CN111272883A - An intelligent detection and identification method of rock fracture mode based on acoustic emission model - Google Patents
An intelligent detection and identification method of rock fracture mode based on acoustic emission model Download PDFInfo
- Publication number
- CN111272883A CN111272883A CN202010144388.8A CN202010144388A CN111272883A CN 111272883 A CN111272883 A CN 111272883A CN 202010144388 A CN202010144388 A CN 202010144388A CN 111272883 A CN111272883 A CN 111272883A
- Authority
- CN
- China
- Prior art keywords
- model
- rock
- acoustic emission
- training
- gaussian
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011435 rock Substances 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000001514 detection method Methods 0.000 title claims abstract description 19
- 238000012549 training Methods 0.000 claims abstract description 36
- 230000008569 process Effects 0.000 claims abstract description 25
- 238000004458 analytical method Methods 0.000 claims abstract description 13
- 238000012360 testing method Methods 0.000 claims abstract description 8
- 239000002243 precursor Substances 0.000 claims abstract description 7
- 238000011161 development Methods 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 39
- 239000013598 vector Substances 0.000 claims description 33
- 238000007476 Maximum Likelihood Methods 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 4
- 102000005717 Myeloma Proteins Human genes 0.000 claims description 3
- 108010045503 Myeloma Proteins Proteins 0.000 claims description 3
- 239000004567 concrete Substances 0.000 claims description 3
- 238000012804 iterative process Methods 0.000 claims description 3
- 238000005336 cracking Methods 0.000 claims 6
- 238000012935 Averaging Methods 0.000 claims 1
- 230000003044 adaptive effect Effects 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000012886 linear function Methods 0.000 claims 1
- 238000005070 sampling Methods 0.000 claims 1
- 238000011160 research Methods 0.000 abstract description 3
- 238000003909 pattern recognition Methods 0.000 abstract description 2
- 238000011068 loading method Methods 0.000 description 13
- 235000019738 Limestone Nutrition 0.000 description 10
- 239000006028 limestone Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/14—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4472—Mathematical theories or simulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0232—Glass, ceramics, concrete or stone
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Algebra (AREA)
- Acoustics & Sound (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本发明公开了一种基于声发射模型的岩石破裂模式智能探测识别方法,包括以下步骤:首先在待监测岩石上布置用于测试岩石破裂过程声发射参数的声发射系统,然后将目标特征数据输入预先训练好的信号识别模型,信号识别模型预先通过岩石破裂声发射的训练集训练得到,再然后智能识别岩石破裂过程中张拉与剪切裂纹发展的比例,最后根据岩石破裂声发射信号确定的波形特征与岩石破裂模式识别存在相应的关系,为定量制定岩体灾害预警方案提供一些列可靠的检测阈值,同时为深入研究识别岩石破裂失稳前兆信号特征提供一种分析方法。
The invention discloses an intelligent detection and identification method of rock rupture mode based on acoustic emission model, comprising the following steps: firstly, an acoustic emission system for testing acoustic emission parameters of rock rupture process is arranged on the rock to be monitored, and then target characteristic data is input The pre-trained signal recognition model is pre-trained through the training set of rock rupture acoustic emission, and then intelligently identifies the ratio of tension and shear crack development during the rock rupture process, and finally determined according to the rock rupture acoustic emission signal. There is a corresponding relationship between waveform characteristics and rock fracture pattern recognition, which provides a series of reliable detection thresholds for quantitatively formulating rock mass disaster early warning schemes, and provides an analysis method for in-depth research and identification of rock fracture and instability precursor signal characteristics.
Description
技术领域technical field
本发明涉及地质勘测应用技术领域,尤其涉及一种基于声发射模型的岩石破裂模式智能探测识别方法。The invention relates to the technical field of geological survey applications, in particular to an intelligent detection and identification method for rock fracture modes based on an acoustic emission model.
背景技术Background technique
声发射信号探测技术为各类岩质结构(边坡、大坝、路基、隧道等)的损伤评价/结构健康监测提供了一种有吸引力的解决方案。这些民用结构的性能和功能关系到社会的安全,在各类自然事件中(即地震、飓风和海啸),这些事件可能危及其安全性和可用性。为了确保这些结构的整体稳定性,正确的评估和预测岩石破裂的发展至关重要,尤其是在工程实践中非常重要,因为岩石破裂的模型不仅反映了其作为材料的状况,而且也反映了整个系统在结构层面的状况。Acoustic emission signal detection technology provides an attractive solution for damage assessment/structural health monitoring of various rock structures (slopes, dams, subgrades, tunnels, etc.). The performance and function of these civil structures are relevant to the safety of society, and during various natural events (ie earthquakes, hurricanes and tsunamis), these events may compromise their safety and availability. To ensure the overall stability of these structures, the correct assessment and prediction of the development of rock fractures is crucial, especially in engineering practice, because models of rock fractures reflect not only their condition as a material, but also the entire The state of the system at the structural level.
基于声发射(AE)的方法为岩石结构中裂纹的形核和扩展提供了一个有吸引力的解决方案。本发明提出该种基于高斯混合模型(GMM)的岩石破裂模式智能探测识别方法是一种基于分布的无监督分类技术,已成功地应用于许多领域,包括声音识别、图像处理、动态系统和跟踪和文本识别;但是,还没有将此技术用于基于声发射的岩石破裂模式智能识别。基于以上理由,提出了一种基于声发射高斯混合模型的岩石破裂模式分类概率方案。Acoustic emission (AE)-based methods offer an attractive solution for crack nucleation and propagation in rock structures. The present invention proposes that the intelligent detection and identification method of rock fracture mode based on Gaussian Mixture Model (GMM) is a distribution-based unsupervised classification technology, which has been successfully applied in many fields, including sound recognition, image processing, dynamic system and tracking and text recognition; however, this technology has not been used for intelligent recognition of rock fracture patterns based on acoustic emission. Based on the above reasons, a probability scheme for rock fracture mode classification based on acoustic emission Gaussian mixture model is proposed.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了解决现有技术领域中存在的缺点,而提出一种基于声发射模型的岩石破裂模式智能探测识别方法。The purpose of the present invention is to provide a method for intelligent detection and identification of rock fracture modes based on acoustic emission model in order to solve the shortcomings existing in the prior art.
为了实现本发明的目的,本发明提出如下技术方案:In order to realize the purpose of the present invention, the present invention proposes the following technical solutions:
一种基于声发射模型的岩石破裂模式智能探测识别方法,包括以下步骤:An intelligent detection and identification method of rock rupture mode based on acoustic emission model, comprising the following steps:
步骤1,在待监测岩石上布置用于测试岩石破裂过程声发射参数的声发射系统;
步骤2,将岩石破裂过程中的声发射系统收集的声发射参数输入到预先训练好的信号识别模型,信号识别模型通过岩石破裂声发射的训练集预先训练得到;In
步骤3,信号识别模型智能识别岩石破裂过程中的张拉与剪切裂纹发展比例;
步骤4,根据岩石破裂声发射信号确定的波形特征与岩石破裂模式识别存在的关系,为定量制定岩体灾害预警方案提供一系列可靠的检测阈值,同时为深入研究识别岩石破裂失稳前兆信号特征提供一种分析方法。Step 4: According to the relationship between the waveform characteristics determined by the rock fracture acoustic emission signal and the rock fracture pattern recognition, a series of reliable detection thresholds are provided for quantitatively formulating the rock mass disaster early warning plan, and at the same time, the characteristics of the rock fracture and instability precursor signals are identified for in-depth research. Provide an analysis method.
作为优选地,在步骤1中,所述声发射系统选测岩石声信号中的振铃计数、持续时间、峰值频率和上升时间用来分析岩石破裂的过程。Preferably, in
作为优选地,在步骤1中,所述声发射系统采集岩石声信号的方法是基于JCMS参数分析法:Preferably, in
用振铃计数/持续时间求得声发射参数平均频率AF,用上升时间/峰值振幅求得RA后,对这两组数据进行分类。The average frequency AF of acoustic emission parameters is obtained by ringing count/duration, and RA is obtained by rise time/peak amplitude, and then the two groups of data are classified.
作为优选地,在步骤2中,所述信号识别模型的预设训练集包括混合高斯模型(Gaussian Mixture Model,简称GMM)和期望最大(Expectation Maximization,简称EM)算法。Preferably, in
作为优选地,在步骤2中,根据AF和RA之间的关系,进行拉张与剪切裂纹的分析,在进行拉张与剪切裂纹分析时,通过结合混合高斯模型与期望最大算法作为训练模型,通过观察采样的概率值和模型概率值的接近程度,来判断一个模型是拟合和良好,对AF和RA之间的关系进行智能探测和识别。Preferably, in
作为优选地,在步骤2中,通过调整模型以让新模型与概率值更适配,反复迭代这个过程多次,直到两个概率值非常接近时,停止更新并完成模型训练,将这个过程用算法来实现:Preferably, in
通过混合高斯模型来计算数据的期望值,混合高斯模型本身是一个参数概率密度函数,表示为M分量高斯密度的加权,通过不断迭代来更新分布的均值μ和标准差σ来让期望值最大化,直到这两个参数变化非常小为止;The expected value of the data is calculated by the Gaussian mixture model. The Gaussian mixture model itself is a parametric probability density function, expressed as the weight of the Gaussian density of the M components, and the mean μ and standard deviation σ of the distribution are updated through continuous iteration to maximize the expected value until These two parameters change very little;
对于D维的测量、训练,将混合密度定义为:For D-dimensional measurement and training, the mixing density is defined as:
式中,ωi为混合权值,为单模态的高斯(正常)密度,为特征向量;In the formula, ω i is the mixed weight, is the single-modal Gaussian (normal) density, is the feature vector;
每一个单模式的高斯分量密度的形式是一个D变量高斯函数为:The Gaussian component density of each single mode is in the form of a D-variable Gaussian function as:
式中,为D×1的平均向量,∑i为D×D的协方差矩阵;In the formula, is the average vector of D×1, ∑i is the covariance matrix of D×D;
为了让混合权值ωi满足完整的混合高斯模型应由平均向量协方差矩阵In order to make the mixed weight ω i satisfy The full Gaussian mixture model should consist of the mean vector covariance matrix
∑i和所有分量密度M的混合加权来使之参数化λ,参数λ用式(3)表示为:The mixed weighting of ∑i and all component densities M is used to parameterize λ, and the parameter λ is expressed by equation (3) as:
对于基于混合高斯模型的分类系统,模型训练的目标是估计混合高斯模型参数的λ,使高斯混合密度与特征向量的分布匹配,确定λ的最佳估值;For a classification system based on a mixture of Gaussian models, the goal of model training is to estimate the λ of the mixture Gaussian model parameters such that the Gaussian mixture density is related to the eigenvectors The distribution matches to determine the best estimate of λ;
最大似然值估计(Maximum Likelihood,简称ML)是用于估计ωi、和∑i的常用方法之一,最大似然值估计估计能在给定训练数据的情况下使混合高斯模型的可能性最大化,对于一系列T训练向量假定各向量之间是独立的,可以写成The maximum likelihood value estimation (Maximum Likelihood, ML for short) is used to estimate ω i , One of the common methods of and ∑i, maximum likelihood estimation estimates the possibility of maximizing the likelihood of a Gaussian mixture model given training data, for a series of T training vectors Assuming that each vector is independent, it can be written as
由于该表达式作为λ的非线性函数,直接最大化(即设置一阶导数等于零并且约束二阶导数为正)计算上难以处理,所以考虑通过期望最大化算法(Expectation-maximization algorithm,简称EM)迭代来获得ML参数。Since this expression is a nonlinear function of λ, it is computationally intractable to directly maximize (that is, setting the first derivative equal to zero and constraining the second derivative to be positive), so consider using the Expectation-maximization algorithm (EM) Iterate to get ML parameters.
作为优选地,在步骤S2中,期望最大算法的训练过程是一个迭代的过程,从最初的模型λk开始,之后估计一个新的模型λk+1,如此有p(X|λk+1)>p(X|λk),这样新模型就成为下一个迭代的初始模型,并重复此过程,直到达到某个收敛阈值为止(如对数的似然值为1026),该算法由期望和最大化两个步骤组成,这保证了模型释然值的单调递增,期望步骤的结果是对第i个分量的后验概率,它被定义为状态为i的概率,当第m个高斯混合结果为时,给定第 k个重新估计的模型λk Preferably, in step S2, the training process of the expectation-maximization algorithm is an iterative process, starting from the initial model λ k and then estimating a new model λ k+1 , so that p(X|λ k+1 )>p(X|λ k ), so the new model becomes the initial model for the next iteration, and this process is repeated until a certain convergence threshold is reached (such as the log-likelihood value of 1026), the algorithm is determined by the expectation and maximization consists of two steps, which guarantees a monotonically increasing model relief value, the result of the expectation step is the posterior probability for the i-th component, which is defined as the probability of state i, when the m-th Gaussian mixture results for , given the k-th re-estimated model λ k
式中,分别由式(6)(7)(8)用最大化步骤来返回分布参数:In the formula, The distribution parameters are returned by the maximization step by equations (6) (7) and (8) respectively:
这样混合高斯模型便可对岩石、混凝土等具有两类裂纹模式的结构进行分类,即张拉和剪切裂纹分类(M=2),为了对这两种裂纹模式进行分类,将特征向量(或测量向量)认为是一个二维向量(即),当有T个训练向量时序列两种分类对应张拉和剪切模式分别是I={1,2},此时再“估计”混合高斯模型的参数(每个隐藏类的权重,均值和协方差矩阵),使它们与训练特征向量的分布最为匹配。In this way, the mixed Gaussian model can classify structures with two types of crack modes, such as rock and concrete, namely tension and shear crack classification (M=2). In order to classify these two crack modes, the feature vector (or measurement vector) is considered a two-dimensional vector (i.e. ), when there are T training vectors, the sequence The corresponding tension and shear modes of the two classifications are I = {1, 2}. At this time, the parameters of the Gaussian mixture model (weight, mean and covariance matrix of each hidden class) are "estimated" to make them consistent with the training Feature vector distribution that best matches.
与现有技术相比,本发明的有益效果有:Compared with the prior art, the beneficial effects of the present invention are:
本发明提出一种基于声发射模型的岩石破裂模式智能探测识别方法,为岩崩、岩质滑坡等岩体突发性脆性破裂的灾害类型提供了一种解决方案,突破了传统变形间接监测岩体损伤破坏实现预警的“实时性差、前兆不足、成功率低”等客观局限性,解决了突发性岩体脆性失稳破坏灾害的有效监测预警技术途径,为大型岩质破坏灾害(岩崩、落石、滑坡)的防灾减灾和应急救灾提供了有效科技支撑,具有非常重要的科学意义和应用价值。The present invention proposes an intelligent detection and identification method of rock fracture mode based on acoustic emission model, provides a solution for the disaster types of sudden brittle fracture of rock mass such as rock collapse and rock landslide, and breaks through the traditional indirect monitoring of deformation of rock. It solves the objective limitations of "poor real-time, insufficient precursors, and low success rate" for early warning of rock mass damage and damage, and solves the effective monitoring and early warning technology approach for sudden rock mass brittle instability and damage disasters. , rockfall, landslide) disaster prevention and mitigation and emergency disaster relief provides effective scientific and technological support, with very important scientific significance and application value.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1为岩石裂纹分类图;Figure 1 is a classification diagram of rock cracks;
图2为灰岩在单轴压缩下应力σc初期和中后期的裂纹识别结果;Figure 2 shows the crack identification results of limestone under uniaxial compression at the initial and middle and late stages of stress σc ;
图3为灰岩张拉、剪切裂纹应力区间百分比列表;Figure 3 is a list of percentages of limestone tension and shear crack stress intervals;
图4为灰岩的两种裂纹各加载阶段分别所占的比例。Figure 4 shows the proportions of the two types of cracks in limestone at each loading stage.
具体实施方式Detailed ways
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present invention will be described clearly and completely below. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments.
一种基于声发射模型的岩石破裂模式智能探测识别方法,具体包括以下步骤:An intelligent detection and identification method of rock rupture mode based on acoustic emission model, which specifically includes the following steps:
步骤1,在待监测岩石上布置用于测试岩石破裂过程声发射参数的声发射系统;
在步骤1中,声发射系统选测岩石声信号中的振铃计数、持续时间、峰值频率和上升时间用来分析岩石破裂的过程。In
在步骤1中,声发射系统采集岩石声信号的方法是基于JCMS参数分析法:In
用振铃计数/持续时间求得声发射参数平均频率AF,用上升时间/峰值振幅求得RA后,对这两组数据进行分类。The average frequency AF of acoustic emission parameters is obtained by ringing count/duration, and RA is obtained by rise time/peak amplitude, and then the two groups of data are classified.
步骤2,将目标特征数据输入预先训练好的信号识别模型,信号识别模型预先通过岩石破裂声发射的训练集训练得到;
在步骤2中,信号识别模型的预设训练集包括混合高斯模型(Gaussian MixtureModel,简称GMM)和期望最大(Expectation Maximization,简称EM)算法。In
在步骤2中,根据AF和RA之间的关系,进行拉张与剪切裂纹的分析,在进行拉张与剪切裂纹分析时,通过结合混合高斯模型与期望最大算法作为训练模型,通过观察采样的概率值和模型概率值的接近程度,来判断一个模型是拟合和良好,对AF和RA之间的关系进行智能探测和识别。In
在步骤2中,通过调整模型以让新模型与概率值更适配,反复迭代这个过程多次,直到两个概率值非常接近时,停止更新并完成模型训练,将这个过程用算法来实现:In
通过混合高斯模型来计算数据的期望值,混合高斯模型本身是一个参数概率密度函数,表示为M分量高斯密度的加权,通过不断迭代来更新分布的均值μ和标准差σ来让期望值最大化,直到这两个参数变化非常小为止;The expected value of the data is calculated by the Gaussian mixture model. The Gaussian mixture model itself is a parametric probability density function, expressed as the weight of the Gaussian density of the M components, and the mean μ and standard deviation σ of the distribution are updated through continuous iteration to maximize the expected value until These two parameters change very little;
对于D维的测量、训练,将混合密度定义为:For D-dimensional measurement and training, the mixing density is defined as:
式中,ωi为混合权值,为单模态的高斯(正常)密度,为特征向量;In the formula, ω i is the mixed weight, is the single-modal Gaussian (normal) density, is the feature vector;
每一个单模式的高斯分量密度的形式是一个D变量高斯函数为:The Gaussian component density of each single mode is in the form of a D-variable Gaussian function as:
式中,为D×1的平均向量,∑i为D×D的协方差矩阵;In the formula, is the average vector of D×1, and ∑i is the covariance matrix of D×D;
为了让混合权值ωi满足完整的混合高斯模型应由平均向量协方差矩阵In order to make the mixed weight ω i satisfy The full Gaussian mixture model should consist of the mean vector covariance matrix
∑i和所有分量密度M的混合加权来使之参数化λ,参数λ用式(3)表示为:The mixed weighting of ∑i and all component densities M is used to parameterize λ, and the parameter λ is expressed by equation (3) as:
对于基于混合高斯模型的分类系统,模型训练的目标是估计混合高斯模型参数的λ,使高斯混合密度与特征向量的分布匹配,确定λ的最佳估值;For a classification system based on a mixture of Gaussian models, the goal of model training is to estimate the λ of the mixture Gaussian model parameters such that the Gaussian mixture density is related to the eigenvectors The distribution matches to determine the best estimate of λ;
最大似然值估计(Maximum Likelihood,简称ML)是用于估计ωi、和∑i的常用方法之一,最大似然值估计估计能在给定训练数据的情况下使混合高斯模型的可能性最大化,对于一系列T训练向量假定各向量之间是独立的,可以写成The maximum likelihood value estimation (Maximum Likelihood, ML for short) is used to estimate ω i , One of the common methods of and ∑i, maximum likelihood estimation estimates the possibility of maximizing the likelihood of a Gaussian mixture model given training data, for a series of T training vectors Assuming that each vector is independent, it can be written as
由于该表达式作为λ的非线性函数,直接最大化(即设置一阶导数等于零并且约束二阶导数为正)计算上难以处理,所以考虑通过期望最大化算法(Expectation-maximization algorithm,简称EM)迭代来获得ML参数。Since this expression is a nonlinear function of λ, it is computationally intractable to directly maximize (that is, setting the first derivative equal to zero and constraining the second derivative to be positive), so consider using the Expectation-maximization algorithm (EM) Iterate to get ML parameters.
在步骤S2中,期望最大算法的训练过程是一个迭代的过程,从最初的模型λk开始,之后估计一个新的模型λk+1,如此有p(X|λk+1)>p(X|λk),这样新模型就成为下一个迭代的初始模型,并重复此过程,直到达到某个收敛阈值为止(如对数的似然值为1026),该算法由期望和最大化两个步骤组成,这保证了模型释然值的单调递增,期望步骤的结果是对第i个分量的后验概率,它被定义为状态为i的概率,当第m个高斯混合结果为时,给定第k个重新估计的模型λk In step S2, the training process of the expectation-maximization algorithm is an iterative process, starting from the initial model λ k and then estimating a new model λ k+1 , so that p(X|λ k+1 )>p( X |λk ), so that the new model becomes the initial model for the next iteration, and the process is repeated until a certain convergence threshold is reached (such as the log-likelihood value of 1026), the algorithm consists of the expectation and maximization of two The result of the expected step is the posterior probability for the i-th component, which is defined as the probability of state i, when the m-th Gaussian mixture results in , given the k-th re-estimated model λ k
式中,分别由式(6)(7)(8)用最大化步骤来返回分布参数:In the formula, The distribution parameters are returned by the maximization step by equations (6) (7) and (8) respectively:
这样GMM便可对岩石、混凝土等具有两类裂纹模式的结构进行分类,即张拉和剪切裂纹分类(M=2),为了对这两种裂纹模式进行分类,将特征向量(或测量向量)认为是一个二维向量(即),当有T个训练向量时序列两种分类对应张拉和剪切模式分别是I={1,2},此时再“估计”GMM的参数(每个隐藏类的权重,均值和协方差矩阵),使它们与训练特征向量的分布最为匹配。In this way, GMM can classify structures with two types of crack modes, such as rock and concrete, namely tension and shear crack classification (M=2). In order to classify these two crack modes, the feature vector (or measurement vector) is considered a two-dimensional vector (i.e. ), when there are T training vectors, the sequence The corresponding tension and shear modes of the two classifications are I = {1, 2}, at which time the parameters of the GMM (weight, mean and covariance matrix of each hidden class) are "estimated" so that they are the same as the training feature vector. distribution that best matches.
步骤3,智能识别岩石破裂过程中张拉与剪切裂纹发展的比例,如图1所示;
步骤4,根据岩石破裂声发射信号确定的波形特征与岩石破裂模式识别存在相应的关系,为定量制定岩体灾害预警方案提供一些列可靠的检测阈值,同时为深入研究识别岩石破裂失稳前兆信号特征提供一种分析方法。Step 4: There is a corresponding relationship between the waveform characteristics determined by the acoustic emission signal of rock rupture and the recognition of rock rupture patterns, providing a series of reliable detection thresholds for quantitatively formulating rock mass disaster early warning plans, and at the same time identifying rock rupture and instability precursor signals for in-depth research. Features provide a method of analysis.
实施例1Example 1
整个训练可以概括为:The whole training can be summarized as:
①将λ中的参数初始化,利用矢量量化的方法,初步确定状态相关下高斯混合的两个编码的参数;① Initialize the parameters in λ, and use the vector quantization method to preliminarily determine the two encoded parameters of the Gaussian mixture under the state correlation;
②应用式(5)得到Pr(i|xt,λk);②Apply formula (5) to get Pr(i|x t , λ k );
③使用Pr(i|xt,λk)来更好的估算参数λk+1(见式(6)~式(8));③Use Pr(i|x t , λ k ) to better estimate the parameter λ k+1 (see equations (6) to (8));
④迭代步骤②和③直到收敛。④ Iterate steps ② and ③ until convergence.
如图2所示,(a)(b)分别是灰岩在单轴压缩下应力σc初期和中后期的智能裂纹识别结果。从图中可以观察到灰岩在加载初期(0~0.1)σc几乎全为张拉裂纹,张拉聚类的椭圆较为圆润,中心点周围的点分散较为平均,加载到中间步骤(0.5~0.6)σc时发展为拉伸到剪切的过渡阶段,此时在较大载荷的作用下,AF通常具有较高的幅值,因此RA值在较小范围内变化,聚类高概率区域逐渐向剪切类的均值范围移动,两个互斥的分类(剪切和拉伸)开始逐渐形成汇合(混合),但这两类仍是分割的,这个阶段,高概率的区域几乎全集中在剪切类的平均值附近。As shown in Fig. 2, (a) and (b) are the intelligent crack identification results of limestone under uniaxial compression at the initial and middle and late stages of stress σc , respectively. It can be observed from the figure that at the initial stage of loading (0~0.1) σc of limestone is almost all tensile cracks, the ellipse of the tensile cluster is relatively round, and the points around the center point are scattered evenly. 0.6) σ c develops into the transition stage from tensile to shear, at this time, under the action of larger load, AF usually has a higher amplitude, so the value of RA changes in a small range, and the clustering is high. The probability region gradually moves to the mean range of the shear class, and the two mutually exclusive categories (shear and stretch) begin to gradually form a confluence (mixture), but these two categories are still divided. At this stage, the high probability region is almost The ensemble is concentrated around the mean of the clipping class.
本专利已在室内单轴压缩及声发射试验中得到良好的应用,图3给出了灰岩张拉裂纹和剪切裂纹整个加载阶段所占的百分比,发现在加载总时间的80%~90%剪切裂纹所占比例达到最大值,此时岩样已经进入非稳定扩展阶段的后期。在本研究中,灰岩剪切裂纹所占比例的最大值为44.59%,用该值作为预测灰岩破坏的前兆阈值,当百分比超过这个阈值时,就可以触发早期警报,作为岩体严重损伤的预判。同时两种破坏裂纹类型集群中心位置的RA和 AF的值具有剪切裂纹低AF、高RA值的声发射信号特征,张拉裂纹具有高AF和低RA值的特征,这与JCMS参数分析法得到的张拉裂纹和剪切裂纹的RA和AF值的特点一样。This patent has been well used in indoor uniaxial compression and acoustic emission tests. Figure 3 shows the percentage of limestone tension cracks and shear cracks in the entire loading stage. The proportion of % shear cracks reaches the maximum value, and the rock sample has entered the later stage of the unstable growth stage. In this study, the maximum proportion of limestone shear cracks is 44.59%, and this value is used as a precursor threshold for predicting limestone failure. When the percentage exceeds this threshold, an early warning can be triggered as a serious damage to the rock mass. prediction. At the same time, the values of RA and AF at the center of the cluster of two types of failure cracks have the characteristics of acoustic emission signals with low AF and high RA values for shear cracks, and the characteristics of high AF and low RA values for tensile cracks. This is the same as the RA and AF values of the tensile and shear cracks obtained by the JCMS parametric analysis method.
最后为了验证所有加载步骤的裂纹的分类结果,图4显示了灰岩在各加载步骤中两种裂纹集群关联的声发射活动所占的比例。可以发现灰岩在整个加载过程中张拉裂纹起主导作用,即大部分的声发射信号是由张拉裂纹的成核产生的。岩石室内声发射试验裂纹破坏模式不像钢筋混凝土四点弯曲试验中可以明显的分为三个阶段:①张拉的主导作用阶段,初始加载步骤,特征向量的集中在张力类的平均值附近;②过渡阶段,中间加载步骤从张拉到剪切的过渡阶段,在此阶段,高概率区域逐渐向剪切类的均值移动;③破坏阶段,在最终加载步骤过程中为剪切裂缝控制,在这个阶段,最有可能发生破坏的区域集中在剪切裂纹的平均值附近。究其原因为两种加载方式的不同和材料均一性有差别。虽然岩石室内声发射试验两类裂纹在整个加载阶段所占的比例没有明显的规律性,但是我们仍然可以发现剪切裂纹所占比例的最大值出现在加载总时间80%~90%的阶段,该时间段对应岩石加载过程中非稳定扩展阶段的中后期,以此作为产生破坏的前兆。Finally, to verify the classification results of cracks for all loading steps, Figure 4 shows the proportion of AE activity associated with two types of crack clusters in limestone at each loading step. It can be found that tension cracks play a dominant role in the whole loading process of limestone, that is, most of the acoustic emission signals are generated by the nucleation of tension cracks. Unlike the reinforced concrete four-point bending test, the crack failure mode of the rock chamber acoustic emission test can be clearly divided into three stages: (1) the dominant action stage of tension, the initial loading step, and the eigenvectors are concentrated near the average value of the tension class; ② Transition stage, the transition stage from tensioning to shearing in the intermediate loading step, in this stage, the high probability region gradually moves to the mean value of the shear class; ③ Damage stage, during the final loading step, it is shear crack control, which is At this stage, the areas most likely to fail are concentrated around the average value of shear cracks. The reason is that the two loading methods are different and the material uniformity is different. Although the proportion of the two types of cracks in the whole loading stage of the rock chamber acoustic emission test has no obvious regularity, we can still find that the maximum proportion of the shear crack occurs in the stage of 80% to 90% of the total loading time. This time period corresponds to the middle and late stages of the unstable expansion stage in the rock loading process, which is used as a precursor to failure.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. The equivalent replacement or change of the inventive concept thereof shall be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010144388.8A CN111272883A (en) | 2020-03-04 | 2020-03-04 | An intelligent detection and identification method of rock fracture mode based on acoustic emission model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010144388.8A CN111272883A (en) | 2020-03-04 | 2020-03-04 | An intelligent detection and identification method of rock fracture mode based on acoustic emission model |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111272883A true CN111272883A (en) | 2020-06-12 |
Family
ID=70997587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010144388.8A Pending CN111272883A (en) | 2020-03-04 | 2020-03-04 | An intelligent detection and identification method of rock fracture mode based on acoustic emission model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111272883A (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111812211A (en) * | 2020-07-09 | 2020-10-23 | 武汉理工大学 | A classification method for brittle failure cracks of RA-AF-E rock-like materials based on acoustic emission parameters |
CN111967378A (en) * | 2020-08-14 | 2020-11-20 | 广西大学 | Sound emission multi-precursor method and device for pulling-shearing dumping type karst dangerous rock instability early warning |
CN112183643A (en) * | 2020-09-29 | 2021-01-05 | 广西大学 | Hard rock tension-shear fracture identification method and device based on acoustic emission |
CN112183638A (en) * | 2020-09-29 | 2021-01-05 | 广西大学 | Hard rock tensile-shear fracture identification method and device based on voiceprint depth characteristics |
CN112200238A (en) * | 2020-09-29 | 2021-01-08 | 广西大学 | Hard rock tension-shear fracture identification method and device based on sound characteristics |
CN112326785A (en) * | 2020-09-16 | 2021-02-05 | 中铁十九局集团轨道交通工程有限公司 | Synchronous grouting filling effect impact mapping method detection and evaluation method |
CN112444564A (en) * | 2020-11-17 | 2021-03-05 | 大连理工大学 | Rock fracture early warning method based on acoustic emission signal statistical analysis |
CN112487698A (en) * | 2020-12-21 | 2021-03-12 | 中国科学院地质与地球物理研究所 | Acoustic emission simulation method and system based on discrete unit method |
CN113063857A (en) * | 2020-06-15 | 2021-07-02 | 中国科学院武汉岩土力学研究所 | An Acoustic Emission Identification Method for Tension-Shear Failure of Rock Structural Surfaces in Direct Shear Tests |
CN113218839A (en) * | 2021-04-27 | 2021-08-06 | 江西理工大学 | Monitoring method, device and system for permeation destruction phenomenon of tailing pond |
CN113252794A (en) * | 2021-06-03 | 2021-08-13 | 沈阳工业大学 | Acoustic emission crack monitoring method and system |
CN113358469A (en) * | 2021-06-03 | 2021-09-07 | 中国矿业大学 | Acoustic emission signal visualization processing method for rock fracture classification |
CN113777171A (en) * | 2021-08-05 | 2021-12-10 | 华北理工大学 | Classification and recognition method of rock fracture pattern based on voiceprint recognition technology |
CN113936104A (en) * | 2021-12-17 | 2022-01-14 | 矿冶科技集团有限公司 | Crack identification method, crack identification device, electronic device and medium |
CN113945457A (en) * | 2021-10-14 | 2022-01-18 | 辽宁科技大学 | Method for analyzing failure mechanism of rock under complex unloading stress condition |
CN114062512A (en) * | 2021-11-15 | 2022-02-18 | 生态环境部固体废物与化学品管理技术中心 | A kind of damage analysis method of fiber-reinforced ultrafine tailings cementitious material |
CN114252509A (en) * | 2021-12-17 | 2022-03-29 | 成都理工大学 | A three-stage locking type landslide precursor identification method based on acoustic emission signal |
CN114526451A (en) * | 2022-02-21 | 2022-05-24 | 南京邮电大学 | Underground space rock mass pipeline water seepage acoustic emission fluctuation level identification method and device |
CN114609254A (en) * | 2022-03-16 | 2022-06-10 | 成都理工大学 | Rock cracking precursor identification method based on acoustic emission waveform signal |
CN115048821A (en) * | 2022-08-15 | 2022-09-13 | 中国矿业大学(北京) | Prediction method of lagging rock burst |
CN116186576A (en) * | 2022-11-29 | 2023-05-30 | 南昌大学 | Concrete structure damage mode identification method based on acoustic emission parameter analysis |
CN118067849A (en) * | 2024-04-17 | 2024-05-24 | 内蒙古科技大学 | A rock damage early warning method, system, device and medium |
CN118094359A (en) * | 2024-04-26 | 2024-05-28 | 山东科技大学 | Coal and rock crack risk prediction method based on abrasive water jet cutting |
CN118425202A (en) * | 2024-04-07 | 2024-08-02 | 煤炭科学研究总院有限公司 | Method and device for determining coal rock destruction mode |
CN118655039A (en) * | 2024-08-19 | 2024-09-17 | 中国科学院武汉岩土力学研究所 | A method for analyzing the degree of rock fracture in the rock breaking test of soft and hard formations |
CN119246699A (en) * | 2024-12-05 | 2025-01-03 | 中铁资源集团勘察设计有限公司 | Sliding surface characteristic monitoring method and system based on acoustic emission |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107101887A (en) * | 2017-05-09 | 2017-08-29 | 东北大学 | A kind of Numerical Investigation On Rock Failure method that sound emission is combined with numerical computations |
CN109613121A (en) * | 2019-01-15 | 2019-04-12 | 华北理工大学 | An integrated monitoring method of rock fracture acoustic emission and damage imaging |
CN110045026A (en) * | 2019-05-13 | 2019-07-23 | 中国石油大学(华东) | Utilize the method for acoustic emission identification rock fracture crack initiation stress |
-
2020
- 2020-03-04 CN CN202010144388.8A patent/CN111272883A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107101887A (en) * | 2017-05-09 | 2017-08-29 | 东北大学 | A kind of Numerical Investigation On Rock Failure method that sound emission is combined with numerical computations |
CN109613121A (en) * | 2019-01-15 | 2019-04-12 | 华北理工大学 | An integrated monitoring method of rock fracture acoustic emission and damage imaging |
CN110045026A (en) * | 2019-05-13 | 2019-07-23 | 中国石油大学(华东) | Utilize the method for acoustic emission identification rock fracture crack initiation stress |
Non-Patent Citations (2)
Title |
---|
周逸飞 等: "基于声发射和高斯混合模型的灰岩破裂特征识别研究", 《水利水电技术》 * |
张省军等: "基于声发射实验岩石破坏前兆特征研究", 《金属矿山》 * |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113063857A (en) * | 2020-06-15 | 2021-07-02 | 中国科学院武汉岩土力学研究所 | An Acoustic Emission Identification Method for Tension-Shear Failure of Rock Structural Surfaces in Direct Shear Tests |
CN113063857B (en) * | 2020-06-15 | 2022-02-18 | 中国科学院武汉岩土力学研究所 | Acoustic emission identification method for rock structural surface tension-shear failure in direct shear test |
CN111812211A (en) * | 2020-07-09 | 2020-10-23 | 武汉理工大学 | A classification method for brittle failure cracks of RA-AF-E rock-like materials based on acoustic emission parameters |
CN111967378A (en) * | 2020-08-14 | 2020-11-20 | 广西大学 | Sound emission multi-precursor method and device for pulling-shearing dumping type karst dangerous rock instability early warning |
CN111967378B (en) * | 2020-08-14 | 2022-06-07 | 广西大学 | Sound emission multi-precursor method and device for pulling-shearing dumping type karst dangerous rock instability early warning |
CN112326785A (en) * | 2020-09-16 | 2021-02-05 | 中铁十九局集团轨道交通工程有限公司 | Synchronous grouting filling effect impact mapping method detection and evaluation method |
CN112326785B (en) * | 2020-09-16 | 2024-01-09 | 中铁十九局集团轨道交通工程有限公司 | Method for detecting and evaluating synchronous grouting filling effect by impact mapping method |
CN112183638A (en) * | 2020-09-29 | 2021-01-05 | 广西大学 | Hard rock tensile-shear fracture identification method and device based on voiceprint depth characteristics |
CN112200238B (en) * | 2020-09-29 | 2024-03-29 | 广西大学 | Hard rock pulling shear rupture identification method and device based on sound characteristics |
CN112183643B (en) * | 2020-09-29 | 2022-06-21 | 广西大学 | Method and device for identifying tensile shear fracture of hard rock based on acoustic emission |
CN112200238A (en) * | 2020-09-29 | 2021-01-08 | 广西大学 | Hard rock tension-shear fracture identification method and device based on sound characteristics |
CN112183638B (en) * | 2020-09-29 | 2022-05-10 | 广西大学 | Hard rock tensile-shear fracture identification method and device based on voiceprint depth characteristics |
CN112183643A (en) * | 2020-09-29 | 2021-01-05 | 广西大学 | Hard rock tension-shear fracture identification method and device based on acoustic emission |
CN112444564A (en) * | 2020-11-17 | 2021-03-05 | 大连理工大学 | Rock fracture early warning method based on acoustic emission signal statistical analysis |
CN112444564B (en) * | 2020-11-17 | 2022-01-04 | 大连理工大学 | A rock rupture early warning method based on statistical analysis of acoustic emission signals |
US11314910B1 (en) | 2020-12-21 | 2022-04-26 | Institute Of Geology And Geophysics, Chinese Academy Of Sciences | Discrete element method-based simulation method and system for acoustic emission |
CN112487698B (en) * | 2020-12-21 | 2021-08-10 | 中国科学院地质与地球物理研究所 | Acoustic emission simulation method and system based on discrete unit method |
CN112487698A (en) * | 2020-12-21 | 2021-03-12 | 中国科学院地质与地球物理研究所 | Acoustic emission simulation method and system based on discrete unit method |
CN113218839A (en) * | 2021-04-27 | 2021-08-06 | 江西理工大学 | Monitoring method, device and system for permeation destruction phenomenon of tailing pond |
CN113218839B (en) * | 2021-04-27 | 2022-07-12 | 江西理工大学 | Method, device and system for monitoring seepage damage phenomenon of tailings pond |
CN113358469B (en) * | 2021-06-03 | 2022-07-05 | 中国矿业大学 | A visual processing method of acoustic emission signal for rock fracture classification |
CN113358469A (en) * | 2021-06-03 | 2021-09-07 | 中国矿业大学 | Acoustic emission signal visualization processing method for rock fracture classification |
CN113252794A (en) * | 2021-06-03 | 2021-08-13 | 沈阳工业大学 | Acoustic emission crack monitoring method and system |
CN113777171A (en) * | 2021-08-05 | 2021-12-10 | 华北理工大学 | Classification and recognition method of rock fracture pattern based on voiceprint recognition technology |
CN113777171B (en) * | 2021-08-05 | 2023-12-05 | 华北理工大学 | Rock fracture pattern classification and recognition method based on voiceprint recognition technology |
CN113945457A (en) * | 2021-10-14 | 2022-01-18 | 辽宁科技大学 | Method for analyzing failure mechanism of rock under complex unloading stress condition |
CN114062512B (en) * | 2021-11-15 | 2024-02-13 | 生态环境部固体废物与化学品管理技术中心 | Damage analysis method for fiber reinforced superfine tailing cementing material |
CN114062512A (en) * | 2021-11-15 | 2022-02-18 | 生态环境部固体废物与化学品管理技术中心 | A kind of damage analysis method of fiber-reinforced ultrafine tailings cementitious material |
CN114252509A (en) * | 2021-12-17 | 2022-03-29 | 成都理工大学 | A three-stage locking type landslide precursor identification method based on acoustic emission signal |
CN113936104A (en) * | 2021-12-17 | 2022-01-14 | 矿冶科技集团有限公司 | Crack identification method, crack identification device, electronic device and medium |
CN114526451A (en) * | 2022-02-21 | 2022-05-24 | 南京邮电大学 | Underground space rock mass pipeline water seepage acoustic emission fluctuation level identification method and device |
CN114609254A (en) * | 2022-03-16 | 2022-06-10 | 成都理工大学 | Rock cracking precursor identification method based on acoustic emission waveform signal |
CN115048821B (en) * | 2022-08-15 | 2022-11-18 | 中国矿业大学(北京) | Prediction method of lagging rock burst |
CN115048821A (en) * | 2022-08-15 | 2022-09-13 | 中国矿业大学(北京) | Prediction method of lagging rock burst |
CN116186576A (en) * | 2022-11-29 | 2023-05-30 | 南昌大学 | Concrete structure damage mode identification method based on acoustic emission parameter analysis |
CN118425202A (en) * | 2024-04-07 | 2024-08-02 | 煤炭科学研究总院有限公司 | Method and device for determining coal rock destruction mode |
CN118425202B (en) * | 2024-04-07 | 2024-12-06 | 煤炭科学研究总院有限公司 | Method and device for determining coal rock destruction mode |
CN118067849A (en) * | 2024-04-17 | 2024-05-24 | 内蒙古科技大学 | A rock damage early warning method, system, device and medium |
CN118094359A (en) * | 2024-04-26 | 2024-05-28 | 山东科技大学 | Coal and rock crack risk prediction method based on abrasive water jet cutting |
CN118655039A (en) * | 2024-08-19 | 2024-09-17 | 中国科学院武汉岩土力学研究所 | A method for analyzing the degree of rock fracture in the rock breaking test of soft and hard formations |
CN118655039B (en) * | 2024-08-19 | 2024-10-29 | 中国科学院武汉岩土力学研究所 | A method for analyzing the degree of rock fracture in the rock breaking test of soft and hard formations |
CN119246699A (en) * | 2024-12-05 | 2025-01-03 | 中铁资源集团勘察设计有限公司 | Sliding surface characteristic monitoring method and system based on acoustic emission |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111272883A (en) | An intelligent detection and identification method of rock fracture mode based on acoustic emission model | |
Ju et al. | Machine‐learning‐based methods for crack classification using acoustic emission technique | |
CN110889440A (en) | Rockburst grade prediction method and system based on principal component analysis and BP neural network | |
CN114779330B (en) | Mining working face main fracture azimuth analysis and prediction method based on microseismic monitoring | |
CN110222650A (en) | A kind of acoustie emission event classification method based on sound emission all band acquisition parameter | |
CN112183643B (en) | Method and device for identifying tensile shear fracture of hard rock based on acoustic emission | |
CN111999765A (en) | Microseismic multi-precursor method and device for early warning of instability of falling karst dangerous rock | |
KR101656862B1 (en) | Apparatus and method for performing stochastic modeling of earthquake fault rupture | |
CN112183638A (en) | Hard rock tensile-shear fracture identification method and device based on voiceprint depth characteristics | |
CN106251861A (en) | A kind of abnormal sound in public places detection method based on scene modeling | |
Page et al. | Turing‐style tests for UCERF3 synthetic catalogs | |
CN114091334A (en) | Partial discharge fault diagnosis method based on improved bat algorithm and support vector machine | |
CN104795063A (en) | Acoustic model building method based on nonlinear manifold structure of acoustic space | |
Varotsos et al. | Natural-time analysis of critical phenomena: The case of seismicity | |
Yu et al. | Measuring the damage evolution of granite under different quasi-static load rates through acoustic emission time–frequency characteristics and moment tensor analysis | |
CN109034238A (en) | A kind of clustering method based on comentropy | |
Zhao et al. | Automated operational modal analysis for supertall buildings based on a three-stage strategy and modified hierarchical clustering | |
Stindl et al. | Stochastic declustering of earthquakes with the spatiotemporal renewal ETAS model | |
CN107144874B (en) | A method and system based on BSWT-DDTFA time-frequency analysis of ENPEMF signals | |
CN110135085A (en) | Fatigue Crack Evaluation Method Based on Adaptive Kernel Density Estimation Assisted Particle Filter | |
Dang et al. | Regional spectral characteristics, quality factor and site responses in western-central Sichuan, China (II): Application to stochastic ground motion simulation | |
Tao et al. | Effects of bimodal SWCC on unsaturated loess slope stability analysis | |
Puggard et al. | Comparison analysis on the coefficients of variation of two independent Birnbaum-Saunders distributions by constructing confidence intervals for the ratio of coefficients of variation | |
Dávalos et al. | Robustness evaluation of fiv3 using near-fault pulse-like ground motions | |
Muthumala et al. | Comparison of Tiny Machine Learning Techniques for Embedded Acoustic Emission Analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhu Xing Inventor after: Hao Lina Inventor before: Zhu Xing |
|
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200612 |