CN111301886B - 基于rbf神经网络的垃圾分类回收系统及控制方法 - Google Patents
基于rbf神经网络的垃圾分类回收系统及控制方法 Download PDFInfo
- Publication number
- CN111301886B CN111301886B CN202010116986.4A CN202010116986A CN111301886B CN 111301886 B CN111301886 B CN 111301886B CN 202010116986 A CN202010116986 A CN 202010116986A CN 111301886 B CN111301886 B CN 111301886B
- Authority
- CN
- China
- Prior art keywords
- garbage
- user
- classification
- garbage collection
- control circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010813 municipal solid waste Substances 0.000 title claims abstract description 411
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims description 25
- 238000011084 recovery Methods 0.000 title claims description 22
- 230000007246 mechanism Effects 0.000 claims abstract description 37
- 239000002699 waste material Substances 0.000 claims abstract description 18
- 238000004064 recycling Methods 0.000 claims abstract description 17
- 240000007651 Rubus glaucus Species 0.000 claims description 42
- 235000011034 Rubus glaucus Nutrition 0.000 claims description 42
- 235000009122 Rubus idaeus Nutrition 0.000 claims description 42
- 230000007306 turnover Effects 0.000 claims description 19
- 238000012544 monitoring process Methods 0.000 claims description 13
- 230000006870 function Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 7
- 238000012549 training Methods 0.000 description 6
- 230000006399 behavior Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 210000001503 joint Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002361 compost Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005541 medical transmission Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65F—GATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
- B65F1/00—Refuse receptacles; Accessories therefor
- B65F1/0033—Refuse receptacles; Accessories therefor specially adapted for segregated refuse collecting, e.g. receptacles with several compartments; Combination of receptacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65F—GATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
- B65F1/00—Refuse receptacles; Accessories therefor
- B65F1/10—Refuse receptacles; Accessories therefor with refuse filling means, e.g. air-locks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65F—GATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
- B65F1/00—Refuse receptacles; Accessories therefor
- B65F1/14—Other constructional features; Accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65F—GATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
- B65F1/00—Refuse receptacles; Accessories therefor
- B65F1/14—Other constructional features; Accessories
- B65F1/1484—Other constructional features; Accessories relating to the adaptation of receptacles to carry identification means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65F—GATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
- B65F1/00—Refuse receptacles; Accessories therefor
- B65F1/14—Other constructional features; Accessories
- B65F1/16—Lids or covers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65F—GATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
- B65F1/00—Refuse receptacles; Accessories therefor
- B65F1/14—Other constructional features; Accessories
- B65F1/16—Lids or covers
- B65F1/1623—Lids or covers with means for assisting the opening or closing thereof, e.g. springs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65F—GATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
- B65F2210/00—Equipment of refuse receptacles
- B65F2210/138—Identification means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65F—GATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
- B65F2210/00—Equipment of refuse receptacles
- B65F2210/172—Solar cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65F—GATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
- B65F2210/00—Equipment of refuse receptacles
- B65F2210/196—Tape dispensers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/10—Waste collection, transportation, transfer or storage, e.g. segregated refuse collecting, electric or hybrid propulsion
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
一种基于RBF神经网络的垃圾分类回收系统,设置在支撑框架顶部的初级分类层,是有四个垃圾投入口的垃圾分类盖板,每个垃圾投入口设置有一个光电传感器;设置在支撑框架中部的垃圾识别层,有接收垃圾、并由控制单元控制进行翻转将垃圾倒入下一层的翻斗机构和垃圾识别摄像头;设置在支撑框架下部的垃圾收集层,有分类接收翻斗机构倒入的不同类型垃圾的垃圾收集机构,垃圾收集机构安装在底板上,并能够在控制单元的控制下进行设定角度的旋转;设置在垃圾识别层的下部、垃圾收集层的上部的四个第二光电传感器。控制单元设置在底板上。本发明用智能硬件代替传统的人力劳动,同时垃圾分类准确率高于人工分类的准确率,大大减轻了环卫工作者的工作负担。
Description
技术领域
本发明涉及一种垃圾分类回收系统。特别是涉及一种基于RBF神经网络的垃圾分类回收系统及控制方法。
背景技术
每个人每天都会扔出许多垃圾,在一些垃圾管理较好的地区,大部分垃圾会得到卫生填埋、焚烧、堆肥等无害化处理,而更多地方的垃圾则常常被简易堆放或填埋,导致臭气蔓延,并且污染土壤和地下水体。垃圾无害化处理的费用是非常高的,根据处理方式的不同,处理一吨垃圾的费用约为一百元至几百元不等。人们大量地消耗资源,大规模生产,大量地消费,又大量地生产着垃圾。后果将不堪设想。
分类的目的就是为了将废弃物分流处理,利用现有生产制造能力,回收利用回收品,包括物质利用和能量利用,填埋处置暂时无法利用的无用垃圾。
垃圾分类指按一定规定或标准将垃圾分类储存、投放和搬运,从而转变成公共资源的一系列活动的总称。垃圾分类可提高垃圾的资源价值和经济价值,大致根据垃圾的成分构成、产生量,结合本地垃圾的资源利用和处理方式来进行分类的。
针对上述情况,目前已出现不少具有垃圾分类投放的垃圾收容装置。
如图1所示的,公开号:208412826U申请号:201820796934.4申请人为杭州鸣扬科技有限公司的“可自动开合的垃圾箱”。该垃圾箱设有多个被控箱,用户可以根据垃圾类型(可回收还是不可回收),将垃圾投递到不同的被控箱中,实现对垃圾分类的功能。
被控箱的投放门可以通过推拉杆电机实现自动打开或关闭。另外,该智能垃圾箱还可以通过主控箱上的按键控制被控箱的投放门打开。但其存在如下问题:
1、垃圾箱各分格只能横排摆放,结构较为笨重,无法较好地利用空间。
2、智能程度不高,仅能实现垃圾箱投放门的自动开合,不能实现垃圾的智能分类,无法监督和指导用户的垃圾分类行为,不符合强制垃圾分类的大趋势。
3、由于在传统垃圾箱的基础上增加了主控,导致实际投放中整体成本高于传统垃圾箱。电子设备损坏风险大,投放成本与维护成本较高。
4、无法与互联网实现数据交互,功能较为单一,实际应用价值不大。
再如京东人工智能开放平台(https://neuhub.jd.com/ai/api/image/garbageClassify)所公开的垃圾分类助手APP。其主要结构原理如图2、图3所示:是利用京东图像识别API,对用户手机端捕获的垃圾图片进行识别,并向用户显示垃圾的种类。基于京东垃圾库,具有对垃圾种类的搜索查询功能。但其存在如下问题:
1、与城市的环卫部门的联系较弱,主要依靠用户个人的自觉意识来实现垃圾分类。只有软件APP,没有配套的智能硬件。
2、功能主要为公益性质,不能很好地实现基于垃圾分类与回收的盈利。
3、当前城市强制垃圾分类措施执行困难的主要因素不仅有用户分类意识差,更有环卫工作负担重、人力指导监督成本高。分类助手只能面向普通用户,无法向城市的环卫工作者提供针对性服务。
在很多已经开始实施强制垃圾分类的大城市,传统的环卫系统是以环卫工作者付出人力劳动为基础的。政府环卫部门将传统的四分格垃圾箱投放在城市各个区域,需要环卫人员在垃圾箱旁边看管。当有用户到垃圾箱边投放垃圾时,环卫人员会上前对用户进行垃圾分类指导,指导用户将垃圾投入正确类别的垃圾箱内。如果用户违规,将某一种垃圾投入了垃圾类别不匹配的垃圾箱内,环卫人员会对用户进行批评教育甚至罚款惩罚。
环卫人员需要每天都逐个检查垃圾箱是否已满,并将已满的垃圾箱装车运送到垃圾处理厂,大部分垃圾被焚烧或填埋。
目前针对垃圾分类存在如下问题:
1、我国现约有600万拾荒者无照经营,缺乏行之有效的规范和管理,致使垃圾在处理过程中造成二次污染和疾病传播。
2、由于垃圾丢弃数量的不确定性与较重的环卫负担,街道、小区垃圾桶常因未能及时清理而出现垃圾溢出现象。
3、垃圾分类标准及相关知识在公民中并不普及,强制分类政策使得垃圾分类变成心理负担,无法有效落实。目前已有的垃圾分类助手APP无法有效约束公民的垃圾分类行为。
4、在我国已经实行强制垃圾分类的地区,目前大多数垃圾箱前需配置专职人员进行看守,并随时为用户做垃圾分类讲解指导,加重了城市环卫工作负担,增加了人力物力成本。
5、如今已有的智能垃圾分类产品,大多只拥有单一的硬件或单一的软件,其目标人群较为单一,无法形成体系、形成牢固的盈利链,往往加重开发公司的开发成本,难以实现盈利。
6、传统的城市环卫工作中,往往由于环卫部门与垃圾回收企业对接不充分,导致不能及时高效地对垃圾做针对性回收处理,许多垃圾只能填埋焚烧。在减少了潜在利益的同时也加重了环境污染。
因此,要完成的任务与要达到的目的是:
1、搭建专门的垃圾分类回收平台,使城市拾荒者专业化,规范城市环卫工作。
2、扩大垃圾分类回收产品的目标群体,并将环卫职能部门、垃圾回收企业、普通用户等利益群体用同一个平台整合在一起,实现利益最大化,弥补现有垃圾分类回收企业在盈利方面的短板。
3、解决市面上现有的智能垃圾箱智能程度低、缺乏自动垃圾分类能力、缺乏实时的联网数据反馈的问题,解决传统垃圾箱在得不到及时清理情况下的溢出问题。
4、在保证不提高人力物力成本的情况下,基于智能系统实现垃圾分类与用户监督,提高城市居民垃圾分类回收意识。
5、缓解环卫工作者和环卫部门的工作负担,提高城市垃圾分类回收工作效率,加速城市的专业化垃圾回收进程。
发明内容
本发明所要解决的技术问题是,提供一种不仅可对所投入垃圾进行智能、标准的分类,还能够通过人脸识别技术或刷卡模块实现与用户账户的自动对接,实现智能地监督用户的垃圾分类行为的基于RBF神经网络的垃圾分类回收系统及控制方法。
本发明所采用的技术方案是:一种基于RBF神经网络的垃圾分类回收系统,包括有底板和设置在底板上的支撑框架,所述的支撑框架上分别设置有:
设置在所述支撑框架顶部的初级分类层,由形成有用于分别投入四种不同类型垃圾的四个垃圾投入口的垃圾分类盖板,以及分别设置在四个垃圾投入口入口处的用于获取所在垃圾投入口的垃圾投入信号并送入主控单元的四个第一光电传感器构成;
设置在所述支撑框架中部的垃圾识别层,包括有用于临时接收从初级分类层落下的垃圾、并在控制单元确认所述垃圾类型后,由控制单元控制进行翻转将所接收到的垃圾倒入下一层的翻斗机构,以及设置在所述的支撑框架上用于采集翻斗机构所接收的垃圾图像并送入主控单元进行识别的垃圾识别摄像头;
设置在所述支撑框架下部的垃圾收集层,包括有能够分类接收翻斗机构倒入的四种不同类型垃圾的垃圾收集机构,所述的垃圾收集机构安装在所述的底板上,并能够在主控单元的控制下进行设定角度的旋转;
设置在所述垃圾识别层的下部、垃圾收集层的上部,用于分别实时监测垃圾收集机构中四种不同类型垃圾容量状态的四个第二光电传感器;
所述的控制单元设置在所述底板上并位于所述支撑框架的一侧,通过导线分别连接所述的第一光电传感器、翻斗机构、垃圾识别摄像头、垃圾收集机构和四个第二光电传感器。
一种基于RBF神经网络的垃圾分类回收系统的控制方法,包括如下步骤:
1)对基于RBF神经网络的垃圾分类回收系统进行初始化,使垃圾分类盖板上四个不同垃圾类型的垃圾投入口与垃圾收集箱内的四个不同垃圾类型的垃圾收集桶按相同类型一一垂直对应;
2)当用户通过人脸识别摄像头或刷卡模块登记身份后,将垃圾按垃圾分类盖板上所标记的类型通过相应的垃圾投入口投入到垃圾接收容器内,位于该垃圾投入口的第一光电传感器检测到有垃圾投入,并将该垃圾投入口有垃圾投入的信息发送给主控电路树莓派;
3)主控电路树莓派通过垃圾识别摄像头获取用户投入垃圾的图像,将所述图像对应的垃圾名称发送到存有垃圾分类信息的云数据库,获取该垃圾的正确分类,并根据第一光电传感器所在位置判断用户选择的垃圾投入口是否正确,若用户选对垃圾投入口,则进入步骤4),否则,进入步骤5);
4)主控电路树莓派发送用户选择正确的信息到存有用户信息的云数据库,用户积分加1,同时主控电路树莓派控制第一舵机驱动翻转板带动垃圾接收容器翻转将垃圾倒入垃圾收集箱内垃圾类型相对应的垃圾收集桶内,进入步骤7);
5)主控电路树莓派发送用户选择不正确的信息到存有用户信息的云数据库,用户积分减1,同时主控电路树莓派控制第二舵机驱动垃圾收集箱旋转设定的角度,使垃圾收集箱内的垃圾收集桶所收集的垃圾类型与用户投入的垃圾类型相对应;
6)主控电路树莓派控制第一舵机驱动翻转板带动垃圾接收容器翻转将垃圾倒入垃圾收集箱内垃圾类型相对应的垃圾收集桶内;
7)主控电路树莓派通过第二光电传感器获取每个垃圾收集桶内垃圾容量,当垃圾收集桶内垃圾容量达到80%时,主控电路树莓派通过云数据库向远程状态监测APP发送该垃圾收集桶容量信息和位置信息,提醒环卫工作者及时更换或清理该垃圾收集桶,远程状态监测APP还根据位置信息给出最近的最终垃圾回收部门的导航路线;当垃圾收集桶内垃圾容量没有达到80%时,返回步骤1)。
本发明的基于RBF神经网络的垃圾分类回收系统及控制方法,具有如下优点:
(1)本发明设置了可联网的智能分类垃圾箱,不仅可对所投入垃圾进行智能、标准的分类,还能够通过人脸识别技术或刷卡模块实现与用户账户的自动对接,实现智能地监督用户的垃圾分类行为。用智能硬件代替了传统的人力劳动,同时垃圾分类准确率高于人工分类的准确率,大大减轻了环卫工作者的工作负担。
(2)本发明设置了能够协助环卫人员实时监控垃圾箱状态的远程状态监测APP,远程APP能够监控智能分类垃圾箱的内桶容量,具有箱满提示、回收站定位导航等功能,使环卫人员可以随时监控垃圾箱的状态。环卫人员只需要根据APP的指示,清理容量报警的垃圾箱即可,而不必对上百个垃圾箱逐个检查是否已满。使环卫人员可对已满垃圾箱精准定位,做针对性清理,有效提高了环卫工作者的工作效率。
(3)本发明能够针对不同垃圾的种类,为环卫人员对接专项垃圾处理厂,自动生成前往专项垃圾回收厂的导航路线,有效提高垃圾的回收利用效率,在有效避免垃圾焚烧填埋带来的二次污染的同时,为垃圾回收企业带来了丰厚的利润。
(4)将用户的垃圾分类行为与积分征信制度挂钩,构建用户积分奖惩界面,界面不仅记录用户垃圾分类信息,还给用户提供专业指导,使用户的垃圾分类教学转移到线上网站教学,摆脱了环卫人员的人工教学,有效减轻了环卫人员的工作负担,并实现了垃圾强制分类,有助于提高公民的环卫意识。
(5)本发明成本低,结构灵活,能够适用于不同的城市地区。不同城市的垃圾分类规则不同,有的城市按六类垃圾分类,有的城市按四类垃圾分类。智能垃圾箱采用多级分类模式,针对不同的生活场景,基于大数据分析,可改变底部转桶的四分格的大小,在保证不提升成本的情况下实现了“一次开发,多处复用”。
(6)本发明具有趣味性,应用面广泛,可以作为教学用具或早教玩具,有助于培养公民的环卫意识。由于本产品趣味性强、操作性高,简单易懂,因此可投放于中小学校或办公楼作为教具使用,也可以投放在家庭作为婴幼儿早教玩具。使用者可以分别扮演环卫人员、拾荒者、普通用户等多个角色,模拟垃圾分类回收流程,实现“寓教于乐”。
附图说明
图1是申请号为201820796934.4的可自动开合的垃圾箱结构示意图;
图2是京东垃圾分类助手功能界面效果图;
图3是通过京东垃圾分类助手功能界面查询得到的效果图;
图4是本发明基于RBF神经网络的垃圾分类回收系统的立体结构示意图;
图5是本发明基于RBF神经网络的垃圾分类回收系统正面结构示意图;
图6是图5的左视图;
图7是图5的俯视图;
图8是图5中去掉初级分类层时的俯视图;
图9是本发明中垃圾收集箱的俯视图;
图10是本发明中控制单元框图。
图中
1:第一光电传感器 2:人脸识别摄像头
3:垃圾识别摄像头 4:垃圾接收容器
5:第二光电传感器 6:第一舵机
7:垃圾收集箱 8:底板底板
9:刷卡模块 10:控制单元
11:第二舵机 12:垃圾分类盖板
13:太阳能电池板 14:arduino电路
15:支撑框架 16:垃圾投入口
17:翻转板 18:垃圾收集桶
19:主控电路树莓派
具体实施方式
下面结合实施例和附图对本发明的基于RBF神经网络的垃圾分类回收系统及控制方法做出详细说明。
如图4、图5、图6、图7、图8所示,本发明的基于RBF神经网络的垃圾分类回收系统,包括有底板8和设置在底板8上的支撑框架15,所述的支撑框架15上分别设置有:
初级分类层,设置在所述支撑框架15顶部。如图4、图7所示,由形成有用于分别投入四种不同类型垃圾的四个垃圾投入口16的垃圾分类盖板12,以及分别设置在四个垃圾投入口16入口处的用于获取所在垃圾投入口16的垃圾投入信号并送入控制单元10的四个第一光电传感器1构成;所述的四种不同类型垃圾分别是:可回收垃圾、厨余垃圾、有害垃圾和其它垃圾。所述的垃圾分类盖板12上在每一类的垃圾投入口16的侧边都设置有用于显示该垃圾投入口16所属垃圾类别的标签。
垃圾识别层,设置在所述支撑框架15中部。如图4、图6、图8所示,包括有用于临时接收从初级分类层落下的垃圾、并在控制单元10确认所述垃圾类型后,由控制单元10控制进行翻转将所接收到的垃圾倒入下一层的翻斗机构,以及设置在所述的支撑框架15上用于采集翻斗机构所接收的垃圾图像并送入控制单元10进行识别的垃圾识别摄像头3,垃圾识别摄像头3接收到控制单元10的指令后,拍照捕获垃圾的图像并反馈给控制单元10。
所述的翻斗机构包括有:翻转板17和设置在所述翻转板17上的垃圾接收容器4,所述支撑框架15上对应所述翻转板17设置有第一舵机6,所述第一舵机6的输出端固定连接所述翻转板17,所述第一舵机6的输入端通过导线连接所述控制单元10,并在控制单元10的控制下驱动所述翻转板17带动垃圾接收容器4翻转设定角度。
垃圾收集层,设置在所述支撑框架15下部。包括有能够分类接收翻斗机构倒入的四种不同类型垃圾的垃圾收集机构,所述的垃圾收集机构安装在所述的底板8上,并能够在控制单元10的控制下进行设定角度的旋转;
如图5、图6、图9所示,所述的垃圾收集机构包括有:设置在所述底板8上的第二舵机11,固定连接在所述第二舵机11输出端的垃圾收集箱7,所述的垃圾收集箱7内田字式等分的设置有四个用于收纳不同类型垃圾的垃圾收集桶18,每个所述的垃圾收集桶18均能够单独从垃圾收集箱7内取出,所述的第二舵机11的输入端通过导线连接所述控制单元10,并在控制单元10的控制下驱动所述垃圾收集箱7旋转设定的角度。即垃圾收集箱7能够通过旋转而调整垃圾收集桶18的角度,将垃圾接收容器4倒下来的垃圾收纳到对应的垃圾种类的垃圾收集桶18内。所述的四个第二光电传感器5分别设置在翻斗机构中的翻转板17上,每个第二光电传感器5的信号采集端对应所述垃圾收集箱7内的一个垃圾收集桶18,用于采集垃圾收集桶18内的容量信息。
四个第二光电传感器5,设置在所述垃圾识别层的下部、垃圾收集层的上部,用于分别实时监测垃圾收集机构中四种不同类型垃圾容量状态;
所述的控制单元10设置在所述底板8上并位于所述支撑框架15的一侧,通过导线分别连接所述的第一光电传感器1、翻斗机构、垃圾识别摄像头3、垃圾收集机构和四个第二光电传感器5。
如图10所示,所述的控制单元10包括有:主控电路树莓派19和与所述的主控电路树莓派19相连用于提供电源的太阳能电池板13,太阳能电池板13能够在白天储蓄电能,延长供电时间,保证智能分类垃圾箱长时间工作。所述的第一光电传感器1、人脸识别摄像头2、垃圾识别摄像头3、第二光电传感器5、第一舵机6和第二光电传感器5分别连接所述主控电路树莓派19,用于识别用户身份的刷卡模块9通过arduino电路14连接所述主控电路树莓派19。
如图4、图5所示,在所述的支撑框架15上设置有人脸识别摄像头2,用于动态检测人脸,识别用户身份;所述的控制单元10还设置有用于识别用户身份的刷卡模块9。人脸识别摄像头2能够对扔垃圾的用户进行人脸识别,获取用户的个人信息,对用户的扔垃圾情况进行个性化记录,刷卡模块9主要提供给担心人脸信息隐私泄露的用户。如果用户不想通过刷脸方式使用垃圾箱,则可以通过刷卡模块进行刷卡来验证个人信息。
本发明的基于RBF神经网络的垃圾分类回收系统中,
所述的主控电路树莓派可选用型号为:树莓派3B,或树莓派3B+,或树莓派4B。
所述的Arduino电路可选用型号为:Arduino UNO R3,或Arduino Mega 2560,或Arduino Nano的Arduino。
所述的第一光电传感器和第二光电传感器均可选用型号为:E18-D80NK,或E3F-DS10C4,或E3F-DS10P1的电传感器。
所述的第一舵机和第二舵机可选用型号为:MG90,或MG90S,或MG995的舵机。
所述的刷卡模块可选用型号为:MFRC-522,或RC522,或RFID射频的刷卡模块。
本发明的基于RBF神经网络的垃圾分类回收系统的控制方法,包括如下步骤:
1)对基于RBF神经网络的垃圾分类回收系统进行初始化,使垃圾分类盖板12上四个不同垃圾类型的垃圾投入口16与垃圾收集箱7内的四个不同垃圾类型的垃圾收集桶18按相同类型一一垂直对应;
2)当用户通过人脸识别摄像头2或刷卡模块9登记身份后,将垃圾按垃圾分类盖板12上所标记的类型通过相应的垃圾投入口16投入到垃圾接收容器4内,位于该垃圾投入口16的第一光电传感器1检测到有垃圾投入,并将该垃圾投入口16有垃圾投入的信息发送给主控电路树莓派19;
3)主控电路树莓派19通过垃圾识别摄像头3获取用户投入垃圾的图像,将所述图像对应的垃圾名称发送到存有垃圾分类信息的云数据库,获取该垃圾的正确分类,并根据第一光电传感器1所在位置判断用户选择的垃圾投入口16是否正确,若用户选对垃圾投入口16,则进入步骤4),否则,进入步骤5);当主控电路树莓派19获取的用户投入垃圾的图像不清楚,无法识别出垃圾的种类时,则将该垃圾归类于其它垃圾类,判断用户选则是否为其它垃圾类的垃圾投入口16,是则进入步骤4),否则,进入步骤5)。
4)主控电路树莓派19发送用户选择正确的信息到存有用户信息的云数据库,用户积分加1,同时主控电路树莓派19控制第一舵机驱动翻转板17带动垃圾接收容器4翻转将垃圾倒入垃圾收集箱7内垃圾类型相对应的垃圾收集桶18内,进入步骤7);
5)主控电路树莓派19发送用户选择不正确的信息到存有用户信息的云数据库,用户积分减1,同时主控电路树莓派19控制第二舵机11驱动垃圾收集箱7旋转设定的角度,使垃圾收集箱7内的垃圾收集桶18所收集的垃圾类型与用户投入的垃圾类型相对应;
6)主控电路树莓派19控制第一舵机驱动翻转板17带动垃圾接收容器4翻转将垃圾倒入垃圾收集箱7内垃圾类型相对应的垃圾收集桶18内;
7)主控电路树莓派19通过第二光电传感器获取每个垃圾收集桶18内垃圾容量,当垃圾收集桶18内垃圾容量达到80%时,主控电路树莓派19通过云数据库向远程状态监测APP发送该垃圾收集桶18容量信息和位置信息,远程状态监测APP能够实时地读取垃圾收集箱7内的垃圾收集桶18的容量状态,可以通过铃声和振动提醒环卫工作者及时更换或清理该垃圾收集桶18,远程状态监测APP还根据位置信息给出最近的最终垃圾回收部门的导航路线;当垃圾收集桶18内垃圾容量没有达到80%时,返回步骤1)。
上述步骤3)、步骤4)和步骤5)中所述的云数据库是设置在云服务器上的数据库,数据库内存有用户的个人信息、用户投垃圾的记录、垃圾的种类,所述的云服务器上设有具有便捷用户指导界面的网站,网站前端由HTML5语言写成,使用Java语言操控云端数据库,用户能够从云端数据库中调出用户的个人信息、用户投垃圾的记录、垃圾的种类,并将这些信息呈现到前端界面。
本发明中的人脸识别与垃圾分类识别选用了RBF(Radial Basis Function)神经网络,其属于前馈神经网络中的一类特殊的三层神经网络。RBF神经网络从输入空间到隐含空间的变换是非线性的,而从隐含层空间到输出层空间的变换则是线性的。在模式分类问题中,其每一类的判决区域是局域性的,对于不属于已知类别的新的样本能够做出有效的拒判。又由于由于其具有良好的鲁棒性与最佳逼近性,同是在计算过程中具备全局最优的特性,因此使用其进行图像分类识别。具体过程如下:
一)使用的数据集:
对于以下两种数据集,本发明均从中选取一半的图像作为训练集,一半的图像作为测试集。
对于垃圾分类图像选用:Kaggle的Waste Classifiction data,ImageNet。
由于垃圾分类的过程常常无法一步实现,首先要实现对物体本身原始种类的识别(如可乐罐、塑料袋等),随后再进行对垃圾类别的分类(如可回收垃圾、其他垃圾等)。因此,本发明采用以Kaggle的Waste Classifiction data为主,本数据集可以独立完成垃圾分类模型的训练需求,同时为提高部分生活常见垃圾的识别准确率,在物体种类划分上使用Imagenet数据集的部分数据,以辅助完成更精确的来及分类效果。
对于人脸识别图像选用:AFLW人脸数据库。
AFLW人脸数据库是一个包括多姿态、多视角的大规模人脸数据库,其具有21个特征,能够较为综合的考量实际环境中的人脸图片情况。
2)模型的训练:
由于标记数据的有限性与人工标记的繁琐性,训练过程采用半监督学习的方式。
训练过程主要有以下几个步骤:
(1)将图像进行预处理并找出正确的边界信息。
图像的相关信息是以数值矩阵的形式进行处理的,在对图像信息的色彩维度进行正交分解后得到多个矩阵,本发明通过在矩阵最外侧填补0值,并将图像进行等大小的随即裁剪。图像以50%的概率进行翻转。
(2)将边界信息应用数学计算提取特征值。
本发明将特征属性中的几个特征进行“中间概念”的计算与合并,形成数量较少且包含足够所需信息的特征属性。
在特征值提取中,本发明选用一种线性平滑的滤波——高斯滤波。高斯噪声是可以致使边界模糊的一大原因,因此本发明选用适用于消除高斯噪声的高斯滤波。
(3)将特征值作为RBF神经网络的输入,训练网络。
在训练模型时,本发明以Dice loss函数作为损失函数,以Adam优化器作为优化器。RBF神经网络最初将输入层每个神经元的权值设置为随机值,然后每用数据集训练一次,就利用Dicce loss函数计算损失,并用Adam优化器调整需要调整的部分神经元的权值,直到损失达到最小。
3)测试网络模型并应用模型
本发明用测试集测试训练的网络后,经统计,垃圾识别的准确率达到82.54%,人脸识别的准确率也达到85.61%。这说明模型能够较为准确地识别垃圾和人脸。
在使用模型时,只需要将拍摄到的垃圾的图像输入训练好的RBF神经网络模型程序中,程序就会自动输出该图像中的物品的名称。
而如果将用户的人脸照片输入模型,则可输出对应的用户姓名。
Claims (3)
1.一种基于RBF神经网络的垃圾分类回收系统的控制方法,基于RBF神经网络的垃圾分类回收系统,包括有底板(8)和设置在底板(8)上的支撑框架(15),其特征在于,所述的支撑框架(15)上分别设置有:
设置在所述支撑框架(15)顶部的初级分类层,由形成有用于分别投入四种不同类型垃圾的四个垃圾投入口(16)的垃圾分类盖板(12),以及分别设置在四个垃圾投入口(16)入口处的用于获取所在垃圾投入口(16)的垃圾投入信号并送入控制单元(10)的四个第一光电传感器(1)构成;
设置在所述支撑框架(15)中部的垃圾识别层,包括有用于临时接收从初级分类层落下的垃圾、并在控制单元(10)确认所述垃圾类型后,由控制单元(10)控制进行翻转将所接收到的垃圾倒入下一层的翻斗机构,以及设置在所述的支撑框架(15)上用于采集翻斗机构所接收的垃圾图像并送入控制单元(10)进行识别的垃圾识别摄像头(3);
所述的支撑框架(15)上设置有人脸识别摄像头(2),用于动态检测人脸,识别用户身份;所述的控制单元(10)还设置有用于识别用户身份的刷卡模块(9);
设置在所述支撑框架(15)下部的垃圾收集层,包括有能够分类接收翻斗机构倒入的四种不同类型垃圾的垃圾收集机构,所述的垃圾收集机构安装在所述的底板(8)上,并能够在控制单元(10)的控制下进行设定角度的旋转;
所述的垃圾收集机构包括有:设置在所述底板(8)上的第二舵机(11),固定连接在所述第二舵机(11)输出端的垃圾收集箱(7),所述的垃圾收集箱(7)内田字式等分的设置有四个用于收纳不同类型垃圾的垃圾收集桶(18),每个所述的垃圾收集桶(18)均能够单独从垃圾收集箱(7)内取出,所述的第二舵机(11)的输入端通过导线连接所述控制单元(10),并在控制单元(10)的控制下驱动所述垃圾收集箱(7)旋转设定的角度;
设置在所述垃圾识别层的下部、垃圾收集层的上部,用于分别实时监测垃圾收集机构中四种不同类型垃圾容量状态的四个第二光电传感器(5);
所述的控制单元(10)设置在所述底板(8)上并位于所述支撑框架(15)的一侧,通过导线分别连接所述的第一光电传感器(1)、翻斗机构、垃圾识别摄像头(3)、垃圾收集机构和四个第二光电传感器(5);
所述的控制单元(10)包括有:主控电路树莓派(19)和与所述的主控电路树莓派(19)相连用于提供电源的太阳能电池板(13),所述的第一光电传感器(1)、人脸识别摄像头(2)、垃圾识别摄像头(3)、第二光电传感器(5)、第一舵机(6)和第二光电传感器(5)分别连接所述主控电路树莓派(19),用于识别用户身份的刷卡模块(9)通过arduino电路(14)连接所述主控电路树莓派(19);其特征在于,控制方法包括如下步骤:
1)对基于RBF神经网络的垃圾分类回收系统进行初始化,使垃圾分类盖板(12)上四个不同垃圾类型的垃圾投入口(16)与垃圾收集箱(7)内的四个不同垃圾类型的垃圾收集桶(18)按相同类型一一垂直对应;
2)当用户通过人脸识别摄像头(2)或刷卡模块(9)登记身份后,将垃圾按垃圾分类盖板(12)上所标记的类型通过相应的垃圾投入口(16)投入到垃圾接收容器(4)内,位于该垃圾投入口(16)的第一光电传感器(1)检测到有垃圾投入,并将该垃圾投入口(16)有垃圾投入的信息发送给主控电路树莓派(19);
3)主控电路树莓派(19)通过垃圾识别摄像头(3)获取用户投入垃圾的图像,将所述图像对应的垃圾名称发送到存有垃圾分类信息的云数据库,获取该垃圾的正确分类,并根据第一光电传感器(1)所在位置判断用户选择的垃圾投入口(16)是否正确,若用户选对垃圾投入口(16),则进入步骤4),否则,进入步骤5);
4)主控电路树莓派(19)发送用户选择正确的信息到存有用户信息的云数据库,用户积分加1,同时主控电路树莓派(19)控制第一舵机驱动翻转板(17)带动垃圾接收容器(4)翻转将垃圾倒入垃圾收集箱(7)内垃圾类型相对应的垃圾收集桶(18)内,进入步骤7);
5)主控电路树莓派(19)发送用户选择不正确的信息到存有用户信息的云数据库,用户积分减1,同时主控电路树莓派(19)控制第二舵机(11)驱动垃圾收集箱(7)旋转设定的角度,使垃圾收集箱(7)内的垃圾收集桶(18)所收集的垃圾类型与用户投入的垃圾类型相对应;
6) 主控电路树莓派(19)控制第一舵机驱动翻转板(17)带动垃圾接收容器(4)翻转将垃圾倒入垃圾收集箱(7)内垃圾类型相对应的垃圾收集桶(18)内;
7)主控电路树莓派(19)通过第二光电传感器获取每个垃圾收集桶(18)内垃圾容量,当垃圾收集桶(18)内垃圾容量达到80%时,主控电路树莓派(19)通过云数据库向远程状态监测APP发送该垃圾收集桶(18)容量信息和位置信息,提醒环卫工作者及时更换或清理该垃圾收集桶(18),远程状态监测APP还根据位置信息给出最近的最终垃圾回收部门的导航路线;当垃圾收集桶(18)内垃圾容量没有达到80%时,返回步骤1)。
2.根据权利要求1所述的基于RBF神经网络的垃圾分类回收系统的控制方法,其特征在于,步骤3)中,当主控电路树莓派(19)获取的用户投入垃圾的图像不清楚,无法识别出垃圾的种类时,则将该垃圾归类于其它垃圾类,判断用户选则是否为其它垃圾类的垃圾投入口(16),是则进入步骤4),否则,进入步骤5)。
3.根据权利要求1所述的基于RBF神经网络的垃圾分类回收系统的控制方法,其特征在于,步骤3)、步骤4)和步骤5)中所述的云数据库是设置在云服务器上的数据库,数据库内存有用户的个人信息、用户投垃圾的记录、垃圾的种类,所述的云服务器上设有具有便捷用户指导界面的网站,网站前端由HTML5语言写成,使用Java语言操控云端数据库,用户能够从云端数据库中调出用户的个人信息、用户投垃圾的记录、垃圾的种类,并将这些信息呈现到前端界面。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010116986.4A CN111301886B (zh) | 2020-02-25 | 2020-02-25 | 基于rbf神经网络的垃圾分类回收系统及控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010116986.4A CN111301886B (zh) | 2020-02-25 | 2020-02-25 | 基于rbf神经网络的垃圾分类回收系统及控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111301886A CN111301886A (zh) | 2020-06-19 |
CN111301886B true CN111301886B (zh) | 2022-05-17 |
Family
ID=71154949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010116986.4A Expired - Fee Related CN111301886B (zh) | 2020-02-25 | 2020-02-25 | 基于rbf神经网络的垃圾分类回收系统及控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111301886B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111634572A (zh) * | 2020-06-24 | 2020-09-08 | 沈阳大学 | 护士站专用智能分类医疗垃圾装置 |
CN112620165B (zh) * | 2020-12-11 | 2022-09-13 | 江西理工大学 | 垃圾分类方法 |
CN112758551A (zh) * | 2021-01-11 | 2021-05-07 | 江苏地风环卫有限公司 | 一种垃圾智能分类的方法及系统 |
CN113213005A (zh) * | 2021-04-26 | 2021-08-06 | 长春工程学院 | 一种自动化垃圾分类处理装置 |
WO2023158406A1 (en) * | 2022-02-15 | 2023-08-24 | Altintas Aykut | A smart container and waste collection system with mobile application support |
CN114925756B (zh) * | 2022-05-07 | 2022-11-11 | 上海燕龙基再生资源利用有限公司 | 一种基于精细化管理的废玻璃分类回收方法及装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2395887A (en) * | 2002-12-04 | 2004-06-09 | Alex Pavier | Waste recycling system |
CN206798308U (zh) * | 2017-03-27 | 2017-12-26 | 宁海逸航环保科技有限公司 | 一种垃圾分类检测自动回收奖励装置 |
CN109703939A (zh) * | 2018-12-30 | 2019-05-03 | 广东拜登网络技术有限公司 | 智能垃圾回收系统及方法 |
CN110371534A (zh) * | 2019-07-25 | 2019-10-25 | 青岛方天科技股份有限公司 | 一种可智能分类回收的垃圾箱及分类管理方法 |
CN110316496A (zh) * | 2019-08-19 | 2019-10-11 | 浙江工业大学 | 一种基于互联网的智能垃圾识别分类装置 |
CN110723431A (zh) * | 2019-09-19 | 2020-01-24 | 太原理工大学 | 一种基于bp神经网络识别系统的垃圾分类方法 |
-
2020
- 2020-02-25 CN CN202010116986.4A patent/CN111301886B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN111301886A (zh) | 2020-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111301886B (zh) | 基于rbf神经网络的垃圾分类回收系统及控制方法 | |
Fatimah et al. | Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia | |
CN110155572B (zh) | 一种智慧社区垃圾分类系统及方法 | |
CN110210635A (zh) | 一种能识别废弃物的智能分类回收系统 | |
CN110294236A (zh) | 一种垃圾分类监督装置、方法及服务器系统 | |
CN111619992A (zh) | 一种基于机器视觉的智能垃圾分类系统及方法 | |
CN111814750A (zh) | 基于深度学习目标检测和图像识别的智能垃圾分类方法及系统 | |
CN110626662A (zh) | 一种基于图像识别的垃圾自分类方法及设备 | |
CN110834835A (zh) | 一种基于互联网大数据的智能垃圾分类处理方法及系统 | |
CN115631080A (zh) | 一种基于垃圾分类回收服务的智慧社区构建方法 | |
CN111453249A (zh) | 一种基于图像分析的智能厨余垃圾分类桶 | |
CN113319007A (zh) | 一种基于机器视觉识别的生活垃圾分拣方法 | |
Mittal et al. | Trash classification: classifying garbage using deep learning | |
CN110065746B (zh) | 一种基于物联网的航运垃圾分类系统 | |
CN118314385A (zh) | 一种生活垃圾处理的碳排放计算方法 | |
CN112849850A (zh) | 垃圾治理系统、方法、装置和存储介质 | |
CN117088015A (zh) | 一种智慧垃圾处理方法、系统及存储介质 | |
Saranya et al. | A cost-effective smart E-bin system for garbage management using convolutional neural network | |
Qu | Application of Artificial Intelligence in Waste Classification Management at University | |
CN112668678A (zh) | 一种垃圾智能分类回收处理系统平台 | |
CN114020982A (zh) | 一种生活垃圾分类“多网融合”的运营管理方法 | |
Saifi et al. | Solid Waste Management in Indore, Madhya Pradesh, India: Insights from a Survey of Literature | |
CN114013855A (zh) | 一种基于互联网+的垃圾全流程管理方法 | |
Mamari et al. | Deep neural network based composting processing technology: A solution for municipality and fertilizer companies | |
LU500437B1 (en) | System and method for intelligent garbage sorting based on machine vision |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220517 |
|
CF01 | Termination of patent right due to non-payment of annual fee |