CN111222084B - 可降低积尘影响的光伏板结构和设计光伏板结构的方法 - Google Patents
可降低积尘影响的光伏板结构和设计光伏板结构的方法 Download PDFInfo
- Publication number
- CN111222084B CN111222084B CN202010023178.3A CN202010023178A CN111222084B CN 111222084 B CN111222084 B CN 111222084B CN 202010023178 A CN202010023178 A CN 202010023178A CN 111222084 B CN111222084 B CN 111222084B
- Authority
- CN
- China
- Prior art keywords
- photovoltaic panel
- panel structure
- photovoltaic
- distance
- particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000428 dust Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000009825 accumulation Methods 0.000 title description 2
- 239000002245 particle Substances 0.000 claims abstract description 43
- 230000005855 radiation Effects 0.000 claims abstract description 16
- 239000011521 glass Substances 0.000 claims abstract description 9
- 238000004364 calculation method Methods 0.000 claims abstract description 7
- 238000005315 distribution function Methods 0.000 claims abstract description 5
- 238000004088 simulation Methods 0.000 claims abstract description 4
- 238000009434 installation Methods 0.000 claims description 9
- 238000011835 investigation Methods 0.000 claims description 3
- 230000008021 deposition Effects 0.000 abstract description 11
- 238000010248 power generation Methods 0.000 abstract description 8
- 230000000704 physical effect Effects 0.000 abstract description 4
- 238000001228 spectrum Methods 0.000 abstract description 4
- 238000011160 research Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/10—Cleaning arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Mathematical Analysis (AREA)
- Data Mining & Analysis (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computational Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Optimization (AREA)
- Theoretical Computer Science (AREA)
- Electromagnetism (AREA)
- Pure & Applied Mathematics (AREA)
- Operations Research (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
技术领域
本发明涉及可降低积尘影响的光伏板结构和设计光伏板结构的方法。
背景技术
清洁、廉价、可靠的能源一直都是社会繁荣和经济增长的基石,新能源的发展是当今世界无法逆转的趋势。太阳能光伏发电作为目前技术最为成熟的清洁能源技术,对于解决任何一个国家的电力急缺问题都起着至关重要的作用。有效预测光伏板发电效率,对于新能源的并网消纳有着极其重要的作用,而气象环境影响下光伏板的温度、有效太阳辐射强度的准确预测,直接影响着相关结果的准确性。荒漠化地区是发展大型光伏电站的优势区域,但多风沙、强辐射、大温差的大气环境,给光伏系统的正常运行带来了一系列新问题。因此荒漠环境对太阳能发电装置影响的研究受到人们的广泛关注。
气溶胶颗粒会沉积在光伏太阳能板表面,改变光伏电池保护层的透光率,从而影响光伏电池的有效入射太阳辐射强度。实验研究表明:对于倾角为45°的玻璃板,在少雨季节暴露放置30天后其透光率下降30%,且随清洁周期的增加(沙尘沉积更多)而减小。可见沙尘沉积已成为影响荒漠化地区光伏电站经济高效运行的主要因素。探索科学的除尘方法、设计更优的光伏板结构,有效减弱积尘的影响,是当前这一领域的研究热点。
发明内容
本发明公开了一种可以有效降低积尘对光伏板的负面影响,并可利用积尘特殊的光学现象来实现高效发电的新型光伏板结构。本发明主要是通过预先获得当地积尘的物理性质、太阳辐射功率谱,进而来设计光伏玻璃结构,从而实现光伏电池的高效发电。
本发明提供了一种设计光伏板结构的方法,包括:
1)获得积尘样本,测量其粒径分布函数f(R)、相对介电常数,其中R为颗粒半径,相对介电常数利用开式腔法获得,记为εr;
πn,τn可由下式迭代求解:
π0=0;π1=1;π2=3cosθ;τ0=0;τ1=cosθ;τ2=3cos(2θ)
3)利用(1)式通过仿真计算获得不同粒径R的颗粒在波长为λ的太阳辐射照射下的散射场数据,找到其场强大于定值b时对应的距离r,建立相应的拟合函数r=g(R),从而计算出一个平均距离,计算公式如下:
在上述方法中,还包括:
(5)通过测量安装地的地理经纬度,确定需要人工干预除尘的时间,具体步骤为:假定安装地的地理纬度φ,太阳赤纬δ,太阳时角t,则太阳高度角H由下式计算:
sinH=sinφsinδ+cosφcosδcost
假定安装地的颗粒物半径的中位数为RM,其中,RM在步骤1中通过激光粒度仪输出,单颗粒阴影的影响距离为L,则L1=2RMctg(H9),L2=2RMctg(H15),取二者均值作为指标,即L0=(L1+L2)/2;
其中,H9和H15表示并网时间点。
本发明还提供了通过上述方法得到的光伏板结构。
本发明通过预先获得当地积尘的物理性质、太阳辐射功率谱,进而来设计光伏玻璃结构,从而实现光伏电池的高效发电。
附图说明
图1示出了对于常见的均值为20微米的积尘颗粒,当光伏板厚度为3毫米与1.5毫米时,入射辐射强度的比较。
具体实施方式
下面的实施例可以使本领域技术人员更全面地理解本发明,但不以任何方式限制本发明。
本发明主要是通过预先获得当地积尘的物理性质、太阳辐射功率谱,进而来设计光伏玻璃结构,从而实现光伏电池的高效发电。主要方法为:
4)获得积尘样本,测量其粒径分布函数、相对介电常数(或折射指数)。对于粒径分布函数可以借助激光粒度仪对收集的积尘样本进行测量而获得,该函数记为f(R),其中R为颗粒半径。其相对介电常数可以利用相关仪器测量,如AS2855高频介电常数介质损耗测试系统。记为εr。
5)基于Mie散射理论计算颗粒在电磁波作用下的近场,公式如下:
π0=0;π1=1;π2=3cosθ;τ0=0τ1=cosθ;τ2=3cos(2θ)
上式中jn(x),分别为第一类、第三类球贝塞尔函数,[xjn(x)]'表示对括号中的函数求关于x的导数。此处也可以利用其他理论进行颗粒近场的计算,如离散偶极子法(DDA)、T矩阵法、有限差分法等,其根本目的相同:计算颗粒在电磁波照射下的近场分布。
6)利用(1)式通过大量仿真计算获得不同粒径R颗粒在波长为λ的太阳辐射照射下的散射场数据,找到其场强大于定值b(b>1)时对应的距离r,建立相应的拟合函数r=g(R),从而计算出一个平均距离,计算公式如下:
(5)通过测量安装地的地理经纬度,确定需要人工干预除尘的时间。具体方法为:假定安装地的地理纬度φ,太阳赤纬δ,太阳时角t,则太阳高度角H可由下式计算:
sinH=sinφsinδ+cosφcosδcost
假定每日需要并网时间段为上午9点至下午17时,则据此获得太阳高度角为H9,H15。假定安装地的颗粒物半径的中位数为RM(步骤1中激光粒度仪自动输出),单颗粒阴影的影响距离为L,则L1=2RMctg(H9),L2=2RMctg(H15),取二者均值作为指标,即L0=(L1+L2)/2。假定光伏板面积为A,则其上积尘数目不得超过0.25A/L2,对应的颗粒间平均间距应为n=2L/R倍颗粒半径,可通过拍照后计算机图像处理方法进行自动判断。
通过我们的实验,对于常见的均值为20微米的积尘颗粒,当光伏板厚度由3毫米缩减为1.5毫米时,入射辐射强度最少约增加10倍,结果如图1所示,纵轴为放大因数。
基于上述思路,也可以人为设计透明微小球体安装在光伏板上,从而实现同样的目的。微球半径为前文所述的R。
本领域技术人员应理解,以上实施例仅是示例性实施例,在不背离本申请的精神和范围的情况下,可以进行多种变化、替换以及改变。
Claims (3)
1.一种设计光伏板结构的方法,包括:
1)获得积尘样本,测量其粒径分布函数f(R)、相对介电常数,其中R为颗粒半径,相对介电常数利用开式腔法获得,记为εr;
2)基于Mie散射理论计算颗粒在电磁波作用下的散射场,公式如下:
πn,τn可由下式迭代求解:
π0=0;π1=1;π2=3cosθ;τ0=0;τ1=cosθ;τ2=3cos(2θ)
3)利用(1)式通过仿真计算获得不同粒径R的颗粒在波长为λ的太阳辐射照射下的散射场数据,找到其场强大于定值b时对应的距离r,建立相应的拟合函数r=g(R),从而计算出一个平均距离,计算公式如下:
2.根据权利要求1所述的方法,还包括:
5)通过测量安装地的地理经纬度,确定需要人工干预除尘的时间,具体步骤为:假定安装地的地理纬度φ,太阳赤纬δ,太阳时角t,则太阳高度角H由下式计算:
sinH=sinφsinδ+cosφcosδcost
假定安装地的颗粒物半径的中位数为RM,其中,RM在步骤1)中通过激光粒度仪输出,单颗粒阴影的影响距离为L,则L1=2RMctg(H9),L2=2RMctg(H15),取二者均值作为指标,即L0=(L1+L2)/2;
其中,H9和H15表示并网时间点。
3.根据权利要求1或2所述的方法得到的光伏板结构。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010023178.3A CN111222084B (zh) | 2020-01-09 | 2020-01-09 | 可降低积尘影响的光伏板结构和设计光伏板结构的方法 |
AU2020104166A AU2020104166A4 (en) | 2020-01-09 | 2020-12-18 | Photovoltaic panel structure capable of reducing influence of dust accumulation and method for designing photovoltaic panel structure |
ZA2020/07964A ZA202007964B (en) | 2020-01-09 | 2020-12-18 | Photovoltaic panel structure capable of reducing influence of dust accumulation and method for designing photovoltaic panel structure |
NL2027172A NL2027172B1 (en) | 2020-01-09 | 2020-12-18 | Photovoltaic panel structure capable of reducing influence of dust accumulation and method for designing photovoltaic panel structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010023178.3A CN111222084B (zh) | 2020-01-09 | 2020-01-09 | 可降低积尘影响的光伏板结构和设计光伏板结构的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111222084A CN111222084A (zh) | 2020-06-02 |
CN111222084B true CN111222084B (zh) | 2021-02-26 |
Family
ID=70828225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010023178.3A Active CN111222084B (zh) | 2020-01-09 | 2020-01-09 | 可降低积尘影响的光伏板结构和设计光伏板结构的方法 |
Country Status (4)
Country | Link |
---|---|
CN (1) | CN111222084B (zh) |
AU (1) | AU2020104166A4 (zh) |
NL (1) | NL2027172B1 (zh) |
ZA (1) | ZA202007964B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113393046B (zh) * | 2021-06-23 | 2024-06-18 | 合肥零碳技术有限公司 | 一种光伏功率预测方法及其应用装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106557867A (zh) * | 2016-10-19 | 2017-04-05 | 华南理工大学 | 适用中长时间尺度电网分析的光伏发电概率模型建模方法 |
CN108538949A (zh) * | 2017-03-03 | 2018-09-14 | 无锡马丁格林光伏科技有限公司 | 一种热光伏电池的背部结构 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040060757A1 (en) * | 2002-09-26 | 2004-04-01 | James Plante | Apparatus and methods for illuminating space and illumination sources for automotive collision avoidance system |
US8797550B2 (en) * | 2009-04-21 | 2014-08-05 | Michigan Aerospace Corporation | Atmospheric measurement system |
WO2011150290A2 (en) * | 2010-05-26 | 2011-12-01 | The University Of Toledo | Photovoltaic structures having a light scattering interface layer and methods of making the same |
US8674281B2 (en) * | 2010-08-09 | 2014-03-18 | Palo Alto Research Center Incorporated | Solar energy harvesting system using luminescent solar concentrator with distributed outcoupling structures and microoptical elements |
CN102715046B (zh) * | 2012-06-08 | 2013-11-20 | 江苏大学 | 一种日光温室太阳能光伏发电利用装置及方法 |
WO2014144045A1 (en) * | 2013-03-15 | 2014-09-18 | Buhler Charles R | Dust mitigation device and method of mitigating dust |
US20170194906A1 (en) * | 2015-12-31 | 2017-07-06 | UKC Electronics (H.K.) Co., Ltd. | Method and system for determining time point to clean solar cell module and solar cell module system by using the same |
US10277164B2 (en) * | 2016-02-17 | 2019-04-30 | Qatar Foundation For Education, Science And Community Development | Flexible dust shield |
JP6848477B2 (ja) * | 2017-01-25 | 2021-03-24 | Jsr株式会社 | 光学フィルターおよびその用途 |
CN107179122B (zh) * | 2017-07-07 | 2018-08-10 | 宁夏大学 | 光伏电池表面沙尘沉积和有效太阳辐射的测量方法及装置 |
CN108399493B (zh) * | 2018-02-02 | 2022-07-12 | 上海电气分布式能源科技有限公司 | 积灰致光伏发电量损失预测方法及光伏组件清洗判断方法 |
CN109002593A (zh) * | 2018-06-27 | 2018-12-14 | 华北电力大学 | 适于沙尘暴异常天气情况下的光伏系统出力仿真计算方法 |
-
2020
- 2020-01-09 CN CN202010023178.3A patent/CN111222084B/zh active Active
- 2020-12-18 NL NL2027172A patent/NL2027172B1/en active
- 2020-12-18 AU AU2020104166A patent/AU2020104166A4/en active Active
- 2020-12-18 ZA ZA2020/07964A patent/ZA202007964B/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106557867A (zh) * | 2016-10-19 | 2017-04-05 | 华南理工大学 | 适用中长时间尺度电网分析的光伏发电概率模型建模方法 |
CN108538949A (zh) * | 2017-03-03 | 2018-09-14 | 无锡马丁格林光伏科技有限公司 | 一种热光伏电池的背部结构 |
Also Published As
Publication number | Publication date |
---|---|
ZA202007964B (en) | 2021-05-26 |
NL2027172B1 (en) | 2022-03-18 |
AU2020104166A4 (en) | 2021-03-04 |
NL2027172A (en) | 2021-08-30 |
CN111222084A (zh) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yunus Khan et al. | Optimum location and influence of tilt angle on performance of solar PV panels | |
Liu et al. | Flexible solar cells based on foldable silicon wafers with blunted edges | |
Costa et al. | Solar energy dust and soiling R&D progress: Literature review update for 2016 | |
Aslam et al. | Advances in solar PV systems; A comprehensive review of PV performance, influencing factors, and mitigation techniques | |
Jiang et al. | A novel model to estimate the cleaning frequency for dirty solar photovoltaic (PV) modules in desert environment | |
Wu et al. | The effect of dust accumulation on the cleanliness factor of a parabolic trough solar concentrator | |
Christo | Numerical modelling of wind and dust patterns around a full-scale paraboloidal solar dish | |
Al Garni | The impact of soiling on PV module performance in Saudi Arabia | |
Yao et al. | Analysis of the influencing factors of the dust on the surface of photovoltaic panels and its weakening law to solar radiation—A case study of Tianjin | |
Tamang et al. | On the interplay of cell thickness and optimum period of silicon thin‐film solar cells: light trapping and plasmonic losses | |
Tamang et al. | On the potential of light trapping in multiscale textured thin film solar cells | |
CN111222084B (zh) | 可降低积尘影响的光伏板结构和设计光伏板结构的方法 | |
Abdelraouf et al. | Plasmonic scattering nanostructures for efficient light trapping in flat czts solar cells | |
Chala et al. | Solar photovoltaic energy as a promising enhanced share of clean energy sources in the future—a comprehensive review | |
Saini et al. | Effects of dust on the performance of solar panels–a review update from 2015–2020 | |
Hüpkes et al. | Coupling and trapping of light in thin-film solar cells using modulated interface textures | |
Aïssa et al. | A comprehensive review of a decade of field PV soiling assessment in QEERI’s outdoor test facility in Qatar: Learned lessons and recommendations | |
De Jong et al. | Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments | |
Barugkin et al. | Diffuse reflectors for improving light management in solar cells: a review and outlook | |
Xia et al. | Self-protecting concave microstructures on glass surface for daytime radiative cooling in bifacial solar cells | |
CN109037361A (zh) | 一种高效率碲化镉薄膜太阳能电池 | |
KR20100086298A (ko) | 태양전지 모듈의 발전량 예측 방법 | |
Wang et al. | Evaluating perovskite solar panels for thermal stability and inclination performance through finite element modelling | |
Kazem | Dust impact on the performance of solar photovoltaic module: a new prospect | |
Lai et al. | Enhanced omnidirectional and weatherability of Cu2ZnSnSe4 solar cells with ZnO functional nanorod arrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |