CN111160659A - Power load prediction method considering temperature fuzzification - Google Patents
Power load prediction method considering temperature fuzzification Download PDFInfo
- Publication number
- CN111160659A CN111160659A CN201911412671.8A CN201911412671A CN111160659A CN 111160659 A CN111160659 A CN 111160659A CN 201911412671 A CN201911412671 A CN 201911412671A CN 111160659 A CN111160659 A CN 111160659A
- Authority
- CN
- China
- Prior art keywords
- load
- data
- temperature
- layer
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000013598 vector Substances 0.000 claims abstract description 60
- 230000006870 function Effects 0.000 claims abstract description 42
- 238000013528 artificial neural network Methods 0.000 claims abstract description 31
- 238000012549 training Methods 0.000 claims abstract description 18
- 238000012360 testing method Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 9
- 238000004364 calculation method Methods 0.000 claims description 20
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000010606 normalization Methods 0.000 claims description 5
- 238000005457 optimization Methods 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000009499 grossing Methods 0.000 claims description 2
- 230000002354 daily effect Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Economics (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Human Resources & Organizations (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- Primary Health Care (AREA)
- Water Supply & Treatment (AREA)
- Public Health (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911412671.8A CN111160659B (en) | 2019-12-31 | 2019-12-31 | Power load prediction method considering temperature fuzzification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911412671.8A CN111160659B (en) | 2019-12-31 | 2019-12-31 | Power load prediction method considering temperature fuzzification |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111160659A true CN111160659A (en) | 2020-05-15 |
CN111160659B CN111160659B (en) | 2021-11-23 |
Family
ID=70560034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911412671.8A Active CN111160659B (en) | 2019-12-31 | 2019-12-31 | Power load prediction method considering temperature fuzzification |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111160659B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112200391A (en) * | 2020-11-17 | 2021-01-08 | 国网陕西省电力公司经济技术研究院 | Load forecasting method at edge side of distribution network based on k-nearest neighbor mutual information feature simplification |
CN112329983A (en) * | 2020-09-30 | 2021-02-05 | 联想(北京)有限公司 | Data processing method and device |
CN112418560A (en) * | 2020-12-10 | 2021-02-26 | 长春理工大学 | PM2.5 concentration prediction method and system |
CN112685900A (en) * | 2020-12-31 | 2021-04-20 | 国网浙江省电力有限公司营销服务中心 | Power load simulation method for representing impact load power characteristics |
CN115809610A (en) * | 2023-02-08 | 2023-03-17 | 广东电网有限责任公司中山供电局 | Direct-buried three-core cable current-carrying capacity prediction method and system based on multi-step load |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107239859A (en) * | 2017-06-05 | 2017-10-10 | 国网山东省电力公司电力科学研究院 | The heating load forecasting method of Recognition with Recurrent Neural Network is remembered based on series connection shot and long term |
CN108830487A (en) * | 2018-06-21 | 2018-11-16 | 王芊霖 | Methods of electric load forecasting based on long neural network in short-term |
CN109255505A (en) * | 2018-11-20 | 2019-01-22 | 国网辽宁省电力有限公司经济技术研究院 | A kind of short-term load forecasting method of multi-model fused neural network |
CN109685265A (en) * | 2018-12-21 | 2019-04-26 | 积成电子股份有限公司 | A kind of prediction technique of power-system short-term electric load |
CN110298501A (en) * | 2019-06-21 | 2019-10-01 | 河海大学常州校区 | Electric load prediction technique based on long Memory Neural Networks in short-term |
-
2019
- 2019-12-31 CN CN201911412671.8A patent/CN111160659B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107239859A (en) * | 2017-06-05 | 2017-10-10 | 国网山东省电力公司电力科学研究院 | The heating load forecasting method of Recognition with Recurrent Neural Network is remembered based on series connection shot and long term |
CN108830487A (en) * | 2018-06-21 | 2018-11-16 | 王芊霖 | Methods of electric load forecasting based on long neural network in short-term |
CN109255505A (en) * | 2018-11-20 | 2019-01-22 | 国网辽宁省电力有限公司经济技术研究院 | A kind of short-term load forecasting method of multi-model fused neural network |
CN109685265A (en) * | 2018-12-21 | 2019-04-26 | 积成电子股份有限公司 | A kind of prediction technique of power-system short-term electric load |
CN110298501A (en) * | 2019-06-21 | 2019-10-01 | 河海大学常州校区 | Electric load prediction technique based on long Memory Neural Networks in short-term |
Non-Patent Citations (2)
Title |
---|
DIEDERIK P. KINGMA等: ""ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION"", 《ICLR 2015》 * |
王小新: ""一文看懂各种神经网络优化算法:从梯度下降到Adam方法"", 《HTTPS://ZHUANLAN.ZHIHU.COM/P/27449596》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112329983A (en) * | 2020-09-30 | 2021-02-05 | 联想(北京)有限公司 | Data processing method and device |
CN112329983B (en) * | 2020-09-30 | 2024-07-26 | 联想(北京)有限公司 | Data processing method and device |
CN112200391A (en) * | 2020-11-17 | 2021-01-08 | 国网陕西省电力公司经济技术研究院 | Load forecasting method at edge side of distribution network based on k-nearest neighbor mutual information feature simplification |
CN112200391B (en) * | 2020-11-17 | 2023-07-04 | 国网陕西省电力公司经济技术研究院 | Power distribution network edge side load prediction method based on k-nearest neighbor mutual information feature simplification |
CN112418560A (en) * | 2020-12-10 | 2021-02-26 | 长春理工大学 | PM2.5 concentration prediction method and system |
CN112418560B (en) * | 2020-12-10 | 2024-05-14 | 长春理工大学 | PM2.5 concentration prediction method and system |
CN112685900A (en) * | 2020-12-31 | 2021-04-20 | 国网浙江省电力有限公司营销服务中心 | Power load simulation method for representing impact load power characteristics |
CN112685900B (en) * | 2020-12-31 | 2023-09-26 | 国网浙江省电力有限公司营销服务中心 | An electric load simulation method to characterize the power characteristics of impact loads |
CN115809610A (en) * | 2023-02-08 | 2023-03-17 | 广东电网有限责任公司中山供电局 | Direct-buried three-core cable current-carrying capacity prediction method and system based on multi-step load |
Also Published As
Publication number | Publication date |
---|---|
CN111160659B (en) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111160659B (en) | Power load prediction method considering temperature fuzzification | |
Liang et al. | A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers | |
CN114626512B (en) | A high temperature disaster prediction method based on directed graph neural network | |
CN110705743B (en) | New energy consumption electric quantity prediction method based on long-term and short-term memory neural network | |
CN109685252B (en) | Building energy consumption prediction method based on cyclic neural network and multi-task learning model | |
CN112949945A (en) | Wind power ultra-short-term prediction method for improving bidirectional long-short term memory network | |
CN111967688B (en) | Power load prediction method based on Kalman filter and convolutional neural network | |
CN108280551A (en) | A kind of photovoltaic power generation power prediction method using shot and long term memory network | |
CN113554466B (en) | Short-term electricity consumption prediction model construction method, prediction method and device | |
CN112116147A (en) | River water temperature prediction method based on LSTM deep learning | |
CN109583565B (en) | Flood prediction method based on attention model long-time and short-time memory network | |
CN115099519B (en) | Oil well yield prediction method based on multi-machine learning model fusion | |
CN112036658B (en) | Wind power real-time prediction method based on forgetting long-term and short-term memory with difference | |
CN108764539A (en) | A kind of water levels of upstream and downstream prediction technique of step hydropower station | |
CN111985719B (en) | Power load prediction method based on improved long-term and short-term memory network | |
CN114862032B (en) | XGBoost-LSTM-based power grid load prediction method and device | |
CN110212524A (en) | A kind of region Methods of electric load forecasting | |
CN114492922A (en) | Medium-and-long-term power generation capacity prediction method | |
CN116345555A (en) | A Short-Term Photovoltaic Power Forecasting Method Based on CNN-ISCA-LSTM Model | |
CN115759415A (en) | Electricity Demand Forecasting Method Based on LSTM-SVR | |
CN114372631A (en) | A runoff prediction method in data-deficient areas based on small sample learning and LSTM | |
CN116303786B (en) | Block chain financial big data management system based on multidimensional data fusion algorithm | |
Zhichao et al. | Short-term load forecasting of multi-layer LSTM neural network considering temperature fuzzification | |
CN116681159A (en) | Short-term power load prediction method based on whale optimization algorithm and DRESN | |
CN113159395A (en) | Deep learning-based sewage treatment plant water inflow prediction method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Cai Shaorong Inventor after: Wei Mingkui Inventor after: Zhou Quan Inventor after: Lu Liang Inventor after: Jiang Li Inventor after: Wang Qing Inventor after: Zheng Ruixiao Inventor after: Zhang Shu Inventor after: Xiao Xianyong Inventor before: Cai Shaorong Inventor before: Wang Qing Inventor before: Zhang Shu Inventor before: Zheng Ruixiao Inventor before: Xiao Xianyong |
|
GR01 | Patent grant | ||
GR01 | Patent grant |