CN111167499B - A kind of NiM-LDH/g-C3N4 composite photocatalytic material and preparation method thereof - Google Patents
A kind of NiM-LDH/g-C3N4 composite photocatalytic material and preparation method thereof Download PDFInfo
- Publication number
- CN111167499B CN111167499B CN202010068577.1A CN202010068577A CN111167499B CN 111167499 B CN111167499 B CN 111167499B CN 202010068577 A CN202010068577 A CN 202010068577A CN 111167499 B CN111167499 B CN 111167499B
- Authority
- CN
- China
- Prior art keywords
- ldh
- photocatalytic material
- nife
- composite photocatalytic
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 43
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 41
- 239000002131 composite material Substances 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000012046 mixed solvent Substances 0.000 claims abstract description 9
- 150000003839 salts Chemical class 0.000 claims abstract description 8
- 239000004094 surface-active agent Substances 0.000 claims abstract description 8
- 239000002904 solvent Substances 0.000 claims abstract description 6
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 3
- 230000001376 precipitating effect Effects 0.000 claims abstract 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 14
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 14
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 10
- 239000004202 carbamide Substances 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 7
- 239000001509 sodium citrate Substances 0.000 claims description 7
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 5
- 239000008213 purified water Substances 0.000 claims description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 4
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 2
- 239000011668 ascorbic acid Substances 0.000 claims description 2
- 229960005070 ascorbic acid Drugs 0.000 claims description 2
- 235000010323 ascorbic acid Nutrition 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- XQSBLCWFZRTIEO-UHFFFAOYSA-N hexadecan-1-amine;hydrobromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[NH3+] XQSBLCWFZRTIEO-UHFFFAOYSA-N 0.000 claims description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 2
- DOLZKNFSRCEOFV-UHFFFAOYSA-L nickel(2+);oxalate Chemical compound [Ni+2].[O-]C(=O)C([O-])=O DOLZKNFSRCEOFV-UHFFFAOYSA-L 0.000 claims description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims 1
- 239000012716 precipitator Substances 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 22
- 239000001257 hydrogen Substances 0.000 abstract description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 20
- 230000003197 catalytic effect Effects 0.000 abstract description 17
- 238000006303 photolysis reaction Methods 0.000 abstract description 7
- 230000015843 photosynthesis, light reaction Effects 0.000 abstract description 7
- 229910052723 transition metal Inorganic materials 0.000 abstract description 6
- 238000000926 separation method Methods 0.000 abstract description 5
- 230000031700 light absorption Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 150000002815 nickel Chemical class 0.000 abstract description 3
- 150000002431 hydrogen Chemical class 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 abstract description 2
- 238000011065 in-situ storage Methods 0.000 abstract description 2
- 150000003624 transition metals Chemical class 0.000 abstract description 2
- 230000006872 improvement Effects 0.000 description 10
- -1 include TiO 2 Chemical compound 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000011068 loading method Methods 0.000 description 5
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical group [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001844 chromium Chemical class 0.000 description 2
- 150000001868 cobalt Chemical class 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010812 external standard method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 2
- 230000004298 light response Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- YSRVJVDFHZYRPA-UHFFFAOYSA-N melem Chemical group NC1=NC(N23)=NC(N)=NC2=NC(N)=NC3=N1 YSRVJVDFHZYRPA-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
- C01B2203/0277—Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
- C01B2203/1058—Nickel catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发公开了一种NiM‑LDH/g‑C3N4复合光催化材料及其制备方法,通过利用醇水混合溶剂,在溶剂热处理过程中加入g‑C3N4,镍盐,过渡金属盐,表面活性剂和沉淀剂,这样既可以剥离g‑C3N4得到超薄多孔的g‑C3N4,同时,可以在g‑C3N4表面原位生成超薄二维NiM水合氢氧化物。本发明的制备方法简单易行,重复性好,安全可靠,通过本发明制得的NiM‑LDH/g‑C3N4复合光催化材料是一种超薄二维复合光催化材料,成本较低,比表面积高,且大大增强了光生电子空穴分离效率和光吸收性能,对于可见光催化光解水产氢具有较高的催化活性和稳定性,可实现可见光催化高效产氢。
The invention discloses a NiM-LDH/g-C 3 N 4 composite photocatalytic material and a preparation method thereof. By using a mixed solvent of alcohol and water, g-C 3 N 4 , nickel salt and transition metal are added in the solvent heat treatment process Salt, surfactant and precipitating agent, so that g-C 3 N 4 can be stripped to obtain ultra-thin porous g-C 3 N 4 , and at the same time, ultra-thin two-dimensional NiM can be generated in situ on the surface of g-C 3 N 4 Hydrated hydroxide. The preparation method of the present invention is simple and easy, has good repeatability, is safe and reliable, and the NiM‑LDH/g‑C 3 N 4 composite photocatalytic material prepared by the present invention is an ultrathin two-dimensional composite photocatalytic material, and the cost is relatively low. Low, high specific surface area, and greatly enhanced photogenerated electron-hole separation efficiency and light absorption performance, has high catalytic activity and stability for visible light catalytic photolysis of water to produce hydrogen, and can realize visible light catalytic efficient hydrogen production.
Description
技术领域technical field
本发明属复合光催化材料技术领域,具体涉及一种 NiM-LDH/g-C3N4复合光催化材料及其制备方法。The invention belongs to the technical field of composite photocatalytic materials, and in particular relates to a NiM-LDH/gC 3 N 4 composite photocatalytic material and a preparation method thereof.
背景技术Background technique
氢能具有燃烧热值高,燃烧过程清洁无污染,是未来最具前景的二次能源。近年来,基于氢能的燃料电池汽车和分布式电站蓬勃发展。光解水制氢借助半导体光催化剂,将太阳能转化为氢能,是实现能源全流程低碳化和清洁可持续的最终途径。Hydrogen energy has a high combustion calorific value, and the combustion process is clean and pollution-free. It is the most promising secondary energy in the future. In recent years, fuel cell vehicles and distributed power stations based on hydrogen energy have flourished. Photolysis of water to produce hydrogen with the help of semiconductor photocatalysts converts solar energy into hydrogen energy, which is the ultimate way to achieve low-carbon, clean and sustainable energy in the entire process.
实现光解水高效制氢,至为关键的是光催化材料的设计和开发。应用于催化光解水产氢的半导体主要有TiO2、ZnO、CdS和g-C3N4等,其中,石墨化g-C3N4片层材料具有制备过程简单、成本较低、化学稳定性好、可见光响应等优点,是较为理想的催化材料。g-C3N4平面内以“Melem”单元通过N原子连接而成,层间通过范德华力结合,层间距离为0.33nm。g-C3N4带隙约为2.7eV,其导带和价带位置分别为-1.3V和1.4V,其产生的光生载流子具有较强的氧化还原能力,可以实现制作还原产氢和水氧化产氧。2009年,Wang等首次报道了利用氰胺热聚合制备的g-C3N4作为光解水的可见光催化剂,在可见光照下,H2产生速率为106μmol g- 1h-1。虽然当时报道的量子产率较低,但是g-C3N4无毒,制备方法简单,稳定性好展现了其作为光催化材料的优良特性,一经报道便引起了光催化领域的极大关注。然而,目前g-C3N4主要由高温热处理制备,存在片层较厚,可见光吸收较弱和光生电子空穴复合较快等缺点,对于光催化产氢其性能依然较低,离实用化尚远。The design and development of photocatalytic materials is the key to realizing efficient hydrogen production by photolysis of water. The semiconductors used to catalyze photolysis of water to produce hydrogen mainly include TiO 2 , ZnO, CdS and gC 3 N 4 , etc. Among them, the graphitized gC 3 N 4 sheet material has the advantages of simple preparation process, low cost, good chemical stability, visible light Response and other advantages, it is an ideal catalytic material. In the gC 3 N 4 plane, the "Melem" unit is connected by N atoms, and the interlayers are combined by van der Waals force, and the interlayer distance is 0.33nm. The band gap of gC 3 N 4 is about 2.7eV, and its conduction band and valence band positions are -1.3V and 1.4V respectively. Oxygenation of water. In 2009, Wang et al. reported for the first time that gC 3 N 4 prepared by thermal polymerization of cyanamide was used as a visible light catalyst for photolysis of water. Under visible light, the H 2 generation rate was 106 μmol g - 1 h -1 . Although the quantum yield reported at that time was low, gC 3 N 4 was non-toxic, easy to prepare, and good stability, showing its excellent characteristics as a photocatalytic material. Once reported, it attracted great attention in the field of photocatalysis. However, at present, gC 3 N 4 is mainly prepared by high-temperature heat treatment, which has the disadvantages of thicker sheets, weaker absorption of visible light, and faster recombination of photogenerated electrons and holes. Its performance for photocatalytic hydrogen production is still low, and it is far from practicality. .
为了提高g-C3N4光催化产氢性能,一方面可以通过剥离体相 g-C3N4制备薄层二维材料,提高g-C3N4比表面积和活性位点,以及电子空穴分离效率,从而提高g-C3N4可见光催化产氢性能。另一方面通过复合第二组分半导体构建异质结,不仅可以增加其可见光吸收性能,同时,异质结内建电场可以大大提高光生载流子分离效率。类水滑石层状双金属氢氧化物(LDH)[M 2+ 1-xM 3+ x(OH)2]z+(An-)z/n·yH2O 作为一类新的二维材料,具有组成和结构可调,比表面积高,化学稳定性好,表面羟基丰富,可见光响应等优点,以其作为复合光催化材料中的异质结半导体成为研究热点。In order to improve the photocatalytic hydrogen production performance of gC 3 N 4 , on the one hand, thin-layer two-dimensional materials can be prepared by exfoliating the bulk phase gC 3 N 4 to increase the specific surface area and active sites of gC 3 N 4 , as well as the electron-hole separation efficiency, thereby Improving the catalytic hydrogen production performance of gC 3 N 4 under visible light. On the other hand, constructing a heterojunction by compounding the second component semiconductor can not only increase its visible light absorption performance, but also the built-in electric field of the heterojunction can greatly improve the separation efficiency of photogenerated carriers. Hydrotalcite-like layered double hydroxides (LDH)[M 2+ 1-x M 3+ x (OH) 2 ] z+ (A n- ) z/n ·yH 2 O as a new class of two-dimensional materials , has the advantages of adjustable composition and structure, high specific surface area, good chemical stability, abundant surface hydroxyl groups, and visible light response. It has become a research hotspot as a heterojunction semiconductor in composite photocatalytic materials.
但现有的NiM-LDH/g-C3N4复合光催化材料存在片层较厚和可见光催化产氢性能依然较低,离实用化依然相差较远。However, the existing NiM-LDH/gC 3 N 4 composite photocatalytic materials have relatively thick sheets and low photocatalytic hydrogen production performance, which is still far from practical application.
发明内容Contents of the invention
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种NiM-LDH/g-C3N4复合光催化材料及其制备方法,利用醇水混合溶剂,在溶剂热处理过程中加入g-C3N4,镍盐,过渡金属盐,表面活性剂和沉淀剂,制得的NiM-LDH/g-C3N4超薄二维复合光催化材料,能够大大增强光生电子空穴分离效率和光吸收性能,进而实现可见光催化高效产氢。The present invention aims to solve at least one of the technical problems existing in the prior art. For this reason, the present invention proposes a NiM-LDH/gC 3 N 4 composite photocatalytic material and its preparation method, using alcohol water mixed solvent, adding gC 3 N 4 , nickel salt, transition metal salt, surface Activator and precipitant, the prepared NiM-LDH/gC 3 N 4 ultrathin two-dimensional composite photocatalytic material can greatly enhance the photogenerated electron-hole separation efficiency and light absorption performance, and then realize the efficient hydrogen production by visible light catalysis.
为了克服上述技术问题,本发明采用的技术方案如下:In order to overcome the problems of the technologies described above, the technical scheme adopted in the present invention is as follows:
一种NiM-LDH/g-C3N4复合光催化材料的制备方法,包括如下步骤:A kind of NiM-LDH/gC 3 N 4 preparation method of composite photocatalytic material, comprises the steps:
a)隔绝空气热解尿素,得到g-C3N4粉末;a) isolate the air and pyrolyze the urea to obtain gC 3 N 4 powder;
b)向醇水混合溶剂中加入g-C3N4粉末、Ni盐、过渡金属盐、表面活性剂和沉淀剂,超声,密封,进行溶剂热处理,待自然冷却后过滤,用纯净水洗涤3-5次,经干燥得NiM-LDH/g-C3N4复合光催化材料。b) Add gC 3 N 4 powder, Ni salt, transition metal salt, surfactant and precipitant to the mixed solvent of alcohol and water, ultrasonicate, seal, perform solvent heat treatment, filter after natural cooling, and wash with pure water for 3-5 times, the NiM-LDH/gC 3 N 4 composite photocatalytic material was obtained by drying.
步骤a)中,热解制备g-C3N4过程中的升温速率为2-5℃/min,热解温度为500-600℃,热解时长为1-5h。In step a), the heating rate during pyrolysis to prepare gC 3 N 4 is 2-5°C/min, the pyrolysis temperature is 500-600°C, and the pyrolysis time is 1-5h.
作为上述方案的进一步改进,所述醇水混合溶剂中的醇选自甲醇、乙醇、正丙醇、正丁醇、正戊醇中的一种。优选正丁醇。As a further improvement of the above scheme, the alcohol in the alcohol-water mixed solvent is selected from one of methanol, ethanol, n-propanol, n-butanol and n-pentanol. Preference is given to n-butanol.
作为上述方案的进一步改进,所述醇水混合溶剂中醇与水的体积比为(1-9):3。优选1:1。As a further improvement of the above scheme, the volume ratio of alcohol to water in the alcohol-water mixed solvent is (1-9):3. Preferably 1:1.
作为上述方案的进一步改进,所述Ni盐与过渡金属盐、表面活性剂、沉淀剂的摩尔比为1:(1-9):(5-10):(10-20),所述NiM-LDH与g-C3N4的质量比为1:(9-20)。As a further improvement of the above scheme, the molar ratio of the Ni salt to the transition metal salt, surfactant, precipitant is 1:(1-9):(5-10):(10-20), the NiM- The mass ratio of LDH to gC 3 N 4 is 1:(9-20).
作为上述方案的进一步改进,所述Ni盐选自硝酸镍、硫酸镍、氯化镍或草酸镍中的一种。As a further improvement of the above solution, the Ni salt is selected from one of nickel nitrate, nickel sulfate, nickel chloride or nickel oxalate.
作为上述方案的进一步改进,所述过渡金属盐选自铁盐、钴盐、铬盐或铝盐中的一种。铁盐选自硝酸铁、氯化铁、硫酸铁中的一种,优选硝酸铁;钴盐选自硝酸钴、氯化钴、硫酸钴中的一种,优选硝酸钴;铬盐选自硝酸铬、氯化铬、硫酸铬中的一种,优选硝酸铬;铝盐选自硝酸铝、氯化铝、硫酸铝中的一种,优选硝酸铝;As a further improvement of the above solution, the transition metal salt is selected from one of iron salts, cobalt salts, chromium salts or aluminum salts. The iron salt is selected from one of ferric nitrate, ferric chloride and ferric sulfate, preferably ferric nitrate; the cobalt salt is selected from one of cobalt nitrate, cobalt chloride and cobalt sulfate, preferably cobalt nitrate; the chromium salt is selected from chromium nitrate , one in chromium chloride, chromium sulfate, preferably chromium nitrate; the aluminum salt is selected from one of aluminum nitrate, aluminum chloride, aluminum sulfate, preferably aluminum nitrate;
作为上述方案的进一步改进,所述表面活性剂选自聚乙烯吡咯烷酮、十六烷基溴化铵、柠檬酸钠或抗坏血酸中的一种。优选柠檬酸钠。As a further improvement of the above solution, the surfactant is selected from one of polyvinylpyrrolidone, cetyl ammonium bromide, sodium citrate or ascorbic acid. Sodium citrate is preferred.
作为上述方案的进一步改进,所述沉淀剂选自氢氧化钠、碳酸钠或尿素中的一种。优选尿素。As a further improvement of the above scheme, the precipitation agent is selected from one of sodium hydroxide, sodium carbonate or urea. Urea is preferred.
作为上述方案的进一步改进,所述溶剂热处理温度为100-150℃,溶剂热处理时长为12-24h。As a further improvement of the above solution, the temperature of the solvent heat treatment is 100-150° C., and the duration of the solvent heat treatment is 12-24 hours.
一种NiM-LDH/g-C3N4复合光催化材料,是根据上述的制备方法制得。A NiM-LDH/gC 3 N 4 composite photocatalytic material is prepared according to the above preparation method.
本发明的有益效果:本发明提出一种NiM-LDH/g-C3N4复合光催化材料及其制备方法,利用醇水混合溶剂,在溶剂热处理过程中加入 g-C3N4,镍盐,过渡金属盐,表面活性剂和沉淀剂,这样既可以剥离 g-C3N4得到超薄多孔的g-C3N4,同时,可以在g-C3N4表面原位生成超薄二维NiM水合氢氧化物。本发明的制备方法简单易行,重复性好,安全可靠,通过本发明制得的NiM-LDH/g-C3N4复合光催化材料是一种超薄二维复合光催化材料,成本较低,比表面积高,且大大增强了光生电子空穴分离效率和光吸收性能,对于可见光催化光解水产氢具有较高的催化活性和稳定性,可实现可见光催化高效产氢。Beneficial effects of the present invention: the present invention proposes a NiM-LDH/gC 3 N 4 composite photocatalytic material and its preparation method, using alcohol-water mixed solvent, adding gC 3 N 4 , nickel salt, transition metal in the solvent heat treatment process Salt, surfactant and precipitant, so that gC 3 N 4 can be stripped to obtain ultrathin porous gC 3 N 4 , and at the same time, ultrathin two-dimensional NiM hydrated hydroxide can be generated in situ on the surface of gC 3 N 4 . The preparation method of the present invention is simple and easy, has good repeatability, is safe and reliable, and the NiM-LDH/gC 3 N 4 composite photocatalytic material prepared by the present invention is an ultrathin two-dimensional composite photocatalytic material with low cost. The specific surface area is high, and the photogenerated electron-hole separation efficiency and light absorption performance are greatly enhanced. It has high catalytic activity and stability for visible light catalytic photolysis of water to produce hydrogen, and can realize efficient hydrogen production through visible light catalysis.
附图说明Description of drawings
图1为实施例2-5所得的不同载量(NiFe-LDH载量分别为 2.5wt%、5.0wt%、7.5wt%和10wt%)的NiFe-LDH/g-C3N4二维超薄光催化材料成品和对比例1制备的体相NiFe-LDH/g-C3N4(对比样品) 的可见光催化光解水产氢活性曲线;Figure 1 shows the NiFe-LDH/gC 3 N 4 two-dimensional ultra-thin photoresist with different loadings (NiFe-LDH loadings were 2.5wt%, 5.0wt%, 7.5wt% and 10wt%) obtained in Examples 2-5. Visible light catalytic photolysis water hydrogen production activity curves of the finished catalytic material and the bulk NiFe-LDH/gC 3 N 4 (comparative sample) prepared in Comparative Example 1;
图2为实施例3载量为5.0wt%的NiFe-LDH/g-C3N4-5.0二维超薄复合光催化材料的循环稳定性曲线。Fig. 2 is the cycle stability curve of the NiFe-LDH/gC 3 N 4 -5.0 two-dimensional ultra-thin composite photocatalytic material with a loading of 5.0 wt% in Example 3.
具体实施方式Detailed ways
下面结合实施例对本发明进行具体描述,以便于所属技术领域的人员对本发明的理解。有必要在此特别指出的是,实施例只是用于对本发明做进一步说明,不能理解为对本发明保护范围的限制,所属领域技术熟练人员,根据上述发明内容对本发明所作出的非本质性的改进和调整,应仍属于本发明的保护范围。同时,下述所提及的原料未详细说明的,均为市售产品;未详细提及的工艺步骤或提取方法为均为本领域技术人员所知晓的工艺步骤或提取方法。The present invention will be specifically described below in conjunction with the embodiments, so that those skilled in the art can understand the present invention. It is necessary to point out here that the embodiments are only used to further illustrate the present invention, and cannot be interpreted as limiting the protection scope of the present invention. Those skilled in the art can make non-essential improvements to the present invention according to the above-mentioned content of the invention And adjustments should still belong to the protection scope of the present invention. Meanwhile, if the raw materials mentioned below are not specified in detail, they are all commercially available products; the process steps or extraction methods not mentioned in detail are all process steps or extraction methods known to those skilled in the art.
实施例1Example 1
高比表面多孔g-C3N4的制备Preparation of High Specific Surface Porous gC 3 N 4
将20g尿素放入50mL坩埚中,盖上盖子,放入马弗炉中,以2℃/min升温速率升温至550℃,恒温4h,然后自然冷却至室温。取出研细,得到高比表面多孔的g-C3N4米黄色粉末。Put 20 g of urea into a 50 mL crucible, cover it, put it into a muffle furnace, raise the temperature to 550 °C at a heating rate of 2 °C/min, keep the temperature for 4 h, and then cool it down to room temperature naturally. Take it out and grind it finely to obtain gC 3 N 4 beige powder with high specific surface porosity.
实施例2Example 2
NiFe-LDH/g-C3N4-2.5二维超薄复合催化材料的制备Preparation of NiFe-LDH/gC 3 N 4 -2.5 Two-Dimensional Ultrathin Composite Catalytic Material
称取0.488g经实施例1制备的g-C3N4粉末于聚四氟乙烯罐中,加入25mL正丁醇和25mL纯净水,然后加入100mg尿素,34mg 硝酸镍,7.5mg硝酸铁和200mg柠檬酸钠,超声分散20min,然后加盖密封,置于120℃水热烘箱中加热处理12h,自然冷却后过滤,用纯净水洗涤3-5次,80℃干燥10h,得到NiFe-LDH含量为2.5wt%的NiFe-LDH/g-C3N4二维超薄复合光催化材料,记为 NiFe-LDH/g-C3N4-2.5。Weigh 0.488g of the gC 3 N 4 powder prepared in Example 1 in a polytetrafluoroethylene tank, add 25mL of n-butanol and 25mL of purified water, then add 100mg of urea, 34mg of nickel nitrate, 7.5mg of iron nitrate and 200mg of sodium citrate , ultrasonically dispersed for 20min, then capped and sealed, placed in a water-heated oven at 120°C for heat treatment for 12h, filtered after natural cooling, washed 3-5 times with pure water, and dried at 80°C for 10h to obtain a NiFe-LDH content of 2.5wt%. The NiFe-LDH/gC 3 N 4 two-dimensional ultrathin composite photocatalytic material is recorded as NiFe-LDH/gC 3 N 4 -2.5.
实施例3Example 3
NiFe-LDH/g-C3N4-5.0二维超薄复合催化材料的制备Preparation of NiFe-LDH/gC 3 N 4 -5.0 Two-dimensional Ultrathin Composite Catalytic Material
称取0.475g经实施例1制备的g-C3N4粉末于聚四氟乙烯罐中,加入25mL正丁醇和25mL纯净水,然后加入200mg尿素,67mg 硝酸镍,15mg硝酸铁和400mg柠檬酸钠,超声分散20min,然后加盖密封,置于120℃水热烘箱中加热处理12h,自然冷却后过滤,用纯净水洗涤3-5次,80℃干燥10h,得到NiFe-LDH含量为5.0wt%的NiFe-LDH/g-C3N4二维超薄复合光催化材料,记为 NiFe-LDH/g-C3N4-5.0。Weigh 0.475g of the gC3N4 powder prepared in Example 1 in a polytetrafluoroethylene tank, add 25mL of n-butanol and 25mL of purified water, then add 200mg of urea, 67mg of nickel nitrate, 15mg of ferric nitrate and 400mg of sodium citrate, Ultrasonic dispersion for 20 minutes, then capped and sealed, placed in a water-heated oven at 120°C for heat treatment for 12 hours, filtered after natural cooling, washed 3-5 times with pure water, and dried at 80°C for 10 hours to obtain a NiFe-LDH content of 5.0wt%. The NiFe-LDH/gC 3 N 4 two-dimensional ultrathin composite photocatalytic material is denoted as NiFe-LDH/gC 3 N 4 -5.0.
实施例4Example 4
NiFe-LDH/g-C3N4-7.5二维超薄复合催化材料的制备Preparation of NiFe-LDH/gC 3 N 4 -7.5 Two-Dimensional Ultrathin Composite Catalytic Material
称取0.463g经实施例1制备的g-C3N4粉末于聚四氟乙烯罐中,加入25mL正丁醇和25mL纯净水,然后加入300mg尿素,101mg 硝酸镍,22.5mg硝酸铁和600mg柠檬酸钠,超声分散20min,然后加盖密封,置于120℃水热烘箱中加热处理12h,自然冷却后过滤,用纯净水洗涤3-5次,80℃干燥10h,得到NiFe-LDH含量为7.5wt%的NiFe-LDH/g-C3N4二维超薄复合光催化材料,记为 NiFe-LDH/g-C3N4-7.5。Weigh 0.463g of the gC 3 N 4 powder prepared in Example 1 in a polytetrafluoroethylene tank, add 25mL of n-butanol and 25mL of purified water, then add 300mg of urea, 101mg of nickel nitrate, 22.5mg of iron nitrate and 600mg of sodium citrate , ultrasonically dispersed for 20 minutes, then sealed with a cover, placed in a water-heated oven at 120°C for heat treatment for 12 hours, filtered after natural cooling, washed 3-5 times with pure water, and dried at 80°C for 10 hours to obtain a NiFe-LDH content of 7.5wt%. The NiFe-LDH/gC 3 N 4 two-dimensional ultrathin composite photocatalytic material is recorded as NiFe-LDH/gC 3 N 4 -7.5.
实施例5Example 5
NiFe-LDH/g-C3N4-10二维超薄复合催化材料的制备Preparation of NiFe-LDH/gC 3 N 4 -10 Two-Dimensional Ultrathin Composite Catalytic Material
称取0.463g实施例1制备的g-C3N4粉末于聚四氟乙烯罐中,加入25mL正丁醇和25mL纯净水,然后加入400mg尿素,134mg硝酸镍,30mg硝酸铁和800mg柠檬酸钠,超声分散20min,然后加盖密封,置于120℃水热烘箱中加热处理12h,自然冷却后过滤,用纯净水洗涤3-5次,80℃干燥10h,得到NiFe-LDH含量为10.0wt%的NiFe-LDH/g-C3N4二维超薄复合光催化材料,记为 NiFe-LDH/g-C3N4-10.0。Weigh 0.463g of the gC 3 N 4 powder prepared in Example 1 into a polytetrafluoroethylene tank, add 25mL of n-butanol and 25mL of purified water, then add 400mg of urea, 134mg of nickel nitrate, 30mg of ferric nitrate and 800mg of sodium citrate, and ultrasonically Disperse for 20 minutes, then cover and seal, place in a water-heated oven at 120°C for heat treatment for 12 hours, filter after natural cooling, wash with pure water for 3-5 times, and dry at 80°C for 10 hours to obtain NiFe with a NiFe-LDH content of 10.0wt%. -LDH/gC 3 N 4 two-dimensional ultrathin composite photocatalytic material, recorded as NiFe-LDH/gC 3 N 4 -10.0.
对比例1Comparative example 1
体相NiFe LDH/g-C3N4-R对比样品的制备Preparation of Bulk NiFe LDH/gC 3 N 4 -R Comparative Samples
称取0.475g实施例1制备的g-C3N4粉末于烧杯中,加入50mL纯净水,然后加入67mg硝酸镍和15mg硝酸铁,超声分散20min,然后滴加0.1mol/L NaOH溶液至PH为9左右,陈化12h后过滤,用纯净水洗涤3-5次,80℃干燥10h,得到NiFe-LDH含量为5.0wt%的NiFe LDH/g-C3N4-R体相复合光催化材料。Weigh 0.475g of the gC3N4 powder prepared in Example 1 into a beaker , add 50mL of pure water, then add 67mg of nickel nitrate and 15mg of ferric nitrate, ultrasonically disperse for 20min, and then dropwise add 0.1mol/L NaOH solution until the pH is 9 After aging for 12 hours, filter, wash with pure water for 3-5 times, and dry at 80°C for 10 hours to obtain a NiFe LDH/gC 3 N 4 -R bulk composite photocatalytic material with a NiFe-LDH content of 5.0 wt%.
实施例6Example 6
催化材料可见光催化产氢活性评价Activity evaluation of catalytic materials for visible light catalytic hydrogen production
分别称取100mg经实施例2-5所得的不同载量(NiFe-LDH载量分别为2.5wt%、5.0wt%、7.5wt%和10wt%)的NiFe-LDH/g-C3N4二维超薄光催化材料和对比例1制备的体相NiFe-LDH/g-C3N4-R的对比样品于光催化反应器中,量取80mL高纯水和20mL三乙醇胺于光催化反应器中,冷凝恒温8℃,抽真空除气30min。然后利用300W氙灯光源光照,光源距离液面15cm,加400nm滤光片滤掉紫外部分。反应每间隔1h,色谱自动在线取样进行分析,产H2量采取外标法定量计算,产氢量采用μmol表达,产氢速率采用μmol.g-1.h-1表达。Weigh 100 mg of the NiFe-LDH/gC 3 N 4 two-dimensional ultra- Thin photocatalytic material and the comparative sample of bulk phase NiFe-LDH/gC 3 N 4 -R prepared in Comparative Example 1 were placed in the photocatalytic reactor, and 80mL high-purity water and 20mL triethanolamine were taken in the photocatalytic reactor, and condensed at a constant temperature of 8 ℃, vacuum degassing for 30min. Then use a 300W xenon lamp light source to illuminate, the light source is 15cm away from the liquid surface, and add a 400nm filter to filter out the ultraviolet part. Every 1 hour of the reaction interval, the chromatographic automatic online sampling was carried out for analysis. The amount of H 2 produced was quantitatively calculated by the external standard method. The amount of hydrogen produced was expressed in μmol, and the rate of hydrogen production was expressed in μmol.g -1 .h -1 .
从图1中可以看出,NiFe-LDH/g-C3N4二维超薄异质结光催化材料相对于体相NiFe-LDH/g-C3N4的活性较高。NiFe-LDH载量对复合催化光催化活性影响呈火山型曲线关系,NiFe-LDH载量为5.0wt%时的活性最高,达到1770μmol.g-1.h-1。It can be seen from Figure 1 that the NiFe-LDH/gC 3 N 4 two-dimensional ultrathin heterojunction photocatalytic material has a higher activity than the bulk NiFe-LDH/gC 3 N 4 . The effect of NiFe-LDH loading on the photocatalytic activity of the composite catalyst was a volcano-shaped curve. The highest activity was 1770μmol.g -1 .h -1 when the loading of NiFe-LDH was 5.0wt%.
实施例7Example 7
催化材料光催化产氢稳定性考察Study on Stability of Catalytic Materials for Photocatalytic Hydrogen Production
称取NiFe-LDH/g-C3N4二维超薄异质结光催化材料于光催化反应器中,量取80mL高纯水和20mL三乙醇胺于光催化反应器中,冷凝恒温8℃,抽真空除气30min。然后利用300W氙灯光源光照,光源距离液面15cm,加400nm滤光片滤掉紫外部分。反应每间隔1h,色谱自动在线取样进行分析,产H2量采取外标法定量计算,产氢量采用μmol表达,产氢速率采用μmol.g-1.h-1表达。一个循环测试完成后,抽真空除气,重复上述步骤评价其活性,经过多次循环考察其稳定性。Weigh NiFe-LDH/gC 3 N 4 two-dimensional ultra-thin heterojunction photocatalytic material in the photocatalytic reactor, measure 80mL high-purity water and 20mL triethanolamine in the photocatalytic reactor, condense at a constant temperature of 8°C, and vacuumize Air for 30 minutes. Then use a 300W xenon lamp light source to illuminate, the light source is 15cm away from the liquid surface, and add a 400nm filter to filter out the ultraviolet part. Every 1 hour of the reaction interval, the chromatographic automatic online sampling was carried out for analysis. The amount of H 2 produced was quantitatively calculated by the external standard method. The amount of hydrogen produced was expressed in μmol, and the rate of hydrogen production was expressed in μmol.g -1 .h -1 . After one cycle test is completed, vacuumize and degas, repeat the above steps to evaluate its activity, and check its stability through multiple cycles.
从图2中可以看出,经过4次循环后,该催化材料的活性没有发生明显下降,稳定性较高。It can be seen from Figure 2 that after 4 cycles, the activity of the catalytic material did not decrease significantly, and the stability was high.
对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下还可以做出若干简单推演或替换,而不必经过创造性的劳动。因此,本领域技术人员根据本发明的揭示,对本发明做出的简单改进都应该在本发明的保护范围之内。上述实施例为本发明的优选实施例,凡与本发明类似的工艺及所作的等效变化,均应属于本发明的保护范畴。For those of ordinary skill in the technical field to which the present invention belongs, some simple deductions or substitutions can be made without departing from the concept of the present invention without creative work. Therefore, simple improvements made to the present invention by those skilled in the art based on the disclosure of the present invention should all be within the protection scope of the present invention. The above-mentioned embodiments are preferred embodiments of the present invention, and all processes similar to those of the present invention and equivalent changes should all belong to the protection category of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010068577.1A CN111167499B (en) | 2020-01-21 | 2020-01-21 | A kind of NiM-LDH/g-C3N4 composite photocatalytic material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010068577.1A CN111167499B (en) | 2020-01-21 | 2020-01-21 | A kind of NiM-LDH/g-C3N4 composite photocatalytic material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111167499A CN111167499A (en) | 2020-05-19 |
CN111167499B true CN111167499B (en) | 2022-11-22 |
Family
ID=70624502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010068577.1A Active CN111167499B (en) | 2020-01-21 | 2020-01-21 | A kind of NiM-LDH/g-C3N4 composite photocatalytic material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111167499B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112138702B (en) * | 2020-10-20 | 2022-06-07 | 苏州大学 | Three-dimensional/two-dimensional Ni-Co double metal oxide/g-C3N4 nanocomposite material and its preparation method and application |
CN114011447B (en) * | 2021-05-11 | 2024-06-21 | 广西师范大学 | Preparation method of porous carbon nitride foam/hydrotalcite three-dimensional heterojunction material and application of porous carbon nitride foam/hydrotalcite three-dimensional heterojunction material in photocatalytic reduction of carbon dioxide |
CN113594476B (en) * | 2021-07-29 | 2022-06-24 | 安庆师范大学 | A kind of carbon nitride modified methanol electrocatalyst and preparation method and application thereof |
CN113620372B (en) * | 2021-08-31 | 2023-05-02 | 江西万若环境工程有限公司 | Method for degrading MB industrial wastewater |
CN113649056A (en) * | 2021-09-08 | 2021-11-16 | 广西师范大学 | Photocatalytic carbon dioxide reduction catalyst and preparation method and application thereof |
CN113600225B (en) * | 2021-09-08 | 2023-05-09 | 广西师范大学 | A kind of heterojunction composite material and its application |
CN114029044A (en) * | 2021-11-09 | 2022-02-11 | 南昌航空大学 | A kind of preparation method of modified nickel-iron layered double hydroxide composite nanometer photocatalyst |
CN114377712A (en) * | 2021-12-21 | 2022-04-22 | 华侨大学 | A CN/NCD/ZFL photocatalyst and its application and antibiotic wastewater treatment method |
CN114849761B (en) * | 2022-06-09 | 2024-04-12 | 东莞理工学院 | Photocatalytic material and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105826574A (en) * | 2016-03-24 | 2016-08-03 | 青岛科技大学 | Nitrogen-doped graphene/ ferrocobalt hydrotalcite-like compound difunctional oxygen-reduction catalyst and preparing method and application thereof |
WO2017012210A1 (en) * | 2015-07-21 | 2017-01-26 | 北京化工大学 | Metal oxide-carbon nitride composite material and preparation method and use thereof |
CN109012731A (en) * | 2018-08-17 | 2018-12-18 | 南京理工大学 | Sea urchin shape CoZnAl-LDH/RGO/g-C3N4Z-type hetero-junctions and its preparation method and application |
CN109351365A (en) * | 2018-11-20 | 2019-02-19 | 北京化工大学 | Novel and efficient photocatalyst of hydrotalcite-modified g-C3N4 and its application in deep desulfurization of fuel oil |
CN109847786A (en) * | 2019-03-06 | 2019-06-07 | 常州大学 | A kind of preparation method and application of Z-type photocatalyst MgAlLDH/CN-H |
-
2020
- 2020-01-21 CN CN202010068577.1A patent/CN111167499B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017012210A1 (en) * | 2015-07-21 | 2017-01-26 | 北京化工大学 | Metal oxide-carbon nitride composite material and preparation method and use thereof |
CN105826574A (en) * | 2016-03-24 | 2016-08-03 | 青岛科技大学 | Nitrogen-doped graphene/ ferrocobalt hydrotalcite-like compound difunctional oxygen-reduction catalyst and preparing method and application thereof |
CN109012731A (en) * | 2018-08-17 | 2018-12-18 | 南京理工大学 | Sea urchin shape CoZnAl-LDH/RGO/g-C3N4Z-type hetero-junctions and its preparation method and application |
CN109351365A (en) * | 2018-11-20 | 2019-02-19 | 北京化工大学 | Novel and efficient photocatalyst of hydrotalcite-modified g-C3N4 and its application in deep desulfurization of fuel oil |
CN109847786A (en) * | 2019-03-06 | 2019-06-07 | 常州大学 | A kind of preparation method and application of Z-type photocatalyst MgAlLDH/CN-H |
Non-Patent Citations (3)
Title |
---|
g-C3N4/NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuels;Surendar Tonda et al.;《APPLIED MATERIALS&INTERFACES》;20171229;第10卷;第2667-2678页 * |
Nayak, Susanginee et al..Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction.《JOURNAL OF MATERIALS CHEMISTRY A》.2015,第3卷(第36期),第18622-18635页. * |
Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction;Nayak, Susanginee et al.;《JOURNAL OF MATERIALS CHEMISTRY A》;20150817;第3卷(第36期);第18622-18635页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111167499A (en) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111167499B (en) | A kind of NiM-LDH/g-C3N4 composite photocatalytic material and preparation method thereof | |
CN104084228B (en) | A kind of oxygen doping carbonitride/photocatalyst of zinc oxide and preparation method and application | |
CN104923211B (en) | A kind of Bi of visible light catalysis activity2O3/(BiO)2CO3Hetero-junctions catalyst and preparation method thereof | |
CN105709793B (en) | Niobium pentoxide nano stick/nitrogen-doped graphene composite photo-catalyst, preparation method and application of cadmium sulfide nano-particles modification | |
CN110385146B (en) | A Ni0.85Se/PDA/g-C3N4 composite photocatalyst and its application | |
CN111774058B (en) | Heterojunction composite photocatalyst and preparation method and application thereof | |
CN107413337A (en) | High efficiency photocatalysis CO2The preparation of hydrogenation material photochemical catalyst and application process | |
CN110252346A (en) | A kind of preparation method and application of MoS2/SnS2/r-GO composite photocatalyst | |
CN107159187A (en) | It is non-metering than tungsten oxide/titanium dioxide classifying nano heterojunction structure photochemical catalyst and preparation method | |
CN110280276A (en) | Loaded photocatalyst NiSe2The preparation method and applications of/CdS | |
CN106076386A (en) | A kind of preparation method of cobalt sesquioxide/class graphene carbon nitrogen compound composite catalyst | |
CN108855138A (en) | A kind of Z-type structure Mn0.5Cd0.5S/Ag/Bi2WO6Composite photocatalyst and preparation method thereof | |
CN107829108A (en) | A kind of FeOOH/CdS/Ti:Fe2O3Complex light electrode and preparation method thereof | |
CN113042071A (en) | Monoatomic Pd modified CdS nano-catalyst and preparation method thereof | |
CN115212911B (en) | Nickel-loaded nitrogen-doped hierarchical pore biochar material and preparation method and application thereof | |
CN107376956B (en) | Zinc oxide/red phosphorus heterojunction composite photocatalyst and preparation method thereof | |
CN110124696A (en) | A kind of preparation method of cadmium sulfide and cobalt disulfide heterojunction photocatalyst | |
CN109092340A (en) | Graphene-supported bismuth oxychloride-basic carbonate bismuth oxide photocatalyst and its preparation method | |
CN106000440A (en) | Preparation method of g-C3N4 quantum dots loaded titanium dioxide nanoparticles | |
CN110026207A (en) | CaTiO3@ZnIn2S4Nanocomposite and the preparation method and application thereof | |
CN113856753A (en) | COF-5/CoAl-LDH heterojunction composite photocatalyst and preparation method and application thereof | |
CN111644185A (en) | Bi stripping by cell crusher3O4Method for Cl and in photocatalytic reduction of CO2Application of aspects | |
CN108620101B (en) | Ag/PbBiO2Cl nanosheet composite photocatalyst and preparation method | |
CN108404956A (en) | A kind of black titanium dioxide composite catalyst and preparation method thereof for photo-reduction carbon dioxide | |
CN111036270B (en) | Composite photocatalytic material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 528000 No. 18, Jiangwan Road, Chancheng District, Guangdong, Foshan Patentee after: Foshan University Country or region after: China Address before: 528000 No. 18, Jiangwan Road, Chancheng District, Guangdong, Foshan Patentee before: FOSHAN University Country or region before: China |