CN111025589B - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- CN111025589B CN111025589B CN201911384404.4A CN201911384404A CN111025589B CN 111025589 B CN111025589 B CN 111025589B CN 201911384404 A CN201911384404 A CN 201911384404A CN 111025589 B CN111025589 B CN 111025589B
- Authority
- CN
- China
- Prior art keywords
- lens
- image
- curvature
- ttl
- radius
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明涉及光学镜头领域,公开了一种摄像光学镜头,该摄像光学镜头自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,以及第八透镜;摄像光学镜头的焦距为f,第一透镜的焦距为f1,第二透镜的焦距为f2,第一透镜物侧面的曲率半径为R1,第一透镜像侧面的曲率半径为R2,第一透镜的轴上厚度为d1,第一透镜的像侧面到第二透镜的物侧面的轴上距离为d2,且满足下列关系式:f1≥0.00mm;1.60≤f2/f≤3.50;3.00≤d1/d2≤30.00;‑0.90≤(R1+R2)/(R1‑R2)≤‑0.20。本发明提供的摄像光学镜头具有良好光学性能的同时,满足大光圈、广角化、超薄化的设计要求。
Description
技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式甚至是五片式、六片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,八片式透镜结构逐渐出现在镜头设计当中,常见的八片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化的设计要求。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、超薄化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,以及第八透镜;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,且满足下列关系式:f1≥0.00mm;1.60≤f2/f≤3.50;3.00≤d1/d2≤30.00;-0.90≤(R1+R2)/(R1-R2)≤-0.20。
优选地,所述第八透镜物侧面的曲率半径为R15,所述第八透镜像侧面的曲率半径为R16,且满足下列关系式:0.30≤(R15+R16)/(R15-R16)≤0.75。
优选地,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.37≤f1/f≤1.33;0.05≤d1/TTL≤0.18。
优选地,第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.63≤(R3+R4)/(R3-R4)≤3.90;0.03≤d3/TTL≤0.14。
优选地,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-2.63≤f3/f≤-0.61;-0.54≤(R5+R6)/(R5-R6)≤3.49;0.02≤d5/TTL≤0.06。
优选地,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-34.91≤f4/f≤15.45;-2.27≤(R7+R8)/(R7-R8)≤5.11;0.02≤d7/TTL≤0.07。
优选地,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.75≤f5/f≤4.31;-4.52≤(R9+R10)/(R9-R10)≤-0.89;0.02≤d9/TTL≤0.07。
优选地,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-2.44≤f6/f≤-0.69;-4.41≤(R11+R12)/(R11-R12)≤-0.56;0.02≤d11/TTL≤0.07。
优选地,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.46≤f7/f≤1.48;-3.61≤(R13+R14)/(R13-R14)≤-0.90;0.05≤d13/TTL≤0.19。
优选地,所述第八透镜的焦距为f8,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.70≤f8/f≤-0.49;0.03≤d15/TTL≤0.13。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,且具有大光圈、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括八个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8。第八透镜L8和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
第一透镜L1具有正屈折力,第二透镜L2具有正屈折力,第三透镜L3具有负屈折力,第五透镜L5具有正屈折力,第六透镜L6具有负屈折力,第七透镜L7具有正屈折力,第八透镜L8具有负屈折力。
在本实施方式中,定义所述第一透镜L1的焦距为f1,满足下列关系式:f1≥0.00mm,规定了第一透镜焦距的正负,通过焦距的合理分配,使得系统具有较佳的成像品质。优选地,满足f1≥2.51mm。
定义整体摄像光学镜头10的焦距为f,所述第二透镜L2的焦距为f2,满足下列关系式:1.60≤f2/f≤3.50,规定了第二透镜焦距与系统总焦距的比值,可以有效地校正像差,提高成像质量。优选地,满足1.63≤f2/f≤3.45。
定义所述第一透镜L1的轴上厚度为d1,所述第一透镜L1的像侧面到所述第二透镜L2的物侧面的轴上距离为d2,满足下列关系式:3.00≤d1/d2≤30.00,规定了第一透镜厚度与第一第二透镜空气间隔的比值,在条件式范围内有助于压缩光学系统总长,实现超薄化效果。优选地,满足3.03≤d1/d2≤29.91。
定义所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-0.90≤(R1+R2)/(R1-R2)≤-0.20,规定了第一透镜面型,在条件范围内可有效平衡系统球差和场曲。
定义所述第八透镜L8物侧面的曲率半径为R15,所述第八透镜L8像侧面的曲率半径为R16,满足下列关系式:0.30≤(R15+R16)/(R15-R16)≤0.75,规定了第八透镜的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足0.32≤(R15+R16)/(R15-R16)≤0.73。
定义整体摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:0.37≤f1/f≤1.33,规定了第一透镜L1的焦距与整体焦距的比值,在规定的范围内时,第一透镜具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选地,满足0.60≤f1/f≤1.07。
所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.05≤d1/TTL≤0.18,在条件式范围内,有利于实现超薄化。优选地,满足0.07≤d1/TTL≤0.15。
定义所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:0.63≤(R3+R4)/(R3-R4)≤3.90,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题。优选地,满足1.00≤(R3+R4)/(R3-R4)≤3.12。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d3/TTL≤0.14,在条件式范围内,有利于实现超薄化。优选地,满足0.05≤d3/TTL≤0.11。
定义整体摄像光学镜头10的焦距为f,所述第三透镜L3的焦距为f3,满足下列关系式:-2.63≤f3/f≤-0.61,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-1.64≤f3/f≤-0.76。
所述第三透镜L3物侧面的曲率半径为R5,所述第三透镜L3像侧面的曲率半径为R6,满足下列关系式:-0.54≤(R5+R6)/(R5-R6)≤3.49,规定了第三透镜的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-0.33≤(R5+R6)/(R5-R6)≤2.79。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d5/TTL≤0.06,在条件式范围内,有利于实现超薄化。优选地,满足0.03≤d5/TTL≤0.04。
定义整体摄像光学镜头10的焦距为f,所述第四透镜L4的焦距为f4,满足下列关系式:-34.91≤f4/f≤15.45,规定了第四透镜焦距与系统焦距的比值,在条件式范围内有助于提高光学系统性能。优选地,满足-21.82≤f4/f≤12.36。
所述第四透镜L4物侧面的曲率半径为R7,第四透镜L4像侧面的曲率半径为R8,满足下列关系式:-2.27≤(R7+R8)/(R7-R8)≤5.11,规定的是第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-1.42≤(R7+R8)/(R7-R8)≤4.09。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d7/TTL≤0.07,在条件式范围内,有利于实现超薄化。优选地,满足0.03≤d7/TTL≤0.06。
定义所述整体摄像光学镜头10的焦距为f,所述第五透镜L5的焦距为f5,满足下列关系式:0.75≤f5/f≤4.31,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足1.20≤f5/f≤3.45。
所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5像侧面的曲率半径为R10,满足下列关系式:-4.52≤(R9+R10)/(R9-R10)≤-0.89,规定的是第五透镜L5的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-2.82≤(R9+R10)/(R9-R10)≤-1.12。
所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d9/TTL≤0.07,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤d9/TTL≤0.06。
定义所述整体摄像光学镜头10的焦距为f,第六透镜L6的焦距为f6,满足下列关系式:-2.44≤f6/f≤-0.69,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-1.53≤f6/f≤-0.86。
所述第六透镜L6物侧面的曲率半径为R11,以及所述第六透镜L6像侧面的曲率半径为R12,且满足下列关系式:-4.41≤(R11+R12)/(R11-R12)≤-0.56,规定的是第六透镜L6的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-2.75≤(R11+R12)/(R11-R12)≤-0.70。
所述第六透镜L6的轴上厚度为d11,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d11/TTL≤0.07,在条件式范围内,有利于实现超薄化。优选地,满足0.04≤d11/TTL≤0.06。
定义所述整体摄像光学镜头10的焦距为f,第七透镜L7的焦距为f7,满足下列关系式:0.46≤f7/f≤1.48,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.74≤f7/f≤1.18。
所述第七透镜L7物侧面的曲率半径为R13,所述第七透镜L7像侧面的曲率半径为R14,满足下列关系式:-3.61≤(R13+R14)/(R13-R14)≤-0.90,规定的是第七透镜L7的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-2.26≤(R13+R14)/(R13-R14)≤-1.12。
所述第七透镜L7的轴上厚度为d13,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.05≤d13/TTL≤0.19,在条件式范围内,有利于实现超薄化。优选地,满足0.09≤d13/TTL≤0.15。
定义所述整体摄像光学镜头10的焦距为f,第八透镜L8的焦距为f8,满足下列关系式:-1.70≤f8/f≤-0.49,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-1.06≤f8/f≤-0.61。
所述第八透镜L8的轴上厚度为d15,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d15/TTL≤0.13,在条件式范围内,有利于实现超薄化。优选地,满足0.05≤d15/TTL≤0.10。
在本实施方式中,整体摄像光学镜头10的像高为IH,摄像光学镜头10的光学总长为TTL,满足下列条件式:TTL/IH≤1.40,从而实现超薄化。
本实施方式中,摄像光学镜头10的光圈Fno数小于或等于1.75。
大光圈,成像性能好。
本实施方式中,摄像光学镜头10的视场角FOV大于或等于80°,从而实现广角化。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,能够满足大光圈、广角化、超薄化的设计要求;根据该光学镜头10的特性,该光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:第八透镜L8的像侧面的曲率半径;
R16:第八透镜L8的像侧面的曲率半径;
R17:光学过滤片GF的物侧面的曲率半径;
R18:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离;
d15:第八透镜L8的轴上厚度;
d16:第八透镜L8的像侧面到光学过滤片GF的物侧面的轴上距离;
d17:光学过滤片GF的轴上厚度;
d18:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
nd8:第八透镜L8的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
v8:第八透镜L8的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。
IH:像高
y=(x2/R)/[1+{1-(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16+A18x18+A20x20 (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面,P6R1、P6R2分别代表第六透镜L6的物侧面和像侧面,P7R1、P7R2分别代表第七透镜L7的物侧面和像侧面,P8R1、P8R2分别代表第八透镜L8的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | |
P1R1 | 1 | 1.305 | ||
P1R2 | 0 | |||
P2R1 | 1 | 0.525 | ||
P2R2 | 3 | 0.345 | 1.245 | 1.865 |
P3R1 | 2 | 0.955 | 1.715 | |
P3R2 | 0 | |||
P4R1 | 1 | 1.655 | ||
P4R2 | 1 | 1.745 | ||
P5R1 | 2 | 0.475 | 1.925 | |
P5R2 | 2 | 0.305 | 2.015 | |
P6R1 | 3 | 1.525 | 2.265 | 2.495 |
P6R2 | 2 | 1.805 | 2.615 | |
P7R1 | 2 | 1.175 | 3.115 | |
P7R2 | 2 | 1.485 | 3.955 | |
P8R1 | 1 | 2.735 | ||
P8R2 | 2 | 0.825 | 4.545 |
【表4】
图2、图3分别示出了波长为656nm、588nm、546nm、486nm、436nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为546nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实例1、2、3、4中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.892mm,全视场像高为6.00mm,对角线方向的视场角为80.00°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
【表8】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | 0 | ||
P1R2 | 0 | ||
P2R1 | 1 | 0.875 | |
P2R2 | 1 | 1.955 | |
P3R1 | 1 | 1.895 | |
P3R2 | 0 | ||
P4R1 | 0 | ||
P4R2 | 1 | 1.925 | |
P5R1 | 1 | 0.825 | |
P5R2 | 2 | 0.555 | 2.165 |
P6R1 | 0 | ||
P6R2 | 1 | 0.315 | |
P7R1 | 1 | 1.975 | |
P7R2 | 1 | 1.835 | |
P8R1 | 0 | ||
P8R2 | 1 | 1.735 |
图6、图7分别示出了波长为656nm、588nm、546nm、486nm、436nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为546nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.889mm,全视场像高为6.00mm,对角线方向的视场角为80.00°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | 反曲点位置4 | |
P1R1 | 1 | 1.315 | |||
P1R2 | 1 | 1.525 | |||
P2R1 | 2 | 0.325 | 1.865 | ||
P2R2 | 2 | 0.325 | 0.945 | ||
P3R1 | 4 | 0.945 | 1.425 | 1.615 | 1.785 |
P3R2 | 0 | ||||
P4R1 | 2 | 1.485 | 1.745 | ||
P4R2 | 2 | 0.135 | 1.595 | ||
P5R1 | 2 | 0.485 | 1.945 | ||
P5R2 | 2 | 0.255 | 2.035 | ||
P6R1 | 3 | 1.535 | 2.245 | 2.465 | |
P6R2 | 2 | 1.775 | 2.525 | ||
P7R1 | 2 | 1.095 | 3.085 | ||
P7R2 | 2 | 1.225 | 3.825 | ||
P8R1 | 2 | 2.675 | 4.005 | ||
P8R2 | 3 | 0.805 | 4.435 | 4.865 |
【表12】
驻点个数 | 驻点位置1 | 驻点位置2 | |
P1R1 | 0 | ||
P1R2 | 1 | 1.935 | |
P2R1 | 1 | 0.545 | |
P2R2 | 2 | 0.615 | 1.225 |
P3R1 | 0 | ||
P3R2 | 0 | ||
P4R1 | 0 | ||
P4R2 | 2 | 0.235 | 1.915 |
P5R1 | 1 | 0.845 | |
P5R2 | 2 | 0.435 | 2.205 |
P6R1 | 0 | ||
P6R2 | 2 | 2.345 | 2.715 |
P7R1 | 1 | 2.095 | |
P7R2 | 1 | 1.965 | |
P8R1 | 0 | ||
P8R2 | 1 | 1.785 |
图10、图11分别示出了波长为656nm、588nm、546nm、486nm、436nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为546nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为3.891mm,全视场像高为6.00mm,对角线方向的视场角为80.00°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
其中,Fno为摄像光学镜头的光圈F数。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (10)
1.一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含八片透镜,所述八片透镜自物侧至像侧依序为:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,以及第八透镜;所述第三透镜具有负屈折力,所述第五透镜具有正屈折力,所述第六透镜具有负屈折力,所述第七透镜具有正屈折力,所述第八透镜具有负屈折力;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,且满足下列关系式:
f1≥0.00mm;
1.60≤f2/f≤3.50;
3.00≤d1/d2≤30.00;
-0.90≤(R1+R2)/(R1-R2)≤-0.20。
2.根据权利要求1所述的摄像光学镜头,其特征在于,所述第八透镜物侧面的曲率半径为R15,所述第八透镜像侧面的曲率半径为R16,且满足下列关系式:
0.30≤(R15+R16)/(R15-R16)≤0.75。
3.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.37≤f1/f≤1.33;
0.05≤d1/TTL≤0.18。
4.根据权利要求1所述的摄像光学镜头,其特征在于,第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.63≤(R3+R4)/(R3-R4)≤3.90;
0.03≤d3/TTL≤0.14。
5.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-2.63≤f3/f≤-0.61;
-0.54≤(R5+R6)/(R5-R6)≤3.49;
0.02≤d5/TTL≤0.06。
6.根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-34.91≤f4/f≤15.45;
-2.27≤(R7+R8)/(R7-R8)≤5.11;
0.02≤d7/TTL≤0.07。
7.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.75≤f5/f≤4.31;
-4.52≤(R9+R10)/(R9-R10)≤-0.89;
0.02≤d9/TTL≤0.07。
8.根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-2.44≤f6/f≤-0.69;
-4.41≤(R11+R12)/(R11-R12)≤-0.56;
0.02≤d11/TTL≤0.07。
9.根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.46≤f7/f≤1.48;
-3.61≤(R13+R14)/(R13-R14)≤-0.90;
0.05≤d13/TTL≤0.19。
10.根据权利要求1所述的摄像光学镜头,其特征在于,所述第八透镜的焦距为f8,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-1.70≤f8/f≤-0.49;
0.03≤d15/TTL≤0.13。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911384404.4A CN111025589B (zh) | 2019-12-28 | 2019-12-28 | 摄像光学镜头 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911384404.4A CN111025589B (zh) | 2019-12-28 | 2019-12-28 | 摄像光学镜头 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111025589A CN111025589A (zh) | 2020-04-17 |
CN111025589B true CN111025589B (zh) | 2021-09-24 |
Family
ID=70194932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911384404.4A Active CN111025589B (zh) | 2019-12-28 | 2019-12-28 | 摄像光学镜头 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111025589B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111736308B (zh) * | 2020-07-27 | 2020-12-22 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN112180542B (zh) * | 2020-09-29 | 2022-07-12 | 常州市瑞泰光电有限公司 | 摄像光学镜头 |
CN112230375B (zh) * | 2020-10-30 | 2021-10-01 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
CN112230377B (zh) * | 2020-10-30 | 2021-09-24 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
CN112230372B (zh) * | 2020-10-30 | 2021-10-01 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
CN112099199B (zh) * | 2020-11-02 | 2021-02-02 | 瑞泰光学(常州)有限公司 | 摄像光学镜头 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017116594A (ja) * | 2015-12-21 | 2017-06-29 | カンタツ株式会社 | 撮像レンズ |
CN206440879U (zh) * | 2015-12-21 | 2017-08-25 | 康达智株式会社 | 摄像镜头 |
CN109752823A (zh) * | 2017-11-08 | 2019-05-14 | 三星电机株式会社 | 光学成像系统 |
CN209102995U (zh) * | 2018-11-16 | 2019-07-12 | 浙江舜宇光学有限公司 | 光学成像透镜组 |
US10514528B2 (en) * | 2015-08-11 | 2019-12-24 | Largan Precision Co., Ltd. | Photographing optical lens system, image capturing unit and electronic device |
-
2019
- 2019-12-28 CN CN201911384404.4A patent/CN111025589B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10514528B2 (en) * | 2015-08-11 | 2019-12-24 | Largan Precision Co., Ltd. | Photographing optical lens system, image capturing unit and electronic device |
JP2017116594A (ja) * | 2015-12-21 | 2017-06-29 | カンタツ株式会社 | 撮像レンズ |
CN206440879U (zh) * | 2015-12-21 | 2017-08-25 | 康达智株式会社 | 摄像镜头 |
CN109752823A (zh) * | 2017-11-08 | 2019-05-14 | 三星电机株式会社 | 光学成像系统 |
CN209102995U (zh) * | 2018-11-16 | 2019-07-12 | 浙江舜宇光学有限公司 | 光学成像透镜组 |
Also Published As
Publication number | Publication date |
---|---|
CN111025589A (zh) | 2020-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111025589B (zh) | 摄像光学镜头 | |
CN110967814B (zh) | 摄像光学镜头 | |
CN111077653B (zh) | 摄像光学镜头 | |
CN111061039B (zh) | 摄像光学镜头 | |
CN110749983B (zh) | 摄像光学镜头 | |
CN111025534B (zh) | 摄像光学镜头 | |
CN111142223A (zh) | 摄像光学镜头 | |
CN111007647A (zh) | 摄像光学镜头 | |
CN112213841B (zh) | 摄像光学镜头 | |
CN111025552B (zh) | 摄像光学镜头 | |
CN111025588B (zh) | 摄像光学镜头 | |
CN111061035B (zh) | 摄像光学镜头 | |
CN110967812B (zh) | 摄像光学镜头 | |
CN111077654B (zh) | 摄像光学镜头 | |
CN111007623B (zh) | 摄像光学镜头 | |
CN110927926B (zh) | 摄像光学镜头 | |
CN111077655B (zh) | 摄像光学镜头 | |
CN111025549B (zh) | 摄像光学镜头 | |
CN111025587B (zh) | 摄像光学镜头 | |
CN110515180B (zh) | 摄像光学镜头 | |
CN111025561A (zh) | 摄像光学镜头 | |
CN111077657B (zh) | 摄像光学镜头 | |
CN111025586B (zh) | 摄像光学镜头 | |
CN111142227B (zh) | 摄像光学镜头 | |
CN111007625B (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 213000 Xinwei 1st Road, Changzhou Comprehensive Bonded Zone, Jiangsu Province Applicant after: Chengrui optics (Changzhou) Co., Ltd Address before: 213000 Xinwei Road, Changzhou Export Processing Zone, Jiangsu Province Applicant before: Ruisheng Communication Technology (Changzhou) Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |