CN111321241B - Molecular marker of wheat thousand-grain weight and grain length gene TaGS3-4A and application thereof - Google Patents
Molecular marker of wheat thousand-grain weight and grain length gene TaGS3-4A and application thereof Download PDFInfo
- Publication number
- CN111321241B CN111321241B CN202010153981.9A CN202010153981A CN111321241B CN 111321241 B CN111321241 B CN 111321241B CN 202010153981 A CN202010153981 A CN 202010153981A CN 111321241 B CN111321241 B CN 111321241B
- Authority
- CN
- China
- Prior art keywords
- wheat
- tags3
- molecular marker
- molecular
- caps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000209140 Triticum Species 0.000 title claims abstract description 97
- 235000021307 Triticum Nutrition 0.000 title claims abstract description 97
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 71
- 239000003147 molecular marker Substances 0.000 title claims abstract description 65
- 235000013339 cereals Nutrition 0.000 title claims abstract description 40
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 27
- 102000054766 genetic haplotypes Human genes 0.000 claims abstract description 23
- 230000003321 amplification Effects 0.000 claims description 16
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 16
- 238000012408 PCR amplification Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 11
- 230000029087 digestion Effects 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 8
- 238000004925 denaturation Methods 0.000 claims description 8
- 230000036425 denaturation Effects 0.000 claims description 8
- 238000001962 electrophoresis Methods 0.000 claims description 8
- 238000012257 pre-denaturation Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims 1
- 239000002773 nucleotide Substances 0.000 abstract description 28
- 125000003729 nucleotide group Chemical group 0.000 abstract description 28
- 238000009395 breeding Methods 0.000 abstract description 14
- 230000001488 breeding effect Effects 0.000 abstract description 14
- 108020004414 DNA Proteins 0.000 description 24
- 239000000463 material Substances 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 7
- 238000012098 association analyses Methods 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 238000010367 cloning Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 108700028369 Alleles Proteins 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000003753 real-time PCR Methods 0.000 description 3
- 238000002864 sequence alignment Methods 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 210000005069 ears Anatomy 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 208000002109 Argyria Diseases 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 101150044508 key gene Proteins 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及小麦分子生物技术与育种应用领域,具体地说是一种小麦千粒重和粒长基因TaGS3-4A的分子标记及其应用。The invention relates to the field of wheat molecular biotechnology and breeding applications, in particular to a molecular marker of wheat thousand-grain weight and grain length gene TaGS3-4A and application thereof.
背景技术Background Art
小麦(Triticumaestivum L.)是世界上最重要的粮食作物之一,提高产量是小麦最重要的育种目标。亩穗数、穗粒数和粒重共同构成产量三要素,其中粒重遗传力高、表型稳定,高产育种过程中对粒重的选择最为有效(Alexander et al.,1984),而增加粒长和粒宽是提高小麦粒重的有效方式。我国小麦增产过程中粒重的提高发挥了关键作用,千粒重由上世纪40年代的31.5g提高到近年的44.64g,平均每十年提高2.19g(Wang et al.,2012;Zhang et al.,2012)。克隆小麦中调控籽粒大小的关键基因,发掘优异等位变异,开发功能标记,将有效丰富小麦高产基因资源,促进小麦高产分子育种的发展。Wheat (Triticum aestivum L.) is one of the most important food crops in the world, and increasing yield is the most important breeding goal for wheat. The number of spikes per mu, the number of grains per spike, and grain weight together constitute the three elements of yield. Among them, grain weight has high heritability and stable phenotype. The selection of grain weight in high-yield breeding is the most effective (Alexander et al., 1984), and increasing grain length and width is an effective way to increase wheat grain weight. The increase in grain weight has played a key role in the increase of wheat yield in my country. The thousand-grain weight has increased from 31.5g in the 1940s to 44.64g in recent years, with an average increase of 2.19g every ten years (Wang et al., 2012; Zhang et al., 2012). Cloning the key genes that regulate grain size in wheat, discovering excellent alleles, and developing functional markers will effectively enrich the genetic resources of high-yield wheat and promote the development of molecular breeding for high-yield wheat.
同源克隆是挖掘新基因的重要途径,利用微核心种质(MCC)进行基因优异等位变异的筛选已广为应用(郝晨阳等,2008)。近几年,已同源克隆了多个与籽粒大小相关的基因,分析其优异等位变异,并开发了分子标记(Ma et al.,2012;Chang et al.,2013)。Su等(2011)发现,在TaGW2-6A启动子区域存在Hap-6A-A和Hap-6A-G两种单倍型。Hap-6A-A增加千粒重达3g以上,为优异单倍型,在育种中被强烈选择。Jiang等(2011)报道,TaSus2的两种单倍型Hap-H和Hap-L与千粒重相关,而且高千粒重相关的单倍型Hap-H在育成品种中被强烈选择。Zhang等(2012)鉴定出TaCKX6-D1的5种单倍型,其中Hap-a与高千粒重显著相关,为优异单倍型。Zhang等(2014)对TaGS-D1进行标记/性状关联分析,在175个育成品种中检测到TaGS-D1a与高千粒重显著相关。Jiang等(2015)对TaCWI-4A和TaCWI-5D开展标记/性状关联分析,在我国348个主要育成品种中检测到Hap-5D-C与高千粒重显著关联。Ma(2016)利用TaGS5的等位变异开发了区分TaGS5-3A-T和TaGS5-3A-G的CAPS标记,关联分析发现TaGS5-3A-T与籽粒大小和粒重相关。总之,行业内的相关研究人员正在积极地克隆与高产相关的基因并开发相关的分子标记,以利用分子标记辅助选择育种,为提高目标性状选择,达到改良作物的目的。但是,迄今为止,行业内还没有报到关于小麦基因TaGS3-4A的千粒重和粒长的优异单倍型,因此克隆小麦调控籽粒大小的关键基因,发掘优异等位变异,开发增加小麦千粒重和粒长的功能标记,为小麦分子辅助育种、选育更多高产小麦品种增加一条新的有效途径。Homologous cloning is an important way to discover new genes. The use of micro core germplasm (MCC) to screen for excellent allelic variation of genes has been widely used (Hao Chenyang et al., 2008). In recent years, multiple genes related to grain size have been homologously cloned, their excellent allelic variation has been analyzed, and molecular markers have been developed (Ma et al., 2012; Chang et al., 2013). Su et al. (2011) found that there were two haplotypes, Hap-6A-A and Hap-6A-G, in the promoter region of TaGW2-6A. Hap-6A-A increased the thousand-grain weight by more than 3g, which is an excellent haplotype and is strongly selected in breeding. Jiang et al. (2011) reported that the two haplotypes of TaSus2, Hap-H and Hap-L, were associated with thousand-grain weight, and the haplotype Hap-H associated with high thousand-grain weight was strongly selected in the breeding varieties. Zhang et al. (2012) identified five haplotypes of TaCKX6-D1, among which Hap-a was significantly associated with high 1000-grain weight and was an excellent haplotype. Zhang et al. (2014) conducted marker/trait association analysis on TaGS-D1 and detected that TaGS-D1a was significantly associated with high 1000-grain weight in 175 bred varieties. Jiang et al. (2015) conducted marker/trait association analysis on TaCWI-4A and TaCWI-5D and detected that Hap-5D-C was significantly associated with high 1000-grain weight in 348 major bred varieties in my country. Ma (2016) used the allelic variation of TaGS5 to develop CAPS markers to distinguish TaGS5-3A-T and TaGS5-3A-G. Association analysis found that TaGS5-3A-T was associated with grain size and grain weight. In short, relevant researchers in the industry are actively cloning genes related to high yield and developing related molecular markers to use molecular marker-assisted selection breeding to improve target trait selection and achieve the purpose of improving crops. However, to date, the industry has not reported excellent haplotypes of wheat gene TaGS3-4A for thousand-grain weight and grain length. Therefore, cloning the key gene for wheat grain size regulation, discovering excellent allelic variation, and developing functional markers to increase wheat thousand-grain weight and grain length will add a new and effective way for wheat molecular-assisted breeding and breeding more high-yield wheat varieties.
发明内容Summary of the invention
本发明的目的是提供一种小麦千粒重和粒长基因TaGS3-4A的分子标记及其应用,用于高效鉴定小麦品种或品系中基因TaGS3-4A是否携带增加小麦千粒重和粒长优异单倍型,为丰富小麦高产基因资源,促进小麦高产分子育种的发展提供科学手段。The purpose of the present invention is to provide a molecular marker of wheat thousand-grain weight and grain length gene TaGS3-4A and its application, which is used to efficiently identify whether the gene TaGS3-4A in wheat varieties or strains carries an excellent haplotype that increases wheat thousand-grain weight and grain length, so as to provide a scientific means for enriching wheat high-yield gene resources and promoting the development of wheat high-yield molecular breeding.
本发明是通过以下方法实现的:一种小麦千粒重和粒长基因TaGS3-4A的分子标记,该分子标记是小麦增加千粒重和粒长优异单倍型的分子标记,由分子标记CAPS-4A-357/713和分子标记InDel-4A-351一对成套的分子标记组成;The present invention is realized by the following method: a molecular marker of wheat thousand-grain weight and grain length gene TaGS3-4A, which is a molecular marker of excellent haplotype of wheat with increased thousand-grain weight and grain length, and is composed of a pair of molecular markers, namely, molecular marker CAPS-4A-357/713 and molecular marker InDel-4A-351;
所述分子标记CAPS-4A-357/713为小麦基因组中TaGS3-4A的核苷酸序列SEQ IDNO:1中所对应的第357和713位核苷酸,分子标记CAPS-4A-357/713的上游引物CAPS-4A-357/713-F如SEQ ID NO:2所示、下游引物CAPS-4A-357/713-R如SEQ ID NO:3所示,以所述上、下游引物对小麦基因组DNA进行PCR扩增,将扩增产物分别用Hpy188I和BsrI酶切,酶切产物分别进行电泳检测,扩增产物在Hpy188I酶切后获得分子量大小分别为537bp和265bp的两个目的条带或540bp和265bp的两个目的条带,且扩增产物在BsrI酶切后获得分子量大小为181bp和621bp的两条目的条带或184bp和621bp的两条目的条带;The molecular marker CAPS-4A-357/713 is the nucleotide sequence of TaGS3-4A in the wheat genome corresponding to the 357th and 713th nucleotides in SEQ ID NO:1. The upstream primer CAPS-4A-357/713-F of the molecular marker CAPS-4A-357/713 is shown in SEQ ID NO:2, and the downstream primer CAPS-4A-357/713-R is shown in SEQ ID NO: As shown in NO:3, PCR amplification of wheat genomic DNA was performed with the upstream and downstream primers, and the amplified products were digested with Hpy188I and BsrI, respectively. The digested products were detected by electrophoresis, and the amplified products obtained two target bands with molecular weights of 537 bp and 265 bp or two target bands of 540 bp and 265 bp after Hpy188I digestion, and two target bands with molecular weights of 181 bp and 621 bp or two target bands of 184 bp and 621 bp after BsrI digestion.
所述分子标记InDel-4A-351为小麦基因组中TaGS3-4A的核苷酸序列SEQ ID NO:1中所对应的第351位核苷酸,分子标记InDel-4A-351的上游引物InDel-4A-351-F如SEQ IDNO:4所示、下游引物InDel-4A-351-R如SEQ ID NO:5所示,以上、下游引物对小麦基因组DNA进行PCR扩增,将扩增产物电泳分离,获得扩增产物的分子量大小为198bp、200bp或201bp的任意一条目的条带。The molecular marker InDel-4A-351 is the 351st nucleotide corresponding to the nucleotide sequence SEQ ID NO:1 of TaGS3-4A in the wheat genome. The upstream primer InDel-4A-351-F of the molecular marker InDel-4A-351 is shown in SEQ ID NO:4, and the downstream primer InDel-4A-351-R is shown in SEQ ID NO:5. The above and downstream primers are used to perform PCR amplification on wheat genomic DNA, and the amplified products are separated by electrophoresis to obtain a band of any one of the amplified products with a molecular weight of 198bp, 200bp or 201bp.
本发明克隆了小麦KN9204中基因TaGS-4A的核苷酸序列,如SEQ ID NO:1所示;其中分子标记CAPS-4A-357/713的引物是根据小麦基因组DNA中对应序列表SEQ ID NO:1的第357位核苷酸为G或缺失和713位核苷酸为T或A进行的设计;分子标记InDel-4A-351的引物是根据小麦基因组DNA中对应序列表SEQ ID NO:1的第351位核苷酸的3bp的ACT串联插入/缺失(Insertion/Deletion)进行的设计;以分子标记CAPS-4A-357/713的上、下游引物和分子标记InDel-4A-351的上、下游引物对小麦基因组DNA进行PCR扩增,确定TaGS3-4A的基因序列SEQ ID NO:1中351bp处为ACT缺失(351-0)或ACT(351-1ACT),且357bp处为G(357-G),且713bp处为T(713-T)为增加千粒重和粒长优异单倍型的小麦品种或品系,为本发明的分子标记。The invention clones the nucleotide sequence of gene TaGS-4A in wheat KN9204, as shown in SEQ ID NO:1; wherein the primers of molecular marker CAPS-4A-357/713 are designed according to the nucleotide at position 357 of wheat genomic DNA corresponding to sequence table SEQ ID NO:1 being G or missing and the nucleotide at position 713 being T or A; the primers of molecular marker InDel-4A-351 are designed according to the 3bp ACT tandem insertion/deletion (Insertion/Deletion) of the nucleotide at position 351 of wheat genomic DNA corresponding to sequence table SEQ ID NO:1; PCR amplification is performed on wheat genomic DNA using the upper and downstream primers of molecular marker CAPS-4A-357/713 and the upper and downstream primers of molecular marker InDel-4A-351 to determine the gene sequence SEQ ID In NO:1, ACT deletion (351-0) or ACT (351-1ACT) is at 351bp, G (357-G) is at 357bp, and T (713-T) is at 713bp, which is a wheat variety or strain with an excellent haplotype for increasing thousand-grain weight and grain length, and is a molecular marker of the present invention.
所述分子标记CAPS-4A-357/713和所述分子标记InDel-4A-351中PCR扩增体系均为20μL,分别包括2×Taq PCR MasterMix 10μL、上下游引物各1μL、DNA模板1μL、其余用ddH2O补足。The PCR amplification systems in the molecular marker CAPS-4A-357/713 and the molecular marker InDel-4A-351 were both 20 μL, including 10 μL of 2×Taq PCR MasterMix, 1 μL of upstream and downstream primers, 1 μL of DNA template, and the rest was supplemented with ddH 2 O.
所述分子标记CAPS-4A-357/713的PCR扩增的程序为:94℃预变性5min;94℃变性30s,60℃退火30s,72℃延伸1min,33个循环;72℃终延伸10min,4℃保存。The PCR amplification procedure of the molecular marker CAPS-4A-357/713 is as follows: pre-denaturation at 94°C for 5 min; denaturation at 94°C for 30 s, annealing at 60°C for 30 s, extension at 72°C for 1 min, 33 cycles; final extension at 72°C for 10 min, and storage at 4°C.
所述分子标记InDel-4A-351的PCR扩增程序为:94℃预变性5min;94℃变性30s,55℃退火30s,72℃延伸1min,33个循环;72℃终延伸10min,4℃保存。The PCR amplification procedure of the molecular marker InDel-4A-351 is as follows: pre-denaturation at 94°C for 5 min; denaturation at 94°C for 30 s, annealing at 55°C for 30 s, extension at 72°C for 1 min, 33 cycles; final extension at 72°C for 10 min, and storage at 4°C.
本发明还提供了所述的分子标记在分子辅助育种中的应用。The present invention also provides the application of the molecular marker in molecule-assisted breeding.
所述应用是指利用所述分子标记鉴定基因TaGS3-4A是否为增加千粒重和粒长优异单倍型的小麦品种或品系,其方法包括以下步骤:The application refers to using the molecular marker to identify whether the gene TaGS3-4A is a wheat variety or strain with an excellent haplotype for increasing thousand-grain weight and grain length, and the method comprises the following steps:
(1)提取待鉴定小麦样品的基因组DNA;(1) extracting genomic DNA of the wheat sample to be identified;
(2)以分子标记CAPS-4A-357/713的上、下游引物对小麦基因组DNA进行PCR扩增,将扩增产物用Hpy188I酶切,电泳检测,即能够获得分子量大小分别为537bp和265bp的两条目的条带或540bp和265bp的两条目的条带,或获得分子量大小为802bp、804bp或808bp的任意一条目的条带;将扩增产物用BsrI酶切,电泳检测,即能够获得分子量大小为181bp和621bp的两条目的条带或184bp和621bp的两条目的条带或187bp和621bp的两条目的条带,或获得分子量大小为804bp的一条目的条带;(2) PCR amplification of wheat genomic DNA was performed using the upstream and downstream primers of the molecular marker CAPS-4A-357/713, and the amplified product was digested with Hpy188I and detected by electrophoresis, so that two target bands with molecular weights of 537 bp and 265 bp or two target bands with molecular weights of 540 bp and 265 bp were obtained, or any one target band with molecular weights of 802 bp, 804 bp or 808 bp was obtained; the amplified product was digested with BsrI and detected by electrophoresis, so that two target bands with molecular weights of 181 bp and 621 bp or two target bands with molecular weights of 184 bp and 621 bp or two target bands with molecular weights of 187 bp and 621 bp were obtained, or one target band with molecular weight of 804 bp was obtained;
(3)以分子标记InDel-4A-351的上、下游引物对小麦基因组DNA进行PCR扩增,将扩增产物电泳分离,即会获得扩增产物的分子量大小为198bp、200bp、201bp或204bp的任意一条目的条带;(3) PCR amplification of wheat genomic DNA was performed using the upstream and downstream primers of the molecular marker InDel-4A-351, and the amplified products were separated by electrophoresis, and a band with a molecular weight of 198 bp, 200 bp, 201 bp or 204 bp was obtained;
(4)扩增结果中,若待测样品采用分子标记CAPS-4A-357/713检测,用Hpy188I酶切检测后获得分子量大小为537bp和265bp的两条目的条带或540bp和265bp的两条目的条带,且用BsrI酶切检测后获得分子量大小为181bp和621bp的两条目的条带或184bp和621bp的两条目的条带,以及采用分子标记InDel-4A-351检测后获得扩增产物的分子量大小为198bp、200bp或201bp的任意一条目的条带,则该样品为基因TaGS3-4A增加千粒重和粒长优异单倍型的小麦品种或品系。(4) In the amplification results, if the sample to be tested is detected by molecular marker CAPS-4A-357/713, and two target bands with molecular weights of 537 bp and 265 bp or two target bands with molecular weights of 540 bp and 265 bp are obtained after detection by Hpy188I enzyme digestion, and two target bands with molecular weights of 181 bp and 621 bp or two target bands with molecular weights of 184 bp and 621 bp are obtained after detection by BsrI enzyme digestion, and the molecular marker InDel-4A-351 is used to obtain any one of the target bands with molecular weights of 198 bp, 200 bp or 201 bp, then the sample is a wheat variety or strain with the excellent haplotype of gene TaGS3-4A for increasing thousand-grain weight and grain length.
应用中步骤(2)所述分子标记CAPS-4A-357/713的上游引物CAPS-4A-357/713-F如SEQ ID NO:2所示、下游引物CAPS-4A-357/713-R如SEQ ID NO:3所示。In the application, the upstream primer CAPS-4A-357/713-F of the molecular marker CAPS-4A-357/713 in step (2) is shown in SEQ ID NO:2, and the downstream primer CAPS-4A-357/713-R is shown in SEQ ID NO:3.
应用中步骤(3)所述分子标记InDel-4A-351的上游引物InDel-4A-351-F如SEQ IDNO:4所示、下游引物InDel-4A-351-R如SEQ ID NO:5所示。In the application, the upstream primer InDel-4A-351-F of the molecular marker InDel-4A-351 in step (3) is shown as SEQ ID NO:4, and the downstream primer InDel-4A-351-R is shown as SEQ ID NO:5.
所述应用中,分子标记CAPS-4A-357/713和所述分子标记InDel-4A-351中PCR扩增体系均为20μL,分别包括2×Taq PCR MasterMix 10μL、上下游引物各1μL、DNA模板1μL、其余用ddH2O补足。In the application, the PCR amplification systems in the molecular marker CAPS-4A-357/713 and the molecular marker InDel-4A-351 are both 20 μL, including 10 μL of 2×Taq PCR MasterMix, 1 μL of upstream and downstream primers, 1 μL of DNA template, and the rest is supplemented with ddH 2 O.
所述应用中,所述分子标记CAPS-4A-357/713的PCR扩增的程序为:94℃预变性5min;94℃变性30s,60℃退火30s,72℃延伸1min,33个循环;72℃终延伸10min,4℃保存;所述分子标记InDel-4A-351的PCR扩增程序为:94℃预变性5min;94℃变性30s,55℃退火30s,72℃延伸1min,33个循环;72℃终延伸10min,4℃保存。In the application, the PCR amplification procedure of the molecular marker CAPS-4A-357/713 is: 94°C pre-denaturation for 5 min; 94°C denaturation for 30 s, 60°C annealing for 30 s, 72°C extension for 1 min, 33 cycles; 72°C final extension for 10 min, and storage at 4°C; the PCR amplification procedure of the molecular marker InDel-4A-351 is: 94°C pre-denaturation for 5 min; 94°C denaturation for 30 s, 55°C annealing for 30 s, 72°C extension for 1 min, 33 cycles; 72°C final extension for 10 min, and storage at 4°C.
本发明中小麦品种科农9204,属半冬性,中熟杂交小麦品种,品种审定编号:国审麦2003037。The wheat variety Kenong 9204 in the present invention is a semi-winter, medium-maturing hybrid wheat variety, and its variety approval number is Guoshenmai 2003037.
本发明提供的小麦千粒重和粒长基因TaGS3-4A的分子标记及其应用,该分子标记由分子标记CAPS-4A-357/713和分子标记InDel-4A-351一对成套的分子标记组成;其中分子标记CAPS-4A-357/713的引物是根据小麦基因组DNA中基因TaGS3-4A对应序列表SEQ IDNO:1的第357位核苷酸为G或缺失和713位核苷酸为T或A进行的设计;分子标记InDel-4A-351的引物是根据小麦基因组DNA中基因TaGS3-4A对应序列表SEQ ID NO:1的第351位核苷酸的3bp的ACT串联插入/缺失(Insertion/Deletion)进行的设计,通过PCR扩增结果和表型鉴定的关联分析证明,分子标记CAPS-4A-357/713和分子标记InDel-4A-351成套联合使用,可以有效筛选出基因TaGS3-4A为增加小麦千粒重和粒长优异单倍型(HAP-4A-1和HAP-4A-2)的小麦品种或品系。因此,本发明所公开的TaGS3-4A基因的等位变异和成套分子标记CAPS-4A-357/713和InDel-4A-351在小麦分子辅助育种中具有较大的应用空间。The invention provides a molecular marker of wheat thousand-grain weight and grain length gene TaGS3-4A and an application thereof. The molecular marker consists of a pair of complete molecular markers, namely, molecular marker CAPS-4A-357/713 and molecular marker InDel-4A-351; wherein the primer of the molecular marker CAPS-4A-357/713 is designed based on the fact that the nucleotide at position 357 is G or missing and the nucleotide at position 713 is T or A in the sequence table SEQ ID NO:1 corresponding to the gene TaGS3-4A in the wheat genomic DNA; and the primer of the molecular marker InDel-4A-351 is designed based on the fact that the nucleotide at position 357 is G or missing and the nucleotide at position 713 is T or A in the sequence table SEQ ID NO:1 corresponding to the gene TaGS3-4A in the wheat genomic DNA. The design was carried out by 3bp ACT tandem insertion/deletion (Insertion/Deletion) of the 351st nucleotide of NO:1. The association analysis of PCR amplification results and phenotypic identification proved that the molecular marker CAPS-4A-357/713 and the molecular marker InDel-4A-351 were used in combination to effectively screen out wheat varieties or strains with excellent haplotypes (HAP-4A-1 and HAP-4A-2) of gene TaGS3-4A that increase wheat thousand-grain weight and grain length. Therefore, the allelic variation of the TaGS3-4A gene disclosed in the present invention and the set of molecular markers CAPS-4A-357/713 and InDel-4A-351 have a large application space in wheat molecular assisted breeding.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为基因TaGS3-4A在小麦不同组织表达特异性分析结果。Figure 1 shows the results of expression specificity analysis of gene TaGS3-4A in different wheat tissues.
图2为小麦基因TaGS3-4A的351和357位点部分序列比对。Figure 2 is a partial sequence alignment of sites 351 and 357 of the wheat gene TaGS3-4A.
图3为小麦基因TaGS3-4A的713位部分点序列比对。FIG. 3 is a partial sequence alignment of position 713 of the wheat gene TaGS3-4A.
图4为小麦基因TaGS3-4A的351位点的分子标记检测结果。FIG. 4 shows the molecular marker detection result of site 351 of wheat gene TaGS3-4A.
图5为小麦基因TaGS3-4A的357位点的分子标记检测结果。FIG. 5 shows the molecular marker detection results of site 357 of wheat gene TaGS3-4A.
图6为小麦基因TaGS3-4A的713位点的分子标记检测结果。FIG. 6 shows the molecular marker detection result of site 713 of wheat gene TaGS3-4A.
具体实施方式DETAILED DESCRIPTION
下面实施例用于进一步详细说明本发明,但不以任何形式限制本发明。The following examples are used to further illustrate the present invention, but are not intended to limit the present invention in any form.
实施例1基因TaGS3的克隆Example 1 Cloning of gene TaGS3
利用常规CTAB法提取六倍体小麦品种KN9204(科农9204)的基因组DNA,对TaGS3基因区进行扩增,采用的扩增引物为上游引物TaGS3-F和下游引物TaGS3-R,其核苷酸序列分别为:The genomic DNA of the hexaploid wheat variety KN9204 (Kenon 9204) was extracted by conventional CTAB method, and the TaGS3 gene region was amplified. The amplification primers used were upstream primer TaGS3-F and downstream primer TaGS3-R, and their nucleotide sequences were:
上游引物TaGS3-F:5’-CAATGGCGGCGCCCAGGC-3’;Upstream primer TaGS3-F: 5′-CAATGGCGGCGCCCAGGC-3′;
下游引物TaGS3-R:5’-TGGAACACAGGCAGCAGCGAGG-3’。Downstream primer TaGS3-R: 5’-TGGAACACAGGCAGCAGCGAGG-3’.
扩增后进行琼脂糖凝胶电泳,回收扩增片段连接T载体并进行测序;通过EnseblPlants(http://plants.ensembl.org/index.html)与六倍体小麦中国春中三个TaGS3同源基因序列TraesCS7A02G017700、TraesCS7D02G015000、TraesCS4A02G474000比对,确定KN9204中TaGS3-4A核苷酸序列,序列如SEQ ID NO:1所示。After amplification, agarose gel electrophoresis was performed, and the amplified fragment was recovered, connected to the T vector and sequenced; the nucleotide sequence of TaGS3-4A in KN9204 was determined by comparison with three TaGS3 homologous gene sequences in hexaploid wheat Chinese Spring, TraesCS7A02G017700, TraesCS7D02G015000, and TraesCS4A02G474000, and the sequence is shown in SEQ ID NO: 1.
实施例2TaGS3-4A基因表达模式及表达量差异分析Example 2 Analysis of TaGS3-4A gene expression pattern and expression level differences
利用定量PCR对TaGS3-4A基因进行表达模式和表达量差异分析,对小麦根、茎、旗叶、穗等不同组织器官以及穗和籽粒发育不同时期(7天间隔)取材,提取RNA,DNase消化DNA污染,进行cDNA反转录;设计特异引物,其引物及核苷酸序列为:The expression pattern and expression level of TaGS3-4A gene were analyzed by quantitative PCR. Wheat roots, stems, flag leaves, ears and other tissues and organs, as well as ears and grains at different developmental stages (7 days intervals) were collected to extract RNA, DNase digested DNA contamination, and cDNA reverse transcription was performed. Specific primers were designed, and the primers and nucleotide sequences were as follows:
上游引物TaGS3-4A-mF:5’-GATCTGCGGCGGCGGGTGCTCT-3’;Upstream primer TaGS3-4A-mF: 5′-GATCTGCGGCGGCGGGTGCTCT-3′;
下游引物TaGS3-4A-mR:5’-CGAGCAGCCACACGAGGGCCCG-3’。Downstream primer TaGS3-4A-mR: 5’-CGAGCAGCCACACGAGGGCCCG-3’.
以上述一对引物进行荧光定量PCR扩增,检测TaGS3-4A基因的相对表达量;同时,以GADPH为内参基因,以上游引物GAPDH-F:5’-TTAGACTTGCGAAGCCAGCA-3、下游引物GAPDH-R:5’-AAATGCCCTTGAGGTTTCCC-3’进行荧光定量PCR扩增。扩增结果如图1所示,KN9204中TaGS3-4A基因在发育的种子中表达量相对较高。The above pair of primers was used for fluorescence quantitative PCR amplification to detect the relative expression of TaGS3-4A gene; at the same time, GADPH was used as the internal reference gene, and the upstream primer GAPDH-F: 5'-TTAGACTTGCGAAGCCAGCA-3 and the downstream primer GAPDH-R: 5'-AAATGCCCTTGAGGTTTCCC-3' were used for fluorescence quantitative PCR amplification. The amplification results are shown in Figure 1. The expression level of TaGS3-4A gene in KN9204 is relatively high in developing seeds.
实施例3TaGS3-4A基因核苷酸序列多态性分析Example 3 Analysis of TaGS3-4A gene nucleotide sequence polymorphism
利用常规CTAB法提取小麦材料的基因组DNA,对不同小麦材料的TaGS3-4A基因区进行扩增,采用的扩增引物为:The genomic DNA of wheat materials was extracted by conventional CTAB method, and the TaGS3-4A gene region of different wheat materials was amplified. The amplification primers used were:
上游引物TaGS3-4A-F:5’-CTGCTGTTACTCTGTTATTATTAC-3’;Upstream primer TaGS3-4A-F: 5′-CTGCTGTTACTCTGTTATTATTAC-3′;
下游引物TaGS3-4A-R:5’-CAAGAACTGCCTGTACAGTC-3’。Downstream primer TaGS3-4A-R: 5’-CAAGAACTGCCTGTACAGTC-3’.
扩增后进行琼脂糖凝胶电泳,回收扩增片段进行测序;利用DNAMAN进行序列比对,结果如下所示。After amplification, agarose gel electrophoresis was performed, and the amplified fragments were recovered for sequencing; DNAMAN was used for sequence alignment, and the results are shown below.
第一、TaGS3-4A基因在第一个内含子351bp处存在一个3bp串联插入/缺失,形成三种等位变异类型,部分序列如图2所示,图中显示:First, there is a 3 bp tandem insertion/deletion at 351 bp in the first intron of the TaGS3-4A gene, forming three types of allelic variation. Part of the sequence is shown in Figure 2, which shows:
当351位点的核苷酸为缺失时,TaGS3-4A基因的等位变异类型为351-0;When the nucleotide at position 351 is missing, the allelic variation type of the TaGS3-4A gene is 351-0;
当351位点的核苷酸为ACT时,TaGS3-4A基因的等位变异类型为351-1ACT;When the nucleotide at position 351 is ACT, the allelic variation type of the TaGS3-4A gene is 351-1ACT;
当351位点的核苷酸为ACTACT时,TaGS3-4A基因的等位变异类型为351-2ACT。When the nucleotide at position 351 is ACTACT, the allelic variation type of the TaGS3-4A gene is 351-2ACT.
第二、TaGS3-4A基因在第一个内含子357bp处存在一个SNP,形成两种等位基因类型,部分序列如图2所示,图中显示:Second, there is a SNP at 357bp in the first intron of the TaGS3-4A gene, forming two allele types. Part of the sequence is shown in Figure 2, which shows:
当357位点的核苷酸为缺失时,TaGS3-4A基因的等位变异类型为357-0;When the nucleotide at position 357 is missing, the allelic variation type of the TaGS3-4A gene is 357-0;
当357位点的核苷酸为G时,TaGS3-4A基因的等位变异类型为357-G。When the nucleotide at position 357 is G, the allelic variation type of the TaGS3-4A gene is 357-G.
第三、TaGS3-4A基因在第二个内含子713bp处存在一个SNP,形成两种等位基因类型,部分序列如图3所示,图中显示:Third, there is a SNP at 713bp in the second intron of the TaGS3-4A gene, forming two allele types. Part of the sequence is shown in Figure 3, which shows:
当713位点的核苷酸为T时,TaGS3-4A基因的等位变异类型为713-T;When the nucleotide at position 713 is T, the allelic variation type of the TaGS3-4A gene is 713-T;
当713位点的核苷酸为A时,TaGS3-4A基因的等位变异类型为713-A。When the nucleotide at position 713 is A, the allelic variation type of the TaGS3-4A gene is 713-A.
根据351、357位点和713位点的等位变异确定TaGS3-4A基因的单倍型如下:The haplotype of TaGS3-4A gene was determined based on the allelic variation of loci 351, 357 and 713 as follows:
表1 351、357和713位点的等位变异及TaGS3-4A的单倍型Table 1 Allelic variation at loci 351, 357 and 713 and haplotype of TaGS3-4A
实施例4TaGS3-4A基因功能性分子标记的开发Example 4 Development of functional molecular markers of TaGS3-4A gene
(1)利用常规CTAB法提取小麦材料的基因组DNA,对TaGS3-4A基因713和357位点所在核苷酸区进行PCR扩增,扩增引物为:(1) The genomic DNA of wheat materials was extracted by conventional CTAB method, and the nucleotide regions at sites 713 and 357 of TaGS3-4A gene were amplified by PCR. The amplification primers were:
上游引物CAPS-4A-357/713-F:5’-CTGCTGTTACTCTGTTATTATTAC-3’(SEQ ID NO:2);Upstream primer CAPS-4A-357/713-F: 5'-CTGCTGTTACTCTGTTATTATTAC-3' (SEQ ID NO: 2);
下游引物CAPS-4A-357/713-R 5’-CAAGAACTGCCTGTACAGTC-3’(SEQ ID NO:3)。Downstream primer CAPS-4A-357/713-R 5’-CAAGAACTGCCTGTACAGTC-3’ (SEQ ID NO: 3).
PCR扩增体系为20ul,包括2×Taq PCR MasterMix 10ul,上下游引物各1μL,DNA模板1μL,其余用ddH2O补足;PCR扩增程序为:94℃预变性5min;94℃变性30s,60℃退火30s,72℃延伸1min/kb,33个循环;72℃终延伸10分钟,4℃保存。将上述扩增产物分别用Hpy188I和BsrI酶切。酶切产物均进行质量百分比浓度为1%的琼脂糖凝胶电泳检测,并根据酶切结果判断并记录待测小麦在所述713和357位点的情况,如图5和图6所示。The PCR amplification system was 20ul, including 2×Taq PCR MasterMix 10ul, 1μL of upstream and downstream primers, 1μL of DNA template, and the rest was supplemented with ddH 2 O; the PCR amplification program was: 94℃ pre-denaturation for 5min; 94℃ denaturation for 30s, 60℃ annealing for 30s, 72℃ extension for 1min/kb, 33 cycles; 72℃ final extension for 10 minutes, and storage at 4℃. The above amplification products were digested with Hpy188I and BsrI respectively. The digestion products were all detected by agarose gel electrophoresis with a mass percentage concentration of 1%, and the conditions of the wheat to be tested at the 713 and 357 sites were judged and recorded according to the digestion results, as shown in Figures 5 and 6.
①若PCR产物在Hpy188I酶切后电泳得到大小分别为537bp和265bp的两个目的条带或540bp和265bp的两个目的条带,则TaGS3-4A基因的713位点等位变异类型为713-T;若PCR产物Hpy188I酶切后电泳得到大小为802bp、804bp或808bp任意一个目的条带,则TaGS3-4A基因的713位点等位变异类型为713-A,如图6所示。图6中16份小麦材料样本分别是:1、晋春3号(析春矮2号);2、梁来友白皮小麦;3、山西白麦;4、牛趾甲;5、麻花板;6、假红麦;7、红金麦;8、丰抗2号(5248);9、长治6406;10、北京8号;11、铭贤169;12、东方红3号;13、京红5号;14、内麦11;15、定兴寨;16、大红麦。① If the PCR product is electrophoresed after Hpy188I digestion to obtain two target bands of 537 bp and 265 bp or two target bands of 540 bp and 265 bp, the allelic variation type of the 713 site of the TaGS3-4A gene is 713-T; if the PCR product is electrophoresed after Hpy188I digestion to obtain any one target band of 802 bp, 804 bp or 808 bp, the allelic variation type of the 713 site of the TaGS3-4A gene is 713-A, as shown in Figure 6. The 16 wheat material samples in Figure 6 are: 1. Jinchun No. 3 (Xichun Dwarf No. 2); 2. Liang Laiyou white-skinned wheat; 3. Shanxi white wheat; 4. Niu Zhijia; 5. Mahuaban; 6. Fake red wheat; 7. Hongjin wheat; 8. Fengkang No. 2 (5248); 9. Changzhi 6406; 10. Beijing No. 8; 11. Mingxian 169; 12. Dongfanghong No. 3; 13. Jinghong No. 5; 14. Neimai 11; 15. Dingxingzhai; 16. Dahongmai.
②若PCR产物在BsrI酶切后电泳得到大小分别为181bp和621bp的两个目的条带或184bp和621bp的两个目的条带或187bp和621bp的两个目的条带,则TaGS3-4A基因的357位点等位变异类型为357-G;若PCR产物在BsrI酶切后电泳得到大小为804bp的一条目的条带,则TaGS3-4A基因的357位点等位变异类型为357-0,如图5所示。图5中22份小麦材料样本分别为:1、山西白麦;2、丰抗2号(5248);3、长治6406;4、北京8号;5、铭贤169;6、东方红3号;7、线麦;8、江东门;9、京红5号;10、内麦11;11、晋春3号(析春矮2号);12、梁来友白皮小麦;13、定兴寨;14、大红麦;15、牛趾甲;16、麻花板;17、假红麦;18、红金麦;19、原冬822;20、吕旱328;21、江西早;22、红花早。② If the PCR product is electrophoresed after BsrI digestion to obtain two target bands of 181bp and 621bp, or two target bands of 184bp and 621bp, or two target bands of 187bp and 621bp, the allelic variation type of the 357 site of the TaGS3-4A gene is 357-G; if the PCR product is electrophoresed after BsrI digestion to obtain a single target band of 804bp, the allelic variation type of the 357 site of the TaGS3-4A gene is 357-0, as shown in Figure 5. The 22 wheat material samples in Figure 5 are: 1. Shanxi white wheat; 2. Fengkang 2 (5248); 3. Changzhi 6406; 4. Beijing 8; 5. Mingxian 169; 6. Dongfanghong 3; 7. Xianmai; 8. Jiangdongmen; 9. Jinghong 5; 10. Neimai 11; 11. Jinchun 3 (Xichunai 2); 12. Lianglaiyou white wheat; 13. Dingxingzhai; 14. Dahongmai; 15. Niuzhijia; 16. Mahuaban; 17. Jiahongmai; 18. Hongjinmai; 19. Yuandong 822; 20. Lyuhan 328; 21. Jiangxizao; 22. Honghuazao.
(2)分子标记InDel-4A-351的开发:利用常规CTAB法提取小麦材料的基因组DNA,对TaGS3-4A基因351位点所在核苷酸区进行PCR扩增,扩增引物为:(2) Development of molecular marker InDel-4A-351: The genomic DNA of wheat materials was extracted using the conventional CTAB method, and the nucleotide region where the 351 site of the TaGS3-4A gene was located was amplified by PCR. The amplification primers were:
上游引物InDel-4A-351-F:5’-TGCTGTTACTCTGTTATTATTA-3’(SEQ ID NO:4);Upstream primer InDel-4A-351-F: 5'-TGCTGTTACTCTGTTATTATTA-3' (SEQ ID NO: 4);
下游引物InDel-4A-351-R:5’-TAACACTTAGAATCTACTAC-3’(SEQ ID NO:5)。Downstream primer InDel-4A-351-R: 5’-TAACACTTAGAATCTACTAC-3’ (SEQ ID NO: 5).
PCR扩增体系为20μL,包括2×Taq PCR MasterMix 10μL、上下游引物各1μL、DNA模板1μL、其余用ddH2O补足;PCR扩增程序为:94℃预变性5min;94℃变性30s,55℃退火30s,72℃延伸1min,33个循环;72℃终延伸10min,4℃保存。将上述扩增产物进行质量百分比浓度为12%的聚丙烯酰胺凝胶电泳,电压140伏,3.5小时。通过银染识别PCR产物片段大小,并根据如下方法判断并记录待测小麦在所述351位点的情况,如图4所示。图4中12个小麦材料样本分别为:1、晋春3号(析春矮2号),2、梁来友白皮小麦;3、定兴寨;4、大红麦;5、京红5号;6、内麦11;7、山西白麦;8、铭贤169;9.牛趾甲;10.麻花板;11.假红麦;12.红金麦。The PCR amplification system is 20 μL, including 10 μL of 2×Taq PCR MasterMix, 1 μL of upstream and downstream primers, 1 μL of DNA template, and the rest is supplemented with ddH 2 O; the PCR amplification program is: 94°C pre-denaturation for 5 min; 94°C denaturation for 30 s, 55°C annealing for 30 s, 72°C extension for 1 min, 33 cycles; 72°C final extension for 10 min, and storage at 4°C. The above amplified products were subjected to polyacrylamide gel electrophoresis with a mass percentage concentration of 12%, a voltage of 140 volts, and 3.5 hours. The size of the PCR product fragment was identified by silver staining, and the situation of the wheat to be tested at the 351 site was judged and recorded according to the following method, as shown in Figure 4. The 12 wheat material samples in Figure 4 are: 1. Jinchun No. 3 (Xichun Ai No. 2), 2. Liang Laiyou white-skinned wheat; 3. Dingxingzhai; 4. Dahongmai; 5. Jinghong No. 5; 6. Neimai 11; 7. Shanxi white wheat; 8. Mingxian 169; 9. Niuzhijia; 10. Mahuaban; 11. Jiahongmai; 12. Hongjinmai.
①若待测小麦的PCR产物大小为204bp的片段(最大),则所述待测植物基因组中TaGS3-4A基因的等位变异类型为351-2ACT;① If the size of the PCR product of the wheat to be tested is a fragment of 204 bp (maximum), the allelic variation type of the TaGS3-4A gene in the genome of the plant to be tested is 351-2ACT;
②若待测小麦的PCR扩增产物大小为200bp或201bp的片段(居中),则所述待测植物基因组中TaGS3-4A基因的等位变异类型为351-1ACT;② If the size of the PCR amplification product of the wheat to be tested is a fragment of 200 bp or 201 bp (centered), the allelic variation type of the TaGS3-4A gene in the genome of the plant to be tested is 351-1ACT;
③若待测小麦的PCR扩增产物大小为198bp的片段(最小),则所述待测植物基因组中TaGS3-4A基因的等位变异类型为351-0。③ If the size of the PCR amplification product of the wheat to be tested is a fragment of 198 bp (minimum), the allelic variation type of the TaGS3-4A gene in the genome of the plant to be tested is 351-0.
实施例5TaGS3-4A基因多态性位点的功能验证应用Example 5 Functional verification application of TaGS3-4A gene polymorphism site
利用实施例3和4所得到的基因单倍型位点和分子标记引物,采用如上所述的扩增体系及扩增条件,在我国小麦微核心种质进行TaGS3-4A基因的功能验证,对千粒重、粒长、粒宽多年多点的表型数据进行标记/性状的关联分析。本实施例全部小麦微核心种质材料TaGS3-4A基因单倍型鉴定数据详见表2。Using the gene haplotype loci and molecular marker primers obtained in Examples 3 and 4, and using the amplification system and amplification conditions described above, the function of the TaGS3-4A gene was verified in the Chinese wheat micro-core germplasm, and the phenotypic data of 1,000-grain weight, grain length, and grain width for many years and multiple points were analyzed for marker/trait association. The haplotype identification data of the TaGS3-4A gene of all wheat micro-core germplasm materials in this example are shown in Table 2.
表2小麦微核心种质材料中TaGS3-4A基因型鉴定数据Table 2 Genotype identification data of TaGS3-4A in wheat mini-core germplasm materials
关联分析具体结果见表3。表3显示:HAP-4A-1和HAP-4A-2与HAP-4A-3相比在2002年、2005年、2006年、2010年和2016年的千粒重差异分别为5.33-5.47g、3.79-3.98g、3.23-3.57g、6.17-3.26g和5.12-4.82g,差异达到显著和极显著水平(P<0.05或P<0.01);与HAP-4A-3相比,HAP-4A-1单倍体在五年中的四年显著增加籽粒长度0.30-0.43mm(P<0.05或P<0.01)。可见,等位变异HAP-4A-1和HAP-4A-2为优异等位变异,由此得出小麦千粒重和粒长基因TaGS3-4A的分子标记由分子标记CAPS-4A-357/713和分子标记InDel-4A-351一对成套的分子标记组成。The specific results of the association analysis are shown in Table 3. Table 3 shows that the differences in thousand-grain weight between HAP-4A-1 and HAP-4A-2 and HAP-4A-3 in 2002, 2005, 2006, 2010 and 2016 were 5.33-5.47 g, 3.79-3.98 g, 3.23-3.57 g, 6.17-3.26 g and 5.12-4.82 g, respectively, and the differences reached significant and extremely significant levels (P < 0.05 or P < 0.01); compared with HAP-4A-3, the HAP-4A-1 haploid significantly increased the grain length by 0.30-0.43 mm in four of the five years (P < 0.05 or P < 0.01). It can be seen that the allelic variations HAP-4A-1 and HAP-4A-2 are excellent allelic variations, and it is concluded that the molecular markers of wheat thousand-grain weight and grain length gene TaGS3-4A are composed of a pair of molecular markers, namely molecular marker CAPS-4A-357/713 and molecular marker InDel-4A-351.
表3小麦微核心种质材料中TaGS3-4A基因及籽粒相关性状的关联分析Table 3 Association analysis between TaGS3-4A gene and grain-related traits in wheat mini-core germplasm materials
注:02LY表示洛阳(2002年);05LY表示洛阳(2005年);06LY表示洛阳(2006年);10SY表示北京顺义(2010年);16LC表示栾城(2016年)。大写字母表示P<0.01,小写字母表示P<0.05因此,分子标记CAPS-4A-357/713和InDel-4A-351成套联合使用,可有效筛选出能够显著提高小麦千粒重及粒长的小麦TaGS3-4A基因优异单倍型HAP-4A-1和HAP-4A-2,可作为提高小麦千粒重和粒长、进行小麦高产分子标记辅助育种的功能标记。Note: 02LY means Luoyang (2002); 05LY means Luoyang (2005); 06LY means Luoyang (2006); 10SY means Beijing Shunyi (2010); 16LC means Luancheng (2016). Capital letters indicate P < 0.01, and lowercase letters indicate P < 0.05. Therefore, the combined use of molecular markers CAPS-4A-357/713 and InDel-4A-351 can effectively screen out the excellent haplotypes HAP-4A-1 and HAP-4A-2 of the wheat TaGS3-4A gene that can significantly improve the thousand-grain weight and grain length of wheat, and can be used as functional markers to improve the thousand-grain weight and grain length of wheat and conduct molecular marker-assisted breeding for high-yield wheat.
上述实施例为本发明优化的实施方案,仅用于说明本发明而非限制本发明。本领域的技术人员在不脱离本发明实施方案的宗旨和原理的基础上所作的修改或等同替换,均属于本发明要求保护的范围。The above embodiments are optimized implementation schemes of the present invention, which are only used to illustrate the present invention but not to limit the present invention. Any modification or equivalent substitution made by those skilled in the art without departing from the purpose and principle of the implementation scheme of the present invention shall fall within the scope of protection claimed by the present invention.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 中国科学院遗传与发育生物学研究所农业资源研究中心<110> Agricultural Resources Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
河北经贸大学Hebei University of Economics and Business
<120> 一种小麦千粒重和粒长基因TaGS3-4A的分子标记及其应用<120> A molecular marker for wheat thousand-grain weight and grain length gene TaGS3-4A and its application
<130><130>
<160> 5<160> 5
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 1936<211> 1936
<212> DNA<212> DNA
<213> TaGS3-4A<213> TaGS3-4A
<400> 1<400> 1
atggcggcgc ccaggcccaa gtccccgctc gacccctgcg gccgccaccg gctgcagctc 60atggcggcgc ccaggcccaa gtccccgctc gacccctgcg gccgccaccg gctgcagctc 60
gccgtcgaca cgctccaccg ccagatcagc ttcctcgagg tacccaagct cctgacctta 120gccgtcgaca cgctccaccg ccagatcagc ttcctcgagg tacccaagct cctgacctta 120
atcgctcttc ctggttggct cccgcaccac agccctgtta catggtgccc tgctgctgct 180atcgctcttc ctggttggct cccgcaccac agccctgtta catggtgccc tgctgctgct 180
gttactctgt tattattacg caagaaaatt actaatttgc aattgagcct acacaacaaa 240gttactctgt tattatacg caagaaaatt actaatttgc aattgagcct acacaacaaa 240
tgattaccat tttttataca gtagtaggta ttagagtctg ttaccagcac acagtttagt 300tgattaccat tttttataca gtagtaggta ttagagtctg ttaccagcac acagtttagt 300
tgtcacttct aagtcagttc caggtgtccc tttctactac tactactact actactggta 360tgtcacttct aagtcagttc caggtgtccc tttctactac tactactact actactggta 360
gtagattcta agtgttagaa tatcccacac agcagcctga aaagttggca catgccctct 420gtagattcta agtgttagaa tatcccacac agcagcctga aaagttggca catgccctct 420
cctccttgta ctctagcttg tagctactgc ttttttttca gtaaaaaata atttctctgg 480cctccttgta ctctagcttg tagctactgc ttttttttca gtaaaaaata atttctctgg 480
aattcaacaa gctgttctct ctgtgccagg gggagatcag ttccattgaa gggctccatg 540aattcaacaa gctgttctct ctgtgccagg gggagatcag ttccattgaa gggctccatg 540
ctgcctccat atgctgcaaa gagtaagctg ctgtcttgtt caattcttat actatcaatt 600ctgcctccat atgctgcaaa gagtaagctg ctgtcttgtt caattcttat actatcaatt 600
tcctttttga agtttaagag gtaacttggg gagtgaaaac aagaaacagt tctccggctc 660tcctttttga agtttaagag gtaacttggg gagtgaaaac aagaaacagt tctccggctc 660
caagaatggg gaacaatcca ttgcaagtga gcccatgttt gaacaaagtc gttcagacag 720caagaatggg gaacaatcca ttgcaagtga gcccatgttt gaacaaagtc gttcagacag 720
gtgcaacaca tctacatgga tgtgtgaaag caacacagat tttagttaaa acctacaaat 780gtgcaacaca tctacatgga tgtgtgaaag caacacagat tttagttaaa acctacaaat 780
ggaagtttag caaatccggt aatgattgaa aatagtatac acgtacagtt gaacattatg 840ggaagtttag caaatccggt aatgattgaa aatagtatac acgtacagtt gaacattatg 840
caaatctggt aacgatagtt taggaggttt ggttacttga aatttgatta ggatgattga 900caaatctggt aacgatagtt taggaggttt ggttatacttga aatttgatta ggatgattga 900
ttgtatttaa acatatgaat atgttttaga attggaccta aattatatag ggttgcggtg 960ttgtatttaa acatatgaat atgttttaga attggaccta aattatatag ggttgcggtg 960
actgtacagg cagttcttgt atttctgtct ccagtcttag tgccactgtt tactttattc 1020actgtacagg cagttcttgt atttctgtct ccagtcttag tgccactgtt tactttatattc 1020
ttcttcataa atgaatatca gcgtaagctg cagacgtagc agtcaggtca tgtgtgcaaa 1080ttcttcataa atgaatatca gcgtaagctg cagacgtagc agtcaggtca tgtgtgcaaa 1080
agccaaaaat atgtaattct tcttcatatg tcaatcagtt cacatagttg tgccaatttt 1140agccaaaaat atgtaattct tcttcatatg tcaatcagtt cacatagttg tgccaatttt 1140
aagttaattt tcttcttgtt catgacatat ggagctgatt gatcgctgtt tgcccctttg 1200aagttaattt tcttcttgtt catgacatat ggagctgatt gatcgctgtt tgcccctttg 1200
ataaaatttg cagggtcgat gagttcatag gaaagaatgc cgatccattc ataacgatgt 1260ataaaatttg cagggtcgat gagttcatag gaaagaatgc cgatccattc ataacgatgt 1260
atggattttc aggttgagaa attgtcttgg cctacaagat atctttgttc ttactagtat 1320atggattttc aggttgagaa attgtcttgg cctacaagat atctttgttc ttactagtat 1320
ctctctttac aagcttgcag ttcatctgag aaggggaacg ccgatcaatc tcatcgctcc 1380ctctctttac aagcttgcag ttcatctgag aaggggaacg ccgatcaatc tcatcgctcc 1380
ccaaagaaga ttcggtaatc attttcttcc cgcagatcct aatatatgtc gacggttctc 1440ccaaagaaga ttcggtaatc attttcttcc cgcagatcct aatatatgtc gacggttctc 1440
tcgaaagaaa atgatgccgg atcaacccaa gctgatgcaa attgttgtac taaactgcac 1500tcgaaagaaa atgatgccgg atcaacccaa gctgatgcaa attgttgtac taaactgcac 1500
atgtttatat ttaaaagttt tggaatgttg ataattttcc cagttttaca tctgcgctct 1560atgtttatat ttaaaagttt tggaatgttg ataattttcc cagttttaca tctgcgctct 1560
acaaaccata acaattatga atcagccagc aatgcatgca tcgatttgaa ctcggtttta 1620acaaaccata acaattatga atcagccagc aatgcatgca tcgatttgaa ctcggtttta 1620
gtagtctcgt tgtaatgaac tgactgaggg gaatgttaat gtttgtgcct gcagaacccg 1680gtagtctcgt tgtaatgaac tgactgaggg gaatgttaat gtttgtgcct gcagaacccg 1680
gtgggcgtgt ttgagctgct tcccgtggat ctgcggcggc gggtgctctg ccgtccagct 1740gtgggcgtgt ttgagctgct tcccgtggat ctgcggcggc gggtgctctg ccgtccagct 1740
caaggggccg agctgctgcc gcggatgccc ccgctgctgc gcggggagcg ggggctgcgg 1800caaggggccg agctgctgcc gcggatgccc ccgctgctgc gcggggagcg ggggctgcgg 1800
cggcggcggg ccctcgtgtg gctgctcgtg ctcctgcgcc ggctgctcct cctcttgcgc 1860cggcggcggg ccctcgtgtg gctgctcgtg ctcctgcgcc ggctgctcct cctcttgcgc 1860
gtgccctgcc tgtgccggct gcggccccgt gtgctgcggc ggtgtccctc gccctcgctg 1920gtgccctgcc tgtgccggct gcggccccgt gtgctgcggc ggtgtccctc gccctcgctg 1920
ctgcctgtgt tcctga 1936ctgcctgtgt tcctga 1936
<210> 2<210> 2
<211> 24<211> 24
<212> DNA<212> DNA
<213> 上游引物CAPS-4A-357/713-F<213> Upstream primer CAPS-4A-357/713-F
<400> 2<400> 2
ctgctgttac tctgttatta ttac 24ctgctgttac tctgttatta ttac 24
<210> 3<210> 3
<211> 20<211> 20
<212> DNA<212> DNA
<213> 下游引物CAPS-4A-357/713-R<213> Downstream primer CAPS-4A-357/713-R
<400> 3<400> 3
caagaactgc ctgtacagtc 20caagaactgc ctgtacagtc 20
<210> 4<210> 4
<211> 22<211> 22
<212> DNA<212> DNA
<213> 上游引物InDel-4A-351-F<213> Upstream primer InDel-4A-351-F
<400> 4<400> 4
tgctgttact ctgttattat ta 22tgctgttact ctgttattat ta 22
<210> 5<210> 5
<211> 20<211> 20
<212> DNA<212> DNA
<213> 下游引物InDel-4A-351-R<213> Downstream primer InDel-4A-351-R
<400> 5<400> 5
taacacttag aatctactac 20taacacttag aatctactac 20
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010153981.9A CN111321241B (en) | 2020-03-07 | 2020-03-07 | Molecular marker of wheat thousand-grain weight and grain length gene TaGS3-4A and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010153981.9A CN111321241B (en) | 2020-03-07 | 2020-03-07 | Molecular marker of wheat thousand-grain weight and grain length gene TaGS3-4A and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111321241A CN111321241A (en) | 2020-06-23 |
CN111321241B true CN111321241B (en) | 2023-09-26 |
Family
ID=71169274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010153981.9A Active CN111321241B (en) | 2020-03-07 | 2020-03-07 | Molecular marker of wheat thousand-grain weight and grain length gene TaGS3-4A and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111321241B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113073144B (en) * | 2021-05-18 | 2022-11-18 | 河南农业大学 | A Molecular Marker CAPS-799, Primer Set and Application for Screening Phosphorus Efficient Utilization Wheat |
CN114622031B (en) * | 2022-03-18 | 2023-09-26 | 河南农业大学 | SNP locus and CAPS molecular marker primer pair for identifying thousand seed weight characteristics of wheat and application of SNP locus and CAPS molecular marker primer pair |
CN117385098B (en) * | 2023-12-12 | 2024-03-12 | 鲁东大学 | Molecular markers related to wheat kernel density and their applications |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1995347A (en) * | 2006-01-05 | 2007-07-11 | 华中农业大学 | Main effect gene GS3 for controlling rice grain length and weight |
CN103820476A (en) * | 2014-01-24 | 2014-05-28 | 山东农业大学 | Gene relevant to wheat thousand seed weight, functional marker and application thereof |
CN104846099A (en) * | 2015-05-22 | 2015-08-19 | 中国科学院遗传与发育生物学研究所 | Molecular marker of TaGS2 gene related with wheat plant height, obtaining method and application thereof |
CN105219858A (en) * | 2015-10-15 | 2016-01-06 | 中国农业科学院作物科学研究所 | Grain Weight in Common Wheat gene TaGS5-3A single nucleotide polymorphism and application thereof |
-
2020
- 2020-03-07 CN CN202010153981.9A patent/CN111321241B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1995347A (en) * | 2006-01-05 | 2007-07-11 | 华中农业大学 | Main effect gene GS3 for controlling rice grain length and weight |
CN103820476A (en) * | 2014-01-24 | 2014-05-28 | 山东农业大学 | Gene relevant to wheat thousand seed weight, functional marker and application thereof |
CN104846099A (en) * | 2015-05-22 | 2015-08-19 | 中国科学院遗传与发育生物学研究所 | Molecular marker of TaGS2 gene related with wheat plant height, obtaining method and application thereof |
CN105219858A (en) * | 2015-10-15 | 2016-01-06 | 中国农业科学院作物科学研究所 | Grain Weight in Common Wheat gene TaGS5-3A single nucleotide polymorphism and application thereof |
Non-Patent Citations (1)
Title |
---|
常成 ; 张海萍 ; 张秀英 ; 闫长生 ; 肖世和 ; .小麦PEBP-like基因等位变异与籽粒大小、粒重关系研究.分子植物育种.2009,(第01期),第23-27页. * |
Also Published As
Publication number | Publication date |
---|---|
CN111321241A (en) | 2020-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN117403003B (en) | Molecular marker of wheat TaCHLI-7B gene and application thereof | |
CN111321241B (en) | Molecular marker of wheat thousand-grain weight and grain length gene TaGS3-4A and application thereof | |
CN104630364A (en) | Anti-rice blast gene Pi9 specific CAPS marker Pi9caps and application thereof | |
CN111630188B (en) | New floury endosperm genes, molecular markers and their uses | |
CN116926233B (en) | Molecular markers of wheat TaHAL3-7B gene and its application | |
CN105219858B (en) | Grain Weight in Common Wheat gene TaGS5 3A single nucleotide polymorphisms and its application | |
CN106967725A (en) | Rice ear sprouting period related gene, functional label and application | |
CN113151575B (en) | An InDel molecular marker GW6a-InDel, a major QTL for grain shape in rice, and its detection primers and applications | |
CN102471802B (en) | Marker for identifying variety/line of plant of the genus saccharum and the use thereof | |
KR20240105713A (en) | SNP/InDel genetic markers and primer sets for discriminating domestic barley cultivar and uses thereof | |
CN115976265A (en) | CAPS marker related to soybean hundredth and application thereof | |
CN104611435B (en) | A kind of Leymus chinensis (Trin.) Tzvel. to matter the most of the same race carries out SNP primer and the application thereof of gene type | |
CN114717352A (en) | Molecular marker of rice high temperature resistance regulation gene Hsp70 and application thereof | |
CN115873968A (en) | Method for auxiliary screening of wheat with different thousand grain weights based on A6886G SNP site in TaHDA9-2A gene | |
CN107142321B (en) | A kind of mongolian amygdalus seed specificity microsatellite locus and its application | |
CN106755354B (en) | A Molecular Marker TaSnRK2.4A Related to Wheat Thousand Kernel Weight and Stem Soluble Sugar Content and Its Application | |
CN116970734B (en) | SNP locus linked with cotton multi-ventricular control gene GaMV and application thereof | |
CN115948599B (en) | InDel molecular marker of RAD17 gene and its detection primers and applications | |
CN117778616B (en) | Wheat grain weight related gene TaSINA molecular marker and application | |
EP4298896A1 (en) | Novel qtls conferring resistance to cucumber mosaic virus | |
EP4378305A1 (en) | Method for detecting cross-compatibility among olive trees | |
CN110484651B (en) | Molecular marker in wheat yield related gene TaNRT2-6D and application thereof | |
US20240065219A1 (en) | Novel loci in grapes | |
CN119220704A (en) | Molecular marker of BCL2L15 gene for resistance to blue ear disease and its application | |
CN103343123B (en) | Co-dominance mark for detecting new plant type gene ipa1/IPA1 of rice, and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |