Extended life of power turbine disks exposed to corrosion damage in use
CN107844622A (en) * 2017-09-04 2018-03-27 湘潭大学 A kind of simply supported beam damage recognition methods based on faulted condition uniform load face curvature
CN109270170A (en) * 2018-11-21 2019-01-25 扬州大学 A kind of sensitivity amendment loading machine Structural Damage Identification considering Jie's scale
CN110133016A (en) * 2019-04-16 2019-08-16 平高集团有限公司 A Method of Welding Numerical Simulation Assisted X-ray Diffraction Detection of Residual Stress

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
港口起重机疲劳破坏成因与修复措施分析;徐高林;;数码世界(第08期);全文 *
港机结构件焊接残余应力的调控与消除;王旺生\n\n\n,游敏;港口装卸(第05期);全文 *
起重机结构疲劳强度与寿命评估方法分析;蔡福海;王欣;高顺德;赵福令;;中国工程机械学报(第02期);全文 *

Also Published As

Publication number Publication date
CN111444645A (en) 2020-07-24

Similar Documents

Publication Publication Date Title
CN106897543B (en) Beam structure damage identification method of modal compliance curvature matrix norm
CN104239681B (en) Axis system operational modal analysis method based on pulse excitation response signal crosspower spectrum function
CN111597740B (en) A Harvester Health Monitoring Method Based on Mesoscale Ultrasonic Abnormal Narrow Band
CN103631201A (en) Method for analyzing influence degree on reliability of numerically-controlled machine tool subsystem
CN110780261B (en) Method and system for checking electric quantity acquisition data
CN113406524B (en) A method and system for inconsistent fault diagnosis of power battery system
CN111444645B (en) Harbor machine damage positioning method based on residual stress gap state
CN104820168A (en) Lightning stroke fault determination method based on waveform difference degree and lightning stroke fault sample database
CN108562639B (en) A method for external detection of defects in the whole life cycle of buried steel pipelines
CN116577051A (en) A Random Vibration Fatigue Life Analysis Method Considering Damage Equivalent
CN102759573A (en) Frequency change-based structure damage positioning and damage degree evaluating method
CN103149499A (en) Detection method of grounding grid of converting station
CN109870283B (en) Method and system for converting signal sequence of leaf-end timing sensor into displacement sequence
CN105045973B (en) One kind becomes the adaptively sampled method of arc length
CN109270170B (en) Sensitivity correction loader structure damage identification method considering mesoscale
CN110363339A (en) A method and system for predictive maintenance based on motor parameters
CN109323791A (en) Residual stress distribution measurement method of composite sheet based on incremental cutting method
CN112600659B (en) Method and system for detecting side channel leakage of security chip based on neural network
CN111460702B (en) Structural member damage identification method based on forward and reverse damage feature fusion
CN108243439B (en) Method and system for locating quality deterioration of mobile internet data services
CN109541037B (en) Loader structure main crack screening method based on compromise and competition mechanism
CN102944427A (en) Monitoring and diagnosing method for combustion quality of internal combustion engine
CN109870404A (en) A kind of canopy structure damage identification method, device and terminal equipment
CN109253884B (en) Turbine exhaust back pressure estimation method based on neural network
CN104217079A (en) Method for measuring axial fan of wind driven generator by reversing technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant