CN111384148A - Semiconductor component and method of manufacturing the same - Google Patents
Semiconductor component and method of manufacturing the same Download PDFInfo
- Publication number
- CN111384148A CN111384148A CN201811625563.4A CN201811625563A CN111384148A CN 111384148 A CN111384148 A CN 111384148A CN 201811625563 A CN201811625563 A CN 201811625563A CN 111384148 A CN111384148 A CN 111384148A
- Authority
- CN
- China
- Prior art keywords
- region
- layer
- electrostatic protection
- heavily doped
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 130
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 210000000746 body region Anatomy 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 230000008595 infiltration Effects 0.000 claims description 2
- 238000001764 infiltration Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 152
- 238000010586 diagram Methods 0.000 description 10
- 239000012535 impurity Substances 0.000 description 9
- -1 phosphorus ions Chemical class 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 4
- 230000005669 field effect Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
- H10D89/931—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs characterised by the dispositions of the protective arrangements
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
本发明公开一种半导体组件及其制造方法。半导体组件的制造方法至少包括下列步骤。形成一磊晶层于一基材上,磊晶层被区分为至少一组件区以及一静电防护区。在组件区形成一第一基体区,以及在静电防护区形成一第二基体区。在磊晶层的表面上形成位于静电防护区的一叠层结构,叠层结构包括一绝缘层以及位于绝缘层上的一半导体层,其中,半导体层具有一第一重掺杂区,再形成至少一第二重掺杂区,两者共同形成一静电防护层,其中,静电防护层位于第二基体区上方,且静电防护层完全重叠于所述第二基体区范围内。
The invention discloses a semiconductor component and a manufacturing method thereof. The manufacturing method of the semiconductor component includes at least the following steps. An epitaxial layer is formed on a substrate, and the epitaxial layer is divided into at least one component area and an electrostatic protection area. A first base area is formed in the component area, and a second base area is formed in the electrostatic protection area. A stacked structure is formed on the surface of the epitaxial layer in the electrostatic protection region. The stacked structure includes an insulating layer and a semiconductor layer on the insulating layer, wherein the semiconductor layer has a first heavily doped region, and then formed At least one second heavily doped region, both of which together form an electrostatic protection layer, wherein the electrostatic protection layer is located above the second base region, and the electrostatic protection layer completely overlaps within the range of the second base region.
Description
技术领域technical field
本发明涉及一种半导体组件及其制造方法,特别是涉及一种具有静电防护层的半导体组件及其制造方法。The present invention relates to a semiconductor component and its manufacturing method, in particular to a semiconductor component with an electrostatic protection layer and its manufacturing method.
背景技术Background technique
在半导体功率组件的应用领域中,半导体功率组件对静电放电保护能力已成为重要指标。一些小讯号半导体功率组件因具有较小的芯片尺寸,对静电放电保护能力较差,甚至无法达到静电放电保护的最低标准。部分半导体功率组件虽然具有较大的芯片尺寸,而可具有较大的静电放电保护能力,但可能需要在较苛刻的环境(如:相对湿度<65%的干燥环境,或粉尘较多的环境)下操作,因而对半导体功率组件的静电放电保护能力有更高的要求。In the application field of semiconductor power components, the ability of semiconductor power components to protect against electrostatic discharge has become an important indicator. Some small-signal semiconductor power components have poor ESD protection capability due to their small chip size, and even cannot reach the minimum standard of ESD protection. Although some semiconductor power components have a large chip size and can have a large electrostatic discharge protection capability, they may need to be used in a harsh environment (such as: a dry environment with a relative humidity <65%, or an environment with more dust) Therefore, there are higher requirements for the electrostatic discharge protection capability of semiconductor power components.
因此,在现有的技术中,将静电放电保护结构被整合到半导体功率组件中,以增加半导体功率组件对静电放电的承受能力。然而,在现有制程中,由于制程条件与制程余裕度(processwindow)的限制,静电放电保护结构的位置容易偏移预定位置。另外,现有的半导体功率组件中,静电放电保护结构会直接连接漂移区与基体区,且漂移区与基体区之间会形成沿着磊晶层的厚度方向延伸的弧形界面。Therefore, in the prior art, ESD protection structures are integrated into semiconductor power components to increase the withstand capability of the semiconductor power components against ESD. However, in the existing process, due to the limitation of process conditions and process window, the position of the ESD protection structure is easily shifted from the predetermined position. In addition, in the conventional semiconductor power device, the ESD protection structure directly connects the drift region and the base region, and an arc-shaped interface extending along the thickness direction of the epitaxial layer is formed between the drift region and the base region.
因此,当半导体功率组件操作时,在漂移区与基体区之间的弧形界面的电场强度较强,导致崩溃现象经常在弧形界面附近的区域发生,并降低半导体功率组件本身的耐压。Therefore, when the semiconductor power device operates, the electric field strength at the arc interface between the drift region and the base region is strong, which causes the collapse phenomenon to occur frequently in the region near the arc interface, and reduces the withstand voltage of the semiconductor power device itself.
另一方面,对于现有的半导体功率组件而言,击穿电压(breakdown voltage)以及导通电阻(on-resistance)是较重要的参数,其中导通电阻会影响半导体功率组件的导通损耗(conducting loss)。目前业界倾向于通过提高漂移区的掺杂浓度,以进一步降低半导体功率组件的导通电阻。然而,现有的半导体功率组件在整合静电放电保护结构之后,已具有相对偏低的耐压,更难以符合目前业界的趋势。On the other hand, for the existing semiconductor power components, the breakdown voltage and on-resistance are more important parameters, wherein the on-resistance will affect the conduction loss of the semiconductor power component ( conducting loss). Currently, the industry tends to further reduce the on-resistance of semiconductor power components by increasing the doping concentration of the drift region. However, after integrating the electrostatic discharge protection structure, the existing semiconductor power components already have a relatively low withstand voltage, which is more difficult to meet the current industry trend.
发明内容SUMMARY OF THE INVENTION
本发明所欲解决的其中一技术问题在于,克服具有静电放电防护结构的半导体组件的耐压偏低的问题。One of the technical problems to be solved by the present invention is to overcome the problem of low withstand voltage of the semiconductor device with the electrostatic discharge protection structure.
为了解决上述的技术问题,本发明所采用的其中一技术方案是,提供一种半导体组件的制造方法。前述的制造方法包括下列步骤。形成一磊晶层于一基材上,磊晶层被区分为至少一组件区以及一静电防护区。在组件区形成第一基体区以及在静电防护区形成第二基体区。在磊晶层的表面上形成一叠层结构,叠层结构位于静电防护区,并包括一绝缘层以及位于绝缘层上的一半导体层,半导体层具有一第一重掺杂区。半导体层内形成至少一第二重掺杂区,该第二重掺杂区与该第一重掺杂区共同形成一静电防护层。静电防护层位于所述第二基体区上方,且静电防护层完全重叠于所述第二基体区范围内。In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a method for manufacturing a semiconductor device. The aforementioned manufacturing method includes the following steps. An epitaxial layer is formed on a substrate, and the epitaxial layer is divided into at least one component area and an electrostatic protection area. A first base region is formed in the component region and a second base region is formed in the electrostatic protection region. A stacked structure is formed on the surface of the epitaxial layer, the stacked structure is located in the electrostatic protection area, and includes an insulating layer and a semiconductor layer on the insulating layer, and the semiconductor layer has a first heavily doped region. At least one second heavily doped region is formed in the semiconductor layer, and the second heavily doped region and the first heavily doped region together form an electrostatic protection layer. The electrostatic protection layer is located above the second base region, and the electrostatic protection layer completely overlaps within the range of the second base region.
本发明所采用的另一技术方案是,提供一种半导体组件,其被区分为一组件区以及一静电防护区,且所述半导体组件包括一磊晶层、一栅极结构以及一静电防护层。磊晶层包括位于组件区的一第一基体区以及位于静电防护区的一第二基体区。栅极结构设置于组件区内,并至少连接于第一基体区。静电防护层设置于磊晶层的一表面上并与磊晶层隔离。静电防护层位于所述第二基体区上方,且静电防护层完全重叠于所述第二基体区范围内。Another technical solution adopted by the present invention is to provide a semiconductor device, which is divided into a device region and an electrostatic protection region, and the semiconductor device includes an epitaxial layer, a gate structure and an electrostatic protection layer . The epitaxial layer includes a first base region located in the device region and a second base region located in the electrostatic protection region. The gate structure is arranged in the device region and connected to at least the first base region. The electrostatic protection layer is disposed on a surface of the epitaxial layer and is isolated from the epitaxial layer. The electrostatic protection layer is located above the second base region, and the electrostatic protection layer completely overlaps within the range of the second base region.
本发明的有益效果在于,本发明所提供的半导体组件及其制造方法,其通过“静电防护层完全重叠于所述第二基体区范围内”的技术手段,可以使具有静电防护层的半导体组件符合静电放电防护标准,又可具有较高的耐压。The beneficial effect of the present invention is that, in the semiconductor device and the manufacturing method thereof provided by the present invention, the semiconductor device with the electrostatic protection layer can be made by the technical means of "the electrostatic protection layer completely overlaps the second base region". Meet the electrostatic discharge protection standard, but also have a higher withstand voltage.
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。For further understanding of the features and technical content of the present invention, please refer to the following detailed description and accompanying drawings of the present invention. However, the accompanying drawings are only for reference and description, not for limiting the present invention.
附图说明Description of drawings
图1绘示本发明其中一实施例的半导体组件的流程图。图2A为本发明实施例的半导体组件在制造流程中的局部剖面示意图。FIG. 1 is a flowchart illustrating a semiconductor device according to an embodiment of the present invention. 2A is a partial cross-sectional schematic diagram of a semiconductor device in a manufacturing process according to an embodiment of the present invention.
图2B为本发明实施例的半导体组件在制造流程中的局部剖面示意图。FIG. 2B is a partial cross-sectional schematic diagram of the semiconductor device in the manufacturing process according to the embodiment of the present invention.
图2C为本发明实施例的半导体组件在制造流程中的局部剖面示意图。FIG. 2C is a schematic partial cross-sectional view of the semiconductor device in the manufacturing process according to the embodiment of the present invention.
图2D为本发明实施例的半导体组件在制造流程中的局部剖面示意图。FIG. 2D is a schematic partial cross-sectional view of the semiconductor device in the manufacturing process according to the embodiment of the present invention.
图2E为本发明实施例的半导体组件在制造流程中的局部剖面示意图。FIG. 2E is a partial cross-sectional schematic diagram of the semiconductor device in the manufacturing process according to the embodiment of the present invention.
图2F为本发明实施例的半导体组件在制造流程中的局部剖面示意图。FIG. 2F is a partial cross-sectional schematic diagram of the semiconductor device in the manufacturing process according to the embodiment of the present invention.
图2G为本发明实施例的半导体组件在制造流程中的局部剖面示意图。2G is a partial cross-sectional schematic diagram of the semiconductor device in the manufacturing process according to the embodiment of the present invention.
图3为本发明一实施例的半导体组件的局部剖面示意图。3 is a schematic partial cross-sectional view of a semiconductor device according to an embodiment of the present invention.
图4为本发明另一实施例的半导体组件在制造流程中的局部剖面示意图。FIG. 4 is a partial cross-sectional schematic diagram of a semiconductor device in a manufacturing process according to another embodiment of the present invention.
图5为本发明又一实施例的半导体组件在制造流程中的局部剖面示意图。FIG. 5 is a partial cross-sectional schematic diagram of a semiconductor device in a manufacturing process according to another embodiment of the present invention.
图6为本发明一实施例的半导体组件的局部剖面示意图。6 is a schematic partial cross-sectional view of a semiconductor device according to an embodiment of the present invention.
具体实施方式Detailed ways
请参阅图1。图1为本发明一实施例的半导体组件的制造方法的流程图。具体而言,本发明提供具有静电防护层的半导体组件的制造方法,并至少具有下列步骤。See Figure 1. FIG. 1 is a flowchart of a method for manufacturing a semiconductor device according to an embodiment of the present invention. Specifically, the present invention provides a method for manufacturing a semiconductor device with an electrostatic protection layer, which includes at least the following steps.
在步骤S100中,形成一磊晶层于一基材上,其中,磊晶层被区分为至少一组件区以及一静电防护区。在步骤S110中,分别在组件区以及静电防护区内形成一第一基体区以及一第二基体区。在步骤S120中,在磊晶层的表面上形成位于静电防护区的一叠层结构,叠层结构包括一绝缘层以及位于绝缘层上的一半导体层,其中,半导体层具有一第一重掺杂区。在步骤S130中,在半导体层内形成至少一第二重掺杂区,第二重掺杂区与第一重掺杂区共同形成一静电防护层。静电防护层位于第二基体区上方,且静电防护层完全重叠于所述第二基体区范围内。In step S100, an epitaxial layer is formed on a substrate, wherein the epitaxial layer is divided into at least one component area and an electrostatic protection area. In step S110, a first base area and a second base area are formed in the component area and the electrostatic protection area, respectively. In step S120, a stacked structure is formed on the surface of the epitaxial layer in the electrostatic protection region, the stacked structure includes an insulating layer and a semiconductor layer on the insulating layer, wherein the semiconductor layer has a first re-doping Miscellaneous area. In step S130, at least one second heavily doped region is formed in the semiconductor layer, and the second heavily doped region and the first heavily doped region together form an electrostatic protection layer. The electrostatic protection layer is located above the second base region, and the electrostatic protection layer completely overlaps the second base region.
以下将详细说明半导体组件的制造方法中的具体步骤。在本实施例中,以沟道式半导体功率组件为例,来详细说明本发明实施例的制造方法。The specific steps in the manufacturing method of the semiconductor component will be described in detail below. In this embodiment, a trench-type semiconductor power device is taken as an example to describe the manufacturing method of the embodiment of the present invention in detail.
请参照图2A,其显示本发明一实施例的半导体组件在制造流程中的局部剖面示意图。基材10上已经形成一磊晶层(epitaxial layer)11。基材10例如为硅基板(siliconsubstrate),其具有高掺杂浓度的第一型导电性杂质,以作为半导体功率组件的漏极(drain)。Please refer to FIG. 2A , which shows a partial cross-sectional schematic diagram of a semiconductor device in a manufacturing process according to an embodiment of the present invention. An
前述的第一导电型杂质可以是N型或P型导电性杂质。假设基材10为硅基材,N型导电性杂质为五价元素离子,例如磷离子或砷离子,而P型导电性杂质为三价元素离子,例如硼离子、铝离子或镓离子。The aforementioned first conductivity type impurities may be N-type or P-type conductivity impurities. Assuming that the
若沟道式功率半导体组件为N型功率金氧半场效晶体管,基材10掺杂N型导电性杂质。另一方面,若沟道式功率半导体组件为P型沟道式功率金氧半场效晶体管,则基材10掺杂P型导电性杂质。If the channel-type power semiconductor device is an N-type power MOSFET, the
磊晶层11”形成于基材10上方,并具有低浓度的第一型导电性杂质。以NMOS晶体管为例,基材10为高浓度的N型掺杂(N+),而磊晶层11”则为低浓度的N型掺杂(N-)。反之,以PMOS晶体管为例,基材10为高浓度的P型掺杂(P+doping),而磊晶层11”则为低浓度的P型掺杂(P-doping)。The
在本实施例中,磊晶层11”具有一表面11s,且磊晶层11”被区分为一组件区R1以及一静电防护区R2。须说明的是,虽然图2A绘示静电防护区R2被组件区R1围绕,但本发明并不限制静电防护区R2与组件区R1的配置位置。在另一实施例中,组件区R1可位于静电防护区R2的其中一侧。在又一实施例中,组件区R1可被静电防护区R2围绕。也就是说,静电防护区R2与组件区R1的配置位置以及形状可以根据实际需求更改,本发明并不限制。In this embodiment, the
如图2A所示,至少一栅极结构12(图2A绘示多个为例)已经被形成于组件区R1内,且栅极结构12包括一闸绝缘层120以及一栅极121。另外,栅极结构12可以是平面式栅极结构或者是沟道式栅极结构。As shown in FIG. 2A , at least one gate structure 12 (a plurality of which are shown in FIG. 2A as an example) has been formed in the device region R1 , and the
在本实施例中,栅极结构12为沟道式栅极结构。在形成栅极结构12的步骤中,先在磊晶层11”内形成多个位于组件区R1内的沟道11h,之后在沟道11h内依序形成闸绝缘层120以与栅极121。In this embodiment, the
如图2A所示,对磊晶层11”执行一基体掺杂步骤20,以在组件区R1形成一第一初始基体掺杂区111’以及在静电防护区R2形成一第二初始基体掺杂区112’。As shown in FIG. 2A , a
请参照图2B,依序形成一初始绝缘层13’以及一未掺杂半导体层14P于磊晶层11”的表面11s。初始绝缘层13’会覆盖磊晶层11”的整个表面11s。初始绝缘层13’的材料可以选择氧化物或者氮化物,如:氧化硅或者氮化硅。2B, an initial insulating layer 13' and an
另外,初始绝缘层13’的厚度,是对应于半导体功率组件的闸源极偏压(Vgs)的大小来调整。当半导体功率组件的闸源极电压(Vgs)越大,初始绝缘层13’的厚度越厚。In addition, the thickness of the initial insulating layer 13' is adjusted according to the magnitude of the gate-source bias (Vgs) of the semiconductor power device. When the gate-source voltage (Vgs) of the semiconductor power device is larger, the thickness of the initial insulating layer 13' is thicker.
未掺杂半导体层14P被形成于初始绝缘层13’上,以与磊晶层11”隔离。未掺杂半导体层14P可以是一未掺杂多晶硅层。之后,对未掺杂半导体层14P执行一重掺杂步骤30。The
请参照图2C,执行一基体热趋入步骤,以在磊晶层11’内形成第一基体区111与第二基体区112。另一方面,在基体热趋入步骤中,也会同步地在未掺杂半导体层14P内形成第一重掺杂区140’,而形成一初始半导体层14”。Referring to FIG. 2C, a step of thermally immersing a body is performed to form a
在本实施例中,在重掺杂步骤30与基体掺杂步骤20中,都是使用具有相同导电型的杂质。也就是说,第一重掺杂区140’、第一基体区111以及第二基体区112都会具有相同的导电型,但仅做为举例,并不限制本发明。在其他实施例中,也可以对第一重掺杂区140’、第一基体区111以及第二基体区112做不同导电型加入额外制程步骤达到掺杂结果。In this embodiment, impurities with the same conductivity type are used in the
须说明的是,在本实施例中,形成初始半导体层14”的步骤,是在执行基体热趋入步骤之前完成。然而,在其他实施例中,也可以先执行基体热趋入步骤,来形成第一基体区111与第二基体区112。之后,再执行另一次热趋入步骤,以形成具有第一重掺杂区140'的初始半导体层14”。It should be noted that, in this embodiment, the step of forming the
在其他实施例中,也可以先形成第一基体区111以及第二基体区112在磊晶层11”内之后,再形成位于组件区R1内的栅极结构12。In other embodiments, the
如图2C所示,第一基体区111位于磊晶层11’的组件区R1内,并围绕栅极结构12。磊晶层11’中的其他区域形成沟道式半导体组件的漂移区110’。第二基体区112位于静电防护区R2内,并连接于初始绝缘层13’。As shown in FIG. 2C , the
请参照图2D,去除位于组件区R1的一部分初始绝缘层13’以及一部分初始半导体层14”,以形成位于静电防护区R2的一叠层结构P1’。Referring to FIG. 2D, a part of the initial insulating layer 13' and a part of the
具体而言,可在初始半导体层14”上形成光阻层PR,以定义出叠层结构P1’的位置,再执行一蚀刻步骤,去除位于组件区R1的一部分初始半导体层14”以及一部分初始绝缘层13’。另一部分被光阻层PR所覆盖的初始半导体层14”以及初始绝缘层13’会被保留,而形成在静电防护区R2的叠层结构P1’。Specifically, a photoresist layer PR can be formed on the initial semiconductor layer 14'' to define the position of the stacked structure P1', and then an etching step is performed to remove a part of the initial semiconductor layer 14'' and a part of the initial semiconductor layer 14'' located in the device region R1. insulating layer 13'. The other part of the initial semiconductor layer 14'' and the initial insulating layer 13' covered by the photoresist layer PR will remain to form the stacked structure P1' in the electrostatic protection region R2.
据此,叠层结构P1’包括位于静电防护区R2内的半导体层14’以及一绝缘层13,且半导体层14’内具有第一重掺杂区140’。通过上述步骤来形成叠层结构P1’,可以避免叠层结构P1’的位置偏移,而导致半导体层14’与磊晶层11’直接接触。在本实施例中,半导体层14’的横向宽度会与绝缘层13的横向宽度大致相同。具体而言,半导体层14’的宽度与绝缘层13的宽度之间的差值小于0.5um。Accordingly, the stacked structure P1' includes a semiconductor layer 14' and an insulating
请参照图2E,在半导体层14’内再形成至少一第二重掺杂区141,使至少一第二重掺杂区141与第一重掺杂区140共同形成一静电防护层14。静电防护层14设置于绝缘层13上,并且静电防护层14与绝缘层13共同形成静电防护叠层P1。Referring to FIG. 2E, at least one second heavily doped
详细而言,在半导体层14’上可预先形成屏蔽图案层(图未示),以定义出第二重掺杂区141的位置。之后,通过依序进行一掺杂步骤以及一热趋入步骤,可在半导体层14’内形成第二重掺杂区141。In detail, a mask pattern layer (not shown) may be pre-formed on the semiconductor layer 14' to define the position of the second heavily doped
第二重掺杂区141与第一重掺杂区140分别具有相反的导电型。因此,在第二重掺杂区141与第一重掺杂区140之间的交界面会形成一PN接面。The second heavily doped
在图2E的实施例中,在半导体层14’内形成两个彼此分离的第二重掺杂区141,且第一重掺杂区140位于两个第二重掺杂区141之间,而形成三极管(bipolar diode),如:PNP三极管或者是NPN三极管。In the embodiment of FIG. 2E , two second heavily doped
另外,在形成第二重掺杂区141的步骤中,可同步地在组件区R1内形成至少一第一源极区113a(图2E绘示多个)。据此,第一源极区113a与第二重掺杂区141会具有相同的导电型。In addition, in the step of forming the second heavily doped
须说明的是,可以通过改变屏蔽图案层,来调整第二重掺杂区141的位置,而形成不同的静电防护层14。请先参照图4,其显示本发明另一实施例的半导体组件在制造流程中的剖面示意图,且可接续图2D的步骤。It should be noted that the position of the second heavily doped
在图4的实施例中,在半导体层14’内只形成一第二重掺杂区141,而形成PN接面二极管(diode)。因此,只要能达到静电放电保护的效果,静电防护层14可以是三极管、PN二极管或者是其他组件。In the embodiment of FIG. 4, only a second heavily doped
请再参照图5,其显示本发明另一实施例的半导体组件在制造流程中的剖面示意图,且可接续图2D的步骤。在形成第二重掺杂区141的步骤中,可同步地在组件区R1内形成至少一第一源极区113a(图5绘示多个)以及静电防护区R2内形至少一第二源极区113b(图5绘示两个)。Please refer to FIG. 5 again, which shows a schematic cross-sectional view of a semiconductor device in a manufacturing process according to another embodiment of the present invention, and the steps of FIG. 2D can be continued. In the step of forming the second heavily doped
在图5的实施例中,第一源极区113a位于第一基体区111上方,并连接于至少一栅极结构12。另外,第二基体区112具有一延伸部分112a,且延伸部分112a会连接到最靠近静电防护区R2的栅极结构12。第二源极区113b形成于延伸部分112a上面部份,并连接最靠近静电防护区R2的栅极结构12。In the embodiment of FIG. 5 , the
值得注意的是,通过上述步骤,可一并在组件R1形成晶体管结构,以及在静电防护区R2形成静电防护叠层P1。据此,本发明实施例的制程步骤中,形成静电防护叠层P1的步骤可以与形成晶体管结构的步骤整合,进而降低制造成本。It is worth noting that, through the above steps, the transistor structure can be formed in the element R1 and the electrostatic protection stack P1 can be formed in the electrostatic protection region R2. Accordingly, in the process steps of the embodiment of the present invention, the step of forming the electrostatic protection stack P1 can be integrated with the step of forming the transistor structure, thereby reducing the manufacturing cost.
请参照图2F、图2G以及图3,形成一重分布线路结构,以使晶体管结构以及静电防护叠层P1可电性连接于一外部控制电路。详细而言,如图2F所示,形成一层间介电层15’于静电防护层14以及磊晶层11的表面11s上。接着,如图2G所示,在层间介电层15形成多个接触窗15h,以及在多个接触窗15h内形成多个导电结构16。Referring to FIGS. 2F , 2G and 3 , a redistribution circuit structure is formed, so that the transistor structure and the electrostatic protection stack P1 can be electrically connected to an external control circuit. In detail, as shown in FIG. 2F , an interlayer dielectric layer 15' is formed on the
导电结构16包括多个第一导电柱161与多个第二导电柱162。每一个第一导电柱161通过对应的接触窗15h,电性连接于对应的第一源极区113a。每一个第二导电柱162通过对应的接触窗15h电性连接于静电防护层14的第一重掺杂区140或者第二重掺杂区141。另外,第一重掺杂区140可接亦可不接第二导电柱162,可视应用需求决定。The
请参照图3,显示本发明实施例的半导体组件的局部剖面示意图。在本实施例中,还进一步在层间介电层15上形成一接垫组17。接垫组17包括多个第一接垫171以及多个第二接垫172。第一接垫171通过对应的第一导电柱161电性连接于第一源极区113a以及第二源极区113b。第二接垫172通过对应的第二导电柱162电性连接于第一重掺杂区140或者第二重掺杂区141。Referring to FIG. 3 , a partial cross-sectional schematic diagram of a semiconductor device according to an embodiment of the present invention is shown. In this embodiment, a
之后,形成一保护层18于接垫组17上。保护层18具有多个开口,每一开口暴露出对应的第一接垫171(或第二接垫172),以使多个第一接垫171与多个第二接垫172可电性连接至外部控制电路。After that, a
据此,如图3所示,本发明实施例提供一种整合静电防护层14的半导体组件M1。半导体组件M1例如是沟道式金属氧化物场效应管、侧向扩散金属氧化物场效应管或者平面式金属氧化物场效应管等。Accordingly, as shown in FIG. 3 , an embodiment of the present invention provides a semiconductor device M1 integrating the
半导体组件M1可被区分为组件区R1与静电防护区R2。静电防护区R2的面积实际应用需求来调整。若半导体组件M1需要符合较高的静电放电防护规格,也就是具有较大的静电放电承受能力,静电防护区R2的面积也会越大。The semiconductor device M1 can be divided into a device region R1 and an electrostatic protection region R2. The area of the electrostatic protection area R2 can be adjusted according to the actual application requirements. If the semiconductor component M1 needs to meet higher electrostatic discharge protection specifications, that is, has a greater electrostatic discharge withstand capability, the area of the electrostatic protection area R2 will be larger.
半导体组件M1包括基材10、磊晶层11、栅极结构12以及静电防护叠层P1。磊晶层11设置于基材10上,并具有漂移区110、第一基体区111、第二基体区112以及第一源极区113a。漂移区110位于磊晶层11内靠近基材10的一侧,并由组件区R1延伸至静电防护区R2。The semiconductor device M1 includes a
第一基体区111位于组件区R1内,并位于远离基材10的一侧。也就是说,第一基体区111位于漂移区110上方。另外,第一源极区113a位于第一基体区111上方,并连接于磊晶层11的表面11s。The
第二基体区112位于静电防护区R2内,并位于磊晶层11内远离基材10的一侧,也就是位于漂移区110上方。The
当半导体组件M1为沟道式金属氧化物场效应管时,磊晶层11还包括位于组件区R1内的至少一个沟道11h,且栅极结构12设置在沟道11h内。When the semiconductor device M1 is a channel-type MOSFET, the
如图3所示,栅极结构12包括一闸绝缘层120以及一栅极121。闸绝缘层120覆盖于沟道11h的内壁面,以使栅极121与磊晶层11电性绝缘。位于组件区R1内的栅极结构12会连接于第一基体区111以及第一源极区113a。As shown in FIG. 3 , the
在本实施例中,第二基体区112会连接于最靠近静电防护区R2的栅极结构12。In this embodiment, the
静电防护叠层P1设置于磊晶层11上,并位于静电防护区R2,用以保护半导体组件M1免于静电放电损害。静电防护叠层P1包括一绝缘层13以及一静电防护层14,且绝缘层13是位于静电防护层14与磊晶层11之间,以使静电防护层14与第二基体区112隔绝。据此,绝缘层13会直接连接于第二基体区112。The electrostatic protection stack P1 is disposed on the
另外,由于静电防护层14的其中一端点会与栅极121共电位,因此绝缘层13的厚度可根据施加于半导体组件M1的源栅极偏压(Vgs)来决定。当源栅极偏压(Vgs)越大时,绝缘层13的厚度需要越厚。In addition, since one terminal of the
静电防护层14包括至少一第一重掺杂区140以及至少一第二重掺杂区141。在一实施例中,第一重掺杂区140与第一基体区111以及第二基体区112具有相同的导电型,例如都是P型掺杂区。第二重掺杂区141与第一源极区113a具有相同的导电型,例如都是N型掺杂区,但本发明并不限制。也可以做不同导电型加入额外制程步骤达到掺杂结果。The
另外,静电防护层14的横向宽度与绝缘层13的横向宽度大致相同。进一步而言,静电防护层14的宽度与绝缘层13的宽度之间的差值小于0.5um。在一实施例中,静电防护层14位于第二基体区112上方,且静电防护层14完全重叠于第二基体区112范围内。In addition, the lateral width of the
值得说明的是,本发明实施例的静电防护层14的位于所述第二基体区上方,且静电防护层完全重叠于所述第二基体区范围内,相较于现有的半导体功率组件,本发明实施例的静电防护叠层P1的底部不会直接连接漂移区110,而只会连接第二基体区112。因此,在静电防护区R2内,第二基体区112与漂移区110之间所形成的交界面大致沿着平行表面11s的方向延伸。It should be noted that the
由于在本发明所提供的半导体组件M1中,静电防护叠层P1只连接第二基体区112,因此当半导体组件M1运作时,在第二基体区112与漂移区110的交界面的电场强度较均匀,从而使本发明实施例的半导体组件M1具有较高的耐压。据此,相较于现有的半导体功率组件,本发明实施例的半导体组件M1除了具有静电放电防护能力,还具有一定的耐压能力。In the semiconductor device M1 provided by the present invention, the electrostatic protection stack P1 is only connected to the
请参照图6,显示本发明另一实施例的半导体组件的局部剖面示意图。本实施例与图3的实施例相同的组件具有相同的标号,且相同的部分不再赘述。Referring to FIG. 6 , a partial cross-sectional schematic diagram of a semiconductor device according to another embodiment of the present invention is shown. The same components in this embodiment as those in the embodiment in FIG. 3 have the same reference numerals, and the same parts will not be described again.
本实施例与图3的实施例之间的差异在于,本实施例的半导体组件M2中,栅极结构12为平面式栅极结构。也就是说,栅极结构12是设置在磊晶层11的表面11s上。另外,在组件区R1内,磊晶层11包括多个彼此分离的第一基体区111,且每一个第一源极区113a分别被对应的第一基体区111围绕。The difference between this embodiment and the embodiment of FIG. 3 is that in the semiconductor device M2 of this embodiment, the
另外,在本实施例中,第二基体区112会连接至最靠近静电防护区R2的栅极结构12。具体而言,第二基体区112会连接到栅极结构12的闸绝缘层120。In addition, in this embodiment, the
本发明实施例的制造方法也可用来形成半导体组件M2。具体而言,可在形成第一基体区111与第二基体区112之后,再于组件区R1内,形成栅极结构12于磊晶层11的表面11s上。The manufacturing method of the embodiment of the present invention can also be used to form the semiconductor device M2. Specifically, the
据此,在本发明的半导体组件的制造方法中,只要在静电防护叠层P1下方可形成与其完全重叠的第二基体区112,步骤的顺序皆可根据半导体组件本身的结构或是制程需求来调整。Accordingly, in the manufacturing method of the semiconductor device of the present invention, as long as the
综合上述,本发明的有益效果在于本发明技术方案所提供的半导体组件及其制造方法,其通过“形成静电防护叠层P1之前,先在磊晶层11内形成位于静电防护区R2的第二基体区112”以及“静电防护层完全重叠于所述第二基体区范围内”的技术手段,可以使具有静电防护叠层P1的半导体组件符合静电放电防护标准,又可具有较高的耐压。To sum up the above, the beneficial effect of the present invention lies in the semiconductor device and the manufacturing method thereof provided by the technical solution of the present invention. The
另外,本发明实施例的半导体组件制造方法中,在静电防护区R2形成静电防护叠层P1的步骤可以与在组件R1形成晶体管结构的步骤整合,进而降低制造成本。In addition, in the semiconductor device manufacturing method of the embodiment of the present invention, the step of forming the electrostatic protection stack P1 in the electrostatic protection region R2 can be integrated with the step of forming the transistor structure in the device R1, thereby reducing the manufacturing cost.
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的申请专利范围,所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的申请专利范围内。The contents disclosed above are only preferred feasible embodiments of the present invention, and are not intended to limit the scope of the present invention. Therefore, any equivalent technical changes made by using the contents of the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.
符号说明Symbol Description
半导体组件 M1、M2Semiconductor components M1, M2
基材 10
磊晶层 11、11’、11”Epitaxial layers 11, 11', 11"
组件区 R1Component area R1
静电防护区 R2Static protection zone R2
沟道 11h
表面 11s
漂移区 110、110’
第一基体区 111
第二基体区 112
延伸部分 112a
第一源极区 113aThe
第二源极区 113bThe
栅极结构 12
闸绝缘层 120
栅极 121
初始绝缘层 13’Initial insulating layer 13'
未掺杂半导体层 14P
叠层结构 P1’Laminated structure P1’
初始半导体层 14”
半导体层 14’Semiconductor layer 14'
静电防护叠层 P1ESD Protection Laminate P1
绝缘层 13
静电防护层 14
第一重掺杂区 140、140’The first heavily doped
第二重掺杂区 141Second heavily doped
层间介电层 15、15’
接触窗 15hContact
导电结构 16
第一导电柱 161The first
第二导电柱 162The second
接垫组 17
第一接垫 171
第二接垫 172
保护层 18
基体掺杂步骤 20
重掺杂步骤 30
第一初始基体掺杂区 111’The first initial base doping region 111'
第二初始基体掺杂区 112’second initial base doping region 112'
光阻层 PRPhotoresist layer PR
流程步骤 S100~S130Process steps S100~S130
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811625563.4A CN111384148A (en) | 2018-12-28 | 2018-12-28 | Semiconductor component and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811625563.4A CN111384148A (en) | 2018-12-28 | 2018-12-28 | Semiconductor component and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111384148A true CN111384148A (en) | 2020-07-07 |
Family
ID=71218045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811625563.4A Pending CN111384148A (en) | 2018-12-28 | 2018-12-28 | Semiconductor component and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111384148A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090140333A1 (en) * | 2007-11-29 | 2009-06-04 | Mengyu Pan | Method for preventing gate oxide damage of a trench MOSFET during wafer processing while adding an ESD protection module atop |
US20130075810A1 (en) * | 2011-09-27 | 2013-03-28 | Force Mos Technology Co., Ltd. | Semiconductor power devices integrated with a trenched clamp diode |
CN105470309A (en) * | 2016-01-06 | 2016-04-06 | 无锡新洁能股份有限公司 | Low-voltage MOSFET device with antistatic protection structure and manufacturing method therefor |
CN209249463U (en) * | 2018-12-28 | 2019-08-13 | 无锡旭康微电子有限公司 | Semiconductor subassembly |
-
2018
- 2018-12-28 CN CN201811625563.4A patent/CN111384148A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090140333A1 (en) * | 2007-11-29 | 2009-06-04 | Mengyu Pan | Method for preventing gate oxide damage of a trench MOSFET during wafer processing while adding an ESD protection module atop |
US20130075810A1 (en) * | 2011-09-27 | 2013-03-28 | Force Mos Technology Co., Ltd. | Semiconductor power devices integrated with a trenched clamp diode |
CN105470309A (en) * | 2016-01-06 | 2016-04-06 | 无锡新洁能股份有限公司 | Low-voltage MOSFET device with antistatic protection structure and manufacturing method therefor |
CN209249463U (en) * | 2018-12-28 | 2019-08-13 | 无锡旭康微电子有限公司 | Semiconductor subassembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102971855B (en) | Semiconductor device and manufacture method thereof | |
CN203377216U (en) | Semiconductor device | |
US6495863B2 (en) | Semiconductor device having diode for input protection circuit of MOS structure device | |
JP7327672B2 (en) | semiconductor equipment | |
US9876006B2 (en) | Semiconductor device for electrostatic discharge protection | |
JPH08130308A (en) | Semiconductor device | |
US10978870B2 (en) | Electrostatic discharge protection device | |
KR102255545B1 (en) | A semiconductor device and a method of manufacturing a semiconductor device | |
JP5957171B2 (en) | Semiconductor device and manufacturing method thereof | |
CN110120414B (en) | Transistor structure | |
CN107146814B (en) | High voltage semiconductor device and method for manufacturing the same | |
TW202221889A (en) | High-voltage semiconductor device | |
US20100102379A1 (en) | Lateral diffused metal oxide semiconductor device | |
CN209249463U (en) | Semiconductor subassembly | |
TWI708364B (en) | Semiconductor device and manufacturing method thereof | |
CN111384148A (en) | Semiconductor component and method of manufacturing the same | |
JP5876008B2 (en) | Semiconductor device | |
CN115989583A (en) | Semiconductor device with a plurality of semiconductor chips | |
CN114520264A (en) | High voltage semiconductor device | |
JP6972691B2 (en) | Semiconductor devices and methods for manufacturing semiconductor devices | |
US20150035587A1 (en) | Semiconductor device and operating method for the same | |
US9059283B1 (en) | Semiconductor structure | |
TWI678790B (en) | Electrostatic discharge protection device | |
US20240145590A1 (en) | Semiconductor structure and method for forming same | |
JP5569526B2 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |