CN111324138A - Four-rotor attitude designated time performance-guaranteeing output feedback control method - Google Patents
Four-rotor attitude designated time performance-guaranteeing output feedback control method Download PDFInfo
- Publication number
- CN111324138A CN111324138A CN202010272306.8A CN202010272306A CN111324138A CN 111324138 A CN111324138 A CN 111324138A CN 202010272306 A CN202010272306 A CN 202010272306A CN 111324138 A CN111324138 A CN 111324138A
- Authority
- CN
- China
- Prior art keywords
- attitude
- performance
- angular velocity
- loop
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000004044 response Effects 0.000 claims abstract description 6
- 230000001052 transient effect Effects 0.000 claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000013016 damping Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 6
- 238000012546 transfer Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000000844 transformation Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims 2
- 230000002123 temporal effect Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000005259 measurement Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
- G05D1/0816—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
- G05D1/0825—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability using mathematical models
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Mathematical Analysis (AREA)
- Algebra (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本发明涉及飞行器自动控制领域,具体为一种四旋翼姿态指定时间保性能输出反馈控制方法,应用于不依赖角速率量测条件下四旋翼姿态从任意初始值至目标值的有限时间保性能控制。The invention relates to the field of automatic control of aircraft, in particular to a quadrotor attitude-specified time-guaranteed output feedback control method, which is applied to the finite-time-guaranteed control of the quadrotor attitude from an arbitrary initial value to a target value under the condition of independent angular rate measurement .
背景技术Background technique
近年来,随着MEMS传感技术、信息网络技术、控制技术的飞跃发展,四旋翼无人机的设计、开发与实践得到了前所未有的关注。相较于固定翼无人机,四旋翼展现出如下性能优势:结构简单,制造成本低、易维护、机身轻便、易操纵,而且还有机动性、环境耐久性、悬停性、垂直起降性等显著的性能,具有显著的军民两用价值。四旋翼是一个具有多输入多输出(MIMO)的高非线性、欠驱动耦合系统,同时,四旋翼动力学包含各种不确定扰动源,包括参数变化、模型失配、环境干扰等。此外,出于载荷有限或者简易配置要求,部分状态(如角速率)往往不可测或者测量精度无法满足闭环反馈控制需求。因而,如何解决速度不可测情况下的四旋翼轨迹/姿态控制问题更具实用价值。In recent years, with the rapid development of MEMS sensing technology, information network technology, and control technology, the design, development and practice of quadrotor UAVs have received unprecedented attention. Compared with fixed-wing UAVs, quadrotors show the following performance advantages: simple structure, low manufacturing cost, easy maintenance, light fuselage, easy manipulation, and maneuverability, environmental durability, hovering, vertical lift. It has remarkable performances such as degradability, and has significant dual-use value for both military and civilian use. The quadrotor is a highly nonlinear, underactuated coupled system with multiple-input multiple-output (MIMO). At the same time, the quadrotor dynamics contain various sources of uncertain disturbances, including parameter changes, model mismatches, and environmental disturbances. In addition, due to limited load or simple configuration requirements, some states (such as angular rate) are often unmeasurable or the measurement accuracy cannot meet the requirements of closed-loop feedback control. Therefore, how to solve the quadrotor trajectory/attitude control problem under the condition of unmeasurable speed is more practical.
已有的四旋翼姿态控制方法通常借助跟踪微分器、或者状态观测器,大多仅能实现输出反馈意义下的姿态跟踪误差最终一致有界性,较少关注存在未知干扰情况下的姿态控制保性能问题。尽管目前预设性能控制可以实现被控对象性能先验调节,但由于其采用指数衰减形式的函数剖面,只能确保系统状态以无穷时间收敛于预设目标,难以满足实际工程中快速收敛这一苛刻要求。而公开的可实现任意指定收敛时间的控制方法(如有限或固定时间控制),其收敛时间严格依赖于系统状态初值和控制器参数,并且对于收敛时间上界的估计具有强保守性,严重限制其工程应用。此外,上述控制策略无法实现系统稳态行为的先验调节。基于对已有结果的分析,进行不依赖角速率量测条件下四旋翼姿态从任意初始值至目标值的有限时间保性能控制方法的研究是非常必要的。The existing quadrotor attitude control methods usually rely on tracking differentiators or state observers, most of which can only achieve the final consistent and bounded attitude tracking error in the sense of output feedback, and pay less attention to the attitude control guarantee performance in the presence of unknown interference. question. Although the current preset performance control can realize a priori adjustment of the controlled object performance, because it adopts a function profile in the form of exponential decay, it can only ensure that the system state converges to the preset target in infinite time, and it is difficult to meet the requirement of rapid convergence in practical engineering. demanding requirements. However, the disclosed control method (such as finite or fixed time control) that can realize any specified convergence time, its convergence time strictly depends on the initial value of the system state and the controller parameters, and the estimation of the upper bound of the convergence time is highly conservative, which seriously affects the Limit its engineering applications. Furthermore, the above-mentioned control strategies cannot achieve a priori regulation of the steady-state behavior of the system. Based on the analysis of the existing results, it is very necessary to study the finite-time guaranteed performance control method of the quadrotor attitude from any initial value to the target value under the condition of independent angular rate measurement.
发明内容SUMMARY OF THE INVENTION
本发明为了解决不依赖角速率量测条件下四旋翼姿态从任意初始值至目标值的有限时间保性能控制问题,提供了一种四旋翼姿态指定时间保性能输出反馈控制方法。In order to solve the limited time-guaranteed control of the quadrotor attitude from any initial value to the target value under the condition of independent angular rate measurement, the present invention provides a quadrotor attitude specified time-guaranteed output feedback control method.
本发明是通过如下技术方案来实现的:一种四旋翼姿态指定时间保性能输出反馈控制方法,包括以下步骤:The present invention is achieved through the following technical solutions: a method for output feedback control of quadrotor attitude designation time-guaranteed performance, comprising the following steps:
(1)建立基于欧拉角描述的四旋翼无人机姿态动力/运动学模型:(1) Establish a quadrotor UAV attitude dynamics/kinematics model based on Euler angle description:
其中,Θ=[φ,θ,ψ]T表示机体坐标系中的欧拉角,且φ,θ,ψ分别表示四旋翼无人机姿态中的滚转角,俯仰角和偏航角;Ω=[Ωφ,Ωθ,Ωψ]T表示角速度矢量,Ωφ,Ωθ,Ωψ分别表示滚转角速度、俯仰角速度与偏航角速度;J=diag(Jφ,Jθ,Jψ)表示正定惯性矩阵;Π=diag(kφ,kθ,kψ)表示姿态回路中的不确定阻尼矩阵,ki(i=φ,θ,ψ)表示阻尼系数;K=diag(l,l,c)表示对称的常数矩阵,l表示每一个电机到四旋翼质心的距离,c表示力矩系数;U=[uφ,uθ,uψ]T表示四旋翼无人机姿态角输入的转动扭矩;d=[dφ,dθ,dψ]T表示施加于姿态运动学中的未知有界外部干扰;Among them, Θ=[φ, θ, ψ] T represents the Euler angle in the body coordinate system, and φ, θ, ψ respectively represent the roll angle, pitch angle and yaw angle in the attitude of the quadrotor UAV; Ω= [Ω φ ,Ω θ ,Ω ψ ] T is the angular velocity vector, Ω φ ,Ω θ ,Ω ψ are the roll angular velocity, pitch angular velocity and yaw angular velocity respectively; J=diag(J φ ,J θ ,J ψ ) means Positive definite inertia matrix; Π=diag(k φ , k θ , k ψ ) represents the uncertain damping matrix in the attitude loop, ki (i=φ, θ, ψ) represents the damping coefficient; K=diag(l,l, c) Represents a symmetric constant matrix, l represents the distance from each motor to the center of mass of the quadrotor, c represents the torque coefficient; U=[u φ , u θ , u ψ ] T represents the rotational torque input by the attitude angle of the quadrotor UAV ; d=[d φ , d θ , d ψ ] T represents the unknown bounded external disturbance imposed on the attitude kinematics;
为了方便控制器设计,引入如下符号变量:To facilitate controller design, the following symbolic variables are introduced:
X1=Θ,K2=J-1K,dΘ=-J-1ΠΩ+J-1d表示四旋翼无人机姿态回路中集总干扰,包括系统中的参数不确定性和未知的有界外部干扰;通过这些变换,将四旋翼无人机姿态动力学模型写成如下的紧凑形式:X 1 =Θ, K 2 =J -1 K, d Θ = -J -1 ΠΩ+J -1 d represents the aggregate disturbance in the attitude loop of the quadrotor UAV, including parameter uncertainty in the system and unknown bounded external disturbance; Through these transformations, the quadrotor UAV attitude dynamics model is written in the following compact form:
(2)针对步骤(1)给出的四旋翼不确定姿态模型,构造扩张状态观测器ESO对集总干扰进行在线观测与补偿:(2) According to the uncertain attitude model of the quadrotor given in step (1), an extended state observer ESO is constructed to perform online observation and compensation of the lumped interference:
构造如下的四旋翼姿态扩张状态观测器:Construct the following quadrotor attitude expansion state observer:
其中,w0表示扩张状态观测器的带宽,满足w0>0,而且w0是扩张状态观测器中唯一需要调节的参数;分别为四旋翼角速率和集总干扰的估计值;in, w 0 represents the bandwidth of the extended state observer, satisfying w 0 > 0, and w 0 is the only parameter that needs to be adjusted in the extended state observer; are the estimated values of the quadrotor angular rate and the aggregate interference, respectively;
(3)设计姿态调节时间可任意指定的边界性能函数,结合步骤(2)给出的干扰估计,分别构造姿态回路虚拟控制律和角速度回路实际控制律,以实现姿态响应暂态与稳态性能的先验调节:(3) Design the boundary performance function whose attitude adjustment time can be specified arbitrarily, and construct the virtual control law of the attitude loop and the actual control law of the angular velocity loop in combination with the interference estimation given in step (2), so as to realize the transient and steady-state performance of attitude response. The prior adjustment of :
定义Xid,(i=φ,θ,ψ)为给定的足够平滑的姿态指令,实际姿态角为X1=[Xφ1,Xθ1,Xψ1]T,则四旋翼无人机姿态跟踪误差为ei1=Xi1-Xid,为确保姿态跟踪误差满足如下性能约束:Define X id , (i=φ, θ, ψ) as a given enough smooth attitude command, the actual attitude angle is X 1 =[X φ1 , X θ1 , X ψ1 ] T , then the quadrotor UAV attitude tracking The error is e i1 =X i1 -X id , in order to ensure that the attitude tracking error satisfies the following performance constraints:
其中,ai(t)为收敛时间可任意指定的性能函数:in, a i (t) is an arbitrarily specified performance function for the convergence time:
其中,ri∈(0,1),ai0,ai∞,Ti为指定时间性能剖面的调节参数,通过调整时间Ti的数值可以使得性能函数ai(t)指定时间收敛;Among them, ri ∈(0,1), a i0 , a i∞ , T i are the adjustment parameters of the specified time performance profile , and the performance function a i (t ) can be converged at the specified time by adjusting the value of time Ti;
接下来,采用误差转换函数Si(·)可以将受约束的姿态跟踪误差转化为无约束的跟踪误差:Next, the constrained pose tracking error can be transformed into an unconstrained tracking error by using the error transfer function S i ( ):
其中zi(t)为转换后的跟踪误差,是归一化误差;where zi (t) is the transformed tracking error, is the normalization error;
基于转换后的跟踪误差,构造姿态子系统的虚拟控制律为:Based on the converted tracking error, the virtual control law of the attitude subsystem is constructed as:
其中,ki1为姿态回路的控制增益;Among them, k i1 is the control gain of the attitude loop;
定义考虑速度状态和集总干扰是不可测的,设计角速度子系统的实际控制器为:definition Considering that the velocity state and the aggregate disturbance are unmeasurable, the actual controller for designing the angular velocity subsystem is:
其中,k2为角速度回路的控制增益矩阵。Among them, k 2 is the control gain matrix of the angular velocity loop.
本发明所提供的反馈控制方法,主要过程为:首先,建立基于欧拉角描述的四旋翼无人机姿态动力/运动学模型;其次,构造扩张状态观测器(ESO)对包括参数不确定性和外部干扰在内的集总干扰进行在线观测与补偿;然后,设计姿态调节时间可任意指定的边界性能函数,最后,构造姿态回路虚拟控制律和角速度回路实际控制律,以实现姿态响应暂态与稳态性能的先验调节。The main process of the feedback control method provided by the present invention is as follows: firstly, establishing a quadrotor UAV attitude dynamics/kinematics model based on Euler angle description; secondly, constructing an extended state observer (ESO) pair including parameter uncertainty On-line observation and compensation of aggregate disturbances including external disturbances; then, a boundary performance function whose attitude adjustment time can be specified arbitrarily is designed; finally, a virtual control law of attitude loop and an actual control law of angular velocity loop are constructed to realize attitude response transient A priori conditioning with steady-state performance.
与现有技术相比本发明具有以下有益效果:本发明所提供的一种四旋翼姿态指定时间保性能输出反馈控制方法,其提出了一种可任意指定收敛时间的性能剖面,不仅可以确保姿态误差保性能约束,还能控制四旋翼从任意初始状态都能按照指定的收敛时间到达稳态,即可以确保四旋翼姿态机动控制满足预设性能指标要求,并且收敛速度可通过性能剖面的时间常数任意指定;进一步,综合预设性能控制和扩张状态观测器技术,实现了输出反馈框架下的四旋翼姿态任意时间保性能跟踪,引入扩张状态观测器技术,可以实现输出反馈意义下的干扰精确估计与补偿。Compared with the prior art, the present invention has the following beneficial effects: a four-rotor attitude specification time-guaranteed performance output feedback control method provided by the present invention proposes a performance profile that can arbitrarily specify a convergence time, which can not only ensure the attitude The error guarantees performance constraints, and it can also control the quadrotor from any initial state to reach the steady state according to the specified convergence time, that is, it can ensure that the quadrotor attitude maneuver control meets the preset performance index requirements, and the convergence speed can pass the time constant of the performance profile. Arbitrary designation; further, the combination of preset performance control and extended state observer technology realizes the performance-preserving tracking of quadrotor attitude at any time under the framework of output feedback, and the introduction of extended state observer technology can achieve accurate interference estimation in the sense of output feedback with compensation.
附图说明Description of drawings
图1是本发明一种四旋翼姿态指定时间保性能输出反馈控制方法的流程图。FIG. 1 is a flow chart of a method of the present invention for a quadrotor attitude-specified time-guaranteed output feedback control method.
具体实施方式Detailed ways
以下结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific embodiments.
一种四旋翼姿态指定时间保性能输出反馈控制方法,流程如图1所示,包括以下步骤:A quadrotor attitude specification time-guaranteed output feedback control method, the process is shown in Figure 1, including the following steps:
(1)建立基于欧拉角描述的四旋翼无人机姿态动力/运动学模型:(1) Establish a quadrotor UAV attitude dynamics/kinematics model based on Euler angle description:
其中,Θ=[φ,θ,ψ]T表示机体坐标系中的欧拉角,且φ,θ,ψ分别表示四旋翼无人机姿态中的滚转角,俯仰角和偏航角;Ω=[Ωφ,Ωθ,Ωψ]T表示角速度矢量,Ωφ,Ωθ,Ωψ分别表示滚转角速度、俯仰角速度与偏航角速度;表示正定惯性矩阵;Π=diag(0.0024,0.0024,0.0024)Nms2表示姿态回路中的不确定阻尼矩阵,ki(i=φ,θ,ψ)表示阻尼系数;K=diag(l,l,c)表示对称的常数矩阵,l=0.4m表示每一个电机到四旋翼质心的距离,c=0.05表示力矩系数;U=[uφ,uθ,uψ]T表示四旋翼无人机姿态角输入的转动扭矩;d=[dφ,dθ,dψ]T=[0.2(sin(t)+sin(0.5t)),0.2(cos(0.5t)-cos(0.8t)),0.2(sin(t)sin(0.5t))]T表示施加于姿态运动学中的未知有界外部干扰;Among them, Θ=[φ, θ, ψ] T represents the Euler angle in the body coordinate system, and φ, θ, ψ represent the roll angle, pitch angle and yaw angle in the attitude of the quadrotor UAV; Ω= [Ω φ ,Ω θ ,Ω ψ ] T is the angular velocity vector, Ω φ ,Ω θ ,Ω ψ are the roll angular velocity, pitch angular velocity and yaw angular velocity respectively; Represents the positive definite inertia matrix; Π=diag(0.0024,0.0024,0.0024)Nms 2 represents the uncertain damping matrix in the attitude loop, ki ( i =φ,θ,ψ) represents the damping coefficient; K=diag(l,l, c) Represents a symmetric constant matrix, l=0.4m represents the distance from each motor to the center of mass of the quadrotor, c=0.05 represents the torque coefficient; U=[u φ , u θ , u ψ ] T represents the attitude of the quadrotor UAV Rotational torque of angular input; d=[d φ , d θ , d ψ ] T = [0.2(sin(t)+sin(0.5t)), 0.2(cos(0.5t)-cos(0.8t)), 0.2(sin(t)sin(0.5t))] T represents the unknown bounded external disturbance imposed on the attitude kinematics;
为了方便控制器设计,引入如下符号变量:To facilitate controller design, the following symbolic variables are introduced:
X1=Θ,K2=J-1K,dΘ=-J-1ΠΩ+J-1d表示四旋翼无人机姿态回路中集总干扰,包括系统中的参数不确定性和未知的有界外部干扰;通过这些变换,将四旋翼无人机姿态动力学模型写成如下的紧凑形式:X 1 =Θ, K 2 =J -1 K, d Θ = -J -1 ΠΩ+J -1 d represents the aggregate disturbance in the attitude loop of the quadrotor UAV, including parameter uncertainty in the system and unknown bounded external disturbance; Through these transformations, the quadrotor UAV attitude dynamics model is written in the following compact form:
(2)针对步骤(1)给出的四旋翼不确定姿态模型,构造扩张状态观测器ESO对集总干扰进行在线观测与补偿:(2) According to the uncertain attitude model of the quadrotor given in step (1), an extended state observer ESO is constructed to perform online observation and compensation of the lumped interference:
构造如下的四旋翼姿态扩张状态观测器:Construct the following quadrotor attitude expansion state observer:
其中,w0=20表示扩张状态观测器的带宽,满足w0>0,而且w0是扩张状态观测器中唯一需要调节的参数;分别为四旋翼角速率和集总干扰的估计值;in, w 0 =20 represents the bandwidth of the extended state observer, satisfying w 0 >0, and w 0 is the only parameter that needs to be adjusted in the extended state observer; are the estimated values of the quadrotor angular rate and the aggregate interference, respectively;
(3)设计姿态调节时间可任意指定的边界性能函数,结合步骤(2)给出的干扰估计,分别构造姿态回路虚拟控制律和角速度回路实际控制律,以实现姿态响应暂态与稳态性能的先验调节:(3) Design the boundary performance function whose attitude adjustment time can be specified arbitrarily, and construct the virtual control law of the attitude loop and the actual control law of the angular velocity loop in combination with the interference estimation given in step (2), so as to realize the transient and steady-state performance of attitude response. The prior adjustment of :
定义Xid=[20sin(3t),30sin(t),sin(2t)]为给定的足够平滑的姿态指令。实际姿态角响应为X1=[Xφ1,Xθ1,Xψ1]T,则四旋翼无人机姿态跟踪误差为ei1=Xi1-Xid;Define X id =[20sin(3t),30sin(t),sin(2t)] as a given sufficiently smooth gesture command. The actual attitude angle response is X 1 =[X φ1 , X θ1 , X ψ1 ] T , then the attitude tracking error of the quadrotor UAV is e i1 =X i1 -X id ;
系统初始状态设置为X1(0)=[4,2,2]T,X2(0)=[0,0,0]T;The initial state of the system is set as X 1 (0)=[4,2,2] T , X 2 (0)=[0,0,0] T ;
为确保姿态跟踪误差满足如下性能约束:To ensure that the attitude tracking error satisfies the following performance constraints:
其中,ai(t)为收敛时间可任意指定的性能函数:in, a i (t) is an arbitrarily specified performance function for the convergence time:
其中,ri=0.6,ai0=6,ai∞=0.1,Ti=5为指定时间性能剖面的调节参数,通过调整时间Ti的数值可以使得性能函数ai(t)指定时间收敛;Among them, ri = 0.6, a i0 =6, a i∞ =0.1, T i =5 are the adjustment parameters of the specified time performance profile, and the performance function a i (t) can be made to converge at the specified time by adjusting the value of time T i ;
接下来,采用误差转换函数Si(·)可以将受约束的姿态跟踪误差转化为无约束的跟踪误差:Next, the constrained pose tracking error can be transformed into an unconstrained tracking error by using the error transfer function S i ( ):
其中zi(t)为转换后的跟踪误差,是归一化误差;where zi (t) is the transformed tracking error, is the normalization error;
基于转换后的跟踪误差,构造姿态子系统的虚拟控制律为:Based on the converted tracking error, the virtual control law of the attitude subsystem is constructed as:
其中,ki1=4为姿态回路的控制增益;Wherein, k i1 =4 is the control gain of the attitude loop;
定义考虑速度状态和集总干扰是不可测的,设计角速度子系统的实际控制器为:definition Considering that the velocity state and the aggregate disturbance are unmeasurable, the actual controller for designing the angular velocity subsystem is:
其中,k2=diag(8,8,8)为角速度回路的控制增益矩阵。Wherein, k 2 =diag(8,8,8) is the control gain matrix of the angular velocity loop.
本发明要求保护的范围不限于以上具体实施方式,而且对于本领域技术人员而言,本发明可以有多种变形和更改,凡在本发明的构思与原则之内所作的任何修改、改进和等同替换都应包含在本发明的保护范围之内。The scope of protection of the present invention is not limited to the above specific embodiments, and for those skilled in the art, the present invention may have various modifications and changes, any modifications, improvements and equivalents made within the concept and principle of the present invention All replacements should be included within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010272306.8A CN111324138B (en) | 2020-04-09 | 2020-04-09 | Four-rotor attitude designated time performance-guaranteeing output feedback control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010272306.8A CN111324138B (en) | 2020-04-09 | 2020-04-09 | Four-rotor attitude designated time performance-guaranteeing output feedback control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111324138A true CN111324138A (en) | 2020-06-23 |
CN111324138B CN111324138B (en) | 2022-08-23 |
Family
ID=71168085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010272306.8A Expired - Fee Related CN111324138B (en) | 2020-04-09 | 2020-04-09 | Four-rotor attitude designated time performance-guaranteeing output feedback control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111324138B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111813140A (en) * | 2020-07-31 | 2020-10-23 | 中国人民解放军空军工程大学 | A high-precision quadrotor UAV trajectory tracking control method |
CN111831002A (en) * | 2020-07-10 | 2020-10-27 | 中国人民解放军海军工程大学 | An attitude control method for hypersonic aircraft based on preset performance |
CN112882482A (en) * | 2021-01-27 | 2021-06-01 | 曲阜师范大学 | Fixed time trajectory tracking control method based on autonomous underwater robot with preset performance constraint |
CN113093782A (en) * | 2021-04-12 | 2021-07-09 | 广东工业大学 | Unmanned aerial vehicle designated performance attitude control method and system |
CN113238572A (en) * | 2021-05-31 | 2021-08-10 | 上海海事大学 | Preset-time quadrotor unmanned aerial vehicle attitude tracking method based on preset performance control |
CN113759949A (en) * | 2021-09-22 | 2021-12-07 | 北京理工大学 | Flexible rack unmanned aerial vehicle control method and device and electronic equipment |
CN114019848A (en) * | 2021-10-14 | 2022-02-08 | 南京航空航天大学 | A self-regulating control method for guaranteed performance of mechanical systems with limited input |
CN114355959A (en) * | 2021-10-08 | 2022-04-15 | 湖北隆感科技有限公司 | Attitude output feedback control method, device, medium and equipment of aerial robot |
CN116225043A (en) * | 2023-05-09 | 2023-06-06 | 南京信息工程大学 | Four-rotor unmanned aerial vehicle preset performance control method based on interference observer |
CN116300994A (en) * | 2022-12-30 | 2023-06-23 | 西北工业大学 | Four-rotor unmanned aerial vehicle attitude control method based on unknown system dynamics estimator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007035559A2 (en) * | 2005-09-19 | 2007-03-29 | Cleveland State University | Controllers, observers, and applications thereof |
CN110442023A (en) * | 2019-07-25 | 2019-11-12 | 中北大学 | A kind of MEMS gyroscope driving/sensed-mode default capabilities anti-interference control method |
CN110488606A (en) * | 2019-07-25 | 2019-11-22 | 中北大学 | A kind of more quadrotor master-slave mode guaranteed cost nerve self-adapting synergizing formation control methods |
-
2020
- 2020-04-09 CN CN202010272306.8A patent/CN111324138B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007035559A2 (en) * | 2005-09-19 | 2007-03-29 | Cleveland State University | Controllers, observers, and applications thereof |
CN110442023A (en) * | 2019-07-25 | 2019-11-12 | 中北大学 | A kind of MEMS gyroscope driving/sensed-mode default capabilities anti-interference control method |
CN110488606A (en) * | 2019-07-25 | 2019-11-22 | 中北大学 | A kind of more quadrotor master-slave mode guaranteed cost nerve self-adapting synergizing formation control methods |
Non-Patent Citations (3)
Title |
---|
YI SHI,XINGLING SHAO: "Event-Triggered Output Feedback Control for MEMS Gyroscope With Prescribed Performance", 《IEEE ACCESS》 * |
孟庆霄,邵星灵,杨卫: "基于扩张状态观测器的四旋翼无人机姿态受限控制", 《飞行力学》 * |
杨明: "基于有限时间输出反馈的线性扩张状态观测器", 《自动化学报》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111831002A (en) * | 2020-07-10 | 2020-10-27 | 中国人民解放军海军工程大学 | An attitude control method for hypersonic aircraft based on preset performance |
CN111813140B (en) * | 2020-07-31 | 2023-07-28 | 中国人民解放军空军工程大学 | Track tracking control method for four-rotor unmanned aerial vehicle with high precision |
CN111813140A (en) * | 2020-07-31 | 2020-10-23 | 中国人民解放军空军工程大学 | A high-precision quadrotor UAV trajectory tracking control method |
CN112882482B (en) * | 2021-01-27 | 2022-07-22 | 曲阜师范大学 | A fixed-time trajectory tracking control method for autonomous underwater robots with predetermined performance constraints |
CN112882482A (en) * | 2021-01-27 | 2021-06-01 | 曲阜师范大学 | Fixed time trajectory tracking control method based on autonomous underwater robot with preset performance constraint |
CN113093782B (en) * | 2021-04-12 | 2023-07-18 | 广东工业大学 | A method and system for controlling an unmanned aerial vehicle's designated performance attitude |
CN113093782A (en) * | 2021-04-12 | 2021-07-09 | 广东工业大学 | Unmanned aerial vehicle designated performance attitude control method and system |
CN113238572B (en) * | 2021-05-31 | 2022-11-22 | 上海海事大学 | Preset-time quadrotor unmanned aerial vehicle attitude tracking method based on preset performance control |
CN113238572A (en) * | 2021-05-31 | 2021-08-10 | 上海海事大学 | Preset-time quadrotor unmanned aerial vehicle attitude tracking method based on preset performance control |
CN113759949A (en) * | 2021-09-22 | 2021-12-07 | 北京理工大学 | Flexible rack unmanned aerial vehicle control method and device and electronic equipment |
CN113759949B (en) * | 2021-09-22 | 2024-07-26 | 北京理工大学 | Flexible frame unmanned aerial vehicle control method and device and electronic equipment |
CN114355959A (en) * | 2021-10-08 | 2022-04-15 | 湖北隆感科技有限公司 | Attitude output feedback control method, device, medium and equipment of aerial robot |
CN114355959B (en) * | 2021-10-08 | 2024-04-19 | 湖北隆感科技有限公司 | Attitude output feedback control method, device, medium and equipment for aerial robot |
CN114019848A (en) * | 2021-10-14 | 2022-02-08 | 南京航空航天大学 | A self-regulating control method for guaranteed performance of mechanical systems with limited input |
CN114019848B (en) * | 2021-10-14 | 2024-04-30 | 南京航空航天大学 | A guaranteed cost self-regulating control method for mechanical systems with limited input |
CN116300994A (en) * | 2022-12-30 | 2023-06-23 | 西北工业大学 | Four-rotor unmanned aerial vehicle attitude control method based on unknown system dynamics estimator |
CN116300994B (en) * | 2022-12-30 | 2023-08-22 | 西北工业大学 | Attitude control method for quadrotor UAV based on unknown system dynamics estimator |
CN116225043A (en) * | 2023-05-09 | 2023-06-06 | 南京信息工程大学 | Four-rotor unmanned aerial vehicle preset performance control method based on interference observer |
Also Published As
Publication number | Publication date |
---|---|
CN111324138B (en) | 2022-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111324138B (en) | Four-rotor attitude designated time performance-guaranteeing output feedback control method | |
Chen et al. | Design of Flight Control System for a Novel Tilt‐Rotor UAV | |
CN103760906B (en) | Neural network and non-linear continuous depopulated helicopter attitude control method | |
CN111766899A (en) | An anti-jamming formation control method for quadrotor UAV swarm based on jamming observer | |
CN108445766A (en) | Model-free quadrotor UAV trajectory tracking controller and method based on RPD-SMC and RISE | |
CN109976361B (en) | An event-triggered attitude control method for quadrotor UAV | |
CN109521786A (en) | Quadrotor drone Sliding Mode Attitude control method based on Proportional integral observer | |
CN110377043A (en) | A kind of small-sized fixed-wing UAV Attitude control method based on H ∞ Loop analysis algorithm | |
CN114019997B (en) | Finite time control method under position tracking deviation constraint of fixed wing unmanned aerial vehicle | |
CN114967718B (en) | Four-rotor-wing trajectory tracking optimal control method under control limitation | |
Sun et al. | Nonlinear robust compensation method for trajectory tracking control of quadrotors | |
El Houm et al. | Optimal new sliding mode controller combined with modified supertwisting algorithm for a perturbed quadrotor UAV | |
CN116880535A (en) | Attitude control method for improved second-order active disturbance rejection control four-rotor unmanned aerial vehicle | |
CN109976364B (en) | An attitude decoupling control method for a six-rotor aircraft | |
Wang et al. | Differential flatness of lifting-wing quadcopters subject to drag and lift for accurate tracking | |
CN111897219A (en) | Optimal robust control method for transition flight mode of tilting quadrotor UAV based on online approximator | |
CN113848730B (en) | Triaxial inertia stabilized platform high-precision control method based on internal model principle and self-adaptive time-varying bandwidth observer | |
CN118444578B (en) | Adaptive UAV control method and system based on back propagation neural network | |
McIntosh et al. | Aerodynamic feedforward-feedback architecture for tailsitter control in hybrid flight regimes | |
CN111413996B (en) | Four-rotor performance-guaranteeing trajectory tracking control method based on event-triggered ESO | |
CN118348795A (en) | Four-rotor unmanned aerial vehicle limited time control method with virtual control law saturation | |
CN118394098A (en) | Consistency control method for rotor unmanned aerial vehicle formation under asynchronous switching topology | |
CN116300668A (en) | Layering anti-interference control method for four-rotor unmanned aerial vehicle aiming at rainfall interference | |
Yu | A novel tandem ducted fan UAV attitude control based on cascade PID controller | |
Huang et al. | Cascaded Trajectory Tracking Control for A Quadcopter UAV with Consideration of Actuator Dynamics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220823 |
|
CF01 | Termination of patent right due to non-payment of annual fee |