CN111239675B - Multi-meter parallel traversal test method and system for multi-core module electric energy meter minute freezing - Google Patents
Multi-meter parallel traversal test method and system for multi-core module electric energy meter minute freezing Download PDFInfo
- Publication number
- CN111239675B CN111239675B CN202010111110.0A CN202010111110A CN111239675B CN 111239675 B CN111239675 B CN 111239675B CN 202010111110 A CN202010111110 A CN 202010111110A CN 111239675 B CN111239675 B CN 111239675B
- Authority
- CN
- China
- Prior art keywords
- meter
- time
- chip microcomputer
- single chip
- electric energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008014 freezing Effects 0.000 title claims abstract description 38
- 238000007710 freezing Methods 0.000 title claims abstract description 38
- 238000010998 test method Methods 0.000 title claims description 20
- 238000012360 testing method Methods 0.000 claims abstract description 74
- 238000004891 communication Methods 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000001934 delay Effects 0.000 claims description 6
- 238000009432 framing Methods 0.000 claims description 4
- 230000004044 response Effects 0.000 abstract description 6
- 238000013500 data storage Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011990 functional testing Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
- G01R35/04—Testing or calibrating of apparatus covered by the other groups of this subclass of instruments for measuring time integral of power or current
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Measurement Of Unknown Time Intervals (AREA)
Abstract
Description
技术领域technical field
本申请涉及智能电能表技术领域,尤其涉及一种多芯模组电能表分钟冻结的多表并行遍历测试方法及系统。The present application relates to the technical field of smart electric energy meters, and in particular, to a multi-meter parallel traversal test method and system for freezing minute freezing of multi-core module electric energy meters.
背景技术Background technique
随着国家经济技术的发展和人们生活水平的提高,电能已经成为了人们生产和生活中必不可少的二次能源,向人们的生产和生活带来了无尽的便利。电能表作为电力系统中计量电能的唯一部件,其重要性和可靠性不言而喻。With the development of national economy and technology and the improvement of people's living standards, electric energy has become an indispensable secondary energy in people's production and life, bringing endless convenience to people's production and life. As the only part of measuring electric energy in the power system, the importance and reliability of the electric energy meter are self-evident.
分钟冻结是智能电表对电力系统运行过程中实时电力负荷运行状态、特征的记录,智能电表按用户设定的时间间隔周期记录分钟冻结记录,分钟冻结记录哪些数据对象由用户设定,每个数据对象记录的间隔周期和记录的最大深度用户可设。电表生产时,需对电表功能进行功能检测,确保其功能满足新发布的多芯模组电能表规范要求。The minute freeze is the record of the real-time power load operation status and characteristics of the smart meter during the operation of the power system. The smart meter records the minute freeze record periodically according to the time interval set by the user. The data objects of the minute freeze record are set by the user. The interval period of object recording and the maximum depth of recording can be set by the user. When the electric meter is produced, the function of the electric meter needs to be tested to ensure that its function meets the requirements of the newly released multi-core module electric energy meter specification.
在进行测试时,若要满足上述数据储存功能的要求,电能表该项功能的测试时间过长,因此可通过修改电能表时间来完成对该项要求的测试。现有的测试方法多是上位机通过测试软件直接对电能表进行数据的交互,包括相关时间数据的设置和冻结数据的抄读。但是,上位机测试软件的处理速度较慢,造成测试时间较长,影响测试效率。During the test, to meet the requirements of the above data storage function, the test time of this function of the electric energy meter is too long, so the test of this requirement can be completed by modifying the time of the electric energy meter. Most of the existing test methods are that the host computer directly interacts with the data of the electric energy meter through the test software, including the setting of the relevant time data and the copying of the frozen data. However, the processing speed of the upper computer test software is relatively slow, resulting in a long test time and affecting the test efficiency.
发明内容SUMMARY OF THE INVENTION
本申请提供了一种多芯模组电能表分钟冻结的多表并行遍历测试方法及系统,以解决目前多芯模组电能表分钟冻结的测试时间较长的问题。The present application provides a multi-meter parallel traversal test method and system for minute freezing of a multi-core module electric energy meter, so as to solve the problem that the current multi-core module electric energy meter has a long test time for minute freezing.
为了解决上述技术问题,本申请实施例公开了如下技术方案:In order to solve the above technical problems, the embodiments of the present application disclose the following technical solutions:
第一方面,本申请实施例公开了一种多芯模组电能表分钟冻结的多表并行遍历测试方法,所述方法包括:In a first aspect, an embodiment of the present application discloses a multi-meter parallel traversal test method for freezing a multi-core module electric energy meter in minutes, the method comprising:
上位机向单片机发送智能电表时间设置指令;The host computer sends the smart meter time setting instruction to the single-chip microcomputer;
所述单片机根据设置时间与表地址向对应智能电表发送时间设置指令;The single-chip microcomputer sends a time setting instruction to the corresponding smart meter according to the setting time and the table address;
判断所述单片机是否收到设置正确的回复帧;Judging whether the single-chip microcomputer receives a correctly set reply frame;
若所述单片机收到设置正确的回复帧,则延时等待电能表跨分钟存储;If the single-chip microcomputer receives a correctly set reply frame, it delays and waits for the electric energy meter to store across minutes;
判断时间设置次数是否达到预设值;Determine whether the number of time settings reaches the preset value;
若时间设置次数未达到预设值,则更新所述设置时间,根据更新后的设置时间再次向所述智能电表发送时间设置指令,直至时间设置次数达到所述预设值;If the number of time settings does not reach the preset value, update the set time, and send a time setting instruction to the smart meter again according to the updated set time, until the number of time settings reaches the preset value;
若时间设置次数达到预设值,则测试完成,向所述上位机发送测试完成数据帧。If the number of time settings reaches the preset value, the test is completed, and a test completion data frame is sent to the upper computer.
可选的,单片机根据设置时间与表地址向对应智能电表发送时间设置指令,包括:Optionally, the single-chip microcomputer sends a time setting instruction to the corresponding smart meter according to the set time and the table address, including:
所述上位机发送表号抄读命令;The host computer sends a table number reading command;
所述单片机将所述表号抄读命令转发至对应串口;The single-chip microcomputer forwards the table number reading command to the corresponding serial port;
判断所述单片机是否收到正确回复帧;Determine whether the single-chip microcomputer has received a correct reply frame;
若所述单片机收到所述正确回复帧,则保存表号对应表地址到所述单片机的表地址缓存区;If the single-chip microcomputer receives the correct reply frame, save the table address corresponding to the table number in the table address buffer area of the single-chip microcomputer;
所述单片机根据所述上位机发送数据帧的时间戳和缓存的表地址组帧向对应智能电表发送时间设置指令。The single-chip microcomputer sends a time setting instruction to the corresponding smart meter according to the time stamp of the data frame sent by the upper computer and the buffered table address.
可选的,单片机根据设置时间与表地址向对应智能电表发送时间设置指令,包括:Optionally, the single-chip microcomputer sends a time setting instruction to the corresponding smart meter according to the set time and the table address, including:
所述上位机向所述单片机发送表号设置命令;The host computer sends a table number setting command to the single-chip microcomputer;
所述单片机根据表地址缓存区的表地址固化智能电表的表地址;The single-chip microcomputer solidifies the table address of the smart meter according to the table address of the table address buffer area;
判断所述单片机是否收到正确回复帧;Determine whether the single-chip microcomputer has received a correct reply frame;
若所述单片机收到正确回复帧,则所述单片机根据所述上位机发送数据帧的时间戳和固化的表地址向智能电表发送时间设置指令。If the single-chip microcomputer receives the correct reply frame, the single-chip computer sends a time setting instruction to the smart meter according to the time stamp of the data frame sent by the upper computer and the solidified table address.
可选的,延时等待电能表跨分钟存储,包括:Optionally, delay waiting for the energy meter to store across minutes, including:
延时时间为一分钟的秒时间与设置时间的秒时间之间的差值。The delay time is the difference between the seconds of one minute and the seconds of the set time.
可选的,更新所述设置时间,包括:Optionally, updating the set time includes:
所述单片机直接在预设时间分钟数上加1,更新所述设置时间。The microcontroller directly adds 1 to the preset time minutes to update the set time.
第二方面,本申请实施例还公开了一种多芯模组电能表分钟冻结的多表并行遍历测试方法,所述方法包括:In the second aspect, the embodiment of the present application also discloses a multi-meter parallel traversal test method for freezing a multi-core module electric energy meter in minutes, the method comprising:
上位机向单片机发送智能电表时间设置指令;The host computer sends the smart meter time setting instruction to the single-chip microcomputer;
所述单片机根据设置时间与第一表地址向对应智能电表发送时间设置指令;The single-chip microcomputer sends a time setting instruction to the corresponding smart meter according to the setting time and the first meter address;
判断所述单片机是否收到设置正确的回复帧;Judging whether the single-chip microcomputer receives a correctly set reply frame;
若所述单片机收到设置正确的回复帧,则开始电能表跨分钟数延时存储;If the single-chip microcomputer receives a correctly set reply frame, the electric energy meter starts to delay storage across minutes;
所述单片机根据设置时间与剩余表地址依次向对应智能电表发送时间设置指令;The single-chip microcomputer sends time setting instructions to the corresponding smart meter in turn according to the setting time and the address of the remaining meter;
判断所述单片机是否依次收到设置正确的回复帧;Determine whether the single-chip microcomputer receives the correct setting reply frames in sequence;
若所述单片机依次收到设置正确的回复帧,判断延时时间是否到达;If the single-chip microcomputer receives the correct response frames in turn, it is judged whether the delay time is reached;
若所述延时时间到达,则停止跨分钟数据延时;If the delay time is reached, stop the data delay across minutes;
判断时间设置次数是否达到预设值;Determine whether the number of time settings reaches the preset value;
若所述时间设置次数未达到预设值,则更新所述设置时间,根据更新后的设置时间再次向所述智能电表发送时间设置指令,直至时间设置次数达到所述预设值;If the number of time settings does not reach the preset value, update the set time, and send a time setting instruction to the smart meter again according to the updated set time, until the number of time settings reaches the preset value;
若所述时间设置次数达到预设值,则测试完成,向所述上位机发送测试完成数据帧。If the number of time settings reaches a preset value, the test is completed, and a test completion data frame is sent to the upper computer.
第三方面,本申请实施例还公开了一种多芯模组电能表分钟冻结的多表并行遍历测试系统,包括:In a third aspect, an embodiment of the present application also discloses a multi-meter parallel traversal test system for freezing a multi-core module electric energy meter in minutes, including:
上位机,与单片机通讯连接,用于向所述单片机发送智能电表时间设置指令;The upper computer is connected to the single chip for communication, and is used for sending the time setting instruction of the smart meter to the single chip computer;
单片机,设有多个通讯串口,所述通讯串口与所述智能电表通讯连接,用于根据设置时间与表地址向对应智能电表转发时间设置指令,并在时间设置指令设置正确时,延时等待电能表跨分钟存储,直至时间设置次数达到预设值。The single-chip microcomputer is provided with a plurality of communication serial ports, and the communication serial ports are connected to the smart meter for communication, and are used to forward the time setting instruction to the corresponding smart meter according to the set time and the meter address, and when the time setting instruction is set correctly, wait for a delay The energy meter is stored across minutes until the number of time settings reaches the preset value.
可选的,每个所述通讯串口与所述智能电表一一对应连接。Optionally, each of the communication serial ports is connected to the smart meter in one-to-one correspondence.
可选的,每个所述通讯串口与多个所述智能电表连接。Optionally, each of the communication serial ports is connected to a plurality of the smart meters.
与现有技术相比,本申请的有益效果为:Compared with the prior art, the beneficial effects of the present application are:
本申请提供的多芯模组电能表分钟冻结的多表并行遍历测试方法通过单片机来实现对电能表数据的交互,通过使用下位机进行电能表时间的设置取代原先的上位机通讯设置方法,在一年的时间周期遍历中,能够节省大量的测试时间,且单片机处理速度与PC软件相比,相应速度上有较大的提升,从而可大幅降低测试所需时间,有效提高测试效率。The multi-meter parallel traversal test method for freezing the multi-core module electric energy meter in minutes provided by the application realizes the interaction of the electric energy meter data through the single chip microcomputer, and replaces the original upper computer communication setting method by using the lower computer to set the time of the electric energy meter. In the one-year time cycle traversal, a lot of test time can be saved, and the processing speed of the single-chip microcomputer is greatly improved compared with the PC software, which can greatly reduce the time required for testing and effectively improve the testing efficiency.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not limiting of the present application.
附图说明Description of drawings
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the present application more clearly, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, for those of ordinary skill in the art, without creative work, the Additional drawings can be obtained from these drawings.
图1为示例性的一种多芯模组电能表分钟冻结的多表并行遍历测试模型的原理框图;FIG. 1 is an exemplary schematic block diagram of a multi-meter parallel traversal test model for freezing in minutes of a multi-core module electric energy meter;
图2为本申请实施例提供的一种多芯模组电能表分钟冻结的多表并行遍历测试方法的流程图;2 is a flowchart of a multi-meter parallel traversal test method for freezing in minutes of a multi-core module electric energy meter provided by an embodiment of the present application;
图3为本申请实施例提供的多芯模组电能表分钟冻结的多表并行遍历测试方法中S102的详细流程图;3 is a detailed flowchart of S102 in the multi-meter parallel traversal test method for freezing a multi-core module electric energy meter in minutes provided by an embodiment of the present application;
图4为本申请实施例提供的多芯模组电能表分钟冻结的多表并行遍历测试方法中S102的另一详细流程图;4 is another detailed flowchart of S102 in the multi-meter parallel traversal test method for minute freezing of a multi-core module electric energy meter provided by an embodiment of the present application;
图5为示例性的另一种多芯模组电能表分钟冻结的多表并行遍历测试模型的原理框图;FIG. 5 is a schematic block diagram of another exemplary multi-meter parallel traversal test model for freezing in minutes of a multi-core module electric energy meter;
图6为本申请实施例提供的另一种多芯模组电能表分钟冻结的多表并行遍历测试方法的流程图。FIG. 6 is a flowchart of another multi-meter parallel traversal test method for minute freezing of a multi-core module electric energy meter according to an embodiment of the present application.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。In order to make those skilled in the art better understand the technical solutions in the present application, the technical solutions in the embodiments of the present application will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described The embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of the present application.
根据发布的单相多芯模组化功能规范Q/GDW 1354-201X《智能电能表功能规范》中要求:According to the released single-phase multi-core modular functional specification Q/GDW 1354-201X "Smart Electric Energy Meter Functional Specification":
4.1.5冻结4.1.5 Freeze
a)按照约定的分间隔周期冻结电能量、瞬时量、自监测误差等数据。正、反有功总电能,电压、电流、频率、一分钟平均有功功率、一分钟平均无功功率、功率因数按1min间隔至少应保存1年。正、反向基波总电能,正、反向谐波总电能,四象限无功电能按15min间隔至少应保存1年。a) Freeze data such as electric energy, instantaneous quantity, self-monitoring error, etc. according to the agreed interval period. The total positive and negative active energy, voltage, current, frequency, one-minute average active power, one-minute average reactive power, and power factor should be kept for at least 1 year at 1min intervals. The total energy of the forward and reverse fundamental waves, the total energy of the forward and reverse harmonics, and the four-quadrant reactive energy should be stored for at least 1 year at intervals of 15 minutes.
b)冻结内容及标识符应符合DL/T698.45-2017,出厂不允许更改,为数据追溯提供有效支撑。冻结对象推荐按《表A.2电能表计量模组功能配置推荐表》执行。b) The frozen content and identifier shall comply with DL/T698.45-2017, and no changes are allowed in the factory, providing effective support for data traceability. The frozen object is recommended to be implemented according to the "Table A.2 Electric Energy Meter Measurement Module Function Configuration Recommendation Table".
c)停电时刻错过分钟冻结时刻,上电时应能补停电时刻的下一分钟冻结数据。c) The minute freeze time is missed at the power outage time, and the data should be frozen in the next minute of the power outage time when the power is turned on.
d)时间往未来方向设置且错过分钟冻结时刻,应补时间修改前时刻的下一次冻结。时间往历史方向回设,应覆盖原分钟冻结数据。d) If the time is set in the future direction and the minute freezing time is missed, the next freezing time before the time modification should be made up. The time is set back to the historical direction, which should overwrite the frozen data of the original minute.
e)考虑分钟冻结作为法制数据用于溯源,应保证数据存储的可靠性,推荐每条分钟冻结记录进行CRC(Cyclic Redundancy Check,循环冗余校验)校验存储。e) Considering that minute freezing is used as legal data for traceability, the reliability of data storage should be ensured. It is recommended that CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) check and store each minute freezing record.
电表生产时,需对电表功能进行功能检测,确保其功能满足规范要求。在进行测试时,若要满足上述数据储存功能的要求,电能表该项功能的测试时间过长,因此,可通过修改电能表时间来完成对该项功能要求的测试。When the meter is produced, the function of the meter needs to be tested to ensure that its function meets the specification requirements. During the test, to meet the requirements of the above data storage function, the test time of this function of the electric energy meter is too long. Therefore, the test of this function requirement can be completed by modifying the time of the electric energy meter.
现有的测试方法多是上位机通过测试软件直接对电能表进行数据的交互,包括相关时间数据的设置和冻结数据的抄读。以要求1min间隔保存一次的相关数据为例,涉及的时间节点次数为525600分钟(1年=60*24*365分钟=525600分钟),需对电表时间修改525600次,以PC和电表单词通讯时间为300ms计算,完成该项功能测试所需时间为525600*300(ms)=157680(s)=43.8(h)。Most of the existing test methods are that the host computer directly interacts with the data of the electric energy meter through the test software, including the setting of the relevant time data and the copying of the frozen data. Taking the relevant data that is required to be saved once every 1 minute as an example, the number of time nodes involved is 525,600 minutes (1 year = 60*24*365 minutes = 525,600 minutes), and the time of the meter needs to be modified 525,600 times. Calculated for 300ms, the time required to complete the functional test is 525600*300(ms)=157680(s)=43.8(h).
由于目前通过上位机测试电能表冻结功能的时间较长,本申请提出了一种针对上述分钟冻结测试时间过长的要求的并行遍历测试方法,本申请通过使用下位机进行电能表时间的设置取代原先的上位机通讯设置方法,在一年的时间周期遍历中,能够节省大量的测试时间。Since it takes a long time to test the freezing function of the electric energy meter through the upper computer at present, the present application proposes a parallel traversal test method for the requirement that the above-mentioned minute freezing test time is too long. The original host computer communication setting method can save a lot of test time in the one-year time cycle traversal.
本申请提供的多芯模组电能表分钟冻结的多表并行遍历测试方法通过单片机进行数据冻结测试,现在主流的单片机有多个通讯串口以满足用户需求,以STM32F10x系列的单片机为例,该系列单片机的不同型号有2-5个uart通讯串口,各个通讯串口下连接的电能表数量可为1个或多个,测试时,多个通讯串口并行,同时对下挂的电能表进行通信修改时间,对多芯模组电能表进行分钟数据存储测试。This application provides a multi-meter parallel traversal test method for freezing multi-core module electric energy meters in minutes through a single-chip microcomputer for data freezing testing. Now the mainstream single-chip microcomputers have multiple communication serial ports to meet user needs. Take the STM32F10x series of single-chip microcomputers as an example. Different models of single-chip microcomputer have 2-5 uart communication serial ports. The number of electric energy meters connected to each communication serial port can be one or more. During testing, multiple communication serial ports are connected in parallel, and the communication time of the connected electric energy meter is modified at the same time. , perform minute data storage test on multi-core module electric energy meter.
实施例一Example 1
如图1所示,单片机各个通讯串口下连接一个智能电能表,智能电能表与单片机的通讯串口一一对应。通过上位机下发操作指令给单片机,单片机接收到指令后执行相应的指令,操作指令包括:进入场内模式指令,设置表号指令,出厂模式指令,设置时间指令,冻结数据抄读指令等。As shown in Figure 1, a smart energy meter is connected to each communication serial port of the microcontroller, and the smart energy meter corresponds to the communication serial port of the microcontroller one by one. The upper computer issues operation instructions to the single-chip microcomputer, and the single-chip microcomputer executes the corresponding instructions after receiving the instructions. The operation instructions include: enter the field mode instruction, set the table number instruction, factory mode instruction, set time instruction, freeze data copy instruction, etc.
如图2所示,本申请实施例提供的一种多芯模组电能表分钟冻结的多表并行遍历测试方法包括:As shown in FIG. 2, a multi-meter parallel traversal test method for minute freezing of a multi-core module electric energy meter provided by an embodiment of the present application includes:
S101:上位机向单片机发送智能电表时间设置指令。S101: The host computer sends a time setting instruction of the smart meter to the microcontroller.
S102:单片机根据设置时间与表地址向对应智能电表发送时间设置指令。S102: The single-chip microcomputer sends a time setting instruction to the corresponding smart meter according to the setting time and the table address.
在电能表和设备上电后,上位机向单片机发送智能电表时间设置指令,发送测试数据帧;之后单片机根据设置时间与表地址向对应智能电表转发时间设置指令,其中,初始的设置时间为预设时间,而表地址可通过两种方式获取,一种为通过抄表方式,另一种为通过设置的方式。通过抄表方式获得表地址的具体方法如图3所示:After the energy meter and the device are powered on, the host computer sends the smart meter time setting instruction to the single-chip microcomputer, and sends the test data frame; then the single-chip microcomputer forwards the time setting instruction to the corresponding smart meter according to the set time and the table address, wherein the initial setting time is the preset time. Set the time, and the meter address can be obtained in two ways, one is by meter reading, and the other is by setting. The specific method of obtaining the meter address by meter reading is shown in Figure 3:
S1021:上位机发送表号抄读命令。S1021: The upper computer sends a meter number copying command.
S1022:单片机将表号抄读命令转发至对应串口。S1022: The single-chip microcomputer forwards the meter number reading command to the corresponding serial port.
S1023:判断单片机是否收到正确回复帧。S1023: Determine whether the microcontroller has received a correct reply frame.
S1024:若单片机收到正确回复帧,则保存表号对应表地址到单片机的表地址缓存区。S1024: If the single-chip microcomputer receives the correct reply frame, it saves the table address corresponding to the table number to the table address buffer area of the single-chip microcomputer.
S1025:单片机根据上位机发送数据帧的时间戳与缓存的表地址组帧向对应智能电表发送时间设置指令。S1025: The single-chip microcomputer sends a time setting instruction to the corresponding smart meter according to the time stamp of the data frame sent by the host computer and the buffered table address framing.
通过抄表方式获得表地址时,上位机发送表号抄读命令,单片机将表号抄读命令转发至对应智能电表,智能电表给单片机应答后保存在单片机的表地址缓存区,并向上位机回复设置正确的回复帧,之后上位机发送开始测试命令,单片机根据上位机发送数据帧的时间戳和缓存的表地址进行组帧,开始对相应智能电表发送时间设置指令。When the meter address is obtained by meter reading, the upper computer sends a meter number reading command, and the single-chip microcomputer forwards the meter number reading command to the corresponding smart meter. Reply to set the correct reply frame, then the host computer sends a start test command, the single-chip microcomputer frames according to the time stamp of the data frame sent by the host computer and the cached table address, and starts to send time setting instructions to the corresponding smart meter.
通过设置方式获得表地址的具体方法如图4所示:The specific method of obtaining the table address by setting is shown in Figure 4:
S1121:上位机向单片机发送表号设置命令。S1121: The host computer sends a table number setting command to the microcontroller.
S1122:单片机根据表地址缓存区的表地址固化智能电表的表地址。S1122: The single-chip microcomputer solidifies the table address of the smart meter according to the table address in the table address buffer area.
S1123:判断单片机是否收到正确回复帧。S1123: Determine whether the microcontroller has received the correct reply frame.
S1124:若单片机收到正确回复帧,则单片机根据上位机发送数据帧的时间戳和固化的表地址向智能电表发送时间设置指令。S1124: If the single-chip microcomputer receives the correct reply frame, the single-chip computer sends a time setting instruction to the smart meter according to the time stamp of the data frame sent by the host computer and the solidified table address.
通过设置方式获得表地址时,上位机发送表号设置命令,单片机接收到表号设置命令后直接固化各个通讯串口下的电能表的表号地址,再通过这些固定表地址进行通讯,并向上位机回复设置正确的回复帧,之后上位机发送开始测试命令,单片机根据上位机发送数据帧的时间戳和固化的表地址进行组帧,开始对相应智能电表发送时间设置命令。When the meter address is obtained through the setting method, the host computer sends the meter number setting command, and the single-chip microcomputer directly solidifies the meter number address of the electric energy meter under each communication serial port after receiving the meter number setting command, and then communicates through these fixed meter addresses, and sends the upper The computer replies to set the correct reply frame, and then the host computer sends the start test command. The single-chip microcomputer forms the frame according to the time stamp of the data frame sent by the host computer and the solidified table address, and starts to send the time setting command to the corresponding smart meter.
S103:判断单片机是否收到设置正确的回复帧。S103: Determine whether the single-chip microcomputer receives a correctly set reply frame.
单片机根据设置时间与表地址向对应智能电表发送时间设置指令后,若单片机抄读到相应的表地址,则向单片机回复设置正确的回复帧,执行步骤S104;若单片机未抄读到相应的表地址,则向上位机发送错误回复帧,返回步骤S101。After the single-chip microcomputer sends the time setting instruction to the corresponding smart meter according to the set time and the meter address, if the single-chip microcomputer reads the corresponding meter address, it will reply to the single-chip microcomputer with a correctly set reply frame, and execute step S104; if the single-chip microcomputer does not read the corresponding meter address, send an error reply frame to the upper computer, and return to step S101.
S104:若单片机收到设置正确的回复帧,则延时等待电能表跨分钟存储。S104: If the single-chip microcomputer receives a correctly set reply frame, it delays and waits for the electric energy meter to store across minutes.
若单片机收到设置正确的回复帧,说明单片机抄读到相应的表地址,则相应的智能电能表延时等待电能表跨分钟存储。本示例中,延时时间与设置的时间的秒时间相关,具体为:延时时间=60-设置时间的秒时间。If the single-chip microcomputer receives the correct response frame, it means that the single-chip microcomputer has read the corresponding meter address, and the corresponding smart energy meter delays and waits for the energy meter to store across minutes. In this example, the delay time is related to the second time of the set time, specifically: delay time=60-second time of the set time.
S105:判断时间设置次数是否达到预设值。S105: Determine whether the number of times of time setting reaches a preset value.
延时等待电能表跨分钟存储后,需要判断时间设置次数是否达到预设值,如以要求1min间隔保存一次的相关数据为例,涉及的时间节点次数为525600分钟(1年=60*24*365分钟=525600分钟),需对电表时间修改525600次,因此,本申请的预设值可为525600。若时间设置次数未达到预设值,则执行步骤S106;若时间设置次数达到预设值,则执行步骤S107。After delaying waiting for the electric energy meter to store across minutes, it is necessary to determine whether the number of time settings reaches the preset value. For example, taking the relevant data that is required to be saved once every 1 minute as an example, the number of time nodes involved is 525,600 minutes (1 year = 60*24* 365 minutes=525,600 minutes), the time of the electric meter needs to be modified 525,600 times, therefore, the default value of this application can be 525,600. If the number of time setting times does not reach the preset value, step S106 is performed; if the number of time setting times reaches the preset value, step S107 is performed.
S106:若时间设置次数未达到预设值,则更新设置时间,根据更新后的设置时间再次向智能电表发送时间设置指令,直至时间设置次数达到预设值。S106: If the number of time setting times does not reach the preset value, update the setting time, and send a time setting instruction to the smart meter again according to the updated setting time until the number of time setting times reaches the preset value.
若时间设置次数未达到预设值,说明电能表测试未完成,需要继续进行测试,更新设置时间,根据更新后的设置时间再次向智能电表发送时间设置指令,直至时间设置次数达到预设值,达到短期内实现测试一年的数据存储是否符合要求。更新设置时间时,单片机直接在原有时间戳上分钟数加一,得到新的设置时间。If the number of time settings does not reach the preset value, it means that the test of the electric energy meter has not been completed. It is necessary to continue the test, update the set time, and send the time setting command to the smart meter again according to the updated set time until the number of time settings reaches the preset value. Achieving a short-term implementation test for one year of data storage compliance. When updating the set time, the microcontroller directly adds one minute to the original timestamp to obtain the new set time.
S107:若时间设置次数达到预设值,则测试完成,向上位机发送测试完成数据帧。S107: If the number of time settings reaches a preset value, the test is completed, and a test completion data frame is sent to the upper computer.
若时间设置次数达到预设值,说明电能表测试完成,向上位机发送测试完成数据帧,实现电能表的分钟冻结测试。If the number of time settings reaches the preset value, the test of the electric energy meter is completed, and the test completion data frame is sent to the upper computer to realize the minute freezing test of the electric energy meter.
实施例二Embodiment 2
单片机的单个串口对应一个电能表时,在给该串口对应的电能表设置时间后,需过一段时间等待智能电表跨分钟转存数据。从时间利用上来讲,这段时间对单片机是空闲的,因此可在一个串口下挂接多个电能表,对多个电能表进行循环通信,合理利用原来的等待时间,提高测试效率。When a single serial port of the microcontroller corresponds to an electric energy meter, after setting the time for the electric energy meter corresponding to the serial port, it takes a period of time for the smart electric meter to transfer data across minutes. In terms of time utilization, this time is idle for the microcontroller, so multiple electric energy meters can be connected under one serial port, and multiple electric energy meters can be cyclically communicated, and the original waiting time can be reasonably used to improve the test efficiency.
如图5所示,单片机各个通讯串口下连接多个电能表,单片机的一个通讯串口对应多个电能表。通过上位机下发操作指令给单片机,单片机接收到指令后执行相应的指令,操作指令包括:进入场内模式指令,设置表号指令,出厂模式指令,设置时间指令,冻结数据抄读指令等。As shown in Figure 5, multiple electric energy meters are connected to each communication serial port of the single-chip microcomputer, and one communication serial port of the single-chip microcomputer corresponds to multiple electric energy meters. The upper computer sends operation instructions to the single-chip microcomputer, and the single-chip microcomputer executes the corresponding instructions after receiving the instructions. The operation instructions include: enter the field mode instruction, set the table number instruction, leave the factory mode instruction, set the time instruction, freeze the data copy instruction, etc.
如图6所示,本申请实施例提供的另一种多芯模组电能表分钟冻结的多表并行遍历测试方法包括:As shown in FIG. 6 , another multi-meter parallel traversal test method for minute freezing of a multi-core module electric energy meter provided by an embodiment of the present application includes:
S201:上位机向单片机发送智能电表时间设置指令。S201: The host computer sends a time setting instruction of the smart meter to the microcontroller.
S202:单片机根据设置时间与第一表地址向对应智能电表发送时间设置指令。S202: The single-chip microcomputer sends a time setting instruction to the corresponding smart meter according to the setting time and the address of the first meter.
由于单片机的一个通讯串口下挂接多个表地址不同的智能电能表,在电能表和设备上电后,上位机向单片机发送智能电表时间设置指令,发送测试数据帧;之后单片机根据设置时间与第一表地址向对应智能电表发送时间设置指令,其中,初始的设置时间为预设时间,而表地址可通过两种方式获取,一种为通过抄表方式,另一种为通过设置的方式。Since multiple smart energy meters with different meter addresses are connected to one communication serial port of the microcontroller, after the energy meter and the device are powered on, the host computer sends the smart meter time setting instruction to the microcontroller, and sends the test data frame; The first meter address sends a time setting instruction to the corresponding smart meter, wherein the initial setting time is the preset time, and the meter address can be obtained in two ways, one is by meter reading, and the other is by setting .
通过抄表方式获得表地址时,上位机发送表号抄读命令,单片机将表号抄读命令转发至对应智能电表,智能电表给单片机应道后保存在单片机的表地址缓存区,并向上位机回复设置正确的回复帧,之后上位机发送开始测试命令,单片机根据上位机发送数据帧的时间戳和缓存的第一表地址进行组帧,开始向相应智能电表发送时间设置指令。When the meter address is obtained by meter reading, the host computer sends a meter number reading command, and the single-chip microcomputer forwards the meter number reading command to the corresponding smart meter. The computer replies to set the correct reply frame, and then the host computer sends a start test command. The single-chip microcomputer performs framing according to the time stamp of the data frame sent by the host computer and the cached first table address, and starts to send the time setting command to the corresponding smart meter.
通过设置方式获得表地址,上位机发送表号设置命令,单片机接收到表号设置命令后直接固化各个通讯串口下的电能表的表号地址,再通过这些固定表地址进行通讯,并向上位机回复设置正确的回复帧,之后上位机发送开始测试命令,单片机根据上位机发送数据帧的时间戳和固化的第一表地址进行组帧,开始对相应智能电表发送时间设置命令。The meter address is obtained through the setting method, the upper computer sends the meter number setting command, and the single-chip microcomputer directly solidifies the meter number address of the electric energy meter under each communication serial port after receiving the meter number setting command, and then communicates through these fixed meter addresses, and sends the upper computer Reply to set the correct reply frame, then the host computer sends a start test command, the single-chip microcomputer performs framing according to the time stamp of the data frame sent by the host computer and the solidified first table address, and starts to send the time setting command to the corresponding smart meter.
S203:判断单片机是否收到设置正确的回复帧。S203: Determine whether the single-chip microcomputer receives a correctly set reply frame.
单片机根据设置时间与第一表地址向对应智能电表发送时间设置指令后,若单片机抄读到相应的表地址,则向单片机回复设置正确的回复帧,执行步骤S204;若单片机未抄读到相应的表地址,则向上位机发送错误回复帧,返回步骤S201。After the single-chip microcomputer sends the time setting instruction to the corresponding smart meter according to the set time and the first meter address, if the single-chip microcomputer reads the corresponding meter address, it will reply to the single-chip microcomputer with a correctly set reply frame, and execute step S204; the table address, send an error reply frame to the upper computer, and return to step S201.
S204:若单片机收到设置正确的回复帧,则开始电能表跨分钟数延时存储。S204: If the single-chip microcomputer receives the reply frame with the correct setting, it starts the delay storage of the electric energy meter across the number of minutes.
若单片机收到设置正确的回复帧,说明单片机抄读到相应的表地址,则相应的智能电能表延时等待电能表跨分钟存储。本示例中,延时时间与设置的时间的秒时间相关,具体为:延时时间=60-设置时间的秒时间。If the single-chip microcomputer receives the correct response frame, it means that the single-chip microcomputer has read the corresponding meter address, and the corresponding smart energy meter delays and waits for the energy meter to store across minutes. In this example, the delay time is related to the second time of the set time, specifically: delay time=60-second time of the set time.
S205:单片机根据设置时间与剩余表地址依次向对应智能电表发送时间设置指令。S205: The single-chip microcomputer sequentially sends a time setting instruction to the corresponding smart meter according to the setting time and the address of the remaining meter.
第一表地址对应的智能电表开始电能表跨分钟数延时存储后,单片机根据设置时间与剩余表地址依次向对应智能电表发送时间设置指令。如单片机的一个通讯串口下挂接3个表地址不同的智能电能表,则单片机根据设置时间与第二表地址或第三表地址向对应智能电表发送时间设置指令。After the smart meter corresponding to the first meter address starts to store the meter with a delay across minutes, the single-chip microcomputer sends time setting instructions to the corresponding smart meter in turn according to the set time and the remaining meter addresses. For example, if three smart energy meters with different meter addresses are connected to one communication serial port of the microcontroller, the microcontroller sends a time setting instruction to the corresponding smart meter according to the set time and the second meter address or the third meter address.
S206:判断单片机是否依次收到设置正确的回复帧。S206: Determine whether the single-chip microcomputer receives the correct setting reply frames in sequence.
单片机根据设置时间与第二表地址或第三表地址向对应智能电表发送时间设置指令后,若单片机抄读到相应的表地址,则向单片机回复设置正确的回复帧,执行步骤S207;若单片机未抄读到相应的表地址,则向上位机发送错误回复帧,返回步骤S201。After the single-chip microcomputer sends the time setting instruction to the corresponding smart meter according to the set time and the second or third table address, if the single-chip microcomputer reads the corresponding table address, it will reply to the single-chip microcomputer with a correctly set reply frame, and execute step S207; If the corresponding table address is not copied, send an error reply frame to the upper computer, and return to step S201.
S207:若单片机依次收到设置正确的回复帧,则判断延时时间是否到达。S207: If the single-chip microcomputer receives the reply frames with correct settings in sequence, it determines whether the delay time is reached.
若单片机依次收到设置正确的回复帧,说明单片机抄读到相应的表地址,则相应的智能电表延时等待电能表跨分钟存储。之后判断延时时间是否到达,若延时时间到达,则执行步骤S208;若延时时间未到达,则继续用执行步骤S207。If the single-chip microcomputer receives the correct response frames in turn, it means that the single-chip microcomputer reads the corresponding meter address, and the corresponding smart meter delays and waits for the energy meter to store across minutes. Afterwards, it is determined whether the delay time has reached, and if the delay time has reached, step S208 is performed; if the delay time has not reached, step S207 is continued.
S208:若延时时间到达,则停止跨分钟数据延时。S208: If the delay time is reached, stop the data delay across minutes.
若延时时间到达,说明电能表分钟冻结数据完成,则停止跨分钟数据延时。If the delay time is reached, it means that the electric energy meter freezes the data in minutes, and then stops the data delay across minutes.
S209:判断时间设置次数是否达到预设值。S209: Determine whether the number of times of time setting reaches a preset value.
延时等待电能表跨分钟存储后,需要判断时间设置次数是否达到预设值,如以要求1min间隔保存一次的相关数据为例,涉及的时间节点次数为525600分钟。若时间设置次数未达到预设值,则执行步骤S210;若时间设置次数达到预设值,则执行步骤S211。After the delay waits for the electric energy meter to store across minutes, it is necessary to determine whether the number of time settings reaches the preset value. For example, taking the relevant data that is required to be saved once every 1 minute as an example, the number of time nodes involved is 525,600 minutes. If the number of time setting times does not reach the preset value, step S210 is performed; if the number of time setting times reaches the preset value, step S211 is performed.
S210:若时间设置次数未达到预设值,则更新设置时间,根据更新后的设置时间再次向智能电表发送时间设置指令,直至时间设置次数达到预设值。S210: If the number of time setting times does not reach the preset value, update the setting time, and send a time setting instruction to the smart meter again according to the updated setting time until the number of time setting times reaches the preset value.
若时间设置次数未达到预设值,说明电能表测试未完成,需要继续进行测试,更新设置时间,根据更新后的设置时间再次向智能电表发送时间设置指令,直至时间设置次数达到预设值,达到短期内实现测试一年的数据存储是否符合要求。更新设置时间时,单片机直接在原有时间戳上分钟数加一,得到新的设置时间。If the number of time settings does not reach the preset value, it means that the test of the electric energy meter has not been completed. It is necessary to continue the test, update the set time, and send the time setting command to the smart meter again according to the updated set time until the number of time settings reaches the preset value. Achieving a short-term implementation test for one year of data storage compliance. When updating the set time, the microcontroller directly adds one minute to the original timestamp to obtain the new set time.
S211:若时间设置次数达到预设值,则测试完成,向上位机发送测试完成数据帧。S211: If the number of time settings reaches a preset value, the test is completed, and a test completion data frame is sent to the upper computer.
若时间设置次数达到预设值,说明电能表测试完成,向上位机发送测试完成数据帧,实现电能表的分钟冻结测试。If the number of time settings reaches the preset value, the test of the electric energy meter is completed, and the test completion data frame is sent to the upper computer to realize the minute freezing test of the electric energy meter.
单片机的一个通讯串口挂接多个智能电表时,多个智能电表可进行循环通信,合理利用原来的等待时间,达到完全利用测试时间,提高测试效率。在实际检测过程中,多个窗口可同时进行,实现了多通道并行的多芯模组电能表的分钟冻结遍历方法,进而有效提高了测试效率,缩短了测试时间。When a single communication serial port of the microcontroller is connected to multiple smart meters, the multiple smart meters can communicate cyclically, and the original waiting time can be reasonably used to fully utilize the test time and improve the test efficiency. In the actual detection process, multiple windows can be performed at the same time, which realizes the minute freeze traversal method of the multi-channel parallel multi-core module electric energy meter, thereby effectively improving the test efficiency and shortening the test time.
现有的测试方法多是通过上位机通过测试软件直接对电能表进行数据的交互,包括相关时间数据的设置和冻结数据的抄读。以要求1min间隔保存一次的相关数据为例,涉及的时间节点次数为525600(1年=60*24*365分钟=525600分钟),需对电表时间修改525600次,以PC和电表单词通讯时间为300ms计算,完成该项功能测试所需时间为525600*300ms=157680s=43.8h。而本申请实施例提供的多芯模组电能表分钟冻结的多表并行遍历测试方法通过单片机来实现对电能表数据的交互,通过使用下位机进行电能表时间的设置取代原先的上位机通讯设置方法,单片机处理速度与PC软件相比,响应速度上有较大的提升,根据不同通讯串口的波特率,通讯时间约为100ms,完成该项功能测试的时间为525600*100ms=14.6h,从而大幅降低了测试所需时间,有效提高了测试效率。Most of the existing test methods are to directly interact with the data of the electric energy meter through the test software through the host computer, including the setting of the relevant time data and the reading of the frozen data. Taking the relevant data that is required to be saved once every 1 minute as an example, the number of time nodes involved is 525,600 (1 year = 60*24*365 minutes = 525,600 minutes), and the time of the meter needs to be modified 525,600 times. The communication time between the PC and the meter is 300ms calculation, the time required to complete the functional test is 525600*300ms=157680s=43.8h. The multi-meter parallel traversal test method for freezing the multi-core module electric energy meter in minutes provided by the embodiment of the present application realizes the interaction of the electric energy meter data through the single chip microcomputer, and replaces the original communication setting of the upper computer by using the lower computer to set the time of the electric energy meter Method, compared with PC software, the processing speed of single-chip microcomputer has a great improvement in response speed. According to the baud rate of different communication serial ports, the communication time is about 100ms, and the time to complete the function test is 525600*100ms=14.6h, As a result, the time required for the test is greatly reduced, and the test efficiency is effectively improved.
基于上述实施例所述的多芯模组电能表分钟冻结的多表并行遍历测试方法,本申请实施例还提供了一种多芯模组电能表分钟冻结的多表并行遍历测试系统。Based on the multi-meter parallel traversal test method for minute freezing of multi-core module electric energy meters described in the above embodiments, the embodiment of the present application also provides a multi-meter parallel traversal test system for minute freezing of multi-core module electric energy meters.
本申请实施例提供的多芯模组电能表分钟冻结的多表并行遍历测试系统包括:The multi-meter parallel traversal test system for minute freezing of multi-core module electric energy meters provided by the embodiment of the present application includes:
上位机,与单片机通讯连接,用于向单片机发送智能电表时间设置指令。The upper computer is connected to the single-chip computer for communication, and is used to send the time setting instruction of the smart meter to the single-chip computer.
单片机,设有多个通讯串口,通讯串口与智能电表通讯连接,用于根据设置时间与表地址向对应智能电表转发时间设置指令,并在时间设置指令设置正确时,延时等待电能表跨分钟存储,直至时间设置次数达到预设值。本示例中,单片机的每个通讯串口可与智能电表一一对应连接,也可与多个智能电表连接。The single-chip microcomputer is equipped with multiple communication serial ports. The communication serial ports are connected to the smart meter for communication. They are used to forward the time setting instruction to the corresponding smart meter according to the set time and meter address. Store until the number of time settings reaches the preset value. In this example, each communication serial port of the single-chip microcomputer can be connected to a smart meter in one-to-one correspondence, or it can be connected to multiple smart meters.
本领域技术人员在考虑说明书及实践这里发明的公开后,将容易想到本申请的其他实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由权利要求的内容指出。Other embodiments of the present application will readily suggest themselves to those skilled in the art upon consideration of the specification and practice of the disclosure disclosed herein. This application is intended to cover any variations, uses or adaptations of the present invention that follow the general principles of this application and include common knowledge or common technical means in the technical field not disclosed in this application . The specification and examples are to be regarded as exemplary only, with the true scope and spirit of the application being indicated by the content of the claims.
以上所述的本申请实施方式并不构成对本申请保护范围的限定。The above-described embodiments of the present application do not limit the protection scope of the present application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010111110.0A CN111239675B (en) | 2020-02-24 | 2020-02-24 | Multi-meter parallel traversal test method and system for multi-core module electric energy meter minute freezing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010111110.0A CN111239675B (en) | 2020-02-24 | 2020-02-24 | Multi-meter parallel traversal test method and system for multi-core module electric energy meter minute freezing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111239675A CN111239675A (en) | 2020-06-05 |
CN111239675B true CN111239675B (en) | 2022-04-12 |
Family
ID=70869296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010111110.0A Active CN111239675B (en) | 2020-02-24 | 2020-02-24 | Multi-meter parallel traversal test method and system for multi-core module electric energy meter minute freezing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111239675B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112395012B (en) * | 2020-11-03 | 2024-02-27 | 南方电网数字电网科技(广东)有限公司 | Data emptying method and device based on double-core intelligent ammeter and computer equipment |
CN112887171B (en) * | 2021-02-03 | 2022-07-29 | 南方电网数字电网研究院有限公司 | Response rate testing method and device of electric energy meter operating system and computer equipment |
CN118276788B (en) * | 2024-06-03 | 2024-09-10 | 浙江正泰仪器仪表有限责任公司 | Electric energy meter system and minute freezing method and device applied to electric energy meter system |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4817131A (en) * | 1986-06-20 | 1989-03-28 | Badger Meter, Inc. | Automatic meter reading system |
CN2793730Y (en) * | 2005-05-11 | 2006-07-05 | 南京迪玛斯电气有限公司 | Collective recording device for resident kilowatt meters |
CN201364350Y (en) * | 2008-07-31 | 2009-12-16 | 方建军 | Remote centralization meter checking system |
CN101876694A (en) * | 2009-11-24 | 2010-11-03 | 湖北省电力试验研究院 | Function detection device and method of multifunctional electric energy meter based on configuration software |
CN102468984A (en) * | 2010-10-29 | 2012-05-23 | 北京市电力公司 | Test method and system of electricity consumption information acquisition system and master station |
CN102645644A (en) * | 2012-05-16 | 2012-08-22 | 北京北研兴电力仪表有限责任公司 | Function test device of intelligent electric energy meter |
CN102759724A (en) * | 2012-07-19 | 2012-10-31 | 浙江省电力公司电力科学研究院 | Testing method and system for communication reliability of intelligent electric energy meters |
CN106600936A (en) * | 2016-12-30 | 2017-04-26 | 武汉盛帆智能科技有限公司 | Centralized multi-meter reading method and device |
CN206282421U (en) * | 2016-11-28 | 2017-06-27 | 重庆高略联信智能技术有限公司 | The parallel intelligent wireless ammeter's reading meter repeater of multi-frequency |
CN107153638A (en) * | 2017-05-31 | 2017-09-12 | 广西电网有限责任公司电力科学研究院 | A kind of intelligent processing system of the calibrating data of electric energy meter device |
CN108520624A (en) * | 2018-05-08 | 2018-09-11 | 国网安徽省电力有限公司 | A complete set of low-voltage intelligent collection device and a dual-channel collection method for low-voltage collection |
CN108732977A (en) * | 2018-08-30 | 2018-11-02 | 四川中电启明星信息技术有限公司 | A kind of collecting method and system |
CN109614447A (en) * | 2018-10-15 | 2019-04-12 | 国网新疆电力有限公司阿克苏供电公司 | A kind of intelligent electric meter divides the storage method, querying method and device of freezing data |
-
2020
- 2020-02-24 CN CN202010111110.0A patent/CN111239675B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4817131A (en) * | 1986-06-20 | 1989-03-28 | Badger Meter, Inc. | Automatic meter reading system |
CN2793730Y (en) * | 2005-05-11 | 2006-07-05 | 南京迪玛斯电气有限公司 | Collective recording device for resident kilowatt meters |
CN201364350Y (en) * | 2008-07-31 | 2009-12-16 | 方建军 | Remote centralization meter checking system |
CN101876694A (en) * | 2009-11-24 | 2010-11-03 | 湖北省电力试验研究院 | Function detection device and method of multifunctional electric energy meter based on configuration software |
CN102468984A (en) * | 2010-10-29 | 2012-05-23 | 北京市电力公司 | Test method and system of electricity consumption information acquisition system and master station |
CN102645644A (en) * | 2012-05-16 | 2012-08-22 | 北京北研兴电力仪表有限责任公司 | Function test device of intelligent electric energy meter |
CN102759724A (en) * | 2012-07-19 | 2012-10-31 | 浙江省电力公司电力科学研究院 | Testing method and system for communication reliability of intelligent electric energy meters |
CN206282421U (en) * | 2016-11-28 | 2017-06-27 | 重庆高略联信智能技术有限公司 | The parallel intelligent wireless ammeter's reading meter repeater of multi-frequency |
CN106600936A (en) * | 2016-12-30 | 2017-04-26 | 武汉盛帆智能科技有限公司 | Centralized multi-meter reading method and device |
CN107153638A (en) * | 2017-05-31 | 2017-09-12 | 广西电网有限责任公司电力科学研究院 | A kind of intelligent processing system of the calibrating data of electric energy meter device |
CN108520624A (en) * | 2018-05-08 | 2018-09-11 | 国网安徽省电力有限公司 | A complete set of low-voltage intelligent collection device and a dual-channel collection method for low-voltage collection |
CN108732977A (en) * | 2018-08-30 | 2018-11-02 | 四川中电启明星信息技术有限公司 | A kind of collecting method and system |
CN109614447A (en) * | 2018-10-15 | 2019-04-12 | 国网新疆电力有限公司阿克苏供电公司 | A kind of intelligent electric meter divides the storage method, querying method and device of freezing data |
Non-Patent Citations (3)
Title |
---|
新一代智能电能表支撑泛在电力物联网技术研究;彭楚宁 等;《电测与仪表》;20190810;第56卷(第15期);第137-142页 * |
智能电力抄表系统集中器的设计与实现;刘友旗;《贵州大学学报(自然科学版)》;20101231;第27卷(第6期);第86-91页 * |
自动抄表管理系统;胡令超;《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》;20120415(第04期);I138-959-正文第16-18页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111239675A (en) | 2020-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111239675B (en) | Multi-meter parallel traversal test method and system for multi-core module electric energy meter minute freezing | |
CN103746882B (en) | The method of intelligent substation station control layer test | |
CN105206035A (en) | Automatic detecting system and method for collection terminal functions | |
CN101923126B (en) | An automatic closed-loop test method | |
CN110071577A (en) | Supervisory control of substation information acceptance method and system | |
CN105824001B (en) | A digital energy meter IEC61850 compliance test method and system | |
CN106600936A (en) | Centralized multi-meter reading method and device | |
CN102169158A (en) | Steady state oscillograph for power system | |
CN110632461B (en) | Test method, test terminal and test system for synchrophasor data concentrator | |
CN103545933B (en) | I0 interface communication method in intelligent substation on-line monitoring system station | |
CN109032864A (en) | A kind of method and system of NVMe SSD hot plug test | |
CN116154765A (en) | Recognition method, device, computer equipment and storage medium for power topology relationship | |
CN115714933A (en) | Method, system, medium and equipment for adapting collector to ammeter | |
CN110992671B (en) | Ammeter address forwarding method, device and system and electronic equipment | |
CN115146000A (en) | Database data synchronization method and device, electronic equipment and storage medium | |
CN111751614B (en) | ModBus-based non-invasive electricity consumption data testing system and method thereof | |
CN104749473A (en) | Testing method capable of simulating field power utilization information collecting terminal power failure events | |
CN105301412A (en) | Method and system for automatic terminal detection | |
CN201322778Y (en) | Measuring device for load characteristic of power system | |
CN204859190U (en) | Smart grid time synchronization monitoring system | |
CN205621278U (en) | Power consumption information acquisition terminal Test device | |
CN210745165U (en) | Automatic test system for radio frequency signaling of communication module | |
CN115794624A (en) | Closed-loop testing method and system for single automation device of intelligent substation | |
CN211928046U (en) | Automatic distribution's power distribution terminal tester of simulation main website of distribution | |
CN102162841B (en) | Method and system for detecting electric energy meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |