CN111209850B - Method for generating applicable multi-device identification finger vein image based on improved cGAN network - Google Patents
Method for generating applicable multi-device identification finger vein image based on improved cGAN network Download PDFInfo
- Publication number
- CN111209850B CN111209850B CN202010007624.1A CN202010007624A CN111209850B CN 111209850 B CN111209850 B CN 111209850B CN 202010007624 A CN202010007624 A CN 202010007624A CN 111209850 B CN111209850 B CN 111209850B
- Authority
- CN
- China
- Prior art keywords
- image
- generator
- finger vein
- training
- discriminator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000003462 vein Anatomy 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000012549 training Methods 0.000 claims abstract description 46
- 230000006870 function Effects 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 11
- 230000003044 adaptive effect Effects 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 8
- 238000010606 normalization Methods 0.000 claims description 6
- 239000013598 vector Substances 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims 2
- 230000006978 adaptation Effects 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 6
- 238000012795 verification Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 7
- 238000000605 extraction Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1318—Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/28—Quantising the image, e.g. histogram thresholding for discrimination between background and foreground patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1347—Preprocessing; Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1365—Matching; Classification
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Collating Specific Patterns (AREA)
Abstract
Description
number | layers | shape | strides | future_size |
1 | input | * | * | 240×480×1 |
2 | layer_1 | (2,3,1,64) | [2,2} | 120×240×64 |
3 | layer_2 | (2,3,64,128) | [2,2} | 60×120×128 |
4 | layer_3 | (2,3,128,256) | [2,2] | 30×60×256 |
5 | layer_4 | (2,3,256,512) | [2,2] | 16×30×512 |
6 | layer_5 | (2,3,512,256) | [2,2] | 8×16×256 |
7 | layer_6 | (2,3,256,256) | [2,2] | 4×8×256 |
8 | layer_7 | (2,3,256,256) | [2,2] | 2×4×256 |
9 | layer_8 | (2,3,256,128) | [2,4] | 1×1×128 |
10 | output | * | * | 1×128 |
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010007624.1A CN111209850B (en) | 2020-01-04 | 2020-01-04 | Method for generating applicable multi-device identification finger vein image based on improved cGAN network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010007624.1A CN111209850B (en) | 2020-01-04 | 2020-01-04 | Method for generating applicable multi-device identification finger vein image based on improved cGAN network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111209850A CN111209850A (en) | 2020-05-29 |
CN111209850B true CN111209850B (en) | 2021-02-19 |
Family
ID=70785576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010007624.1A Active CN111209850B (en) | 2020-01-04 | 2020-01-04 | Method for generating applicable multi-device identification finger vein image based on improved cGAN network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111209850B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111950454B (en) * | 2020-08-12 | 2024-04-02 | 辽宁工程技术大学 | Finger vein recognition method based on bidirectional feature extraction |
CN113689344B (en) * | 2021-06-30 | 2022-05-27 | 中国矿业大学 | Low-exposure image enhancement method based on feature decoupling learning |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109215123A (en) * | 2018-09-20 | 2019-01-15 | 电子科技大学 | Unlimited landform generation method, system, storage medium and terminal based on cGAN |
CN110264424A (en) * | 2019-06-20 | 2019-09-20 | 北京理工大学 | A kind of fuzzy retinal fundus images Enhancement Method based on generation confrontation network |
CN110675353A (en) * | 2019-08-31 | 2020-01-10 | 电子科技大学 | Selective segmentation image synthesis method based on conditional generation countermeasure network |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106991368A (en) * | 2017-02-20 | 2017-07-28 | 北京大学 | A kind of finger vein checking personal identification method based on depth convolutional neural networks |
CN109035149B (en) * | 2018-03-13 | 2021-07-09 | 杭州电子科技大学 | License plate image motion blur removing method based on deep learning |
US10825219B2 (en) * | 2018-03-22 | 2020-11-03 | Northeastern University | Segmentation guided image generation with adversarial networks |
CN109166126B (en) * | 2018-08-13 | 2022-02-18 | 苏州比格威医疗科技有限公司 | Method for segmenting paint cracks on ICGA image based on condition generation type countermeasure network |
CN110223259A (en) * | 2019-06-14 | 2019-09-10 | 华北电力大学(保定) | A kind of road traffic fuzzy image enhancement method based on production confrontation network |
-
2020
- 2020-01-04 CN CN202010007624.1A patent/CN111209850B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109215123A (en) * | 2018-09-20 | 2019-01-15 | 电子科技大学 | Unlimited landform generation method, system, storage medium and terminal based on cGAN |
CN110264424A (en) * | 2019-06-20 | 2019-09-20 | 北京理工大学 | A kind of fuzzy retinal fundus images Enhancement Method based on generation confrontation network |
CN110675353A (en) * | 2019-08-31 | 2020-01-10 | 电子科技大学 | Selective segmentation image synthesis method based on conditional generation countermeasure network |
Non-Patent Citations (3)
Title |
---|
"ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks";Xiaohan Ding.et al;《arxiv:1908.03930v1》;20190811;期刊全文 * |
"基于生成对抗网络的图像修复";孙全等;《计算机科学》;20181231;第45卷(第12期);全文 * |
"生成对抗网络(GAN)相关笔记";Eree;《https://ereebay.me/posts/59881》;20190301;文章全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111209850A (en) | 2020-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112580590B (en) | Finger vein recognition method based on multi-semantic feature fusion network | |
CN111126240B (en) | Three-channel feature fusion face recognition method | |
CN105718889B (en) | Based on GB (2D)2The face personal identification method of PCANet depth convolution model | |
CN102156887A (en) | Human face recognition method based on local feature learning | |
CN106529504B (en) | A kind of bimodal video feeling recognition methods of compound space-time characteristic | |
CN106529468A (en) | Finger vein identification method and system based on convolutional neural network | |
CN102902980B (en) | A kind of biometric image analysis based on linear programming model and recognition methods | |
CN101710383A (en) | Method and device for identity authentication | |
CN110443128A (en) | One kind being based on SURF characteristic point accurately matched finger vein identification method | |
CN102521575A (en) | Iris identification method based on multidirectional Gabor and Adaboost | |
CN111274915B (en) | Deep local aggregation descriptor extraction method and system for finger vein image | |
CN115994907B (en) | Intelligent processing system and method for comprehensive information of food detection mechanism | |
CN108596126A (en) | A kind of finger venous image recognition methods based on improved LGS weighted codings | |
CN109840512A (en) | A kind of Facial action unit recognition methods and identification device | |
CN114973307B (en) | Finger vein recognition method and system for generating antagonism and cosine ternary loss function | |
CN109614869A (en) | A kind of pathological image classification method based on multi-scale compress rewards and punishments network | |
CN100351852C (en) | Iris recognition method based on wavelet transform and maximum detection | |
CN111209850B (en) | Method for generating applicable multi-device identification finger vein image based on improved cGAN network | |
CN110046565A (en) | A kind of method for detecting human face based on Adaboost algorithm | |
Heidari et al. | A new biometric identity recognition system based on a combination of superior features in finger knuckle print images | |
CN115311746A (en) | Off-line signature authenticity detection method based on multi-feature fusion | |
Raghavendra et al. | An efficient finger vein indexing scheme based on unsupervised clustering | |
CN112101319A (en) | Vein image classification method and device based on topographic point classification | |
CN105512682B (en) | A kind of security level identification recognition methods based on Krawtchouk square and KNN-SMO classifier | |
CN107103289A (en) | The method and system of writer verification are carried out using person's handwriting contour feature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A method of generating finger vein image suitable for multi device recognition based on improved cgan network Effective date of registration: 20210927 Granted publication date: 20210219 Pledgee: Shanxi Financing Guarantee Co.,Ltd. Pledgor: Holy Point Century Technology Co.,Ltd. Registration number: Y2021140000037 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Date of cancellation: 20221115 Granted publication date: 20210219 Pledgee: Shanxi Financing Guarantee Co.,Ltd. Pledgor: Holy Point Century Technology Co.,Ltd. Registration number: Y2021140000037 |
|
PC01 | Cancellation of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A method for generating finger vein images suitable for multi device recognition based on an improved cGAN network Granted publication date: 20210219 Pledgee: Bank of China Limited Taiyuan Binzhou sub branch Pledgor: Holy Point Century Technology Co.,Ltd. Registration number: Y2024140000011 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right |