CN111428072A - Ophthalmologic multimodal image retrieval method, apparatus, server and storage medium - Google Patents
Ophthalmologic multimodal image retrieval method, apparatus, server and storage medium Download PDFInfo
- Publication number
- CN111428072A CN111428072A CN202010242450.7A CN202010242450A CN111428072A CN 111428072 A CN111428072 A CN 111428072A CN 202010242450 A CN202010242450 A CN 202010242450A CN 111428072 A CN111428072 A CN 111428072A
- Authority
- CN
- China
- Prior art keywords
- image
- eye
- images
- modal
- ophthalmic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 239000013598 vector Substances 0.000 claims abstract description 30
- 238000013136 deep learning model Methods 0.000 claims abstract description 29
- 238000010835 comparative analysis Methods 0.000 claims abstract description 19
- 238000013527 convolutional neural network Methods 0.000 claims description 32
- 238000012549 training Methods 0.000 claims description 14
- 210000005036 nerve Anatomy 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 5
- 230000001537 neural effect Effects 0.000 claims description 4
- 238000003062 neural network model Methods 0.000 claims description 4
- 238000002372 labelling Methods 0.000 claims description 3
- 210000004087 cornea Anatomy 0.000 claims description 2
- 208000030533 eye disease Diseases 0.000 abstract description 17
- 230000000694 effects Effects 0.000 abstract description 9
- 238000012014 optical coherence tomography Methods 0.000 description 17
- 201000010099 disease Diseases 0.000 description 15
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 15
- 230000003902 lesion Effects 0.000 description 15
- 230000015654 memory Effects 0.000 description 15
- 230000006870 function Effects 0.000 description 14
- 238000003745 diagnosis Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 238000002583 angiography Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 208000002177 Cataract Diseases 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000002059 diagnostic imaging Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 description 2
- 229960004657 indocyanine green Drugs 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000007500 overflow downdraw method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 208000010412 Glaucoma Diseases 0.000 description 1
- 241001469893 Oxyzygonectes dovii Species 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 208000024519 eye neoplasm Diseases 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000013534 fluorescein angiography Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 208000038015 macular disease Diseases 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 201000008106 ocular cancer Diseases 0.000 description 1
- 208000020911 optic nerve disease Diseases 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/55—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/193—Preprocessing; Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/197—Matching; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Library & Information Science (AREA)
- Databases & Information Systems (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- Biomedical Technology (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Image Analysis (AREA)
- Eye Examination Apparatus (AREA)
Abstract
本发明实施例公开了一种眼科多模态影像的检索方法、装置、服务器及存储介质,该方法包括:获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。通过获取用户的单模态眼睛图像,系统在深度学习模型中进行识别,输出多模态识别结果,解决了现有技术中无法通过单模态眼部图像发现用户其他潜在眼部疾病的问题,实现了通过单模态眼部图像检索到其他可能存在的眼部疾病的效果,提升了用户的体验。
Embodiments of the present invention disclose an ophthalmology multimodal image retrieval method, device, server and storage medium. The method includes: acquiring a user's current eye image, where the eye image is an ophthalmology digital image, and the eye image is an ophthalmology digital image. The image contains multiple eye images of different modalities; the multiple different modal eye images are correspondingly input into multiple pre-trained deep learning models to fuse and train the multiple different modal eye images. Similarity and dissimilarity, and output multiple feature vectors, and generate a comparative analysis result according to the multiple feature vectors. By acquiring the user's unimodal eye image, the system performs recognition in the deep learning model and outputs the multimodal recognition result, which solves the problem that other potential eye diseases of the user cannot be found through the unimodal eye image in the prior art. The effect of retrieving other possible eye diseases through single-modal eye images is realized, which improves the user experience.
Description
技术领域technical field
本发明实施例涉及检索技术,尤其涉及一种眼科多模态影像的检索方法、装置、服务器及存储介质。Embodiments of the present invention relate to retrieval technologies, and in particular, to a retrieval method, device, server, and storage medium for ophthalmic multimodal images.
背景技术Background technique
随着成像技术的发展,眼科数字影像已成为眼科学的主要数据,这一趋势驱动着眼科影像检索功能的建设,以辅助医生临床决策。传统上,眼科影像检索功能采用基于文本的检索方法,先对影像进行文本描述(建立文本和影像的对应关系),检索时输入关键词查询并返回排序结果。这种“以字找图”的方法,存在文本描述和影像内容本身不一致的语义差异,影响检索效果。随着计算机视觉技术的发展,基于内容的影像检索(Content-BasedImage Retrieval,CBIR)方法开始应用于眼科。这种“以图找图”的方法依据图像本身的颜色、形状、纹理等特征进行检索,避免文本描述和影像内容的语义差异。基于内容的图像检索(Content-based Image Retrieval,简称CBIR)技术是根据图像的内容检索最相似的图像,融合了信息检索、计算机视觉等技术。近年来,在医学影像领域,以深度卷积网络(CNN)为代表的深度学习算法在眼科影像的疾病分类和病灶分割上获得了优异性能,在提取纹理、颜色、形态等特征上超过传统分类器(如支持向量机(SVM)、随机森林(RF)等),这为影像检索功能的建设提供了技术基础。With the development of imaging technology, ophthalmology digital images have become the main data of ophthalmology, and this trend drives the construction of ophthalmology image retrieval function to assist doctors in clinical decision-making. Traditionally, the ophthalmology image retrieval function adopts a text-based retrieval method. First, the image is described in text (to establish a correspondence between the text and the image), and a keyword query is entered during retrieval and the ranking result is returned. This method of "finding pictures by words" has semantic differences between the text description and the image content itself, which affects the retrieval effect. With the development of computer vision technology, Content-Based Image Retrieval (CBIR) method has been applied in ophthalmology. This method of "finding pictures by pictures" searches according to the color, shape, texture and other characteristics of the image itself, so as to avoid the semantic difference between text description and image content. Content-based Image Retrieval (CBIR) technology retrieves the most similar images based on the content of the images, and integrates information retrieval, computer vision and other technologies. In recent years, in the field of medical imaging, deep learning algorithms represented by deep convolutional networks (CNN) have achieved excellent performance in disease classification and lesion segmentation in ophthalmic images, and surpassed traditional classification in extracting features such as texture, color, and shape. It provides a technical basis for the construction of image retrieval function.
人体的各部位疾病可通过眼部的病变来呈现,因此学术界和工业界广泛致力于通过人工智能算法分析眼科数字影像来自动筛查疾病,并已有相关成果问世。如美国德克萨斯州贝勒大学开发出通过照片可确定眼癌的免费软件White Eye Detector,华盛顿大学开发了一款能根据眼睛颜色诊断肝癌的软件BiliScreen,国内至真健康公司推出智能筛查眼底相机。然而,依托眼科医疗影像技术和图像处理技术的疾病自动筛查,其算法面临可解释性、准确性的挑战,且训练模型所用的样本也面临采集困难、标注主观多义等问题,临床应用仍有相当长的路要走。更重要的,尽管计算机筛查结果只是作为医生的辅助参考,但计算机结果或多或少会影响到医生的再次判断,从而有可能影响到最终诊断结果。Diseases in various parts of the human body can be presented by lesions in the eye. Therefore, academia and industry are widely committed to automatically screening diseases by analyzing ophthalmic digital images through artificial intelligence algorithms, and relevant results have been published. For example, Baylor University in Texas has developed a free software called White Eye Detector that can identify eye cancer through photos, the University of Washington has developed a software BiliScreen that can diagnose liver cancer based on eye color, and China Zhizhen Health has launched intelligent fundus screening. camera. However, for automatic disease screening relying on ophthalmic medical imaging technology and image processing technology, its algorithms face challenges in interpretability and accuracy, and the samples used for training models also face problems such as difficulty in collection and subjective ambiguity in labeling. There is quite a long way to go. More importantly, although the computer screening results are only used as an auxiliary reference for doctors, the computer results will more or less affect the doctor's re-judgment, which may affect the final diagnosis.
发明内容SUMMARY OF THE INVENTION
本发明提供一种眼科案例的检索方法、装置、服务器及存储介质,以实现通过单模态眼部图像检索到其他可能存在的潜在眼部问题的效果。The present invention provides an ophthalmology case retrieval method, device, server and storage medium, so as to achieve the effect of retrieving other potential eye problems that may exist through a single-modal eye image.
第一方面,本发明实施例提供了一种眼科多模态影像的检索方法,包括:获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;In a first aspect, an embodiment of the present invention provides a method for retrieving ophthalmic multimodal images, including: acquiring a current eye image of a user, the eye image is an ophthalmic digital image, and the eye image includes a variety of different Modal eye images;
将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。Correspondingly input the eye images of the multiple different modalities into multiple pre-trained deep learning models to fuse and train the similarity and dissimilarity of the multiple different modal eye images and output multiple feature vectors , and generate a comparative analysis result according to the plurality of feature vectors.
可选的,所述眼科数字影像包括:眼底图、角膜神经图和OCT图。Optionally, the ophthalmic digital image includes: fundus map, corneal nerve map and OCT map.
可选的,所述深度学习模型为多模态卷积神经网络模型。Optionally, the deep learning model is a multimodal convolutional neural network model.
可选的,所述将所述单模态眼部图像输入到预先训练好的深度学习模型中输出多模态识别结果之前还包括:Optionally, before inputting the single-modal eye image into the pre-trained deep learning model and outputting the multi-modal recognition result, the method further includes:
对样本图像使用多种标签进行标记并建立数据库;Label sample images with a variety of labels and build a database;
建立多模态卷积神经网络并使用所述样本图像对所述多模态卷积神经网络模型进行训练,以得到训练好的多模态卷积神经网络模型。Building a multimodal convolutional neural network and using the sample images to train the multimodal convolutional neural network model to obtain a trained multimodal convolutional neural network model.
可选的,所述对样本图像使用多种标签进行标记并建立数据库包括:Optionally, marking the sample image with multiple labels and establishing a database includes:
若所述样本图像属于同一患者,则标记为第一标签;If the sample image belongs to the same patient, it is marked as the first label;
若所述样本图像属于同一病例,则标记为第二标签;If the sample image belongs to the same case, it is marked as the second label;
若所述样本图像不相关,则标记为第三标签;If the sample image is irrelevant, mark it as a third label;
将标记了第一标签、第二标签和第三标签的样本图像建立数据库。A database is established of the sample images marked with the first label, the second label and the third label.
可选的,所述多模态卷积神经网络模型包括:眼底图卷积神经网络模型、角膜神经图卷积神经网络模型和OCT图卷积神经网络模型。Optionally, the multimodal convolutional neural network model includes: a fundus map convolutional neural network model, a corneal neural map convolutional neural network model, and an OCT map convolutional neural network model.
可选的,所述对比分析结果包括:最相似的多张样本图像及其详细案例情况。Optionally, the comparative analysis results include: the most similar multiple sample images and their detailed case situations.
第二方面,本发明实施例还提供了一种眼科多模态影像的检索装置,该装置包括:In a second aspect, an embodiment of the present invention further provides a retrieval device for ophthalmic multimodal images, the device comprising:
数据获取模块,用于获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;a data acquisition module, configured to acquire a current eye image of the user, the eye image is an ophthalmic digital image, and the eye image includes multiple eye images of different modalities;
数据识别模块,用于将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。A data recognition module for inputting the eye images of the various different modalities into a plurality of pre-trained deep learning models to fuse and train the similarity and dissimilarity of the eye images of the various different modalities And output multiple eigenvectors, and generate a comparative analysis result according to the multiple eigenvectors.
第三方面,本发明实施例还提供了一种服务器,所述服务器包括:In a third aspect, an embodiment of the present invention further provides a server, where the server includes:
一个或多个处理器;one or more processors;
存储装置,用于存储一个或多个程序,storage means for storing one or more programs,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述任一所述的眼科多模态影像的检索方法。When the one or more programs are executed by the one or more processors, the one or more processors implement the method for retrieving ophthalmic multimodal images as described above.
第四方面,本发明实施例还提供了一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述任一所述的眼科多模态影像的检索方法。In a fourth aspect, an embodiment of the present invention further provides a storage medium on which a computer program is stored, and when the program is executed by a processor, implements the retrieval method for an ophthalmic multimodal image as described above.
本发明实施例公开了一种眼科多模态影像的检索方法、装置、服务器及存储介质,该方法包括:Embodiments of the present invention disclose an ophthalmology multimodal image retrieval method, device, server and storage medium, the method comprising:
获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。本发明实施例提供的一种眼科多模态影像的检索方法,通过获取用户的单模态眼睛图像,系统在深度学习模型中进行识别,输出多模态识别结果,解决了现有技术中无法通过单模态眼部图像发现用户其他潜在眼部疾病的问题,实现了通过单模态眼部图像检索到其他可能存在的眼部疾病的效果,提升了用户的体验。Acquire the current eye image of the user, the eye image is an ophthalmological digital image, and the eye image includes multiple eye images of different modalities; the multiple different modal eye images are correspondingly input into multiple A pre-trained deep learning model fuses and trains the similarity and dissimilarity of the multiple different modal eye images, outputs multiple feature vectors, and generates a comparative analysis result according to the multiple feature vectors. The method for retrieving ophthalmic multimodal images provided by the embodiment of the present invention, by acquiring the user's single-modal eye image, the system performs recognition in the deep learning model, and outputs the multi-modal recognition result, which solves the problem that cannot be solved in the prior art. The problem of other potential eye diseases of the user is found through the single-modal eye image, and the effect of retrieving other possible eye diseases through the single-modal eye image is realized, which improves the user's experience.
附图说明Description of drawings
图1为本发明实施例一提供的一种眼科多模态影像的检索方法的流程图;1 is a flowchart of a method for retrieving ophthalmic multimodal images according to Embodiment 1 of the present invention;
图2为本发明实施例二提供的一种眼科多模态影像的检索方法的流程图;2 is a flowchart of a method for retrieving ophthalmic multimodal images according to Embodiment 2 of the present invention;
图3为本发明实施例三中的一种眼科多模态影像的检索装置的结构示意图;FIG. 3 is a schematic structural diagram of an ophthalmic multimodal image retrieval device according to Embodiment 3 of the present invention;
图4为本发明实施例四提供的一种服务器的结构示意图。FIG. 4 is a schematic structural diagram of a server according to Embodiment 4 of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, the drawings only show some but not all structures related to the present invention.
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时处理可以被终止,但是还可以具有未包括在附图中的附加步骤。处理可以对应于方法、函数、规程、子例程、子程序等等。Before discussing the exemplary embodiments in greater detail, it should be mentioned that some exemplary embodiments are described as processes or methods depicted as flowcharts. Although the flowchart depicts the steps as a sequential process, many of the steps may be performed in parallel, concurrently, or concurrently. Furthermore, the order of the steps can be rearranged. The process may be terminated when its operation is complete, but may also have additional steps not included in the figures. A process may correspond to a method, function, procedure, subroutine, subroutine, or the like.
此外,术语“第一”、“第二”等可在本文中用于描述各种方向、动作、步骤或元件等,但这些方向、动作、步骤或元件不受这些术语限制。这些术语仅用于将第一个方向、动作、步骤或元件与另一个方向、动作、步骤或元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一标签为第二标签,且类似地,可将第二标签称为第一标签。第一标签和第二标签两者都是标签,但其不是同一标签。术语“第一”、“第二”等而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。Furthermore, the terms "first," "second," etc. may be used herein to describe various directions, acts, steps or elements, etc., but are not limited by these terms. These terms are only used to distinguish a first direction, act, step or element from another direction, act, step or element. For example, a first tag could be referred to as a second tag, and similarly, a second tag could be referred to as a first tag, without departing from the scope of this application. Both the first label and the second label are labels, but they are not the same label. The terms "first", "second" and the like should not be understood as indicating or implying relative importance or implying the number of technical features indicated. Thus, a feature defined as "first" or "second" may expressly or implicitly include one or more of that feature. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
实施例一Example 1
图1为本发明实施例提供的一种眼科多模态影像的检索方法的流程图,本实施例可适用于用户线上进行眼科疾病检索的情况,具体包括如下步骤:FIG. 1 is a flowchart of a method for retrieving ophthalmic multimodal images provided by an embodiment of the present invention. This embodiment is applicable to a situation where a user searches for ophthalmic diseases online, and specifically includes the following steps:
步骤100、获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像。Step 100: Acquire a current eye image of the user, where the eye image is an ophthalmological digital image, and the eye image includes multiple eye images in different modalities.
本实施例中,首先获取用户上传的或者采集到的用户的眼部图像,该眼部图像为眼科数字影像,眼科数字影像成像方式包括眼表彩照、眼底彩照、光学相干断层扫描(Optical Coherence Tomography,OCT)、前节光学相干断层扫描(Anterior SegmentOptical Coherence Tomography,AS-OCT)、光学相干断层扫描血管造影(OpticalCoherence Tomography Angiography,OCTA)、活体角膜共聚焦显微镜(in vivo confocalmicroscopy,IVCM)、荧光素眼底血管造影(Fundus Fluorescein Angiography,FFA)和吲哚菁绿脉络膜血管造影(Indocyanine Green Angiography,ICGA)等。在本实施例中,所述眼科数字影像包括:眼底图、角膜神经图和OCT图。成像设备通过观察人体内眼部的血管、神经、角膜、结晶、晶状体、虹膜等组织结构的形态输出数字影像,其中眼底镜、裂隙灯、光学相干断层成像(Optical Coherence Tomography,OCT)。不同成像设备生成的眼科数字影像是不同的,不同分辨率、不同部位,可用于不同的疾病类型诊断。如眼后节光学相干断层扫描在视网膜疾病、黄斑疾病、视神经疾病、青光眼等的临床检查和诊断具有重要价值。在数据形态上,每一种成像方式所生成的数字影像一种模态,多种成像方式生成的多种数字影像就是多模态。In this embodiment, the user's eye image uploaded or collected by the user is first obtained, and the eye image is an ophthalmological digital image. , OCT), Anterior Segment Optical Coherence Tomography (AS-OCT), Optical Coherence Tomography Angiography (OCTA), in vivo confocal microscopy (IVCM), fluorescein Fundus angiography (Fundus Fluorescein Angiography, FFA) and indocyanine green choroidal angiography (Indocyanine Green Angiography, ICGA) and so on. In this embodiment, the ophthalmic digital image includes: a fundus map, a corneal nerve map, and an OCT map. Imaging equipment outputs digital images by observing the morphology of blood vessels, nerves, cornea, crystals, lens, iris and other tissue structures in the human eye, including fundus mirror, slit lamp, and optical coherence tomography (OCT). The ophthalmic digital images generated by different imaging equipment are different, with different resolutions and different parts, and can be used for the diagnosis of different disease types. For example, optical coherence tomography of the posterior segment of the eye is of great value in the clinical examination and diagnosis of retinal diseases, macular diseases, optic nerve diseases, and glaucoma. In terms of data form, the digital image generated by each imaging method has one modality, and the multiple digital images generated by multiple imaging methods are multimodal.
步骤110、将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。
本实施例中,深度学习模型为多模态卷积神经网络模型,通过将多种不同模态的眼部影像输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果,在本实施例中,对比分析结果包括:最相似的多张样本图像及其详细案例情况,通过返回多模态的样本图像和其病例原因可以提供给用户或者医生作为参考,便于判断用户是否可能包括单模态眼部图像无法显示出的其他眼部疾病。In this embodiment, the deep learning model is a multi-modal convolutional neural network model, and by inputting eye images of multiple different modalities into multiple pre-trained deep learning models to fuse the training of the multiple different modalities The similarity and dissimilarity of eye images and output multiple feature vectors, and generate comparative analysis results according to the multiple feature vectors. In this embodiment, the comparative analysis results include: the most similar multiple sample images and their detailed In case of case, by returning the multimodal sample image and its case reasons, it can be provided to the user or doctor as a reference, which is convenient for judging whether the user may have other eye diseases that cannot be displayed by the single-modal eye image.
示例性的,某些眼病有时不是单独出现,而是同时发生,一个老年人常常合并有数个老年性眼病。如同时罹患眼底病变与白内障,而眼底一般通过眼底镜检查,白内障则用OCT检查,即不同模态的成像方式适用于不同疾病。当某案例的患者出现多种眼睛病变时,可能需要多个模态的数字影像来诊断。对属于同一个案例的不同模态的数字影像构建相似关系就具备应用价值。通过案例级别的检索,可以检索到多个模态下的多种病变的可能性。这种情况下,多模态检索其实是有助于多种病变的发现。如果已知某患者是A疾病,在多模态检索功能中,输入该患者的一个模态的数字影像检索,返回了其他模态的数字影像,而返回的其他模态的数字影像则关联B疾病,则该患者有可能同时有A、B两种疾病。检索的价值在于,需求部分明确部分模糊,而部分模糊通过检索结果会不断明确。如文字搜索中,想找一本书,知道书名的部分,但全名不知道,通过搜索已知书名部分,搜索引擎会返回很多类似结果,这些类似结果中就可能存在你想要的那本书,这个时候你就知道书的全名。检索能帮助用户在庞大的信息不断明晰自己的需求,而且往往会有意想不到的结果。多模态影像检索在多种病变场景下就在于可能给你意想不到的结果,辅助医生进一步挖掘信息判断病变。Exemplarily, some eye diseases sometimes do not appear alone, but occur simultaneously, and an elderly person often has several senile eye diseases. If you suffer from fundus lesions and cataracts at the same time, the fundus is generally examined by fundoscopy, and the cataract is examined by OCT, that is, different modalities of imaging methods are suitable for different diseases. When a patient presents with multiple eye lesions, multiple modalities of digital imaging may be required for diagnosis. It is of practical value to construct a similarity relationship between digital images of different modalities belonging to the same case. With case-level retrieval, the likelihood of multiple lesions across multiple modalities can be retrieved. In this case, multimodal retrieval is actually helpful for the discovery of multiple lesions. If it is known that a patient has disease A, in the multimodal retrieval function, the digital image retrieval of one modality of the patient is input, and digital images of other modalities are returned, and the returned digital images of other modalities are associated with B disease, the patient may have both diseases A and B at the same time. The value of retrieval lies in the fact that the requirements are partly clear and partly vague, and some vagueness will be continuously clarified through the retrieval results. For example, in the text search, if you want to find a book, you know the part of the title, but you don't know the full name. By searching for the part of the known book title, the search engine will return many similar results, and the similar results may exist in these similar results. That book, this time you know the full name of the book. Retrieval can help users constantly clarify their needs in the huge amount of information, and often there are unexpected results. Multimodal image retrieval may give you unexpected results in a variety of lesion scenarios, assisting doctors to further mine information to determine lesions.
示例性的,医生诊断时,提取患者的眼科影像阅片,在对影像有难以决策的情况时,下意识会去检索过往类似案例来参考。这个时候如果单单依靠查询影像的模态来检索,可能面临该模态的案例不足(欠缺疑难杂症),也可能面临检索到的相似案例仍不能下诊断结论,这个时候可进一步扩充到其他模态的检索,利用其他模态检索的结果来辅助诊断。如果某案例的患者只拍了一个模态的眼科数字影像,则可利用多模态检索来辅助医生。但如果患者本身就拍了多个模态的眼科数字影像,虽然可以一个个模态来检索,但对医生来说,这个诊断过程就比较耗时。在面对疑难杂症时,同时患者只拍了一个模态的眼科数字影像,多模态检索凸显其功能价值。即便患者拍了多种眼科数字影像,多模态检索也可避免医生多个模态多次检索,提高诊断效率。Exemplarily, when a doctor makes a diagnosis, he extracts the patient's ophthalmic image for reading, and when it is difficult to make a decision on the image, he subconsciously searches for similar cases in the past for reference. At this time, if you only rely on the modality of the query image to retrieve, you may face insufficient cases of this modality (lack of difficult and miscellaneous diseases), or you may face similar cases retrieved and still cannot draw a diagnosis conclusion. At this time, you can further expand to other models. Retrieval of modalities, and use the results of retrievals from other modalities to assist in diagnosis. If a patient in a case has only one modal ophthalmic digital image, multimodal retrieval can be used to assist the doctor. However, if the patient has taken multiple modalities of ophthalmic digital images, although they can be retrieved one by one, the diagnosis process is time-consuming for doctors. When faced with intractable diseases, the patient only took one modal ophthalmic digital image, and the multimodal retrieval highlights its functional value. Even if the patient has taken a variety of ophthalmic digital images, the multi-modal retrieval can avoid multiple retrievals by the doctor in multiple modalities and improve the diagnosis efficiency.
本实施例公开了一种眼科多模态影像的检索方法,该方法包括:获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。本发明实施例提供的一种眼科多模态影像的检索方法,通过获取用户的单模态眼睛图像,系统在深度学习模型中进行识别,输出多模态识别结果,解决了现有技术中无法通过单模态眼部图像发现用户其他潜在眼部疾病的问题,实现了通过单模态眼部图像检索到其他可能存在的眼部疾病的效果,提升了用户的体验。This embodiment discloses a method for retrieving ophthalmic multi-modal images, the method includes: acquiring a current eye image of a user, the eye image is an ophthalmic digital image, and the eye image includes a variety of different modalities. Eye images; correspondingly input the eye images of the multiple different modalities into multiple pre-trained deep learning models to fuse and train the similarity and dissimilarity of the multiple different modal eye images and output A plurality of feature vectors, and a comparative analysis result is generated according to the plurality of feature vectors. The method for retrieving ophthalmic multimodal images provided by the embodiment of the present invention, by acquiring the user's single-modal eye image, the system performs recognition in the deep learning model, and outputs the multi-modal recognition result, which solves the problem that cannot be solved in the prior art. The problem of other potential eye diseases of the user is found through the single-modal eye image, and the effect of retrieving other possible eye diseases through the single-modal eye image is realized, which improves the user's experience.
实施例二Embodiment 2
图1为本发明实施例提供的一种眼科多模态影像的检索方法的流程图,本实施例可适用于用户线上进行眼科疾病检索的情况,具体包括如下步骤:FIG. 1 is a flowchart of a method for retrieving ophthalmic multimodal images provided by an embodiment of the present invention. This embodiment is applicable to a situation where a user searches for ophthalmic diseases online, and specifically includes the following steps:
步骤200、获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像。Step 200: Acquire a current eye image of the user, the eye image is an ophthalmological digital image, and the eye image includes multiple eye images in different modalities.
步骤210、对样本图像使用多种标签进行标记并建立数据库。
具体地,步骤210包括:若所述样本图像属于同一患者,则标记为第一标签;Specifically,
若所述样本图像属于同一病例,则标记为第二标签;If the sample image belongs to the same case, it is marked as the second label;
若所述样本图像不相关,则标记为第三标签;If the sample image is irrelevant, mark it as a third label;
将标记了第一标签、第二标签和第三标签的样本图像建立数据库。A database is established of the sample images marked with the first label, the second label and the third label.
在本实施例中,对多模态的眼科数字影像打3级标签,分别是第三标签不相关0、第二标签案例相关1、第一标签疾病相关2,相关性越来越高。假设A、B、C三种模态,分别是角膜神经图、眼底图、眼前节OCT,训练样本上主要是对这三种模态打标签。如果这三个模态都属于同一个案例(同一个患者)则标注为1,如果属于同一个疾病则标注为2,不相关则标注为0。如果是两种模态,就为两个模态的数字影像打标签。影像对样本的生成主要是考虑模态之间影像的相关性。理论上,相关性越高,学习到的哈希码越相似。In this embodiment, the multimodal ophthalmic digital images are marked with three levels of labels, namely, the third label is irrelevant 0, the second label is case-related 1, and the first label is disease-related 2, and the correlation is getting higher and higher. Assuming that there are three modalities A, B, and C, namely, corneal nerve map, fundus map, and anterior segment OCT, the training samples are mainly labeled for these three modalities. If all three modalities belong to the same case (same patient), they are marked as 1, if they belong to the same disease, they are marked as 2, and if they are not related, they are marked as 0. If it is two modalities, label the digital images of both modalities. The generation of image-to-sample mainly considers the correlation of images between modalities. In theory, the higher the correlation, the more similar the learned hash codes.
步骤220、建立多模态卷积神经网络并使用所述样本图像对所述多模态卷积神经网络模型进行训练,以得到训练好的多模态卷积神经网络模型。
在本实施例中,多模态卷积神经网络模型包括:眼底图卷积神经网络模型、角膜神经图卷积神经网络模型和OCT图卷积神经网络模型。通过训练多个神经网络模型以便对生成的哈希码进行损失函数计算。In this embodiment, the multimodal convolutional neural network model includes: a fundus map convolutional neural network model, a corneal neural map convolutional neural network model, and an OCT map convolutional neural network model. Loss function calculation is performed on the generated hash codes by training multiple neural network models.
示例性的,以眼底图、OCT图两种模态为例,最左边输入两种模态的影像对(眼底图、OCT图),中间网络结构层一样,最后一层是Hash层(生成K长度的哈希码)。在训练的时候,根据模态间影像对的标签进行多模态损失训练,损失函数设计采用判别式方式,即属于同一标签的不同模态的影像对应的哈希码应该距离越小。基于多模态判别式损失函数训练的模型,即模型融合方法。不同模态的网络结构一样,但权重不共享(避免不同模态特征的影响),但最后损失函数将二者的相关性融合训练,使不同模态的影像具有一定相似性。训练后,不同模态根据各自的模型为影像生成离散哈希表示,就是二进制化。Exemplarily, taking the two modalities of fundus map and OCT map as an example, the leftmost input image pairs of the two modalities (fundus map, OCT map), the middle network structure layer is the same, and the last layer is the Hash layer (generating K length of the hash code). During training, multi-modal loss training is performed according to the labels of image pairs between modalities. The loss function is designed in a discriminative manner, that is, the hash codes corresponding to images of different modalities belonging to the same label should have a smaller distance. A model trained based on a multimodal discriminative loss function, that is, a model fusion method. The network structure of different modalities is the same, but the weights are not shared (to avoid the influence of different modal features), but the final loss function integrates the correlation between the two, so that the images of different modalities have a certain similarity. After training, different modalities generate discrete hash representations for images according to their respective models, which is binarization.
训练时,哈希层的输出在[-1,1]之间,用tanh激活函数;训练后生成离散哈希码表示时,则将哈希层符号化,即在tanh函数上加sign符号函数,这样K个哈希码,每个位上不是1就是-1的表示,二进制化后就可以在汉明空间中计算距离。简单来说,训练时,K个哈希码是在[-1,1]之间的值,用于多模态损失函数的训练。基于训练后的模型为影像生成哈希码时,K个哈希码是{-1,1}的值。病变位置的检索对病例检索来说是非常重要的。一般来说,一张影像的判别主要取决于关键区域(即病变区域)的识别和比较。假设两张影像,病变区域占比小,如果做整张影像的比较,病变区域的特征表示就会被忽略,这就会导致相似度的误差。简单来说,在整张图像中,病变区域的信息的权重要大于其他区域。在特征提取中,模型设计要重点考虑病变区域的特征表示。因此本方案在模型中引入spatial attention机制来重点捕捉病变区域的特征。基于带有spatial attention机制的CNN模型,高维影像映射成低维哈希码。基于多模态判别式损失方式的模型融合方法,构建模态间影像的相似度,同一标签的影像所生成的哈希码应该距离更小。During training, the output of the hash layer is between [-1, 1], and the tanh activation function is used; when the discrete hash code representation is generated after training, the hash layer is symbolized, that is, the sign symbol function is added to the tanh function. , so that K hash codes, each bit is either 1 or -1, and the distance can be calculated in Hamming space after binarization. In simple terms, when training, the K hash codes are values between [-1, 1] and are used for training the multimodal loss function. When generating hash codes for images based on the trained model, the K hash codes are the values of {-1,1}. The retrieval of lesion location is very important for case retrieval. Generally speaking, the discrimination of an image mainly depends on the identification and comparison of key areas (ie, lesion areas). Assuming that two images have a small proportion of the lesion area, if the entire image is compared, the feature representation of the lesion area will be ignored, which will lead to a similarity error. Simply put, in the whole image, the information of the lesion area is more weighted than other areas. In feature extraction, the model design should focus on the feature representation of the lesion area. Therefore, this scheme introduces a spatial attention mechanism into the model to focus on capturing the features of the lesion area. Based on the CNN model with spatial attention mechanism, high-dimensional images are mapped into low-dimensional hash codes. The model fusion method based on the multi-modal discriminative loss method builds the similarity of images between modalities, and the hash codes generated by the images with the same label should have a smaller distance.
基于多模态模型融合的方法为数字影像生成了哈希码,即支持汉明距离计算。具体场景是:输入一张新的数字影像,经过同样的网络为该影像生成一串K个哈希码,然后和数据库中已生成哈希码的样本进行汉明距离计算,距离越小相似度越高。假设已训练一个OCT和眼底两种模态的模型,并且数据库中的样本已通过模型生成哈希码,现在医生输入一张眼底图检索,这张眼底图会先通过眼底模态的模型生成K个哈希码,并和数据库中样本的哈希码进行汉明距离计算,返回最相似的n个结果。这n个结果中可能包含两种模态的影像,因为经过模型融合,模态间的数字影像建立了某种相似度,就体现在K个哈希码上。The method based on multimodal model fusion generates hash codes for digital images, that is, supports Hamming distance calculation. The specific scenario is: input a new digital image, generate a series of K hash codes for the image through the same network, and then calculate the Hamming distance with the samples in the database that have generated hash codes. The smaller the distance, the greater the similarity. higher. Assuming that a model of OCT and fundus has been trained, and the samples in the database have been generated by the model hash code, now the doctor enters a fundus map to retrieve, this fundus map will first generate K through the model of fundus modalities A hash code, and the Hamming distance calculation is performed with the hash code of the sample in the database, and the most similar n results are returned. These n results may contain images of two modalities, because after model fusion, the digital images between the modalities establish a certain similarity, which is reflected in the K hash codes.
步骤230、将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。
本实施例公开了一种眼科多模态影像的检索方法,该方法包括:获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;对样本图像使用多种标签进行标记并建立数据库;建立多模态卷积神经网络并使用所述样本图像对所述多模态卷积神经网络模型进行训练,以得到训练好的多模态卷积神经网络模型将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。本发明实施例提供的一种眼科多模态影像的检索方法,通过获取用户的单模态眼睛图像,系统在深度学习模型中进行识别,输出多模态识别结果,解决了现有技术中无法通过单模态眼部图像发现用户其他潜在眼部疾病的问题,实现了通过单模态眼部图像检索到其他可能存在的眼部疾病的效果,提升了用户的体验。This embodiment discloses a method for retrieving ophthalmic multi-modal images, the method includes: acquiring a current eye image of a user, the eye image is an ophthalmic digital image, and the eye image includes a variety of different modalities. Eye images; label sample images with various labels and establish a database; build a multimodal convolutional neural network and use the sample images to train the multimodal convolutional neural network model to obtain a trained The multi-modal convolutional neural network model correspondingly inputs the eye images of the various modalities into a plurality of pre-trained deep learning models to fuse and train the similarity and difference of the eye images of the various modalities. similarity and output multiple feature vectors, and generate a comparative analysis result according to the multiple feature vectors. The method for retrieving ophthalmic multimodal images provided by the embodiment of the present invention, by acquiring the user's single-modal eye image, the system performs recognition in the deep learning model, and outputs the multi-modal recognition result, which solves the problem that cannot be solved in the prior art. The problem of other potential eye diseases of the user is found through the single-modal eye image, and the effect of retrieving other possible eye diseases through the single-modal eye image is realized, which improves the user's experience.
实施例三Embodiment 3
本发明实施例所提供的眼科多模态影像的检索装置可以实行本发明任意实施例所提供的眼科多模态影像的检索方法,具备执行方法相应的功能模块和有益效果。图3是本发明实施例中的一种眼科多模态影像的检索装置300的结构示意图。参照图3,本发明实施例提供的眼科多模态影像的检索装置300具体可以包括:The apparatus for retrieving ophthalmic multimodal images provided by the embodiments of the present invention can implement the retrieving methods for ophthalmic multimodal images provided in any embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution methods. FIG. 3 is a schematic structural diagram of an ophthalmic multimodal
数据获取模块310,用于获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;The
数据识别模块320,用于将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。The
进一步的,所述眼科数字影像包括:眼底图、角膜神经图和OCT图。Further, the ophthalmic digital image includes: fundus map, corneal nerve map and OCT map.
进一步的,所述深度学习模型为多模态卷积神经网络模型。Further, the deep learning model is a multimodal convolutional neural network model.
进一步的,所述获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像之后还包括:Further, the acquiring the current eye image of the user, the eye image is an ophthalmological digital image, and the eye image includes multiple eye images of different modalities and further includes:
对样本图像使用多种标签进行标记并建立数据库;Label sample images with a variety of labels and build a database;
建立多模态卷积神经网络并使用所述样本图像对所述多模态卷积神经网络模型进行训练,以得到训练好的多模态卷积神经网络模型。Building a multimodal convolutional neural network and using the sample images to train the multimodal convolutional neural network model to obtain a trained multimodal convolutional neural network model.
进一步的,所述对样本图像使用多种标签进行标记并建立数据库包括:Further, the method of labeling the sample image with multiple labels and establishing a database includes:
若所述样本图像属于同一患者,则标记为第一标签;If the sample image belongs to the same patient, it is marked as the first label;
若所述样本图像属于同一病例,则标记为第二标签;If the sample image belongs to the same case, it is marked as the second label;
若所述样本图像不相关,则标记为第三标签;If the sample image is irrelevant, mark it as a third label;
将标记了第一标签、第二标签和第三标签的样本图像建立数据库。A database is established of the sample images marked with the first label, the second label and the third label.
进一步的,所述多模态卷积神经网络模型包括:眼底图卷积神经网络模型、角膜神经图卷积神经网络模型和OCT图卷积神经网络模型。Further, the multimodal convolutional neural network model includes: a fundus map convolutional neural network model, a corneal neural map convolutional neural network model, and an OCT map convolutional neural network model.
进一步的,所述对比分析结果包括:最相似的多张样本图像及其详细案例情况。Further, the comparative analysis results include: the most similar multiple sample images and their detailed case situations.
本实施例公开了一种眼科多模态影像的检索装置,该装置包括:数据获取模块,用于获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;数据识别模块,用于将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。本发明实施例提供的一种眼科多模态影像的检索装置,通过获取用户的单模态眼睛图像,系统在深度学习模型中进行识别,输出多模态识别结果,解决了现有技术中无法通过单模态眼部图像发现用户其他潜在眼部疾病的问题,实现了通过单模态眼部图像检索到其他可能存在的眼部疾病的效果,提升了用户的体验。This embodiment discloses an ophthalmological multimodal image retrieval device, the device includes: a data acquisition module for acquiring a user's current eye image, the eye image is an ophthalmic digital image, and the eye image includes Eye images of a variety of different modalities; a data identification module for correspondingly inputting the eye images of the multiple different modalities into multiple pre-trained deep learning models to fuse and train the multiple different modalities of the eye images. The similarity and dissimilarity of the eye images and output a plurality of feature vectors, and a comparative analysis result is generated according to the plurality of feature vectors. The embodiment of the present invention provides an ophthalmological multimodal image retrieval device. By acquiring a user's single-modal eye image, the system performs recognition in a deep learning model, and outputs a multi-modal recognition result, which solves the problem that cannot be achieved in the prior art. The problem of other potential eye diseases of the user is found through the single-modal eye image, and the effect of retrieving other possible eye diseases through the single-modal eye image is realized, which improves the user's experience.
实施例四Embodiment 4
图4为本发明实施例提供的一种计算机服务器的结构示意图,如图4所示,该计算机服务器包括存储器410、处理器420,计算机服务器中处理器420的数量可以是一个或多个,图4中以一个处理器420为例;设备中的存储器410、处理器420可以通过总线或其他方式连接,图4中以通过总线连接为例。FIG. 4 is a schematic structural diagram of a computer server according to an embodiment of the present invention. As shown in FIG. 4 , the computer server includes a
存储器410作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中的眼科多模态影像的检索方法对应的程序指令/模块(例如,眼科案例的检索装置300中的数据获取模块310、数据识别模块320)处理器420通过运行存储在存储器410中的软件程序、指令以及模块,从而执行设备/终端/设备的各种功能应用以及数据处理,即实现上述的眼科多模态影像的检索方法。As a computer-readable storage medium, the
其中,处理器420用于运行存储在存储器410中的计算机程序,实现如下步骤:Wherein, the
获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;obtaining the current eye image of the user, the eye image is an ophthalmological digital image, and the eye image includes multiple eye images in different modalities;
将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。Correspondingly input the eye images of the multiple different modalities into multiple pre-trained deep learning models to fuse and train the similarity and dissimilarity of the multiple different modal eye images and output multiple feature vectors , and generate a comparative analysis result according to the plurality of feature vectors.
在其中一个实施例中,本发明实施例所提供的一种计算机设备,其计算机程序不限于如上的方法操作,还可以执行本发明任意实施例所提供的眼科多模态影像的检索方法中的相关操作。In one of the embodiments, the computer program of the computer device provided by the embodiment of the present invention is not limited to the above method operation, and can also execute the retrieval method of the ophthalmic multimodal image provided by any embodiment of the present invention. related operations.
存储器410可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器410可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器410可进一步包括相对于处理器420远程设置的存储器,这些远程存储器可以通过网络连接至设备/终端/设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The
本实施例公开了一种眼科多模态影像的检索服务器,用于执行以下方法,该方法包括:获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。本发明实施例提供的一种眼科多模态影像的检索方法,通过获取用户的单模态眼睛图像,系统在深度学习模型中进行识别,输出多模态识别结果,解决了现有技术中无法通过单模态眼部图像发现用户其他潜在眼部疾病的问题,实现了通过单模态眼部图像检索到其他可能存在的眼部疾病的效果,提升了用户的体验。This embodiment discloses an ophthalmology multimodal image retrieval server, which is used to execute the following method. The method includes: acquiring a user's current eye image, where the eye image is an ophthalmology digital image, and the eye image includes Multiple different modal eye images; correspondingly input the multiple different modal eye images into multiple pre-trained deep learning models to fuse and train the similarity of the multiple different modal eye images sum dissimilarity and output multiple feature vectors, and generate a comparative analysis result according to the multiple feature vectors. The method for retrieving ophthalmic multimodal images provided by the embodiment of the present invention, by acquiring the user's single-modal eye image, the system performs recognition in the deep learning model, and outputs the multi-modal recognition result, which solves the problem that cannot be solved in the prior art. The problem of other potential eye diseases of the user is found through the single-modal eye image, and the effect of retrieving other possible eye diseases through the single-modal eye image is realized, which improves the user's experience.
实施例五Embodiment 5
本发明实施例五还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种眼科多模态影像的检索方法,该方法包括:Embodiment 5 of the present invention also provides a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a method for retrieving ophthalmic multimodal images when executed by a computer processor, and the method includes:
获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;obtaining the current eye image of the user, the eye image is an ophthalmological digital image, and the eye image includes multiple eye images in different modalities;
将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。Correspondingly input the eye images of the multiple different modalities into multiple pre-trained deep learning models to fuse and train the similarity and dissimilarity of the multiple different modal eye images and output multiple feature vectors , and generate a comparative analysis result according to the plurality of feature vectors.
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本发明任意实施例所提供的一种眼科多模态影像的检索方法中的相关操作。Of course, a storage medium containing computer-executable instructions provided by an embodiment of the present invention, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute an ophthalmic multi-modality method provided by any embodiment of the present invention. Related operations in the retrieval method of dynamic images.
本发明实施例的计算机可读存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。The computer-readable storage medium of the embodiments of the present invention may adopt any combination of one or more computer-readable mediums. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (a non-exhaustive list) of computer readable storage media include: electrical connections having one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing. In this document, a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
存储介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。Program code embodied on a storage medium may be transmitted using any suitable medium, including - but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或终端上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for carrying out operations of the present invention may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, but also conventional Procedural programming language - such as the "C" language or similar programming language. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or terminal. In the case of a remote computer, the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through Internet connection).
本实施例公开了一种眼科多模态影像的检索存储介质,用于执行以下方法,该方法包括:获取用户当前的眼部图像,所述眼部图像为眼科数字影像,所述眼部图像包含多种不同模态的眼部影像;将所述多种不同模态的眼部影像对应输入到多个预先训练好的深度学习模型融合训练所述多种不同模态的眼部影像的相似性和不相似性并输出多个特征向量,根据所述多个特征向量生成对比分析结果。本发明实施例提供的一种眼科多模态影像的检索方法,通过获取用户的单模态眼睛图像,系统在深度学习模型中进行识别,输出多模态识别结果,解决了现有技术中无法通过单模态眼部图像发现用户其他潜在眼部疾病的问题,实现了通过单模态眼部图像检索到其他可能存在的眼部疾病的效果,提升了用户的体验。This embodiment discloses a retrieval storage medium for ophthalmic multimodal images, which is used to execute the following method, the method includes: acquiring a current eye image of a user, the eye image is an ophthalmic digital image, and the eye image Including eye images of multiple different modalities; correspondingly inputting the multiple different modal eye images into multiple pre-trained deep learning models to fuse and train the similarity of the multiple different modal eye images and dissimilarity and output multiple feature vectors, and generate a comparative analysis result according to the multiple feature vectors. The method for retrieving ophthalmic multimodal images provided by the embodiment of the present invention, by acquiring the user's single-modal eye image, the system performs recognition in the deep learning model, and outputs the multi-modal recognition result, which solves the problem that cannot be solved in the prior art. The problem of other potential eye diseases of the user is found through the single-modal eye image, and the effect of retrieving other possible eye diseases through the single-modal eye image is realized, which improves the user's experience.
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention. The scope is determined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010242450.7A CN111428072A (en) | 2020-03-31 | 2020-03-31 | Ophthalmologic multimodal image retrieval method, apparatus, server and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010242450.7A CN111428072A (en) | 2020-03-31 | 2020-03-31 | Ophthalmologic multimodal image retrieval method, apparatus, server and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111428072A true CN111428072A (en) | 2020-07-17 |
Family
ID=71549253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010242450.7A Pending CN111428072A (en) | 2020-03-31 | 2020-03-31 | Ophthalmologic multimodal image retrieval method, apparatus, server and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111428072A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112102940A (en) * | 2020-09-08 | 2020-12-18 | 南方科技大学 | Refractive detection method, device, computer equipment and storage medium |
CN112101438A (en) * | 2020-09-08 | 2020-12-18 | 南方科技大学 | A left and right eye classification method, device, server and storage medium |
CN112884729A (en) * | 2021-02-04 | 2021-06-01 | 北京邮电大学 | Auxiliary diagnosis method and device for fundus diseases based on bimodal deep learning |
CN113011485A (en) * | 2021-03-12 | 2021-06-22 | 北京邮电大学 | Multi-mode multi-disease long-tail distribution ophthalmic disease classification model training method and device |
CN113658683A (en) * | 2021-08-05 | 2021-11-16 | 重庆金山医疗技术研究院有限公司 | Disease diagnosis system and data recommendation method |
CN114648501A (en) * | 2022-02-24 | 2022-06-21 | 唯智医疗科技(佛山)有限公司 | Medical image processing method and device and electronic equipment |
CN114661936A (en) * | 2022-05-19 | 2022-06-24 | 中山大学深圳研究院 | A method and electronic device for image retrieval applied in industrial vision |
WO2022205779A1 (en) * | 2021-03-29 | 2022-10-06 | 中国科学院深圳先进技术研究院 | Processing method and apparatus based on multi-modal eye detection data, and terminal device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107506797A (en) * | 2017-08-25 | 2017-12-22 | 电子科技大学 | One kind is based on deep neural network and multi-modal image alzheimer disease sorting technique |
CN107562812A (en) * | 2017-08-11 | 2018-01-09 | 北京大学 | A kind of cross-module state similarity-based learning method based on the modeling of modality-specific semantic space |
CN109902714A (en) * | 2019-01-18 | 2019-06-18 | 重庆邮电大学 | A Multimodal Medical Image Retrieval Method Based on Multi-Graph Regularized Deep Hashing |
CN110009623A (en) * | 2019-04-10 | 2019-07-12 | 腾讯科技(深圳)有限公司 | A kind of image recognition model training and image-recognizing method, apparatus and system |
WO2019207800A1 (en) * | 2018-04-27 | 2019-10-31 | 株式会社ニデック | Ophthalmic image processing device and ophthalmic image processing program |
CN110765281A (en) * | 2019-11-04 | 2020-02-07 | 山东浪潮人工智能研究院有限公司 | A Multi-Semantic Deeply Supervised Cross-modal Hash Retrieval Method |
-
2020
- 2020-03-31 CN CN202010242450.7A patent/CN111428072A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107562812A (en) * | 2017-08-11 | 2018-01-09 | 北京大学 | A kind of cross-module state similarity-based learning method based on the modeling of modality-specific semantic space |
CN107506797A (en) * | 2017-08-25 | 2017-12-22 | 电子科技大学 | One kind is based on deep neural network and multi-modal image alzheimer disease sorting technique |
WO2019207800A1 (en) * | 2018-04-27 | 2019-10-31 | 株式会社ニデック | Ophthalmic image processing device and ophthalmic image processing program |
CN109902714A (en) * | 2019-01-18 | 2019-06-18 | 重庆邮电大学 | A Multimodal Medical Image Retrieval Method Based on Multi-Graph Regularized Deep Hashing |
CN110009623A (en) * | 2019-04-10 | 2019-07-12 | 腾讯科技(深圳)有限公司 | A kind of image recognition model training and image-recognizing method, apparatus and system |
CN110765281A (en) * | 2019-11-04 | 2020-02-07 | 山东浪潮人工智能研究院有限公司 | A Multi-Semantic Deeply Supervised Cross-modal Hash Retrieval Method |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112102940A (en) * | 2020-09-08 | 2020-12-18 | 南方科技大学 | Refractive detection method, device, computer equipment and storage medium |
CN112101438A (en) * | 2020-09-08 | 2020-12-18 | 南方科技大学 | A left and right eye classification method, device, server and storage medium |
CN112102940B (en) * | 2020-09-08 | 2024-04-16 | 南方科技大学 | Refraction detection method, refraction detection device, computer equipment and storage medium |
CN112101438B (en) * | 2020-09-08 | 2024-04-16 | 南方科技大学 | Left-right eye classification method, device, server and storage medium |
CN112884729A (en) * | 2021-02-04 | 2021-06-01 | 北京邮电大学 | Auxiliary diagnosis method and device for fundus diseases based on bimodal deep learning |
CN113011485A (en) * | 2021-03-12 | 2021-06-22 | 北京邮电大学 | Multi-mode multi-disease long-tail distribution ophthalmic disease classification model training method and device |
WO2022188489A1 (en) * | 2021-03-12 | 2022-09-15 | 北京邮电大学 | Training method and apparatus for multi-mode multi-disease long-tail distribution ophthalmic disease classification model |
WO2022205779A1 (en) * | 2021-03-29 | 2022-10-06 | 中国科学院深圳先进技术研究院 | Processing method and apparatus based on multi-modal eye detection data, and terminal device |
CN113658683A (en) * | 2021-08-05 | 2021-11-16 | 重庆金山医疗技术研究院有限公司 | Disease diagnosis system and data recommendation method |
CN114648501A (en) * | 2022-02-24 | 2022-06-21 | 唯智医疗科技(佛山)有限公司 | Medical image processing method and device and electronic equipment |
CN114661936A (en) * | 2022-05-19 | 2022-06-24 | 中山大学深圳研究院 | A method and electronic device for image retrieval applied in industrial vision |
CN114661936B (en) * | 2022-05-19 | 2022-10-14 | 中山大学深圳研究院 | Image retrieval method applied to industrial vision and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111428072A (en) | Ophthalmologic multimodal image retrieval method, apparatus, server and storage medium | |
US11612311B2 (en) | System and method of otoscopy image analysis to diagnose ear pathology | |
US11694297B2 (en) | Determining appropriate medical image processing pipeline based on machine learning | |
CN113962311B (en) | Knowledge data and artificial intelligence driven multi-disease identification system for ophthalmology | |
Goel et al. | Deep learning approach for stages of severity classification in diabetic retinopathy using color fundus retinal images | |
Zulkifley et al. | Pterygium-Net: a deep learning approach to pterygium detection and localization | |
CN111428070A (en) | Retrieval method, device, server and storage medium for ophthalmology cases | |
CN111428737B (en) | Instance retrieval method, device, server and storage medium for ophthalmic image | |
Biswas et al. | DFU_XAI: a deep learning-based approach to diabetic foot ulcer detection using feature explainability | |
Sharma et al. | Cracking light on cataract detection by implementing VGG16 transfer learning-based model on fundus images | |
Lenka et al. | Glaucoma detection from retinal fundus images using graph convolution based multi-task model | |
Cutur et al. | Multi-class classification of retinal eye diseases from ophthalmoscopy images using transfer learning-based vision transformers | |
CN114330484A (en) | Weakly supervised learning method and system for grading and lesion identification of diabetic retinopathy | |
CN113674859A (en) | Heart birth defect diagnosis method and system | |
Kumari et al. | Automated diabetic retinopathy grading based on the modified capsule network architecture | |
CN116703837B (en) | MRI image-based rotator cuff injury intelligent identification method and device | |
Zhou | [Retracted] Design of Intelligent Diagnosis and Treatment System for Ophthalmic Diseases Based on Deep Neural Network Model | |
Abdi et al. | Oct images diagnosis based on deep learning–a review | |
Al-Ars et al. | Nlice: Synthetic medical record generation for effective primary healthcare differential diagnosis | |
CN114841168A (en) | Structured information processing method for imaging report text, pulmonary disease monitoring method and system | |
CN112967246A (en) | X-ray image auxiliary device and method for clinical decision support system | |
Neogi et al. | Mobile detection of cataracts with an optimised lightweight deep Edge Intelligent technique | |
Melvin et al. | Visual Question Answering using Data Mining Techniques for Skeletal Scintigraphy in medical domain-VQADMSS | |
Chen et al. | Cross-modality transfer learning with knowledge infusion for diabetic retinopathy grading | |
Garg et al. | A Short Review on Cataract Detection and Classification Approaches Using Distinct Ophthalmic Imaging Modalities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200717 |
|
RJ01 | Rejection of invention patent application after publication |