CN110989563A - Fault estimation method for unmanned ships based on iterative adaptive observer - Google Patents
Fault estimation method for unmanned ships based on iterative adaptive observer Download PDFInfo
- Publication number
- CN110989563A CN110989563A CN201911373563.4A CN201911373563A CN110989563A CN 110989563 A CN110989563 A CN 110989563A CN 201911373563 A CN201911373563 A CN 201911373563A CN 110989563 A CN110989563 A CN 110989563A
- Authority
- CN
- China
- Prior art keywords
- fault
- subsystem
- observer
- matrix
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims description 30
- 230000003190 augmentative effect Effects 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 230000002441 reversible effect Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 claims description 2
- 238000013016 damping Methods 0.000 claims description 2
- 238000013178 mathematical model Methods 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 7
- 238000011161 development Methods 0.000 abstract description 4
- 238000003745 diagnosis Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/24—Pc safety
- G05B2219/24065—Real time diagnostics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明涉及一种基于迭代自适应观测器的无人舰艇故障估计方法,属于无人舰艇控制技术领域;包括通过坐标变换将同时含有舵机失效、传感器故障的无人水面艇模型分解为两个子系统,其中子系统1只含有舵机故障,子系统2只含有传感器故障;针对子系统1,设计自适应故障观测器估计舵机效率因子;针对子系统2,设计迭代自适应故障观测器估计传感器故障;建立子系统1与子系统2的误差方程,判断误差系统的稳定性。本发明可实现对无人艇系统故障情况的准确估计,并给出故障发生的时间、发展的过程以及故障的严重程度等信息,便于操作中心对于无人艇安全性的监控;本发明还可对无人艇的舵机失效情况与传感器故障同时进行估计,减低了容错设计的成本。
The invention relates to an iterative adaptive observer-based fault estimation method for an unmanned ship, belonging to the technical field of unmanned ship control. system, in which subsystem 1 only contains servo faults, and subsystem 2 only contains sensor faults; for subsystem 1, an adaptive fault observer is designed to estimate the efficiency factor of the steering gear; for subsystem 2, an iterative adaptive fault observer is designed to estimate Sensor failure; establish the error equation of subsystem 1 and subsystem 2 to judge the stability of the error system. The invention can realize the accurate estimation of the failure of the unmanned boat system, and provide information such as the time of occurrence of the failure, the development process and the severity of the failure, which is convenient for the operation center to monitor the safety of the unmanned boat; the invention can also Estimate the failure of the steering gear and the sensor of the unmanned boat at the same time, which reduces the cost of fault-tolerant design.
Description
技术领域technical field
本发明涉及一种基于迭代自适应观测器的无人舰艇故障估计方法,属于无人舰艇控制技术领域。The invention relates to an unmanned ship fault estimation method based on an iterative adaptive observer, and belongs to the technical field of unmanned ship control.
背景技术Background technique
无人舰艇作为一种工作在复杂海洋环境下的自主运动平台,由于其具备操作无人化、智能化等特点,且不会产生人员伤亡问题,因此能够长期在高危海域执行任务。同时,无人舰艇结构小而灵活、隐蔽性很强,通过装载不同任务需求的多元化装备,可以在领海巡航、情报侦搜、海洋资源勘探等领域发挥重要的作用。As an autonomous motion platform working in a complex marine environment, unmanned ships can perform tasks in high-risk sea areas for a long time due to their unmanned and intelligent operation and no casualties. At the same time, unmanned ships are small, flexible, and highly concealed. By loading diversified equipment for different mission requirements, they can play an important role in territorial sea cruises, intelligence reconnaissance, and marine resource exploration.
另一方面,由于海洋环境较为复杂,气候条件恶劣,无人水面舰艇在长期执行科考与勘探任务时,舵机、传感器等各类器件不可避免地会发生故障,这不仅会引起无人艇系统性能的下降,甚至会损坏船体上搭载的高精度探测设备。因此,通过故障估计技术实时地对无人艇故障的幅值、频率进行直观的展示,并对无人艇的健康状况进行有效监测,对于提高无人艇系统的安全性与可靠性有着重要的意义。On the other hand, due to the complex marine environment and harsh climatic conditions, when unmanned surface ships perform scientific research and exploration tasks for a long time, various components such as steering gears and sensors will inevitably fail, which will not only cause unmanned ships. The degradation of system performance can even damage the high-precision detection equipment carried on the hull. Therefore, it is very important to visually display the amplitude and frequency of unmanned boat faults in real time through fault estimation technology, and to effectively monitor the health status of unmanned boats, which is of great importance to improve the safety and reliability of unmanned boat systems. significance.
无人舰艇的故障诊断与容错设计问题一直以来是控制领域的研究热点。然而,现有方法目前主要存在以下两个问题:首先,已有的水面艇故障诊断方法往往通过故障滤波器产生的残差评价函数对是否有故障进行定性判断,但并不能够提供故障的准确定量信息,如故障幅值、形状等,使得操作中心无法判断出无人艇系统故障发生的时间、发展的过程以及故障的严重程度,这对于后续故障的补偿以及容错策略的设计带来一定的困难。其次,目前无人艇故障诊断方法往往假设舰艇上仅存在舵机故障,或仅针对传感器故障进行诊断。而实际运行过程中发生故障的部件并不确定,因此无人艇上往往需要设计多个诊断模块,增加了容错设计的成本。The problem of fault diagnosis and fault-tolerant design of unmanned ships has always been a research hotspot in the field of control. However, the existing methods mainly have the following two problems: First, the existing surface craft fault diagnosis methods often use the residual evaluation function generated by the fault filter to qualitatively judge whether there is a fault, but it cannot provide accurate fault diagnosis. Quantitative information, such as fault amplitude, shape, etc., makes it impossible for the operation center to judge the time, development process and severity of the failure of the unmanned boat system, which brings certain benefits to the compensation of subsequent failures and the design of fault tolerance strategies. difficulty. Secondly, the current UAV fault diagnosis methods often assume that there is only a steering gear fault on the ship, or only diagnose sensor faults. However, the components that fail during actual operation are uncertain, so multiple diagnostic modules often need to be designed on unmanned boats, which increases the cost of fault-tolerant design.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了解决现有无人艇故障诊断技术无法提供故障的定量信息且需要多组模块对舰艇进行故障监测的问题而提供一种基于迭代自适应观测器的无人舰艇故障估计方法。The purpose of the present invention is to provide an iterative adaptive observer-based unmanned ship fault estimation method in order to solve the problem that the existing unmanned ship fault diagnosis technology cannot provide quantitative information of faults and requires multiple groups of modules to monitor the ship's faults. .
本发明的目的是这样实现的:一种基于迭代自适应观测器的无人舰艇故障估计方法,具体包括以下步骤:The purpose of the present invention is to achieve this: an iterative adaptive observer-based fault estimation method for unmanned ships, which specifically includes the following steps:
步骤1、通过坐标变换将同时含有舵机失效、传感器故障的无人水面艇模型分解为两个子系统,其中子系统1只含有舵机故障,子系统2只含有传感器故障;
步骤2、针对步骤一中的子系统1,设计自适应故障观测器估计舵机效率因子;Step 2. For
步骤3、针对步骤一中的子系统2,设计迭代自适应故障观测器估计传感器故障;Step 3. For subsystem 2 in
步骤4、建立子系统1与子系统2的误差方程,判断误差系统的稳定性。Step 4, establish the error equation of
本发明还包括这样一些结构特征:The present invention also includes such structural features:
1、所述步骤1具体包括以下步骤:1. The
步骤1.1、建立带有舵机失效与传感器故障的无人水面艇数学模型:Step 1.1. Establish a mathematical model of the unmanned surface vehicle with steering gear failure and sensor failure:
yo(t)=Coxo(t)+Dosfs(t)y o (t)=C o x o (t)+D os f s (t)
其中,状态向量xo(t)=[v(t)r(t)ψ(t)p(t)φ(t)]T,干扰向量d(t)=[wψwφ]T,控制输入u(t)=δ(t),ρ(t)是未知的执行器效率因子,yo(t)∈Rp是量测输出信号,fs(t)=[fs1,fs2,...,fsq]T∈Rq是传感器故障向量;变量v(t),ψ(t),φ(t),r(t)和p(t)分别表示舵产生的无人艇横移速度,航向角,横摇角,平摆速度和横摇速度;δ(t)表示舵角;wφ(t)和wψ(t)表示海浪引起的横摇角和航向角的扰动;Tv和Tr是时间常数;Kvr,Kdv,Kdv,Kdr,Kdp,Kvp是已知的增益;wn和ζ分别表示无阻尼固有频率和阻尼比,系统矩阵表示为:Among them, the state vector x o (t)=[v(t)r(t)ψ(t)p(t)φ(t)] T , the disturbance vector d(t)=[w ψ w φ ] T , the control Input u(t)=δ(t), ρ(t) is the unknown actuator efficiency factor, y o (t)∈R p is the measured output signal, f s (t)=[f s1 ,f s2 , ...,f sq ] T ∈ R q is the sensor fault vector; the variables v(t), ψ(t), φ(t), r(t) and p(t) represent the rudder-generated lateral moving speed, heading angle, roll angle, yaw speed and roll speed; δ(t) represents the rudder angle; w φ (t) and w ψ (t) represent the disturbance of roll angle and heading angle caused by sea waves; T v and T r are time constants; K vr , K dv , K dv , K dr , K dp , K vp are known gains; wn and ζ represent the undamped natural frequency and damping ratio, respectively, and the system matrix is expressed as :
Co=I5 Co=I 5
其他模型参数、干扰与故障需满足:Dos∈R5×q为传感器故障系数矩阵,满足于q≤5;Other model parameters, disturbances and faults must satisfy: Do os ∈ R 5×q is the sensor fault coefficient matrix, which satisfies q≤5;
舵机的效率因子ρ(t)满足于0<ρ(t)≤ρu≤1;干扰d(t)满足于||d(t)||≤d*;传感器故障fsv(t)满足于|fsv(t)|≤suv,d*,suv,sdv为未知的正数;The efficiency factor ρ(t) of the steering gear satisfies 0<ρ(t)≤ρ u ≤1; the disturbance d(t) satisfies ||d(t)||≤d*; the sensor fault f sv (t) satisfies For |f sv (t)|≤s uv , d*, s uv , s dv are unknown positive numbers;
步骤1.2、对于原始系统1,求取可逆阵M∈R5×5和N∈R5×5,满足:Step 1.2. For the
其中,A1∈R3×3,G1∈R3×1,G2∈R3×2,C1∈R3×3是可逆的,D∈R2×q;Among them, A 1 ∈ R 3×3 , G 1 ∈ R 3×1 , G 2 ∈ R 3×2 , C 1 ∈ R 3×3 are reversible, D∈R 2×q ;
步骤1.3、引入线性变换x(t)=Mxo(t),y(t)=Nyo(t), x1(t)∈R3,y1(t)∈R3,根据步骤1.2中公式,可以分别得到只含有舵机故障与传感器故障的两个子系统:Step 1.3. Introduce linear transformation x(t)=Mx o (t), y(t)=Ny o (t), x 1 (t)∈R 3 , y 1 (t)∈R 3 , according to the formula in step 1.2, two subsystems containing only servo faults and sensor faults can be obtained respectively:
步骤1.4、对步骤1.3中的传感器故障公式进行增广处理过程为:Step 1.4. The augmentation processing process for the sensor fault formula in step 1.3 is as follows:
首先,定义一个可测量的输出变量 First, define a measurable output variable
然后,构造增广向量给定则步骤1.4中舵机故障公式可被重写为:Then, construct the augmented vector given Then the servo fault formula in step 1.4 can be rewritten as:
子系统1: Subsystem 1:
最后,根据步骤1.3中的传感器故障公式和步骤1.4中第一个公式,可得到增广后的子系统2:Finally, according to the sensor failure formula in step 1.3 and the first formula in step 1.4, the augmented subsystem 2 can be obtained:
子系统2:其中,ξ(t)∈R2是子系统2的量测输出。Subsystem 2: where ξ(t)∈R 2 is the measurement output of subsystem 2.
2、所述步骤2具体包括:对于步骤1.4中子系统公式中的子系统1设计自适应观测器为:2. The step 2 specifically includes: designing an adaptive observer for
其中,是x1(t)的估计值;是在第k个迭代观测器中的估计值;是执行器效率因子ρ(t)的估计值;Af∈R3×3是待设计的矩阵参数,将在步骤4.2矩阵Af求解公式中给出;观测器输入ud(t)设计为:in, is an estimate of x 1 (t); Yes the estimated value in the k-th iteration observer; is the estimated value of the actuator efficiency factor ρ(t); A f ∈ R 3×3 is the matrix parameter to be designed, which will be given in the solution formula of matrix A f in step 4.2; the observer input u d (t) is designed as :
其中,是d*的自适应估计;P∈R3×3是待设计的正定对称矩阵,将在步骤4.2第一个公式中给出;b0和b1是给定的正数;in, is the adaptive estimate of d * ; P ∈ R 3×3 is the positive definite symmetric matrix to be designed, which will be given in the first formula of step 4.2; b 0 and b 1 are given positive numbers;
和的自适应律设计为: and The adaptive law is designed as:
其中,c1,cd1,cd2是给定的正数。where c 1 , c d1 , and c d2 are given positive numbers.
3、所述步骤3具体包括:对于步骤1.4中子系统2公式中的子系统2设计迭代自适应观测器为:3. The step 3 specifically includes: designing an iterative adaptive observer for subsystem 2 in the formula of subsystem 2 in step 1.4 is:
其中,是的第k个迭代观测器中的估计值。θ是迭代次数最大值。Lp∈R4×2是观测器增益满足于是一个稳定的矩阵;in, Yes The estimated value in the k-th iteration observer of . θ is the maximum number of iterations. L p ∈ R 4×2 is the observer gain satisfying is a stable matrix;
是传感器故障的估计值,其迭代自适应率为:k=1时: is the estimated value of sensor failure, and its iterative adaptation rate is: when k=1:
k≥2时:When k≥2:
其中,csv是给定的正数;Π1v是矩阵Π1∈Rq×2的第v行,Π2v是矩阵Π2∈Rq×2的第v行,v=1,2,...,q,矩阵Π1和Π2通过步骤4.2第一个公式计算得到。where c sv is a given positive number; Π 1v is the vth row of the matrix Π 1 ∈ R q×2 , Π 2v is the vth row of the matrix Π 2 ∈ R q×2 , v=1,2,. ..,q, the matrices Π 1 and Π 2 are calculated by the first formula in step 4.2.
4、所述步骤4判断误差系统的稳定性具体包括以下步骤:4. The stability of the step 4 judgment error system specifically includes the following steps:
步骤4.1、定义估计误差为:Step 4.1. Define the estimation error as:
建立误差系统动态方程为:The dynamic equation of the error system is established as:
步骤4.2、根据以下条件判断误差上式的稳定性:Step 4.2. Judge the stability of the above formula according to the following conditions:
如果存在正值常量δs,γ,正定矩阵P∈R3×3,Q∈R4×4,矩阵Π1∈Rq×2,Π2∈Rq×2,满足:If there are positive constants δ s , γ, positive definite matrices P∈R 3×3 , Q∈R 4×4 , the matrix Π 1 ∈ R q×2 , Π 2 ∈ R q×2 , satisfy:
其中in
则误差系统动态方程为有界稳定,参数矩阵P∈R3×3,矩阵Π1∈Rq×2,Π2∈Rq×2可通过步骤4.2第一个公式求解得到,矩阵Af可求解为:Then the dynamic equation of the error system is bounded and stable, the parameter matrix P∈R 3×3 , the matrix Π 1 ∈R q×2 , Π 2 ∈R q×2 can be obtained by the first formula in step 4.2, the matrix A f can be obtained by solving Solve as:
在步骤2、步骤3详细步骤的公式中的其他自适应参数c1,cd1,cd2,cs1,b0,b1为给定的自由正数,可根据观测器效果进行调节。Other adaptive parameters c 1 , c d1 , c d2 , c s1 , b 0 , b 1 in the formulas of the detailed steps of step 2 and step 3 are given free positive numbers, which can be adjusted according to the effect of the observer.
与现有技术相比,本发明的有益效果是:本发明可以实时提供无人艇故障的幅值、形状等定量信息,并对故障的发展过程以及故障的严重程度进行直观的展示,方便控制中心对于无人艇安全性的监控,提高无人艇执行任务过程中的可靠性。本发明还可以对无人艇舵机的失效情况、传感器故障进行统一的监控,减少了无人艇上故障诊断模块的搭建,有效降低了容错设计的成本。Compared with the prior art, the beneficial effects of the present invention are: the present invention can provide quantitative information such as the amplitude and shape of the unmanned boat fault in real time, and intuitively display the development process of the fault and the severity of the fault, which is convenient for control. The center monitors the safety of unmanned boats to improve the reliability of unmanned boats in the process of performing tasks. The present invention can also perform unified monitoring on the failure situation of the steering gear of the unmanned boat and the fault of the sensor, which reduces the construction of the fault diagnosis module on the unmanned boat, and effectively reduces the cost of fault-tolerant design.
附图说明Description of drawings
图1是本发明的流程图;Fig. 1 is the flow chart of the present invention;
图2是本发明的系统框图;Fig. 2 is the system block diagram of the present invention;
图3是仿真示例中的舵机真实效率因子(实线)与舵机效率因子估计值(虚线)示意图;3 is a schematic diagram of the actual efficiency factor (solid line) of the steering gear and the estimated value (dotted line) of the steering gear efficiency factor in the simulation example;
图4是仿真示例中的真实传感器故障(实线)与传感器故障估计值(虚线)示意图。Figure 4 is a schematic diagram of the real sensor failure (solid line) and the estimated sensor failure (dashed line) in the simulation example.
具体实施方式Detailed ways
下面结合附图与具体实施方式对本发明作进一步详细描述。The present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
本发明提供了一种基于迭代自适应观测器的无人水面艇故障估计方法,如图1所示,具体实施步骤如下:The present invention provides a fault estimation method for an unmanned surface vessel based on an iterative adaptive observer, as shown in FIG. 1 , and the specific implementation steps are as follows:
步骤一、通过坐标变换将同时含有舵机失效、传感器故障的无人水面艇模型分解为两个子系统,其中子系统1只含有舵机故障,子系统2只含有传感器故障,所述步骤一包括:Step 1: Decompose the unmanned surface vehicle model containing both the steering gear failure and the sensor failure into two subsystems through coordinate transformation, wherein the
步骤A、根据文献《Integral-Based Event-Triggered Fault Detection FilterDesign for Unmanned Surface Vehicles》,建立带有舵机失效与传感器故障的无人水面艇数学模型为:Step A. According to the document "Integral-Based Event-Triggered Fault Detection Filter Design for Unmanned Surface Vehicles", the mathematical model of the unmanned surface vehicle with steering gear failure and sensor failure is established as:
yo(t)=Coxo(t)+Dosfs(t) (1)y o (t)=C o x o (t)+D os f s (t) (1)
其中,状态向量xo(t)=[v(t)r(t)ψ(t)p(t)φ(t)]T,干扰向量d(t)=[wψwφ]T,控制输入u(t)=δ(t),ρ(t)是未知的执行器效率因子,yo(t)∈Rp是量测输出信号,fs(t)=[fs1,fs2,...,fsq]T∈Rq是传感器故障向量;变量v(t),ψ(t),φ(t),r(t)和p(t)分别表示舵产生的无人艇横移速度,航向角,横摇角,平摆速度和横摇速度;δ(t)表示舵角;wφ(t)和wψ(t)表示海浪引起的横摇角和航向角的扰动;Tv和Tr是时间常数;Kvr,Kdv,Kdv,Kdr,Kdp,Kvp是已知的增益;wn和ζ分别表示无阻尼固有频率和阻尼比,系统矩阵表示为:Among them, the state vector x o (t)=[v(t)r(t)ψ(t)p(t)φ(t)] T , the disturbance vector d(t)=[w ψ w φ ] T , the control Input u(t)=δ(t), ρ(t) is the unknown actuator efficiency factor, y o (t)∈R p is the measured output signal, f s (t)=[f s1 ,f s2 , ...,f sq ] T ∈ R q is the sensor fault vector; the variables v(t), ψ(t), φ(t), r(t) and p(t) represent the rudder-generated lateral moving speed, heading angle, roll angle, yaw speed and roll speed; δ(t) represents the rudder angle; w φ (t) and w ψ (t) represent the disturbance of roll angle and heading angle caused by sea waves; T v and T r are time constants; K vr , K dv , K dv , K dr , K dp , K vp are known gains; wn and ζ represent the undamped natural frequency and damping ratio, respectively, and the system matrix is expressed as :
给定参数:Kvr=-0.46m/s,ωn=0.63rad/s,ζ=0.0936,Kdr=-0.0211,Tr=1.6667,Tv=10,Kdv=0.0780,Kvp=1.6380,Kdp=-0.0852,可以得到参数矩阵:Given parameters: K vr = -0.46m/s, ω n =0.63rad/s, ζ = 0.0936, K dr = -0.0211, T r =1.6667, T v =10, K dv =0.0780, K vp =1.6380 , K dp =-0.0852, the parameter matrix can be obtained:
Bo=[0.0078 -0.0126 0 -0.0338 0]T,B o = [0.0078 -0.0126 0 -0.0338 0] T ,
Co=I5 C o =I 5
传感器故障系数矩阵假设为Dos=[0 0 1 0 1]T。The sensor failure coefficient matrix is assumed to be Dos = [0 0 1 0 1] T .
步骤B、对于原始系统(1),求得可逆阵Step B. For the original system (1), obtain the invertible matrix
和满足于: and satisfied with:
步骤C、根据式(3),引入线性变换x(t)=Mxo(t),y(t)=Nyo(t),其中x1(t)∈R3,y1(t)∈R3,分别只含有舵机故障与传感器故障的两个子系统可以表示为:Step C, according to formula (3), introduce linear transformation x(t)=Mx o (t), y(t)=Ny o (t), wherein x 1 (t)∈R 3 , y 1 (t)∈R 3 , the two subsystems containing only servo fault and sensor fault respectively can be expressed as:
步骤D、对式(5)中的传感器故障进行增广处理过程为:Step D, the process of augmenting the sensor fault in the formula (5) is:
首先,定义一个可测量的输出变量 First, define a measurable output variable
然后,构造增广向量给定则式(4)可被重写为:Then, construct the augmented vector given The formula (4) can be rewritten as:
子系统1: Subsystem 1:
最后,根据式(5)和式(6),可得到增广后的子系统2:Finally, according to equations (5) and (6), the augmented subsystem 2 can be obtained:
子系统2:其中,ξ(t)∈R2是子系统2的量测输出。Subsystem 2: where ξ(t)∈R 2 is the measurement output of subsystem 2.
步骤二、针对步骤一中的子系统1,设计自适应故障观测器估计舵机效率因子,所述步骤二包括:Step 2: Design an adaptive fault observer to estimate the efficiency factor of the steering gear for the
步骤E、对于式(7)中的子系统1设计自适应观测器为:Step E. Design an adaptive observer for
其中,是x1(t)的估计值;是在第k个迭代观测器中的估计值;是执行器效率因子ρ(t)的估计值;Af∈R3×3是待设计的矩阵参数,将在式(20)中给出;观测器输入ud(t)设计为:in, is an estimate of x 1 (t); Yes the estimated value in the k-th iteration observer; is the estimated value of the actuator efficiency factor ρ(t); A f ∈ R 3×3 is the matrix parameter to be designed, which will be given in equation (20); the observer input u d (t) is designed as:
其中,是d*的自适应估计;P∈R3×3是待设计的正定对称矩阵,将在(18)中给出;b0和b1是给定的正数。in, is the adaptive estimate of d * ; P ∈ R 3×3 is the positive definite symmetric matrix to be designed, which will be given in (18); b 0 and b 1 are given positive numbers.
和的自适应律设计如下: and The adaptive law is designed as follows:
其中,c1,cd1,cd2是给定的正数。where c 1 , c d1 , and c d2 are given positive numbers.
步骤三、针对步骤一中的子系统2,设计迭代自适应故障观测器估计传感器故障,所述步骤三包括:Step 3: Design an iterative adaptive fault observer to estimate sensor faults for subsystem 2 in
步骤F、对于式(8)中的子系统2设计迭代自适应观测器为:Step F. For subsystem 2 in equation (8), design an iterative adaptive observer as follows:
其中,是的第k个迭代观测器中的估计值。θ是迭代次数最大值。是观测器增益满足于是一个稳定的矩阵;in, Yes The estimated value in the k-th iteration observer of . θ is the maximum number of iterations. is the observer gain satisfying is a stable matrix;
是传感器故障的估计值,其迭代自适应率为:k=1时: is the estimated value of sensor failure, and its iterative adaptation rate is: when k=1:
k≥2时:When k≥2:
其中,csv是一个正数;Π1v是矩阵Π1∈Rq×2的第v行,Π2v是矩阵Π2∈Rq×2的第v行,v=1,2,...,q,矩阵Π1和Π2通过式(18)计算得到。where c sv is a positive number; Π 1v is the vth row of the matrix Π 1 ∈ R q×2 , Π 2v is the vth row of the matrix Π 2 ∈ R q×2 , v=1,2,... , q, matrices Π 1 and Π 2 are calculated by formula (18).
步骤四、建立子系统1与子系统2的误差方程,并给出误差系统的稳定性条件,所述步骤四包括:Step 4: Establish the error equations of
首先,定义估计误差为:First, define the estimation error as:
建立误差系统动态方程为:The dynamic equation of the error system is established as:
根据如下条件判断误差方程(17)的稳定性:The stability of the error equation (17) is judged according to the following conditions:
如果存在正值常量δs,γ,正定矩阵P∈R3×3,Q∈R4×4,矩阵Π1∈Rq×2,Π2∈Rq×2,满足于If there are positive constants δ s , γ, positive definite matrices P∈R 3×3 , Q∈R 4×4 , the matrix Π 1 ∈ R q×2 , Π 2 ∈ R q×2 , satisfy
其中in
则动态误差(17)为有界稳定,参数矩阵P∈R3×3,Π1∈Rq×2,Π2∈Rq×2可通过(18)求解得到,各参数矩阵求解为:Then the dynamic error (17) is bounded and stable, the parameter matrix P∈R 3×3 , Π 1 ∈ R q×2 , Π 2 ∈ R q×2 can be obtained by solving (18), and each parameter matrix is solved as:
在式(10)-(12),(14)-(15)中的其他自适应参数给定为c1=1000,cd1=1,cd2=1,cs1=2.1,b0=0.01,b1=0.01。Other adaptive parameters in equations (10)-(12), (14)-(15) are given as c 1 =1000, c d1 =1, c d2 =1, c s1 =2.1, b 0 =0.01 , b 1 =0.01.
通过上述设计过程,基于自适应观测器(9)和更新率(11),我们可以得到舵机的效率因子ρ(t)的估计值同时根据迭代自适应观测器(13)与迭代更新率(14)-(15),我们可以获得第k次迭代过程的传感器故障fs(t)的估计值 Through the above design process, based on the adaptive observer (9) and the update rate (11), we can obtain the estimated value of the efficiency factor ρ(t) of the steering gear At the same time, according to the iterative adaptive observer (13) and the iterative update rate (14)-(15), we can obtain the estimated value of the sensor failure f s (t) of the k-th iteration process
为了检验本发明的效果,采用以下仿真示例来验证。假设舵机的失效情况与传感器故障为:In order to check the effect of the present invention, the following simulation examples are used for verification. Suppose the failure of the steering gear and the sensor failure are:
ρ(t)=0.2e-0.2t+0.35ρ(t)=0.2e -0.2t +0.35
海浪引起的航向角的扰动wψ(t)为[-1,1]中的随机值,海浪引起的横摇角干扰wφ(t)=0.5sin(1.2t),控制输入u(t)=0.1sin(t)。The disturbance w ψ (t) of the heading angle caused by the sea wave is a random value in [-1,1], the disturbance of the roll angle caused by the sea wave w φ (t)=0.5sin(1.2t), the control input u(t) =0.1 sin(t).
舵机失效情况和观测器估计结果如图3所示,其中实线为舵机效率因子的真实曲线,虚线为观测器获得的舵机效率因子估计值。传感器故障和观测器估计结果如图4所示,其中实线为传感器故障的真实曲线,虚线为观测器获得的传感器故障的估计值。The failure situation of the steering gear and the estimation results of the observer are shown in Figure 3, where the solid line is the real curve of the efficiency factor of the steering gear, and the dotted line is the estimated value of the efficiency factor of the steering gear obtained by the observer. The sensor failure and observer estimation results are shown in Figure 4, where the solid line is the real curve of the sensor failure, and the dashed line is the estimated value of the sensor failure obtained by the observer.
从仿真结果可以得出,本发明可以实现在对于无人水面艇舵机效率因子和传感器故障的同时估计,可以快速、准确的对故障的发生情况进行定量描述,便于操控中心对于无人艇安全性的监控。It can be concluded from the simulation results that the present invention can estimate the efficiency factor of the steering gear of the unmanned surface craft and the fault of the sensor at the same time, and can quantitatively describe the occurrence of the fault quickly and accurately, which is convenient for the control center to ensure the safety of the unmanned craft. Sexual surveillance.
本发明的具体实施方式中未涉及的说明属于本领域的公知技术,可参考公知技术加以实施。本发明并不局限于此具体实施方式,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。The descriptions not involved in the specific embodiments of the present invention belong to the known technology in the art, and can be implemented with reference to the known technology. The present invention is not limited to this specific embodiment, and any modification or equivalent replacement of the technical solution of the present invention without departing from the spirit and scope of the technical solution of the present invention shall be included in the protection scope of the present invention.
综上,本发明公开了一种基于迭代自适应观测器的无人水面艇故障估计方法,其步骤如下:步骤一、将同时含有舵机失效、传感器故障的无人水面艇模型分解为两个子系统;步骤二、设计自适应故障观测器估计舵机效率因子;步骤三、设计迭代自适应故障观测器估计传感器故障;步骤四、判断误差系统的稳定性。本发明可以实现对无人艇系统故障情况的准确估计,并给出故障发生的时间、发展的过程以及故障的严重程度等信息,便于操作中心对于无人艇安全性的监控;本发明可以对无人艇的舵机失效情况与传感器故障同时进行估计,避免了无人艇上多个故障诊断模块的搭建,减低了容错设计的成本。To sum up, the present invention discloses an iterative adaptive observer-based fault estimation method for an unmanned surface vehicle. system; step 2, designing an adaptive fault observer to estimate the efficiency factor of the steering gear; step 3, designing an iterative adaptive fault observer to estimate the sensor fault; and step 4, judging the stability of the error system. The invention can realize the accurate estimation of the failure of the unmanned boat system, and provide information such as the time of occurrence of the failure, the development process and the severity of the failure, which is convenient for the operation center to monitor the safety of the unmanned boat; The failure of the steering gear of the unmanned boat is estimated at the same time as the sensor fault, which avoids the construction of multiple fault diagnosis modules on the unmanned boat, and reduces the cost of fault-tolerant design.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911373563.4A CN110989563B (en) | 2019-12-27 | 2019-12-27 | Unmanned Ship Fault Estimation Method Based on Iterative Adaptive Observer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911373563.4A CN110989563B (en) | 2019-12-27 | 2019-12-27 | Unmanned Ship Fault Estimation Method Based on Iterative Adaptive Observer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110989563A true CN110989563A (en) | 2020-04-10 |
CN110989563B CN110989563B (en) | 2023-08-15 |
Family
ID=70077881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911373563.4A Active CN110989563B (en) | 2019-12-27 | 2019-12-27 | Unmanned Ship Fault Estimation Method Based on Iterative Adaptive Observer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110989563B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111399384A (en) * | 2020-04-27 | 2020-07-10 | 哈尔滨工程大学 | Remote control unmanned ship course fault-tolerant control method based on dynamic quantizer |
CN111610779A (en) * | 2020-07-02 | 2020-09-01 | 青岛科技大学 | A Data-Driven Identification Technique for Actuator Failure Factors in Nonlinear Systems |
CN111619761A (en) * | 2020-05-10 | 2020-09-04 | 哈尔滨工程大学 | Unmanned ship state estimation observer design method |
CN113960981A (en) * | 2021-10-21 | 2022-01-21 | 杭州电子科技大学 | An active fault diagnosis method for unmanned ships |
CN114296469A (en) * | 2022-01-17 | 2022-04-08 | 上海大学 | Reconfigurable fault-tolerant control method of unmanned ship based on double-parameter adaptive fault identification |
CN118244770A (en) * | 2024-05-28 | 2024-06-25 | 山东科技大学 | Repeated learning composite disturbance-resistant error-tolerant control method for unmanned ship |
CN118348897A (en) * | 2024-06-17 | 2024-07-16 | 山东科技大学 | A sensor fault-tolerant non-disturbance control method for switching unmanned boats |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103105850A (en) * | 2013-01-30 | 2013-05-15 | 南京航空航天大学 | Near spacecraft fault diagnosis and fault-tolerant control method |
CN103135553A (en) * | 2013-01-21 | 2013-06-05 | 南京航空航天大学 | Four-rotor aircraft fault-tolerant control method |
CN108445760A (en) * | 2018-03-14 | 2018-08-24 | 中南大学 | The quadrotor drone fault tolerant control method of observer is estimated based on adaptive failure |
CN108628167A (en) * | 2018-05-08 | 2018-10-09 | 南京邮电大学 | The fault tolerant control method of flight control system based on self-adjusted block technology |
CN109116737A (en) * | 2018-09-19 | 2019-01-01 | 南京航空航天大学 | The assessment of multi-agent system fail high threshold and fault-tolerant consistency control algolithm based on observer |
CN109343513A (en) * | 2018-11-20 | 2019-02-15 | 哈尔滨工业大学 | Event-driven synchronization fault detection and control method for surface unmanned vehicle |
CN110554606A (en) * | 2019-09-04 | 2019-12-10 | 南京航空航天大学 | self-adaptive fault-tolerant control method for hypersonic aircraft |
-
2019
- 2019-12-27 CN CN201911373563.4A patent/CN110989563B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103135553A (en) * | 2013-01-21 | 2013-06-05 | 南京航空航天大学 | Four-rotor aircraft fault-tolerant control method |
CN103105850A (en) * | 2013-01-30 | 2013-05-15 | 南京航空航天大学 | Near spacecraft fault diagnosis and fault-tolerant control method |
CN108445760A (en) * | 2018-03-14 | 2018-08-24 | 中南大学 | The quadrotor drone fault tolerant control method of observer is estimated based on adaptive failure |
CN108628167A (en) * | 2018-05-08 | 2018-10-09 | 南京邮电大学 | The fault tolerant control method of flight control system based on self-adjusted block technology |
CN109116737A (en) * | 2018-09-19 | 2019-01-01 | 南京航空航天大学 | The assessment of multi-agent system fail high threshold and fault-tolerant consistency control algolithm based on observer |
CN109343513A (en) * | 2018-11-20 | 2019-02-15 | 哈尔滨工业大学 | Event-driven synchronization fault detection and control method for surface unmanned vehicle |
CN110554606A (en) * | 2019-09-04 | 2019-12-10 | 南京航空航天大学 | self-adaptive fault-tolerant control method for hypersonic aircraft |
Non-Patent Citations (6)
Title |
---|
BIN GUO等: "Adaptive fast sliding mode fault tolerant control integrated with disturbance observer for spacecraft attitude stabilization system", 《ISA TRANSACTIONS》 * |
LIHENG CHEN等: "Fault Estimation Observer Design for Descriptor Switched Systems With Actuator and Sensor Failures", 《IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I》 * |
LIHENG CHEN等: "Fault reconstruction for Markovian jump systems with iterative adaptive observer", 《AUTOMATICA》 * |
SHASHA FU等: "Adaptive Fuzzy Observer Design for a Class of Switched Nonlinear Systems With Actuator and Sensor Faults", 《IEEE TRANSACTIONS ON FUZZY SYSTEMS》 * |
YU-LONG WANG等: "Network-Based Fault Detection Filter and Controller Coordinated Design for Unmanned Surface Vehicles in Network Environments", 《IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS》 * |
陈力恒: "动态系统故障估计观测器设计与容错控制", 《中国优秀博硕士学位论文全文数据库(博士)信息科技辑》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111399384A (en) * | 2020-04-27 | 2020-07-10 | 哈尔滨工程大学 | Remote control unmanned ship course fault-tolerant control method based on dynamic quantizer |
CN111399384B (en) * | 2020-04-27 | 2022-09-27 | 哈尔滨工程大学 | A fault-tolerant control method for remote control unmanned boat course based on dynamic quantizer |
CN111619761A (en) * | 2020-05-10 | 2020-09-04 | 哈尔滨工程大学 | Unmanned ship state estimation observer design method |
CN111610779A (en) * | 2020-07-02 | 2020-09-01 | 青岛科技大学 | A Data-Driven Identification Technique for Actuator Failure Factors in Nonlinear Systems |
CN113960981A (en) * | 2021-10-21 | 2022-01-21 | 杭州电子科技大学 | An active fault diagnosis method for unmanned ships |
CN113960981B (en) * | 2021-10-21 | 2024-06-11 | 杭州电子科技大学 | Active fault diagnosis method for unmanned ship |
CN114296469A (en) * | 2022-01-17 | 2022-04-08 | 上海大学 | Reconfigurable fault-tolerant control method of unmanned ship based on double-parameter adaptive fault identification |
CN114296469B (en) * | 2022-01-17 | 2023-08-11 | 上海大学 | Unmanned ship reconfigurable fault-tolerant control method based on double-parameter self-adaptive fault identification |
CN118244770A (en) * | 2024-05-28 | 2024-06-25 | 山东科技大学 | Repeated learning composite disturbance-resistant error-tolerant control method for unmanned ship |
CN118244770B (en) * | 2024-05-28 | 2024-08-02 | 山东科技大学 | Repeated learning composite disturbance-resistant error-tolerant control method for unmanned ship |
CN118348897A (en) * | 2024-06-17 | 2024-07-16 | 山东科技大学 | A sensor fault-tolerant non-disturbance control method for switching unmanned boats |
CN118348897B (en) * | 2024-06-17 | 2024-09-03 | 山东科技大学 | Sensor fault tolerance undisturbed control method for switching unmanned ship |
Also Published As
Publication number | Publication date |
---|---|
CN110989563B (en) | 2023-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110989563B (en) | Unmanned Ship Fault Estimation Method Based on Iterative Adaptive Observer | |
Chen et al. | Tracking control of surface vessels via fault-tolerant adaptive backstepping interval type-2 fuzzy control | |
CN110333661B (en) | UMV adaptive sliding mode fault-tolerant control method considering quantization and state time lag | |
Park et al. | Robust fault–tolerant tracking with predefined performance for underactuated surface vessels | |
Banazadeh et al. | Frequency domain identification of the Nomoto model to facilitate Kalman filter estimation and PID heading control of a patrol vessel | |
CN110703742B (en) | A Fault Detection Method for Unmanned Surface Vehicle System Based on Event-Driven and Output Quantification | |
CN108197350B (en) | Unmanned ship speed and uncertainty estimation system and design method | |
CN110554606B (en) | Self-adaptive fault-tolerant control method for hypersonic aircraft | |
CN110879535B (en) | Sliding mode fault-tolerant control method of T-S fuzzy UMV | |
CN110361975B (en) | An Adaptive Fault Tolerant Control Method for UMV State Time-Delay System Based on Sliding Mode Technology | |
CN109189103B (en) | An underactuated AUV trajectory tracking control method with transient performance constraints | |
CN114035589B (en) | Fault-tolerant cooperative control method for swarm unmanned boats based on anti-attack strategy | |
CN118244770B (en) | Repeated learning composite disturbance-resistant error-tolerant control method for unmanned ship | |
Chu et al. | Improved super-twisting sliding mode control for ship heading with sideslip angle compensation | |
CN112965371A (en) | Water surface unmanned ship track rapid tracking control method based on fixed time observer | |
CN117270401A (en) | Quality switching unmanned ship composite anti-interference dynamic positioning undisturbed control method | |
Sawada et al. | Automatic berthing control under wind disturbances and its implementation in an embedded system | |
CN110687798B (en) | Self-adaptive fault-tolerant control method based on sliding mode quantization output feedback | |
He et al. | Fault diagnosis of full-drive AUV based on graph theory and recurrent neural network | |
Miyauchi et al. | 2020A-OS2-3 On the System Identification for Low-speed Maneuvering Model by Using CMA-ES (4th Report)-Estimation on Random Maneuver | |
CN116203932B (en) | Model-Based Fault Detection Method, Storage Medium and Equipment for Actuator of Unmanned Boat | |
CN116088309B (en) | Compound learning fault-tolerant control method for surface ship based on fault identification | |
CN114296469B (en) | Unmanned ship reconfigurable fault-tolerant control method based on double-parameter self-adaptive fault identification | |
CN113050432B (en) | An online adaptive near-optimal control method, system and device for an underactuated ship | |
CN111399384B (en) | A fault-tolerant control method for remote control unmanned boat course based on dynamic quantizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |