CN111399118A - An integrated polarizing beam splitter based on thin-film lithium niobate waveguide - Google Patents
An integrated polarizing beam splitter based on thin-film lithium niobate waveguide Download PDFInfo
- Publication number
- CN111399118A CN111399118A CN202010105406.1A CN202010105406A CN111399118A CN 111399118 A CN111399118 A CN 111399118A CN 202010105406 A CN202010105406 A CN 202010105406A CN 111399118 A CN111399118 A CN 111399118A
- Authority
- CN
- China
- Prior art keywords
- waveguide
- phase
- shift
- tapered
- interference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 239000010409 thin film Substances 0.000 title claims abstract description 24
- 230000010363 phase shift Effects 0.000 claims abstract description 39
- 230000010287 polarization Effects 0.000 claims abstract description 29
- 230000003287 optical effect Effects 0.000 claims description 15
- 238000005452 bending Methods 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 4
- 230000008033 biological extinction Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000005253 cladding Methods 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/126—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
- G02B2006/1204—Lithium niobate (LiNbO3)
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/1215—Splitter
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本发明公开了一种基于薄膜铌酸锂波导的集成型偏振分束器。本发明由1×2多模干涉耦合器、多段式相移器与2×2多模干涉耦合器依次级联构成马赫曾德尔干涉器结构。1×2多模干涉耦合器由第一锥状波导、第二锥状波导、第三锥状波导与多模波导构成。2×2多模干涉耦合器由第一锥状波导、第二锥状波导、第三锥状波导、第四锥状波导与多模波导构成。多段式相移器由第一干涉臂与第二干涉臂构成。第一干涉臂由第一连接波导、第一相移波导、第二连接波导、第二相移波导与第三连接波导依次连接。第二干涉臂由第四连接波导、第三相移波导、第五连接波导、第四相移波导与第六连接波导依次连接。本发明具有消光比高、损耗低、结构简单、设计简易、加工简便的特点。
The invention discloses an integrated polarization beam splitter based on a thin-film lithium niobate waveguide. In the present invention, a 1×2 multi-mode interference coupler, a multi-segment phase shifter and a 2×2 multi-mode interference coupler are successively cascaded to form a Mach-Zehnder interferometer structure. The 1×2 multimode interference coupler is composed of a first tapered waveguide, a second tapered waveguide, a third tapered waveguide and a multimode waveguide. The 2×2 multimode interference coupler is composed of a first tapered waveguide, a second tapered waveguide, a third tapered waveguide, a fourth tapered waveguide and a multimode waveguide. The multi-stage phase shifter is composed of a first interference arm and a second interference arm. The first interference arm is sequentially connected by the first connecting waveguide, the first phase-shifting waveguide, the second connecting waveguide, the second phase-shifting waveguide and the third connecting waveguide. The second interference arm is sequentially connected by the fourth connection waveguide, the third phase shift waveguide, the fifth connection waveguide, the fourth phase shift waveguide and the sixth connection waveguide. The invention has the characteristics of high extinction ratio, low loss, simple structure, simple design and simple processing.
Description
技术领域technical field
本发明具体涉及一种基于薄膜铌酸锂波导的集成型偏振分束器,适用于光纤通信、片上光通信、光传感系统、量子光学系统中需要偏振分束、偏振合束、偏振滤波的应用场合。The invention specifically relates to an integrated polarization beam splitter based on a thin-film lithium niobate waveguide, which is suitable for optical fiber communication, on-chip optical communication, optical sensing systems, and quantum optical systems that require polarization beam splitting, polarization beam combining, and polarization filtering. application.
背景技术Background technique
铌酸锂具有较强的电光效应、较强的非线性效应与较好的热稳定性,因此被广泛应用于电光调制器、波长转换器等集成光学器件。近年来,伴随着薄膜铌酸锂加工制备工艺的成熟,基于薄膜铌酸锂波导的超小型集成光学器件得以迅速发展。由于薄膜铌酸锂波导具有较高的折射率差与较小的模斑尺寸,使得这类波导具有较强的双折射特性,因此基于薄膜铌酸锂波导的集成光学器件大多具有较强的偏振相关性,并只能工作在单偏振条件下。因此,需要利用偏振分束器将输入信号中的不同偏振态分离,或将工作偏振之外的偏振态滤除。此外,薄膜铌酸锂波导具有较好的保偏特性,不同偏振态在传输过程不产生串扰。因此,对于光通信系统,可以将信号加载在不同偏振态上,并利用偏振分束器将信号合束,从而在不增加波长通道的情况下,将通道容量翻倍。对于光传感系统,由于不同偏振态对环境参量变化的敏感度不同,因此可以利用偏振分束器对多个环境参量同时进行监控。对于量子光学系统,可以利用偏振分束器实现不同偏振态之间的量子纠缠。Lithium niobate has strong electro-optic effect, strong nonlinear effect and good thermal stability, so it is widely used in integrated optical devices such as electro-optic modulators and wavelength converters. In recent years, with the maturity of thin-film lithium niobate processing and preparation technology, ultra-small integrated optical devices based on thin-film lithium niobate waveguides have developed rapidly. Due to the high refractive index difference and small mode spot size of thin-film lithium niobate waveguides, these waveguides have strong birefringence characteristics, so most of the integrated optical devices based on thin-film lithium niobate waveguides have strong polarization correlation and can only work under single polarization conditions. Therefore, a polarization beam splitter needs to be used to separate different polarization states in the input signal, or to filter out polarization states other than the working polarization. In addition, the thin-film lithium niobate waveguide has good polarization-maintaining properties, and different polarization states do not generate crosstalk during transmission. Therefore, for optical communication systems, it is possible to load signals in different polarization states and combine the signals with a polarization beam splitter, thereby doubling the channel capacity without increasing the wavelength channel. For optical sensing systems, since different polarization states have different sensitivities to changes in environmental parameters, a polarization beam splitter can be used to monitor multiple environmental parameters simultaneously. For quantum optical systems, polarization beam splitters can be used to achieve quantum entanglement between different polarization states.
目前,集成型偏振分束器的设计思路大多基于不对称耦合器结构,通过调节耦合器的结构参数,使得一个偏振态满足相位匹配条件,同时另一偏振态则相位失配,从而将不同偏振态分离。然而,铌酸锂是一种各向异性材料,并且通常需要采用x切薄膜以保证最大的电光调制效率与波长转换效率,导致不同传输方向的薄膜铌酸锂波导通常具有不同的有效折射率,这极大地增加了不对称耦合器的设计难度。因此,需要一种新的技术方案,用于实现基于薄膜铌酸锂波导的集成型偏振分束器。At present, most of the design ideas of the integrated polarization beam splitter are based on the asymmetric coupler structure. By adjusting the structural parameters of the coupler, one polarization state satisfies the phase matching condition, while the other polarization state is phase mismatched, so that the different polarization states are matched. state separation. However, lithium niobate is an anisotropic material, and x-cut films are usually required to ensure maximum electro-optic modulation efficiency and wavelength conversion efficiency, resulting in thin-film lithium niobate waveguides with different transmission directions usually have different effective refractive indices, This greatly increases the design difficulty of asymmetric couplers. Therefore, there is a need for a new technical solution for realizing an integrated polarizing beam splitter based on thin-film lithium niobate waveguides.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提出一种基于薄膜铌酸锂波导的集成型偏振分束器。通过级联偏振不敏感的多模干涉耦合器与多段式相移器,并对相移器中薄膜铌酸锂波导的传输方向与传输长度进行调控,实现TE基模与TM基模在相移器中传输相位的独立控制,进而将输入光中的TE偏振态与TM偏振态分离。The purpose of the present invention is to propose an integrated polarization beam splitter based on a thin-film lithium niobate waveguide. By cascading polarization-insensitive multimode interference couplers and multi-segment phase shifters, and controlling the transmission direction and transmission length of the thin-film lithium niobate waveguide in the phase shifter, the phase shift between the TE fundamental mode and the TM fundamental mode is realized. Independent control of the transmission phase in the transmitter, which in turn separates the TE polarization state from the TM polarization state in the input light.
本发明提出的基于薄膜铌酸锂波导的集成型偏振分束器由1×2多模干涉耦合器(I)、多段式相移器(II)、2×2多模干涉耦合器(III)依次级联构成马赫曾德尔干涉器结构。其中,输入波导(0)与1×2多模干涉耦合器(I)中的第一锥状波导(31)相连,1×2多模干涉耦合器(I)中的第二锥状波导(32)、第三锥状波导(33)分别与多段式相移器(II)中的第一连接波导(11)、第四连接波导(14)相连,多段式相移器(II)中第三连接波导(13)、第六连接波导(16)分别与2×2多模干涉耦合器(III)中的第一锥状波导(41)、第二锥状波导(42)相连,2×2多模干涉耦合器(III)中的第三锥状波导(43)、第四锥状波导(44)分别与第一输出波导(1)、第二输出波导(2)相连。多段式相移器(II)由两根干涉臂组成,其中第一连接波导(11)、第一相移波导(21)、第二连接波导(12)、第二相移波导(22)、第三连接波导(13)依次连接构成第一干涉臂(II-1),第四连接波导(14)、第三相移波导(23)、第五连接波导(15)、第四相移波导(24)、第六连接波导(16)依次连接构成第二干涉臂(II-2)。The integrated polarization beam splitter based on thin-film lithium niobate waveguide proposed in the present invention is composed of a 1×2 multi-mode interference coupler (I), a multi-segment phase shifter (II), and a 2×2 multi-mode interference coupler (III) Cascaded in turn to form a Mach-Zehnder interferometer structure. Wherein, the input waveguide (0) is connected to the first tapered waveguide (31) in the 1×2 multimode interference coupler (I), and the second tapered waveguide (31) in the 1×2 multimode interference coupler (I) 32) and the third conical waveguide (33) are respectively connected with the first connecting waveguide (11) and the fourth connecting waveguide (14) in the multi-segment phase shifter (II), and the The three-connected waveguide (13) and the sixth-connected waveguide (16) are respectively connected to the first tapered waveguide (41) and the second tapered waveguide (42) in the 2×2 multimode interference coupler (III), 2× 2. The third tapered waveguide (43) and the fourth tapered waveguide (44) in the multimode interference coupler (III) are respectively connected to the first output waveguide (1) and the second output waveguide (2). The multi-segment phase shifter (II) is composed of two interference arms, wherein a first connection waveguide (11), a first phase shift waveguide (21), a second connection waveguide (12), a second phase shift waveguide (22), The third connecting waveguide (13) is sequentially connected to form the first interference arm (II-1), the fourth connecting waveguide (14), the third phase-shifting waveguide (23), the fifth connecting waveguide (15), and the fourth phase-shifting waveguide (24) The sixth connecting waveguide (16) is connected in sequence to form a second interference arm (II-2).
在本发明中,输入光由输入波导(0)传输至偏振不敏感的1×2多模干涉耦合器(I)后,以相同的强度与相位分为两束,并进入第一干涉臂(II-1)与第二干涉臂(II-2)。其中输入第一干涉臂(II-1)的光信号依次通过第一连接波导(11)、第一相移波导(21)、第二连接波导(12)、第二相移波导(22)、第三连接波导(13),并通过第一锥状波导(41)进入2×2多模干涉耦合器(III);输入第二干涉臂(II-2)的光信号依次通过第四连接波导(14)、第三相移波导(23)、第五连接波导(15)、第四相移波导(24)、第六连接波导(16),并通过第二锥状波导(42)进入2×2多模干涉耦合器(II)。光信号在第一相移波导(21)与第三相移波导(23)主要沿y方向传播,因此在其中传输的TE基模是非常光,而在其中传输的TM基模是寻常光。光信号在第二相移波导(22)与第四相移波导(24)主要沿z方向传播,因此在其中传输的TE基模与TM基模都是寻常光。通过控制第一相移波导(21)与第三相移波导(23)的长度差,以及第二相移波导(22)与第四相移波导(24)的长度差,可以使得TE基模在通过多段式相移器(II)之后,在第一干涉臂(II-1)与第二干涉臂(II-2)之间产生﹣90°相位差,同时TM基模在通过多段式相移器(II)之后,在第一干涉臂(II-1)与第二干涉臂(II-2)之间产生+90°相位差。输入光中的TE基模在进入偏振不敏感的2×2多模干涉耦合器(III)后,由于具有﹣90°相位差,被完全耦合至第一输出波导(1)。输入光中的TM基模在进入偏振不敏感的2×2多模干涉耦合器(III)后,由于具有+90°相位差,被完全耦合至第二输出波导(2)。In the present invention, after the input light is transmitted from the input waveguide (0) to the polarization-insensitive 1×2 multimode interference coupler (I), it is divided into two beams with the same intensity and phase, and enters the first interference arm ( II-1) and the second interference arm (II-2). The optical signal input to the first interference arm (II-1) passes through the first connecting waveguide (11), the first phase-shifting waveguide (21), the second connecting waveguide (12), the second phase-shifting waveguide (22), The third connecting waveguide (13) enters the 2×2 multi-mode interference coupler (III) through the first tapered waveguide (41); the optical signal input to the second interference arm (II-2) passes through the fourth connecting waveguide in sequence (14), the third phase-shifted waveguide (23), the fifth connecting waveguide (15), the fourth phase-shifting waveguide (24), the sixth connecting waveguide (16), and enter 2 through the second tapered waveguide (42) ×2 multimode interference coupler (II). The optical signal mainly propagates along the y direction in the first phase-shift waveguide (21) and the third phase-shift waveguide (23), so the TE fundamental mode transmitted therein is extraordinary light, and the TM fundamental mode transmitted therein is ordinary light. The optical signal mainly propagates along the z-direction in the second phase-shift waveguide (22) and the fourth phase-shift waveguide (24), so the TE fundamental mode and the TM fundamental mode transmitted therein are both ordinary light. By controlling the length difference between the first phase-shift waveguide (21) and the third phase-shift waveguide (23), and the length difference between the second phase-shift waveguide (22) and the fourth phase-shift waveguide (24), the TE fundamental mode can be After passing through the multi-stage phase shifter (II), a -90° phase difference is generated between the first interference arm (II-1) and the second interference arm (II-2), and the TM fundamental mode is passed through the multi-stage phase shifter. After the shifter (II), a +90° phase difference is generated between the first interference arm (II-1) and the second interference arm (II-2). After entering the polarization-insensitive 2×2 multimode interference coupler (III), the TE fundamental mode in the input light is completely coupled to the first output waveguide (1) due to a -90° phase difference. After entering the polarization-insensitive 2×2 multimode interference coupler (III), the TM fundamental mode in the input light is fully coupled to the second output waveguide (2) due to a +90° phase difference.
本发明具有的有益的效果是:The beneficial effects that the present invention has are:
(1)通过调控薄膜铌酸锂波导的传输方向与传输长度,可以对TE基模与TM基模在多段式相移器中的传输相位进行独立控制,从而实现TE偏振态与TM偏振态的完全分离。(1) By adjusting the transmission direction and transmission length of the thin-film lithium niobate waveguide, the transmission phases of the TE fundamental mode and the TM fundamental mode in the multi-segment phase shifter can be independently controlled, so as to realize the TE polarization state and the TM polarization state. completely separated.
(2)具有结构简单、设计简易、加工简便的优势。(2) It has the advantages of simple structure, simple design and easy processing.
(3)具有消光比高(大于40dB)、损耗低(小于0.9dB)、工作带宽大(大于200nm)以及加工容差大(波导宽度容差﹣10nm至+10nm)等优异性能。(3) It has excellent properties such as high extinction ratio (greater than 40dB), low loss (less than 0.9dB), large operating bandwidth (greater than 200nm) and large processing tolerance (waveguide width tolerance -10nm to +10nm).
附图说明Description of drawings
图1给出了本发明基于薄膜铌酸锂波导的集成型偏振分束器示意图;1 shows a schematic diagram of an integrated polarizing beam splitter based on a thin-film lithium niobate waveguide according to the present invention;
图中:I、1×2多模干涉耦合器,II、多段式相移器,III、2×2多模干涉耦合器,II-1、第一干涉臂,II-2、第二干涉臂,0、输入波导,1、第一输出波导,2、第二输出波导,11、第一连接波导,12、第二连接波导,13、第三连接波导,14、第四连接波导,15、第五连接波导,16、第六连接波导,21、第一相移波导,22、第二相移波导,23、第三相移波导,24、第四相移波导。In the figure: I, 1×2 multimode interference coupler, II, multi-segment phase shifter, III, 2×2 multimode interference coupler, II-1, the first interference arm, II-2, the second interference arm , 0, input waveguide, 1, first output waveguide, 2, second output waveguide, 11, first connection waveguide, 12, second connection waveguide, 13, third connection waveguide, 14, fourth connection waveguide, 15, The fifth connecting waveguide, 16, the sixth connecting waveguide, 21, the first phase-shifting waveguide, 22, the second phase-shifting waveguide, 23, the third phase-shifting waveguide, 24, the fourth phase-shifting waveguide.
图2是1×2多模干涉耦合器(I)结构示意图;Figure 2 is a schematic diagram of the structure of a 1×2 multimode interference coupler (I);
图中:31、第一锥状波导,32、第二锥状波导,33、第三锥状波导,34、多模波导。In the figure: 31, the first tapered waveguide, 32, the second tapered waveguide, 33, the third tapered waveguide, 34, the multimode waveguide.
图3是2×2多模干涉耦合器(III)结构示意图;FIG. 3 is a schematic structural diagram of a 2×2 multimode interference coupler (III);
图中:41、第一锥状波导,42、第二锥状波导,43、第三锥状波导,44、第四锥状波导,45、多模波导。In the figure: 41, the first tapered waveguide, 42, the second tapered waveguide, 43, the third tapered waveguide, 44, the fourth tapered waveguide, 45, the multimode waveguide.
图4是单模铌酸锂波导横截面示意图;Figure 4 is a schematic cross-sectional view of a single-mode lithium niobate waveguide;
图中:51、铌酸锂芯层,52、二氧化硅衬底层与上包层In the figure: 51, lithium niobate core layer, 52, silicon dioxide substrate layer and upper cladding layer
图5是各个输出端口的透射率频谱仿真曲线。Fig. 5 is the transmittance spectrum simulation curve of each output port.
具体实施方式Detailed ways
下面结合附图和基于薄膜铌酸锂波导的集成型偏振分束器的实施实例对本发明作进一步说明。The present invention will be further described below with reference to the accompanying drawings and an embodiment of an integrated polarizing beam splitter based on a thin-film lithium niobate waveguide.
选用基于铌酸锂绝缘体(Lithium-Niobate On Insulator,LNOI)材料的薄膜铌酸锂波导,其芯层为铌酸锂材料,厚度为700nm;其衬底层为二氧化硅材料,厚度为2μm;其上包层为二氧化硅材料,厚度为2μm。在此实施例中,所有波导结构的侧壁倾角均为70°,多段式相移器(II)中所有单模薄膜铌酸锂波导的宽度均为300nm。A thin-film lithium niobate waveguide based on Lithium-Niobate On Insulator (LNOI) material is selected, and its core layer is a lithium niobate material with a thickness of 700 nm; its substrate layer is a silicon dioxide material with a thickness of 2 μm; The upper cladding layer is made of silica material with a thickness of 2 μm. In this embodiment, the sidewall inclination angle of all waveguide structures is 70°, and the width of all single-mode thin-film lithium niobate waveguides in the multi-segment phase shifter (II) is 300 nm.
输入波导(0)、第一输出波导(1)、第二输出波导(2)的传输方向均为y方向。第一相移波导(21)、第三相移波导(23)均由弯曲波导与y方向传输的直波导组成。第二相移波导(22)、第四相移波导(24)均由弯曲波导与z方向传输的直波导组成。第一相移波导(21)与第三相移波导(23)的长度差为﹣13.79μm,第二相移波导(22)与第四相移波导(24)的长度差为+13.64μm。第一干涉臂(II-1)与第二干涉臂(II-2)中所有弯曲波导的半径均为25μm。The transmission directions of the input waveguide (0), the first output waveguide (1), and the second output waveguide (2) are all in the y direction. The first phase-shift waveguide (21) and the third phase-shift waveguide (23) are both composed of a curved waveguide and a straight waveguide that transmits in the y-direction. The second phase-shift waveguide (22) and the fourth phase-shift waveguide (24) are both composed of a curved waveguide and a straight waveguide that transmits in the z-direction. The length difference between the first phase shift waveguide (21) and the third phase shift waveguide (23) is −13.79 μm, and the length difference between the second phase shift waveguide (22) and the fourth phase shift waveguide (24) is +13.64 μm. The radius of all the curved waveguides in the first interference arm (II-1) and the second interference arm (II-2) is 25 μm.
1×2多模干涉耦合器(I)中第一锥状波导(31)、第二锥状波导(32)、第三锥状波导(33)的开口宽度均为700nm,长度均为2μm。1×2多模干涉耦合器(I)中多模波导(34)的宽度为4.5μm,长度为9.3μm。2×2多模干涉耦合器(III)中第一锥状波导(41)、第二锥状波导(42)、第三锥状波导(43)、第四锥状波导(44)的开口宽度均为700nm,长度均为2μm。2×2多模干涉耦合器(III)中多模波导(45)的宽度为4.5μm,长度为20.4μm。In the 1×2 multimode interference coupler (I), the opening width of the first tapered waveguide (31), the second tapered waveguide (32), and the third tapered waveguide (33) are all 700 nm and 2 μm in length. The multimode waveguide (34) in the 1×2 multimode interference coupler (I) has a width of 4.5 μm and a length of 9.3 μm. Opening widths of the first tapered waveguide (41), the second tapered waveguide (42), the third tapered waveguide (43), and the fourth tapered waveguide (44) in the 2×2 multimode interference coupler (III) Both are 700 nm, and both are 2 μm in length. The multimode waveguide (45) in the 2×2 multimode interference coupler (III) has a width of 4.5 μm and a length of 20.4 μm.
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。The above-mentioned embodiments are used to explain the present invention, rather than limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modifications and changes made to the present invention all fall into the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010105406.1A CN111399118B (en) | 2020-02-20 | 2020-02-20 | Integrated polarization beam splitter based on thin-film lithium niobate waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010105406.1A CN111399118B (en) | 2020-02-20 | 2020-02-20 | Integrated polarization beam splitter based on thin-film lithium niobate waveguide |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111399118A true CN111399118A (en) | 2020-07-10 |
CN111399118B CN111399118B (en) | 2021-06-15 |
Family
ID=71430355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010105406.1A Active CN111399118B (en) | 2020-02-20 | 2020-02-20 | Integrated polarization beam splitter based on thin-film lithium niobate waveguide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111399118B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112817091A (en) * | 2021-01-05 | 2021-05-18 | 中国科学院半导体研究所 | Mach-Zehnder interferometer and multichannel coarse wavelength division multiplexer |
WO2023032050A1 (en) * | 2021-08-31 | 2023-03-09 | 住友大阪セメント株式会社 | Optical waveguide element, and optical transmission apparatus and optical modulation device using same |
CN116027483A (en) * | 2023-03-28 | 2023-04-28 | 济南量子技术研究院 | A polarizing beam splitter based on lithium niobate thin film ridge waveguide |
CN117008249A (en) * | 2023-10-07 | 2023-11-07 | 之江实验室 | Lithium niobate wavelength division multiplexer and optical signal multiplexing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030081873A1 (en) * | 2001-10-16 | 2003-05-01 | Tan Peh Wei | Polarization beam splitter |
WO2010021671A2 (en) * | 2008-08-19 | 2010-02-25 | Alcatel-Lucent Usa Inc. | Planar polarization splitter |
CN105700202A (en) * | 2016-04-26 | 2016-06-22 | 山东大学 | Lithium niobate-based PM-QPSK integrated light modulator and working method thereof |
CN107422421A (en) * | 2017-07-25 | 2017-12-01 | 浙江大学 | A kind of coarse wavelength division multiplexer device based on curved oriented coupler |
CN107765441A (en) * | 2017-10-30 | 2018-03-06 | 中山大学 | A kind of silicon nitride optical polarization beam splitter based on multiple-mode interfence and preparation method thereof |
CN110646884A (en) * | 2019-07-09 | 2020-01-03 | 华中科技大学 | Polarization beam splitter with large manufacturing tolerance and high polarization extinction ratio |
-
2020
- 2020-02-20 CN CN202010105406.1A patent/CN111399118B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030081873A1 (en) * | 2001-10-16 | 2003-05-01 | Tan Peh Wei | Polarization beam splitter |
WO2010021671A2 (en) * | 2008-08-19 | 2010-02-25 | Alcatel-Lucent Usa Inc. | Planar polarization splitter |
CN105700202A (en) * | 2016-04-26 | 2016-06-22 | 山东大学 | Lithium niobate-based PM-QPSK integrated light modulator and working method thereof |
CN107422421A (en) * | 2017-07-25 | 2017-12-01 | 浙江大学 | A kind of coarse wavelength division multiplexer device based on curved oriented coupler |
CN107765441A (en) * | 2017-10-30 | 2018-03-06 | 中山大学 | A kind of silicon nitride optical polarization beam splitter based on multiple-mode interfence and preparation method thereof |
CN110646884A (en) * | 2019-07-09 | 2020-01-03 | 华中科技大学 | Polarization beam splitter with large manufacturing tolerance and high polarization extinction ratio |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112817091A (en) * | 2021-01-05 | 2021-05-18 | 中国科学院半导体研究所 | Mach-Zehnder interferometer and multichannel coarse wavelength division multiplexer |
WO2023032050A1 (en) * | 2021-08-31 | 2023-03-09 | 住友大阪セメント株式会社 | Optical waveguide element, and optical transmission apparatus and optical modulation device using same |
CN116027483A (en) * | 2023-03-28 | 2023-04-28 | 济南量子技术研究院 | A polarizing beam splitter based on lithium niobate thin film ridge waveguide |
CN117008249A (en) * | 2023-10-07 | 2023-11-07 | 之江实验室 | Lithium niobate wavelength division multiplexer and optical signal multiplexing method |
CN117008249B (en) * | 2023-10-07 | 2024-04-02 | 之江实验室 | A lithium niobate wavelength division multiplexer and optical signal multiplexing method |
Also Published As
Publication number | Publication date |
---|---|
CN111399118B (en) | 2021-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111399118A (en) | An integrated polarizing beam splitter based on thin-film lithium niobate waveguide | |
US20240004226A1 (en) | Low-loss waveguiding structures, in particular modulators | |
CN101726801B (en) | Optical switching device and control method thereof | |
CN113534504B (en) | An electronically controlled and adjustable polarization beam splitting method and device based on thin-film lithium niobate | |
CN114721176B (en) | Polarization controller based on-chip mode conversion | |
CN112630892A (en) | Four-channel coarse wavelength division multiplexer based on non-equal-arm wide Mach-Zehnder interferometer | |
JP2012058696A (en) | Waveguide type optical device and dp-qpsk type ln optical modulator | |
JP2724098B2 (en) | Optical wavelength filter device | |
CN108923858B (en) | Silicon-based waveguide optical mixer device | |
CN112817091A (en) | Mach-Zehnder interferometer and multichannel coarse wavelength division multiplexer | |
CN201159780Y (en) | Mach-Zehnder Multimode Interferometric Polarization-Independent Optical Circulator | |
CN115236881A (en) | Electro-optic polarization modulator based on thin-film lithium niobate | |
JPH04259801A (en) | Macha-zehnder interferometer | |
CN108627919B (en) | Polarization insensitive silicon-based optical switch | |
CN101231369B (en) | Waveguide Polarization-Independent Optical Circulator Based on Polarization Mode Separator | |
CN117434652A (en) | A coarse wavelength division multiplexer with low crosstalk and low temperature drift | |
JP2009300888A (en) | Optical waveguide device | |
CN112904479B (en) | An Optical Switch Based on Inverse Fano Coupling Microring | |
CN108761648A (en) | A kind of three ports light rings of hybrid integrated | |
CN115826137A (en) | A Broadband Polarizing Beam Splitter Based on Directional Coupling | |
CN114660718A (en) | A photonic integrated chip for miniaturized interferometric fiber optic gyroscope | |
CN108897099B (en) | An all-polarization-maintaining fiber interference type comb filter | |
JP2898066B2 (en) | Optical device | |
CN118348699A (en) | Coherent optical modulator chip and coherent modulator | |
JP2659787B2 (en) | Waveguide mode light selector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |