CN111273429A - Optical imaging system - Google Patents
Optical imaging system Download PDFInfo
- Publication number
- CN111273429A CN111273429A CN202010221313.5A CN202010221313A CN111273429A CN 111273429 A CN111273429 A CN 111273429A CN 202010221313 A CN202010221313 A CN 202010221313A CN 111273429 A CN111273429 A CN 111273429A
- Authority
- CN
- China
- Prior art keywords
- lens
- imaging system
- optical imaging
- focal length
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012634 optical imaging Methods 0.000 title claims abstract description 136
- 239000006185 dispersion Substances 0.000 claims description 81
- 230000003287 optical effect Effects 0.000 claims description 59
- 239000000463 material Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 15
- 238000005452 bending Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明公开了一种光学成像系统,所述光学成像系统为七片式非球面结构,包括从物侧到像侧依次设置的第一镜片、第二镜片、第三镜片、第四镜片、第五镜片、第六镜片、第七镜片、红外滤波片和图像传感器,第一镜片具有正屈光度,第二镜片具有负屈光度,第三镜片具有正屈光度,第四镜片具有屈光度,第五镜片具有屈光度,第五镜片物侧表面为反曲形状,中心部位向物面方向凸起,第五镜片的边缘部位,全都往物面方向弯曲,其形状为阿拉伯数字“3”,第六镜片具有屈光度,第七镜片具有屈光度,该光学成像系统可以很好地解决杂光问题、大大降低了摄像头模组对面型误差、偏心、同心度以及倾斜度误差的公差敏感度,提高摄像头模组的良品率。
The invention discloses an optical imaging system. The optical imaging system is a seven-piece aspherical structure, comprising a first lens, a second lens, a third lens, a fourth lens, and a third lens arranged in sequence from the object side to the image side Five lens, sixth lens, seventh lens, infrared filter and image sensor, the first lens has positive power, the second lens has negative power, the third lens has positive power, the fourth lens has power, and the fifth lens has power , The object-side surface of the fifth lens is a recurve shape, the center part is convex toward the object surface, and the edge parts of the fifth lens are all curved in the direction of the object surface, and its shape is the Arabic numeral "3", the sixth lens has a diopter, The seventh lens has a diopter, and the optical imaging system can well solve the stray light problem, greatly reduce the tolerance sensitivity of the camera module face error, eccentricity, concentricity and inclination error, and improve the camera module yield.
Description
技术领域technical field
本发明涉及一种光学成像系统,且特别涉及一种应用于电子产品上的小型化光学成像系统。The present invention relates to an optical imaging system, and in particular to a miniaturized optical imaging system applied to electronic products.
背景技术Background technique
目前新近推出市场的智能手机,一直在后置拍照摄像头上进行不断升级。手机摄像头在短短的几年时间内正在经历着从6M→8M→13M→16M→24M→48M →64M→108M,后置像素几乎呈现一年一升级趋势。从摄像头行业的供应链渠道得知,一些著名的手机厂家已经计划在未来两年内将216M像素的列入开发议程。各手机厂商通过对摄像头像素的持续升级、以及摄像头功能的增加对来赢得市场。At present, the newly launched smartphones have been continuously upgraded on the rear camera. In just a few years, the mobile phone camera is going from 6M→8M→13M→16M→24M→48M→64M→108M, and the rear pixels are almost showing a trend of upgrading every year. It is known from the supply chain channels of the camera industry that some well-known mobile phone manufacturers have planned to include 216M pixels on the development agenda in the next two years. Various mobile phone manufacturers have won the market by continuously upgrading the camera pixels and increasing the camera functions.
为了获得手机摄像头像素的不断升级,目前手机摄像头技术的一大变化,是采用了数码相机上使用的更大尺寸的CMOS来提升画质。1/1.7英寸级的 CMOS如今成为手机摄像头传感器的新选择。而更多手机也用上了1/2.3英寸级的传感器。这些传统卡片DC相机使用的传感器,已经成为了新一代拍照手机的选择。显然,手机已经开始在从硬件参数上来淘汰传统数码相机了。In order to obtain the continuous upgrade of the pixels of the mobile phone camera, a major change in the current mobile phone camera technology is to use the larger size CMOS used in the digital camera to improve the picture quality. 1/1.7-inch CMOS is now the new choice for mobile phone camera sensors. And more mobile phones also use 1/2.3-inch sensors. The sensors used in these traditional card DC cameras have become the choice of a new generation of camera phones. Obviously, mobile phones have begun to eliminate traditional digital cameras from the hardware parameters.
由于像素数量及分辨率的要求不断提高,目前所有2千万像素以上的智能手机摄像头的顶级规格一般为六片式非球面镜片的手机摄像头,六片式非球面镜片的手机摄像头己延用多年,但其一般只能用于24M以下的手机摄像头,而更高像素的手机摄像头,由于传感器面板尺寸的以及视场的增大,已经很难满足要求,这就要求采用七片式非球面镜片的手机摄像头或者更多片数的塑料非球面手机摄像头。随着多镜头及七片式非球面镜片的手机摄像头应用的扩大,未来智能手机即将引爆摄像头的新需求。Due to the continuous increase in the number of pixels and resolution requirements, the top specifications of all smartphone cameras with more than 20 million pixels are generally six-piece aspherical lens mobile phone cameras, and six-piece aspherical lens mobile phone cameras have been used for many years. , but it can generally only be used for mobile phone cameras below 24M, and mobile phone cameras with higher pixels are difficult to meet the requirements due to the size of the sensor panel and the increase of the field of view, which requires the use of seven-piece aspherical lenses. of mobile phone cameras or more plastic aspherical mobile phone cameras. With the expansion of the application of mobile phone cameras with multiple lenses and seven-piece aspherical lenses, the new demand for cameras will be detonated by smartphones in the future.
目前各著名的手机厂家都有三镜头或是多镜头的方案,同时也在讨论引入七片式非球面镜片的手机摄像头。三镜头中,每个单镜头都规格都蛮高,未来三镜头也可能看到一个或是两个七片式非球面镜片的手机摄像头。At present, various well-known mobile phone manufacturers have three-lens or multi-lens solutions, and are also discussing the introduction of seven-piece aspherical lenses for mobile phone cameras. Among the three lenses, each single lens has a very high specification. In the future, the three lenses may also see one or two seven-piece aspherical lens mobile phone cameras.
就七片式非球面镜片的手机摄像头而言,其规格更高、可以达到更好的成像品质,但同时对光学设计、镜片的超精密加工、装配精度、以及最后组装的良品率都提出了巨大的挑战。首先是七片式非球面镜片的手机摄像头,由于每一片都是塑料非球面,其对镜片的面型误差、同心度、倾斜度、装配误差的要求都非常严格。首先是镜片的面型误差和亚斯,一般要求在1个牛顿环(即面型误差大概为0.3微米)以内,镜片本身和镜片之间的装配误差,一般要求在2微米以内,镜片两个面的同心度以及镜片之间的同心度也要求在1微米以内,这样才能保证传感器上的成像清晰。同时,由于采用了七片的塑料非球面,手机摄像头整体的透过率也降低了很多,一般不超过70%;另外由于手机摄像头的片数更多了,每个表面之间的菲涅尔部分反射也多了起来,杂光或者鬼影问题会比以往六片及五片的摄像头更加严重,这就要求摄像头的每个镜片都必须镀上增透膜,才能改善透过率以及杂光的问题。As far as mobile phone cameras with seven-piece aspherical lenses are concerned, they have higher specifications and can achieve better imaging quality. huge challenge. The first is the mobile phone camera with seven-piece aspherical lens. Since each piece is a plastic aspherical surface, the requirements for the surface error, concentricity, inclination and assembly error of the lens are very strict. The first is the surface error and Yass of the lens. Generally, it is required to be within 1 Newton ring (that is, the surface error is about 0.3 microns). The assembly error between the lens itself and the lens is generally required to be within 2 microns. The concentricity of the surface and the concentricity between the lenses are also required to be within 1 micron, so as to ensure a clear image on the sensor. At the same time, due to the use of seven plastic aspheric surfaces, the overall transmittance of the mobile phone camera is also reduced a lot, generally not more than 70%; Partial reflections have also increased, and the problem of stray light or ghosting will be more serious than the previous six- and five-piece cameras, which requires that each lens of the camera must be coated with an anti-reflection coating to improve transmittance and stray light. The problem.
近年来,出现了对七片式的手机摄像头的设计,例如中国台湾地区专利TW201403166A,其解决了大视场(视场角大于80度)、大面板传感器的问题,可以得到清晰的成像。但是这些结构也存在一些问题,第六镜片160的第二面162,其中心部位太凸,镜片的中心厚度超过了镜片边缘厚度的两倍,其会导致该面162对面型误差、偏心、同心度、以及倾斜度误差都十分敏感。还有镜片的厚薄不均容易导致镜片在注塑脱模的过程中,产生XY方向面型误差不均衡的亚斯现象,导致摄像头拍照的时候产生模糊及重影,降低了摄像头的良品率,另一个主要的问题是第六镜片160的第二面162中间凸出部位的部分反射会导致杂光和鬼影,迎着强光照射的情况下,像面0.707视场以内的位置容易产生不可消除的杂光,解决的办法只有通过在镜片的表面镀上透过率高的增透膜,才能一定程度上改善杂光的问题。In recent years, the design of seven-piece mobile phone camera has appeared, such as the patent TW201403166A in Taiwan, which solves the problems of large field of view (field of view greater than 80 degrees) and large panel sensor, and can obtain clear imaging. However, these structures also have some problems. The center of the
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术中的上述缺陷,提供一种光学成像系统可以很好地解决杂光问题、大大降低了摄像头模组对面型误差、偏心、同心度以及倾斜度误差的公差敏感度,提高摄像头模组的良品率。The purpose of the present invention is to overcome the above-mentioned defects in the prior art, and to provide an optical imaging system that can well solve the problem of stray light, and greatly reduces the tolerance sensitivity of the camera module to the surface error, eccentricity, concentricity and inclination error. to improve the yield rate of camera modules.
为实现上述目的,本发明提供了一种光学成像系统,所述光学成像系统为七片式非球面结构,包括从物侧到像侧依次设置的第一镜片、第二镜片、第三镜片、第四镜片、第五镜片、第六镜片、第七镜片、红外滤波片和图像传感器,所述第一镜片,其具有正屈光度,所述第二镜片,其具有负屈光度,所述第三镜片,其具有正屈光度,所述第四镜片,其具有屈光度,所述第五镜片,其具有屈光度,所述第五镜片具有第五镜片物侧表面和第五镜片像侧表面,所述第五镜片物侧表面为反曲形状,中心部位向物面方向凸起,中心部位与边缘部位之间的区域往像面方向弯曲,所述第五镜片的边缘部位,全都往物面方向弯曲,其形状为阿拉伯数字“3”,所述第六镜片,其具有屈光度,所述第六镜片具有第六镜片物侧表面和第六镜片像侧表面,所述第六镜片物侧表面中心部位向物面方向凸起,所述第六镜片像侧表面中心部位向像面方向凸起,所述第七镜片,其具有屈光度,所述第七镜片具有第七镜片物侧表面和第七镜片像侧表面,所述第七镜片物侧表面中心部位向镜片内部凹下,所述第七镜片像侧表面中心部位向镜片内部凹下。In order to achieve the above purpose, the present invention provides an optical imaging system, the optical imaging system is a seven-piece aspheric structure, including a first lens, a second lens, a third lens, The fourth lens, the fifth lens, the sixth lens, the seventh lens, the infrared filter and the image sensor, the first lens, which has a positive refractive power, the second lens, which has a negative refractive power, the third lens , which has a positive power, the fourth lens, which has a power, the fifth lens, which has a power, the fifth lens has a fifth lens object side surface and a fifth lens image side surface, the fifth lens The object-side surface of the lens is in a retrocurved shape, the center part is convex toward the object plane, the area between the center part and the edge part is curved toward the image plane, and the edge parts of the fifth lens are all curved toward the object plane, which The shape is an Arabic numeral "3", the sixth lens has a diopter, the sixth lens has a sixth lens object side surface and a sixth lens image side surface, and the center part of the sixth lens object side surface faces the object The surface direction is convex, the center part of the image side surface of the sixth lens is convex toward the image plane, the seventh lens has a diopter, and the seventh lens has a seventh lens object side surface and a seventh lens image side The center part of the object-side surface of the seventh lens is concave toward the interior of the lens, and the center part of the image-side surface of the seventh lens is concave toward the interior of the lens.
作为优选的,所述第四镜片、第五镜片和第六镜片的边缘厚度与中心厚度比值为:0.2<DT/DC<4。Preferably, the ratio of the edge thickness to the center thickness of the fourth lens, the fifth lens and the sixth lens is: 0.2<DT/DC<4.
作为优选的,所述光学成像系统的组合焦距的范围为:3.65mm<f< 7.5mm,其像面对角线尺寸大于6.4mm。Preferably, the range of the combined focal length of the optical imaging system is: 3.65mm<f<7.5mm, and the diagonal dimension of the image plane is greater than 6.4mm.
作为优选的,所述第一镜片具有第一镜片物侧表面和第一镜片像侧表面,所述第一镜片物侧表面和第一镜片像侧表面都往像面方向弯曲,所述第一镜片的焦距f1与光学成像系统的组合焦距f的比值为所述第一镜片为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd >50。Preferably, the first lens has a first lens object side surface and a first lens image side surface, both the first lens object side surface and the first lens image side surface are curved toward the image plane, the first lens The ratio of the focal length f1 of the lens to the combined focal length f of the optical imaging system is The first lens is an optical material component with low refractive index and high dispersion coefficient, the refractive index nd<1.58, and the dispersion coefficient vd >50.
作为优选的,所述第二镜片的中心厚度比边缘厚度薄,所述第二镜片的焦距f2与光学成像系统的组合焦距f的比值为所述第二镜片为高折射率、低色散系数的光学材料构件,其折射率nd>1.6,其色散系数vd< 30。Preferably, the center thickness of the second lens is thinner than the edge thickness, and the ratio of the focal length f2 of the second lens to the combined focal length f of the optical imaging system is The second lens is an optical material component with high refractive index and low dispersion coefficient, the refractive index nd>1.6, and the dispersion coefficient vd<30.
作为优选的,所述第三镜片的焦距f3与光学成像系统的组合焦距f的比值为所述第三镜片为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50。Preferably, the ratio of the focal length f3 of the third lens to the combined focal length f of the optical imaging system is The third lens is an optical material component with a low refractive index and a high dispersion coefficient, the refractive index nd<1.58, and the dispersion coefficient vd>50.
作为优选的,所述第四镜片具有第四镜片物侧表面和第四镜片像侧表面,所述第四镜片物侧表面往物面方向弯曲,所述第四镜片的焦距f4与光学成像系统的组合焦距f的比值为所述第四镜片为高折射率、低色散系数的光学材料构件,其折射率nd>1.6,其色散系数vd<30。Preferably, the fourth lens has an object-side surface of the fourth lens and an image-side surface of the fourth lens, the object-side surface of the fourth lens is curved toward the object plane, and the focal length f4 of the fourth lens is related to the optical imaging system The ratio of the combined focal length f is The fourth lens is an optical material component with high refractive index and low dispersion coefficient, the refractive index nd>1.6, and the dispersion coefficient vd<30.
作为优选的,所述第五镜片具有第五镜片物侧表面和第五镜片像侧表面,所述第五镜片物侧表面的曲面设计的比较平缓,其矢高与光学净孔径的比值小于0.2,即其曲率半径R251与光学成像系统的组合焦距f的比值为所述第五镜片的焦距f5与光学成像系统的组合焦距f的比值为 Preferably, the fifth lens has an object-side surface of the fifth lens and an image-side surface of the fifth lens, the curved surface design of the object-side surface of the fifth lens is relatively gentle, and the ratio of the sagittal height to the optical clear aperture is less than 0.2, which is The ratio of its curvature radius R 251 to the combined focal length f of the optical imaging system is The ratio of the focal length f5 of the fifth lens to the combined focal length f of the optical imaging system is
作为优选的,所述第六镜片的焦距f6与光学成像系统的组合焦距f的比值为 Preferably, the ratio of the focal length f6 of the sixth lens to the combined focal length f of the optical imaging system is
作为优选的,所述第七镜片中间较薄,从中间到边缘慢慢变厚,然后再变薄,所述第七镜片的最厚与最薄部位的比值小于3,所述第七镜片物侧表面和第七镜片像侧表面都比较平缓、矢高与口径的比值都小于0.2,即和 Preferably, the seventh lens is thinner in the middle, gradually thickens from the center to the edge, and then becomes thinner again, the ratio of the thickest to the thinnest part of the seventh lens is less than 3, and the seventh lens is Both the lateral surface and the image side surface of the seventh lens are relatively flat, and the ratio of the sagittal height to the aperture is less than 0.2, that is, and
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本发明设有光学成像系统,所述光学成像系统为七片式非球面结构,包括从物侧到像侧依次设置的第一镜片、第二镜片、第三镜片、第四镜片、第五镜片、第六镜片、第七镜片、红外滤波片和图像传感器,所述第一镜片,其具有正屈光度,所述第二镜片,其具有负屈光度,所述第三镜片,其具有正屈光度,所述第四镜片,其具有屈光度,所述第五镜片,其具有屈光度,所述第五镜片具有第五镜片物侧表面和第五镜片像侧表面,所述第五镜片物侧表面为反曲形状,中心部位向物面方向凸起,中心部位与边缘部位之间的区域往像面方向弯曲,所述第五镜片的边缘部位,全都往物面方向弯曲,其形状为阿拉伯数字“3”,所述第六镜片,其具有屈光度,所述第六镜片具有第六镜片物侧表面和第六镜片像侧表面,所述第六镜片物侧表面中心部位向物面方向凸起,所述第六镜片像侧表面中心部位向像面方向凸起,所述第七镜片,其具有屈光度,所述第七镜片具有第七镜片物侧表面和第,七镜片像侧表面,所述第七镜片物侧表面中心部位向镜片内部凹下,所述第七镜片像侧表面中心部位向镜片内部凹下,该光学成像系统将第五镜片设计成反曲形状,可以分担一部分第六镜片的屈光度,从而可以将第六镜片进行减薄,该光学成像系统可以使第四镜片、第五镜片和第六镜片的边缘厚度与中心厚度比值都可以控制到0.5<DT/DC<2以内,同时电控制了第七镜片的厚薄比,并可以改善由于大传感器尺寸所造成的像面弯曲问题,该光学成像系统可以很好地解决杂光问题、大大降低了摄像头模组对面型误差、偏心、同心度以及倾斜度误差的公差敏感度,提高摄像头模组的良品率。The present invention is provided with an optical imaging system, the optical imaging system is a seven-piece aspheric structure, and includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens arranged in sequence from the object side to the image side , a sixth lens, a seventh lens, an infrared filter and an image sensor, the first lens, which has a positive refractive power, the second lens, which has a negative refractive power, the third lens, which has a positive refractive power, the the fourth lens has a diopter, the fifth lens has a diopter, the fifth lens has a fifth lens object side surface and a fifth lens image side surface, the fifth lens object side surface is recurve Shape, the center part is convex toward the object plane, the area between the center part and the edge part is curved toward the image plane direction, the edge parts of the fifth lens are all curved toward the object plane direction, and its shape is the Arabic numeral "3" , the sixth lens has a diopter, the sixth lens has an object side surface of the sixth lens and an image side surface of the sixth lens, the center part of the object side surface of the sixth lens is convex toward the object surface, the The center part of the image side surface of the sixth lens is convex toward the image plane, the seventh lens has a diopter, the seventh lens has the seventh lens object side surface and the seventh lens image side surface, the seventh lens The center part of the object-side surface of the lens is concave to the inside of the lens, and the center part of the image-side surface of the seventh lens is concave to the interior of the lens. The optical imaging system designs the fifth lens to be a recurve shape, which can share a part of the diopter of the sixth lens , so that the sixth lens can be thinned, and the optical imaging system can control the ratio of the edge thickness to the center thickness of the fourth lens, the fifth lens and the sixth lens to be within 0.5<DT/DC<2. The thickness ratio of the seventh lens is controlled, and the image surface curvature problem caused by the large sensor size can be improved. The optical imaging system can solve the stray light problem well, and greatly reduce the camera module's face-to-face error, eccentricity, and concentricity. Tolerance sensitivity of inclination and inclination errors to improve the yield of camera modules.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are For some embodiments of the present invention, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1是专利TW201403166A提出的一种七片式光学成像系统的剖面图;Fig. 1 is a sectional view of a seven-piece optical imaging system proposed by patent TW201403166A;
图2是本发明实施例一一种光学成像系统的剖视图;2 is a cross-sectional view of an optical imaging system according to an embodiment of the present invention;
图3是本发明实施例一一种光学成像系统的第一镜片的剖视图;3 is a cross-sectional view of a first lens of an optical imaging system according to an embodiment of the present invention;
图4是本发明实施例一一种光学成像系统的第二镜片的剖视图;4 is a cross-sectional view of a second lens of an optical imaging system according to an embodiment of the present invention;
图5是本发明实施例一一种光学成像系统的第三镜片的剖视图;5 is a cross-sectional view of a third lens of an optical imaging system according to an embodiment of the present invention;
图6是本发明实施例一一种光学成像系统的第四镜片的剖视图;6 is a cross-sectional view of a fourth lens of an optical imaging system according to an embodiment of the present invention;
图7是本发明实施例一一种光学成像系统的第五镜片的剖视图;7 is a cross-sectional view of a fifth lens of an optical imaging system according to an embodiment of the present invention;
图8是本发明实施例一一种光学成像系统的第六镜片的剖视图;8 is a cross-sectional view of a sixth lens of an optical imaging system according to an embodiment of the present invention;
图9是本发明实施例一一种光学成像系统的第七镜片的剖视图;9 is a cross-sectional view of a seventh lens of an optical imaging system according to an embodiment of the present invention;
图10是本发明实施例一一种光学成像系统的光路图;10 is an optical path diagram of an optical imaging system according to an embodiment of the present invention;
图11是本发明实施例一一种光学成像系统的调制传递函数MTF曲线;11 is a modulation transfer function MTF curve of an optical imaging system according to an embodiment of the present invention;
图12是本发明实施例一一种光学成像系统的MTF-焦深曲线;12 is an MTF-depth of focus curve of an optical imaging system according to an embodiment of the present invention;
图13是本发明实施例一一种光学成像系统的点列图;13 is a dot diagram of an optical imaging system according to an embodiment of the present invention;
图14是本发明实施例一一种光学成像系统的场曲及F-Tan(θ)畸变;14 is the field curvature and F-Tan(θ) distortion of an optical imaging system according to an embodiment of the present invention;
图15是本发明实施例二一种光学成像系统的剖视图;15 is a cross-sectional view of an optical imaging system according to
图16是本发明实施例二一种光学成像系统的第一镜片的剖视图;16 is a cross-sectional view of a first lens of an optical imaging system according to the second embodiment of the present invention;
图17是本发明实施例二一种光学成像系统的第二镜片的剖视图;17 is a cross-sectional view of a second lens of an optical imaging system according to the second embodiment of the present invention;
图18是本发明实施例二一种光学成像系统的第三镜片的剖视图;18 is a cross-sectional view of a third lens of an optical imaging system according to the second embodiment of the present invention;
图19是本发明实施例二一种光学成像系统的第四镜片的剖视图;19 is a cross-sectional view of a fourth lens of an optical imaging system according to the second embodiment of the present invention;
图20是本发明实施例二一种光学成像系统的第五镜片的剖视图;20 is a cross-sectional view of a fifth lens of an optical imaging system according to the second embodiment of the present invention;
图21是本发明实施例二一种光学成像系统的第六镜片的剖视图;21 is a cross-sectional view of a sixth lens of an optical imaging system according to
图22是本发明实施例二一种光学成像系统的第七镜片的剖视图;22 is a cross-sectional view of a seventh lens of an optical imaging system according to
图23是本发明实施例二一种光学成像系统的光路图;23 is an optical path diagram of an optical imaging system according to
图24是本发明实施例二一种光学成像系统的点列图;24 is a dot diagram of an optical imaging system according to the second embodiment of the present invention;
图25是本发明实施例二一种光学成像系统的场曲及F-Tan(θ)畸变;25 is the field curvature and F-Tan(θ) distortion of an optical imaging system according to the second embodiment of the present invention;
图26是本发明实施例三一种光学成像系统的剖视图;26 is a cross-sectional view of an optical imaging system according to
图27是本发明实施例三一种光学成像系统的第一镜片的剖视图;27 is a cross-sectional view of a first lens of an optical imaging system according to
图28是本发明实施例三一种光学成像系统的第二镜片和第三镜片的剖视图;28 is a cross-sectional view of the second lens and the third lens of an optical imaging system according to
图29是本发明实施例三一种光学成像系统的第四镜片的剖视图;29 is a cross-sectional view of a fourth lens of an optical imaging system according to
图30是本发明实施例三一种光学成像系统的第五镜片的剖视图;30 is a cross-sectional view of a fifth lens of an optical imaging system according to
图31是本发明实施例三一种光学成像系统的第六镜片的剖视图;31 is a cross-sectional view of a sixth lens of an optical imaging system according to
图32是本发明实施例三一种光学成像系统的第七镜片的剖视图;32 is a cross-sectional view of a seventh lens of an optical imaging system according to
图33是本发明实施例三一种光学成像系统的光路图;33 is an optical path diagram of an optical imaging system according to
图34是本发明实施例三一种光学成像系统的点列图;34 is a dot diagram of an optical imaging system according to
图35是本发明实施例三一种光学成像系统的场曲及F-Tan(θ)畸变。FIG. 35 is the field curvature and F-Tan(θ) distortion of an optical imaging system according to the third embodiment of the present invention.
在图中包括有:Included in the diagram are:
2-光学成像系统、21-第一镜片、22-第二镜片、23-第三镜片、24-第四镜片、25-第五镜片、26-第六镜片、27-第七镜片、28-红外滤波片、29-图像传感器、211-第一镜片物侧表面、212-第一镜片像侧表面、221-第二镜片物侧表面、222-第二镜片像侧表面、231-第三镜片物侧表面、232-第三镜片像侧表面、241-第四镜片物侧表面、242-第四镜片像侧表面、251-第五镜片物侧表面、252-第五镜片像侧表面、261-第六镜片物侧表面、262-第六镜片像侧表面、271-第七镜片物侧表面、272-第七镜片像侧表面、281-红外滤波片物侧表面、282-红外滤波片像侧表面、291-像面。2-optical imaging system, 21-first lens, 22-second lens, 23-third lens, 24-fourth lens, 25-fifth lens, 26-sixth lens, 27-seventh lens, 28- Infrared filter, 29-image sensor, 211-first lens object side surface, 212-first lens image side surface, 221-second lens object side surface, 222-second lens image side surface, 231-third lens Object side surface, 232-image side surface of third lens, 241-object side surface of fourth lens, 242-image side surface of fourth lens, 251-object side surface of fifth lens, 252-image side surface of fifth lens, 261 - Object side surface of sixth lens, 262 - Image side surface of sixth lens, 271 - Object side surface of seventh lens, 272 - Image side surface of seventh lens, 281 - Object side surface of infrared filter, 282 - Image of infrared filter Lateral surface, 291-image plane.
具体实施方式Detailed ways
下面将结合本发明本实施方式中的附图,对本发明本实施方式中的技术方案进行清楚、完整地描述,显然,所描述的本实施方式是本发明的一种实施方式,而不是全部的本实施方式。基于本发明中的本实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他本实施方式,部属于本发明保护的范围。The technical solutions in this embodiment of the present invention will be clearly and completely described below with reference to the accompanying drawings in the present embodiment of the present invention. Obviously, the described embodiment is an embodiment of the present invention, not all of them. this embodiment. Based on the present embodiment of the present invention, all other embodiments of the present invention obtained by those of ordinary skill in the art without making creative efforts partially belong to the protection scope of the present invention.
实施例一Example 1
请参考图2至图9,本实施例一提供了一种光学成像系统,所述光学成像系统2为七片式非球面结构,包括从物侧到像侧依次设置的第一镜片21、第二镜片22、第三镜片23、第四镜片24、第五镜片25、第六镜片26、第七镜片27、红外滤波片28和图像传感器29,其孔径光阑位于第一镜片物侧表面 211上。Referring to FIGS. 2 to 9 , the first embodiment provides an optical imaging system. The
所述光学成像系统2的组合焦距的范围为:3.65mm<f<7.5mm,其像面对角线尺寸大于6.4mm,本实施例一优选该光学成像系统2的组合焦距为:f =3.827817451978569mm。The range of the combined focal length of the
所述第一镜片21的剖视图如图3所示,其具有正屈光度,所述第一镜片 21具有第一镜片物侧表面211和第一镜片像侧表面212,所述第一镜片物侧表面211和第一镜片像侧表面212都往像面方向弯曲,所述第一镜片21的焦距f1与光学成像系统2的组合焦距f的比值为所述第一镜片21为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd >50。The cross-sectional view of the
所述第二镜片22的剖视图如图4所示,其具有负屈光度,所述第二镜片22的中心厚度比边缘厚度薄,所述第二镜片22具有第二镜片物侧表面221和第二镜片像侧表面222,所述第二镜片物侧表面221稍微具有反曲,所述第二镜片物侧表面221的中心部位往像面方向弯曲,而边缘部位则稍微往物侧方向弯曲;所述第二镜片像侧表面222往像面方向弯曲,所述第二镜片22的焦距f2与光学成像系统2的组合焦距f的比值为所述第二镜片22为高折射率、低色散系数的光学材料构件,其折射率nd>1.6,其色散系数vd <30。The cross-sectional view of the
所述第三镜片23的剖视图如图5所示,其具有正屈光度,所述第三镜片 23具有第三镜片物侧表面231和第三镜片像侧表面232,所述第三镜片物侧表面231往像面方向弯曲,第三镜片像侧表面232往物面方向弯曲,所述第三镜片23的焦距f3与光学成像系统2的组合焦距f的比值为所述第三镜片23为低折射率、高色散系数的光学材料构件,其折射率nd< 1.58,其色散系数vd>50。The cross-sectional view of the
所述第四镜片24的剖视图如图6所示,其具有屈光度,所述第四镜片24 具有第四镜片物侧表面241和第四镜片像侧表面242,所述第四镜片物侧表面 241和第四镜片像侧表面242都往物面方向弯曲,所述第四镜片24的焦距f4 与光学成像系统2的组合焦距f的比值为所述第四镜片24为高折射率、低色散系数的光学材料构件,其折射率nd>1.6,其色散系数vd<30。A cross-sectional view of the
所述第五镜片25的剖视图如图7所示,其具有屈光度,所述第五镜片25 具有第五镜片物侧表面251和第五镜片像侧表面252,所述第五镜片物侧表面 251为反曲形状,中心部位向物面方向凸起,中心部位与边缘部位之间的区域往像面方向弯曲,所述第五镜片物侧表面251和第五镜片像侧表面252的边缘部位,全都往物面方向弯曲,其形状为阿拉伯数字“3”,通过对第五镜片 25的反曲形设计,使其可以分担一部分第六镜片26的屈光度,从而可以将第六镜片26的厚度进行减薄设计,所述第五镜片物侧表面251的曲面设计的比较平缓,其矢高与光学净孔径的比值小于0.2,即所述第五镜片物侧表面251,其曲率半径R251与光学成像系统2的组合焦距f的比值为所述第五镜片25的焦距f5与光学成像系统2的组合焦距f 的比值为 The cross-sectional view of the
所述第六镜片26的剖视图如图8所示,其具有屈光度,所述第六镜片26 具有第六镜片物侧表面261和第六镜片像侧表面262,所述第六镜片物侧表面 261稍微具有反曲形状,其中心部位往像面方向弯曲,向物面方向凸起,而边缘部位则往物面方向弯曲,所述第六镜片像侧表面262往物面方向弯曲,向像面方向凸起,所述第六镜片26的焦距f6与光学成像系统2的组合焦距f的比值为 A cross-sectional view of the
所述第七镜片27的剖视图如图9所示,其具有屈光度,所述第七镜片27 中间较薄,从中间到边缘慢慢变厚,然后再变薄,所述第七镜片27的最厚与最薄部位的比值小于3,所述第七镜片27具有第七镜片物侧表面271和第七镜片像侧表面272,所述第七镜片物侧表面271的中心部位往物面方向弯曲,向镜片内部凹下,边缘部位则往像面方向弯曲,所述第七镜片像侧表面272 的中心部位往像面方向弯曲,向镜片内部凹下,边缘部位则往物面方向弯曲,所述第七镜片物侧表面271和第七镜片像侧表面272都比较平缓、矢高与口径的比值都小于0.2,即和 The cross-sectional view of the
本实施例一提出的七片式非球面结构的光学成像系统2,将第五镜片25 设计成反曲形状,可以分担一部分第六镜片26的屈光度,从而可以将第六镜片26进行减薄,该光学成像系统2可以使第四镜片24、第五镜片25和第六镜片26的边缘厚度与中心厚度比值都可以控制到0.2<DT/DC<4以内,同时也控制了第七镜片27的厚薄比,并可以改善由于大传感器尺寸所造成的像面弯曲问题,该光学成像系统2可以很好地解决杂光问题、大大降低了摄像头模组对面型误差、偏心、同心度以及倾斜度误差的公差敏感度,提高摄像头模组的良品率。In the
本实施例一光学成像系统2中的镜片光路参数,包括曲率半径、厚度、折射率nd、阿贝系数Vd、净口径、圆锥系数以及每个镜片的焦距如表格1所示。The optical path parameters of the lens in the
所述第一镜片21具有正屈光度,所述第一镜片21为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例一中优选其折射率nd=1.544502,阿贝系数vd=55.986991,焦距为5.6502358mm。The
所述第二镜片22具有负屈光度,所述第二镜片22为高折射率、低色散系数的光学材料构件,其折射率nd>1.60,其色散系数vd<30,本实施例一中优选其折射率nd=1.661319,阿贝系数vd=20.374576,焦距为-12.584821mm。The
所述第三镜片23具有正屈光度,所述第三镜片23为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例一中优选其折射率nd=1.544502,阿贝系数vd=55.986991,焦距为6.4870885mm。The
所述第四镜片24具有屈光度,所述第四镜片24为高折射率、低色散系数的光学材料构件,其折射率nd>1.60,其色散系数vd<30,本实施例一中优选其折射率nd=1.661319,阿贝系数vd=20.374576,焦距为-5.3258553mm。The
所述第五镜片25具有屈光度,所述第五镜片25为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例一中优选其折射率nd=1.544502,阿贝系数vd=55.986991,焦距为3.7967055mm。The
所述第六镜片26具有屈光度,所述第六镜片26为高折射率、低色散系数的光学材料构件,其折射率nd>1.60,其色散系数vd<30,本实施例一中优选其折射率nd=1.661319,阿贝系数vd=20.374576,焦距为5.3048433mm。The
所述第七镜片27具有屈光度,所述第七镜片27为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例一中优选其折射率nd=1.544919,阿贝系数vd=55.929938,焦距为-2.4182302mm。The
表格1本实施例一光学成像系统2中的镜片光路参数:Table 1 The optical path parameters of the lens in the
本实施例一光学成像系统2中每一个镜面的非球面系数,从二次项系数 a1到十六次项系数a8的各项非球面系数,如表格2所示。所述的非球面,其表达式如下式所示:Table 2 shows the aspheric coefficients of each mirror surface in the
其中z为矢高(SAG);c为曲率,其为曲率半径的倒数;r为非球面口径的半径;a1、a2、a3………为各项非球面系数。Among them, z is the sag height (SAG); c is the curvature, which is the reciprocal of the curvature radius; r is the radius of the aspheric aperture; a1, a2, a3... are the aspheric coefficients.
表格2本实施例一光学成像系统2中每一个镜面的非球面系数:Table 2 Aspheric coefficients of each mirror surface in the
本实施例一光学成像系统2的光路图,如图10所示,其MTF曲线如图11 所示,在110线对的位置,其中心视场的调制传递函数超过了0.82,边缘1 视场的最差的调制传递函数也超过了0.55,其他视场的调制传递函数都在0.6 以上。其MTF-焦深曲线如图12所示,其焦点位置的MTF都比较集中,几乎没有由于场曲引起的焦点偏移,其点列图如图13所示,中心视场最小均方根的点列图大小为1微米左右,其场曲及畸变的曲线图如图14所示,其F-Tan(θ) 控制在1.5%以内,设计结果达到预期目标,同时由于第四镜片24、第五镜片 25和第六镜片26都设计得比较平缓,第六镜片像侧表面262也没有特别凸出的部分,大大改善了镜片的公差敏感度,同时也解决了杂光的问题,提高了摄像头的良品率。The optical path diagram of the
实施例二
请参考图15至图22,本实施例二提供了一种光学成像系统,所述光学成像系统2为七片式非球面结构,包括从物侧到像侧依次设置的第一镜片21、第二镜片22、第三镜片23、第四镜片24、第五镜片25、第六镜片26、第七镜片27、红外滤波片28和图像传感器29,其孔径光阑位于第一镜片像侧表面212上。Referring to FIGS. 15 to 22 , the second embodiment provides an optical imaging system. The
本实施例二提供的一种光学成像系统2,其剖视图如图15所示,所述光学成像系统2的组合焦距的范围为:3.65mm<f<7.5mm,其像面对角线尺寸大于6.4mm,本实施例二优选该光学成像系统2的组合焦距为:f= 4.2878353mm。An
所述第一镜片21的剖视图如图16所示,其具有正屈光度,所述第一镜片21具有第一镜片物侧表面211和第一镜片像侧表面212,所述第一镜片物侧表面211和第一镜片像侧表面212都往像面方向弯曲,所述第一镜片21的焦距f1与光学成像系统2的组合焦距f的比值为所述第一镜片21 为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数 vd>50。The cross-sectional view of the
所述第二镜片22的剖视图如图17所示,其具有负屈光度,所述第二镜片22的中心厚度比边缘厚度薄,所述第二镜片22具有第二镜片物侧表面221 和第二镜片像侧表面222,所述第二镜片物侧表面221往像面方向弯曲,所述第二镜片像侧表面222也往像面方向弯曲,所述第二镜片22的焦距f2与光学成像系统2的组合焦距f的比值为所述第二镜片22为高折射率、低色散系数的光学材料构件,其折射率nd>1.6,其色散系数vd<30。The cross-sectional view of the
所述第三镜片23的剖视图如图18所示,其具有正屈光度,所述第三镜片23具有第三镜片物侧表面231和第三镜片像侧表面232,所述第三镜片物侧表面231稍微具有反曲形状,其中心部位往像面方向弯曲,而边缘部位往物侧方向弯曲,第三镜片像侧表面232往物面方向弯曲,所述第三镜片23的焦距f3与光学成像系统2的组合焦距f的比值为所述第三镜片 23为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50。The cross-sectional view of the
所述第四镜片24的剖视图如图19所示,其具有屈光度,所述第四镜片 24具有第四镜片物侧表面241和第四镜片像侧表面242,所述第四镜片物侧表面241和第四镜片像侧表面242都往物面方向弯曲,所述第四镜片24的焦距f4与光学成像系统2的组合焦距f的比值为所述第四镜片24为高折射率、低色散系数的光学材料构件,其折射率nd>1.6,其色散系数vd <30。The cross-sectional view of the
所述第五镜片25的剖视图如图20所示,其具有屈光度,所述第五镜片 25具有第五镜片物侧表面251和第五镜片像侧表面252,所述第五镜片物侧表面251为反曲形状,中心部位向物面方向凸起,中心部位与边缘部位之间的区域往像面方向弯曲,所述第五镜片物侧表面251和第五镜片像侧表面252 的边缘部位,全都往物面方向弯曲,其形状为阿拉伯数字“3”,通过对第五镜片25的反曲形设计,使其可以分担一部分第六镜片26的屈光度,从而可以将第六镜片26的厚度进行减薄设计,所述第五镜片物侧表面251的曲面设计的比较平缓,其矢高与光学净孔径的比值小于0.2,即所述第五镜片物侧表面251,其曲率半径R251与光学成像系统2的组合焦距f的比值为所述第五镜片25的焦距f5与光学成像系统2的组合焦距f 的比值为 The cross-sectional view of the
所述第六镜片26的剖视图如图21所示,其具有屈光度,所述第六镜片 26具有第六镜片物侧表面261和第六镜片像侧表面262,所述第六镜片物侧表面261稍微具有反曲形状,其中心部位往像面方向弯曲,向物面方向凸起,而边缘部位则往物面方向弯曲,所述第六镜片像侧表面262往物面方向弯曲,向像面方向凸起,所述第六镜片26的焦距f6与光学成像系统2的组合焦距f 的比值为 A cross-sectional view of the
所述第七镜片27的剖视图如图22所示,其具有屈光度,所述第七镜片 27中间较薄,从中间到边缘慢慢变厚,然后再变薄,所述第七镜片27的最厚与最薄部位的比值小于3,所述第七镜片27具有第,七镜片物侧表面271和第七镜片像侧表面272,所述第七镜片物侧表面271的中心部位往物面方向弯曲,向镜片内部凹下,边缘部位则往像面方向弯曲,所述第七镜片像侧表面272 的中心部位往像面方向弯曲,向镜片内部凹下,边缘部位则往物面方向弯曲,所述第七镜片物侧表面271和第七镜片像侧表面272都比较平缓、矢高与口径的比值都小于0.2,即和 The cross-sectional view of the
本实施例二提出的七片式非球面结构的光学成像系统2,将第五镜片25 设计成反曲形状,可以分担一部分第六镜片26的屈光度,从而可以将第六镜片26进行减薄,该光学成像系统2可以使第四镜片24、第五镜片25和第六镜片26的边缘厚度与中心厚度比值都可以控制到0.2<DT/DC<4以内,同时也控制了第七镜片27的厚薄比,并可以改善由于大传感器尺寸所造成的像面弯曲问题,该光学成像系统2可以很好地解决杂光问题、大大降低了摄像头模组对面型误差、偏心、同心度以及倾斜度误差的公差敏感度,提高摄像头模组的良品率。In the
本实施例二光学成像系统2中的镜片光路参数,包括曲率半径、厚度、折射率nd、阿贝系数Vd、净口径、圆锥系数以及每个镜片的焦距如表格3所示。The optical path parameters of the lens in the
所述第一镜片21具有正屈光度,所述第一镜片21为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例二中优选其折射率nd=1.544502,阿贝系数vd=55.986991,焦距为5.7430798mm。The
所述第二镜片22具有负屈光度,所述第二镜片22为高折射率、低色散系数的光学材料构件,其折射率nd>1.60,其色散系数vd<30,本实施例二中优选其折射率nd=1.661319,阿贝系数vd=20.374576,焦距为 -17.3394354mm。The
所述第三镜片23具有正屈光度,所述第三镜片23为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例二中优选其折射率nd=1.544502,阿贝系数vd=55.986991,焦距为9.1200987mm。The
所述第四镜片24具有屈光度,所述第四镜片24为高折射率、低色散系数的光学材料构件,其折射率nd>1.60,其色散系数vd<30,本实施例二中优选其折射率nd=1.635517,阿贝系数vd=23.971841,焦距为-10.2106903mm。The
所述第五镜片25具有屈光度,所述第五镜片25为高折射率、低色散系数的光学材料构件,其折射率nd>1.60,其色散系数vd<30,本实施例二中优选其折射率nd=1.671371,阿贝系数vd=19.244900,焦距为-65.7029839mm。The
所述第六镜片26具有屈光度,所述第六镜片26为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例二中优选其折射率nd=1.544502,阿贝系数vd=55.986991,焦距为2.6088521mm。The
所述第七镜片27具有屈光度,所述第七镜片27为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例二中优选其折射率nd=1.544502,阿贝系数vd=55.986991,焦距为-2.2351735mm。The
表格3本实施例二光学成像系统2中的镜片光路参数:Table 3 The optical path parameters of the lens in the
本实施例二光学成像系统2中每一个镜面的非球面系数,从二次项系数a1到十六次项系数a8的各项非球面系数,如表格4所示。所述的非球面,其表达式如下式所示:Table 4 shows the aspheric coefficients of each mirror surface in the
其中z为矢高(SAG);c为曲率,其为曲率半径的倒数;r为非球面口径的半径;a1、a2、a3………为各项非球面系数。Among them, z is the sag height (SAG); c is the curvature, which is the reciprocal of the curvature radius; r is the radius of the aspheric aperture; a1, a2, a3... are the aspheric coefficients.
表格4本实施例二光学成像系统2中每一个镜面的非球面系数:Table 4 Aspheric coefficients of each mirror surface in the
本实施例二光学成像系统2的光路图,如图23所示,其点列图如图24 所示,中心视场最小均方根的点列图大小为1微米左右,其场曲及畸变的曲线图如图25所示,其F-Tan(θ)控制在1.5%以内,设计结果达到预期目标,同时由于第四镜片24、第五镜片25和第六镜片26都设计得比较平缓,第六镜片像侧表面262也没有特别凸出的部分,中心最厚部位比边缘最薄的部位,厚度不超过2倍,大大改善了镜片的公差敏感度,同时也解决了杂光的问题,提高了摄像头的良品率。The optical path diagram of the
实施例三
请参考图26至图32,本实施例三提供了一种光学成像系统,所述光学成像系统2为七片式非球面结构,包括从物侧到像侧依次设置的第一镜片21、第二镜片22、第三镜片23、第四镜片24、第五镜片25、第六镜片26、第七镜片27、红外滤波片28和图像传感器29,其中第二镜片22与第三镜片23 胶合成一体,通过加拿大胶进行胶合,其孔径光阑位于第一镜片像侧表面212 上。Referring to FIGS. 26 to 32 , the third embodiment provides an optical imaging system. The
本实施例三提供的一种光学成像系统2,其剖视图如图26所示,所述光学成像系统2的组合焦距的范围为:3.65mm<f<7.5mm,其像面对角线尺寸大于6.4mm,本实施例一优选该光学成像系统2的组合焦距为:f =3.8186254mm。The cross-sectional view of an
所述第一镜片21的剖视图如图27所示,其具有正屈光度,所述第一镜片21具有第一镜片物侧表面211和第一镜片像侧表面212,所述第一镜片物侧表面211和第一镜片像侧表面212都往像面方向弯曲,所述第一镜片21的焦距f1与光学成像系统2的组合焦距f的比值为所述第一镜片21 为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数 vd>50。The cross-sectional view of the
所述第二镜片22与第三镜片23胶合在一起,组合成一组非球面胶合透镜,其剖面图如图28所示,所述第二镜片22具有负屈光度,所述第二镜片 22的中心厚度比边缘厚度薄,所述第二镜片22具有第二镜片物侧表面221和第二镜片像侧表面222,所述第二镜片物侧表面221稍微具有反曲,所述第二镜片物侧表面221的中心部位往像面方向弯曲,而边缘部位则稍微往物侧方向弯曲;所述第二镜片像侧表面222往像面方向弯曲,所述第二镜片22的焦距f2与光学成像系统2的组合焦距f的比值为所述第二镜片22为高折射率、低色散系数的光学材料构件,其折射率nd>1.6,其色散系数vd <30。The
所述第三镜片23具有正屈光度,所述第三镜片23具有第三镜片物侧表面231和第三镜片像侧表面232,所述第三镜片物侧表面231与第二镜片像侧表面222相同,第三镜片物侧表面231与第二镜片像侧表面222具有相同的非球面系数,所述第三镜片物侧表面231往像面方向弯曲,第三镜片物侧表面231与第二镜片像侧表面222通过加拿大胶胶合在一起,第三镜片像侧表面232其往物面方向弯曲,所述第三镜片23的焦距f3与光学成像系统2的组合焦距f的比值为所述第三镜片23为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50。The
所述第四镜片24的剖视图如图29所示,其具有屈光度,所述第四镜片 24具有第四镜片物侧表面241和第四镜片像侧表面242,所述第四镜片物侧表面241和第四镜片像侧表面242都往物面方向弯曲,所述第四镜片24的焦距f4与光学成像系统2的组合焦距f的比值为所述第四镜片24为高折射率、低色散系数的光学材料构件,其折射率nd>1.6,其色散系数vd <30。A cross-sectional view of the
所述第五镜片25的剖视图如图30所示,其具有屈光度,所述第五镜片 25具有第五镜片物侧表面251和第五镜片像侧表面252,所述第五镜片物侧表面251为反曲形状,中心部位向物面方向凸起,中心部位与边缘部位之间的区域往像面方向弯曲,所述第五镜片物侧表面251和第五镜片像侧表面252 的边缘部位,全都往物面方向弯曲,其形状为阿拉伯数字“3”,通过对第五镜片25的反曲形设计,使其可以分担一部分第六镜片26的屈光度,从而可以将第六镜片26的厚度进行减薄设计,所述第五镜片物侧表面251的曲面设计的比较平缓,其矢高与光学净孔径的比值小于0.2,即所述第五镜片物侧表面251,其曲率半径R251与光学成像系统2的组合焦距f的比值为所述第五镜片25的焦距f5与光学成像系统2的组合焦距f 的比值为 A cross-sectional view of the
所述第六镜片26的剖视图如图31所示,其具有屈光度,所述第六镜片 26具有第六镜片物侧表面261和第六镜片像侧表面262,所述第六镜片物侧表面261稍微具有反曲形状,其中心部位往像面方向弯曲,向物面方向凸起,而边缘部位则往物面方向弯曲,所述第六镜片像侧表面262往物面方向弯曲,向像面方向凸起,所述第六镜片26的焦距f6与光学成像系统2的组合焦距f 的比值为 A cross-sectional view of the
所述第七镜片27的剖视图如图32所示,其具有屈光度,所述第七镜片 27中间较薄,从中间到边缘慢慢变厚,然后再变薄,所述第七镜片27的最厚与最薄部位的比值小于3,所述第七镜片27具有第七镜片物侧表面271和第七镜片像侧表面272,所述第七镜片物侧表面271的中心部位往物面方向弯曲,向镜片内部凹下,边缘部位则往像面方向弯曲,所述第七镜片像侧表面272 的中心部位往像面方向弯曲,向镜片内部凹下,边缘部位则往物面方向弯曲,所述第七镜片物侧表面271和第,七镜片像侧表面272都比较平缓、矢高与口径的比值都小于0.2,即和 The cross-sectional view of the
本实施例三提出的七片式非球面结构的光学成像系统2,将第五镜片25 设计成反曲形状,可以分担一部分第六镜片26的屈光度,从而可以将第六镜片26进行减薄,该光学成像系统2可以使第四镜片24、第五镜片25和第六镜片26的边缘厚度与中心厚度比值都可以控制到0.2<DT/DC<4以内,同时也控制了第七镜片27的厚薄比,并可以改善由于大传感器尺寸所造成的像面弯曲问题,该光学成像系统2可以很好地解决杂光问题、大大降低了摄像头模组对面型误差、偏心、同心度以及倾斜度误差的公差敏感度,提高摄像头模组的良品率。In the
本实施例三光学成像系统2中的镜片光路参数,包括曲率半径、厚度、折射率nd、阿贝系数Vd、净口径、圆锥系数以及每个镜片的焦距如表格5所示。The optical path parameters of the lens in the
所述第一镜片21具有正屈光度,所述第一镜片21为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例三中优选其折射率nd=1.544502,阿贝系数vd=55.986991,焦距为5.3818184mm。The
所述第二镜片22具有负屈光度,所述第二镜片22为高折射率、低色散系数的光学材料构件,其折射率nd>1.60,其色散系数vd<30,本实施例三中优选其折射率nd=1.661319,阿贝系数vd=20.374576,焦距为 -10.7468271mm。The
所述第三镜片23具有正屈光度,所述第三镜片23为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例三中优选其折射率nd=1.544502,阿贝系数vd=55.986991,焦距为6.4297160mm。The
所述第四镜片24具有屈光度,所述第四镜片24为高折射率、低色散系数的光学材料构件,其折射率nd>1.60,其色散系数vd<30,本实施例三中优选其折射率nd=1.661319,阿贝系数vd=20.374576,焦距为-4.7478218mm。The
所述第五镜片25具有屈光度,所述第五镜片25为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例三中优选其折射率nd=1.544502,阿贝系数vd=55.986991,焦距为2.9569209mm。The
所述第六镜片26具有屈光度,所述第六镜片26为高折射率、低色散系数的光学材料构件,其折射率nd>1.60,其色散系数vd<30,本实施例三中优选其折射率nd=1.661319,阿贝系数vd=20.374576,焦距为6.4275854mm。The
所述第七镜片27具有屈光度,所述第七镜片27为低折射率、高色散系数的光学材料构件,其折射率nd<1.58,其色散系数vd>50,本实施例三中优选其折射率nd=1.544502,阿贝系数vd=55.986991,焦距为-2.3091884mm。The
表格5本实施例三光学成像系统2中的镜片光路参数:Table 5 The optical path parameters of the lens in the third
本实施例三光学成像系统2中每一个镜面的非球面系数,从二次项系数 a1到十六次项系数a8的各项非球面系数,如表格6所示。所述的非球面,其表达式如下式所示:Table 6 shows the aspheric coefficients of each mirror surface in the
其中z为矢高(SAG);c为曲率,其为曲率半径的倒数;r为非球面口径的半径;a1、a2、a3………为各项非球面系数。Among them, z is the sag height (SAG); c is the curvature, which is the reciprocal of the curvature radius; r is the radius of the aspheric aperture; a1, a2, a3... are the aspheric coefficients.
表格6本实施例三光学成像系统2中每一个镜面的非球面系数:Table 6 Aspheric coefficients of each mirror surface in the third
本实施例三光学成像系统2的光路图,如图33所示,其点列图如图34 所示,中心视场最小均方根的点列图大小为1.5微米左右,其场曲及畸变的曲线图如图35所示,其F-Tan(θ)控制在1.5%以内,设计结果达到预期目标,同时由于第四镜片24、第五镜片25和第六镜片26都设计得比较平缓,第六镜片像侧表面262也没有特别凸出的部分,中心最厚部位比边缘最薄的部位,厚度不超过2倍,大大改善了镜片的公差敏感度,同时电解决了杂光的问题,提高了摄像头的良品率。The optical path diagram of the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010221313.5A CN111273429B (en) | 2020-03-25 | 2020-03-25 | An optical imaging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010221313.5A CN111273429B (en) | 2020-03-25 | 2020-03-25 | An optical imaging system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111273429A true CN111273429A (en) | 2020-06-12 |
CN111273429B CN111273429B (en) | 2024-12-31 |
Family
ID=71003952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010221313.5A Active CN111273429B (en) | 2020-03-25 | 2020-03-25 | An optical imaging system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111273429B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111538142A (en) * | 2020-07-13 | 2020-08-14 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05134193A (en) * | 1991-08-26 | 1993-05-28 | Tokai Sangyo Kk | Lens system of variable power magnifying lens and variable power lens |
CN108051898A (en) * | 2017-12-12 | 2018-05-18 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN109270667A (en) * | 2018-12-04 | 2019-01-25 | 广东旭业光电科技股份有限公司 | Optical imaging system and electronic device |
CN109324398A (en) * | 2019-01-02 | 2019-02-12 | 江西联益光学有限公司 | Optical imaging lens and imaging device |
CN208737089U (en) * | 2018-08-22 | 2019-04-12 | 浙江舜宇光学有限公司 | Optical imaging system |
JP6508623B1 (en) * | 2018-01-19 | 2019-05-08 | エーエーシー テクノロジーズ ピーティーイー リミテッド | Imaging optical lens |
CN110262005A (en) * | 2019-06-29 | 2019-09-20 | 瑞声科技(新加坡)有限公司 | Camera optical camera lens |
CN110673301A (en) * | 2018-07-02 | 2020-01-10 | 三星电机株式会社 | Optical imaging system |
CN211603691U (en) * | 2020-03-25 | 2020-09-29 | 东莞市美光达光学科技有限公司 | Optical imaging system |
-
2020
- 2020-03-25 CN CN202010221313.5A patent/CN111273429B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05134193A (en) * | 1991-08-26 | 1993-05-28 | Tokai Sangyo Kk | Lens system of variable power magnifying lens and variable power lens |
CN108051898A (en) * | 2017-12-12 | 2018-05-18 | 浙江舜宇光学有限公司 | Optical imaging lens |
JP6508623B1 (en) * | 2018-01-19 | 2019-05-08 | エーエーシー テクノロジーズ ピーティーイー リミテッド | Imaging optical lens |
CN110673301A (en) * | 2018-07-02 | 2020-01-10 | 三星电机株式会社 | Optical imaging system |
CN208737089U (en) * | 2018-08-22 | 2019-04-12 | 浙江舜宇光学有限公司 | Optical imaging system |
CN109270667A (en) * | 2018-12-04 | 2019-01-25 | 广东旭业光电科技股份有限公司 | Optical imaging system and electronic device |
CN109324398A (en) * | 2019-01-02 | 2019-02-12 | 江西联益光学有限公司 | Optical imaging lens and imaging device |
CN110262005A (en) * | 2019-06-29 | 2019-09-20 | 瑞声科技(新加坡)有限公司 | Camera optical camera lens |
CN211603691U (en) * | 2020-03-25 | 2020-09-29 | 东莞市美光达光学科技有限公司 | Optical imaging system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111538142A (en) * | 2020-07-13 | 2020-08-14 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
Also Published As
Publication number | Publication date |
---|---|
CN111273429B (en) | 2024-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020001066A1 (en) | Camera lens | |
TWI434096B (en) | Optical imaging lens system | |
CN105334597B (en) | Image lens assembly | |
CN202583578U (en) | Optical image-taking lens system | |
TWI604218B (en) | Optical imaging lens system, image capturing unit and electronic device | |
CN102914852B (en) | Optical image capturing lens assembly | |
CN103592746B (en) | Image lens system set | |
CN103869451B (en) | Wide-angle camera lens group | |
TWI744573B (en) | Imaging lens and imaging device having the same | |
CN104950425A (en) | Optical image pickup system | |
CN111352218A (en) | Optical systems, camera modules and electronic equipment | |
CN107024756A (en) | Optical lens assembly for camera shooting, image capturing device and electronic device | |
CN101776788B (en) | Lens group for image pickup | |
CN109100855A (en) | Optical imaging lens group and electronic equipment | |
CN107894646B (en) | Optical imaging lens system, image capturing device and electronic device | |
WO2016145722A1 (en) | Ultra-wide-angle and large-aperture optical lens assembly with high image quality | |
CN104516089A (en) | Optical image capturing lens and optical image capturing module | |
CN104793319B (en) | five-piece imaging lens group | |
CN112034595A (en) | Optical system, camera module and electronic equipment | |
WO2017113557A1 (en) | Camera lens | |
CN113391430A (en) | Optical system, lens module and electronic equipment | |
CN114488478A (en) | Optical lens, camera module and electronic equipment | |
CN113391429B (en) | Optical system, camera module and electronic equipment | |
CN114488477A (en) | Optical system, lens module and electronic equipment | |
CN111239983B (en) | Wide-angle photographic lens with high imaging quality |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |