CN110951898A - Specific novel molecular target of 4 species in Cronobacter and rapid detection method thereof - Google Patents
Specific novel molecular target of 4 species in Cronobacter and rapid detection method thereof Download PDFInfo
- Publication number
- CN110951898A CN110951898A CN201911403912.2A CN201911403912A CN110951898A CN 110951898 A CN110951898 A CN 110951898A CN 201911403912 A CN201911403912 A CN 201911403912A CN 110951898 A CN110951898 A CN 110951898A
- Authority
- CN
- China
- Prior art keywords
- seq
- cronobacter
- sequence
- primer sets
- sets corresponding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The invention discloses a specific new molecular target of 4 species in Cronobacter and a rapid detection method thereof, and provides 19 new specific molecular detection targets for identifying 4 species in Cronobacter, namely Cronobacter sakazakii, Cronobacter malonate, Cronobacter zuchenii and Cronobacter dubliniensis, a corresponding PCR primer group and a PCR rapid detection method. The method can detect the Cronobacter species level without physiological and biochemical identification, and has the advantages of short detection time, low cost, simple operation and strong specificity; the probability of false positive or false negative is effectively reduced, the detection result is more accurate, the result judgment is simpler, the practicability is stronger, and the method has important significance for identifying the Cronobacter sakazakii.
Description
Technical Field
The invention belongs to the technical field of microbiological inspection, relates to a method for identifying Cronobacter sakazakii, and particularly relates to a new specific molecular target of 4 species in Cronobacter sakazakii and a rapid detection method thereof.
Background
Cronobacter spp is an important food-borne pathogenic bacterium, can cause diseases of people of all ages, has a great threat to premature infants, low-weight infants and immunocompromised newborns, can cause septicemia, meningitis or necrotizing enterocolitis in severe cases, can cause nervous system sequelae or rapid death, and has the mortality rate of 40-80%. Due to its high hazard, the international food microbial standards committee listed this strain as a microorganism that poses serious life risks to certain populations or chronic sequelae in 2002.
With the intensive research on Cronobacter and the evolving modern classification techniques, the nomenclature and class-typing of the bacterium has undergone a change from species to genus. Currently, the genus cronobacter contains 7 species: cronobacter sakazakii (Cronobacter sazakii), Cronobacter malonate (Cronobacter malonticus), Cronobacter zukii (Cronobacter turiensis), Cronobacter mokinsonii (Cronobacter mutyjensii), Cronobacter comforti (Cronobacter conditioner), Cronobacter ewingii (Cronobacter universalis), and Cronobacter dubliniensis (Cronobacter dubliniensis), wherein Cronobacter sakazakii is a model species of the genus. Studies have shown that there are differences between the toxicity of 7 species within the genus, not all species are associated with infection, only cronobacter sakazakii, cronobacter malonate and cronobacter zurich can cause neonatal infection. In the twelve-five period, the research team systematically completes the risk investigation of pathogenic microorganisms in 2717 foods in 28 major cities in China for the first time, 1092 Cronobacters are separated and stored, and the total pollution rate is as high as 17.96%, wherein the Cronobacter sakazakii accounts for 64.78%, the Cronobacter malonate accounts for 23.36%, the Cronobacter zukii Zurich accounts for 1.37%, the Cronobacter dublin accounts for 10.13%, and the Cronobacter mokinsonii accounts for 0.36%.
The detection method of Cronobacter sakazakii mainly comprises two main types, namely a traditional culture method and molecular biological detection. The traditional culture method can separate target bacteria, but has the defects of long time consumption (more than 5 d), complex operation (pre-enrichment, selective culture, chromogenic culture and biochemical identification), high cost, low accuracy and specificity and easy occurrence of false positive or false negative results. The molecular biology detection method based on PCR gradually becomes one of the most potential detection techniques to replace the traditional detection method due to the characteristics of rapidness, accuracy and simplicity.
At present, the main detection object of the PCR method reported at home and abroad is Cronobacter sakazakii, and the PCR method for detecting different species in the Cronobacter sakazakii is rare. Stoop et al established a PCR detection method capable of simultaneously detecting six species of Cronobacter sakazakii for the first time based on rpoB gene, but two pairs of primers are required for C.sakazakii detection, and two PCR reactions are performed. Carter et al established a PCR method for detecting different cronobacter species using the cgcA gene, but the primers used to detect c.sakazakii were relatively poor in specificity and non-specific fragments could be observed on an agarose gel. The PCR detection method established by Huang and the like based on the gyrB gene can effectively distinguish C.sakazakii from C.dublinensis, but cannot distinguish C.sakazakii from C.malonatus. Therefore, the method systematically excavates a specific new target on the Cronobacter species level, establishes an accurate and rapid PCR detection method, and has important significance for the detection of Klnobacter and pollution investigation research.
Disclosure of Invention
In view of the above problems, the present invention is to overcome the disadvantages of the prior art and to provide a novel specific molecular target and a corresponding detection method for identifying 4 species within the genus Cronobacter, namely Cronobacter sakazakii (Cronobacter sakazakii), Cronobacter malonate (Cronobacter malonticus), Cronobacter zukii (Cronobacter turiensis) and Cronobacter dubliniensis (Cronobacter dubliniensis).
In order to achieve the purpose, the invention adopts the technical scheme that: the invention claims a group of nucleotide sequences for identifying Cronobacter sakazakii, wherein the nucleotide sequences are shown in SEQ ID NO: 1-19, wherein the Cronobacter sakazakii, the Cronobacter malonate, the Cronobacter zuchenii or the Cronobacter dubliniensis.
Specific sequence fragments contained in 4 species of Cronobacter sakazakii (Cronobacter sakazakii, Cronobacter malonate, Cronobacter zuchenii, and Cronobacter dubliniensis) respectively are obtained by bioinformatics analysis; the fragment can be used as a specific new molecular target for identifying 4 species of Cronobacter sakazakii, and the nucleotide sequence is shown in SEQ ID NO. 1-19. Whether the object to be detected contains at least one of Cronobacter sakazakii, Cronobacter malonate, Cronobacter zukii or Cronobacter dubliniensis in the Cronobacter sakazakii can be obtained by detecting whether the object to be detected contains the corresponding sequence.
Further, the sequences SEQ ID NO.1 and SEQ ID NO.2 are used for identifying Cronobacter sakazakii; the sequence SEQ ID NO. 3-7 is used for identifying the malonates Cronobacter malonate; the sequence SEQ ID NO. 8-12 is used for identifying Cronobacter zurich; the sequence SEQ ID NO. 13-19 is used for identifying Cronobacter dublin.
Further, the invention also claims a primer group for identifying Cronobacter sakazakii, wherein the primer group is designed according to the nucleotide sequence shown in SEQ ID NO. 1-19.
The product corresponding to the primer group is all or part of the nucleotide sequence shown in SEQ ID NO. 1-19.
A nucleotide sequence is detected by referring to corresponding primer sets for PCR based on the corresponding nucleotide sequences, each primer set comprising a forward primer and a reverse primer. The amplification product of the primer group corresponds to all or part of the nucleotide sequence shown as SEQID NO. 1-19.
As a preferred embodiment of the invention, the nucleotide sequence of the primer group is shown as SEQ ID NO. 20-57 from 5 'to 3'; wherein:
SEQ ID NO.20 and SEQ ID NO.21 are primer sets corresponding to the sequence of SEQ ID NO. 1;
SEQ ID NO.22 and SEQ ID NO.23 are primer sets corresponding to the sequence of SEQ ID NO. 2;
SEQ ID NO.24 and SEQ ID NO.25 are primer sets corresponding to the sequence of SEQ ID NO. 3;
SEQ ID NO.26 and SEQ ID NO.27 are primer sets corresponding to the sequence of SEQ ID NO. 4;
SEQ ID NO.28 and SEQ ID NO.29 are primer sets corresponding to the sequence of SEQ ID NO. 5;
SEQ ID NO.30 and SEQ ID NO.31 are primer sets corresponding to the sequence of SEQ ID NO. 6;
SEQ ID NO.32 and SEQ ID NO.33 are primer sets corresponding to the sequence of SEQ ID NO. 7;
SEQ ID NO.34 and SEQ ID NO.35 are primer sets corresponding to the sequence of SEQ ID NO. 8;
SEQ ID NO.36 and SEQ ID NO.37 are primer sets corresponding to the sequence of SEQ ID NO. 9;
SEQ ID NO.38 and SEQ ID NO.39 are primer sets corresponding to the sequence of SEQ ID NO. 10;
SEQ ID NO.40 and SEQ ID NO.41 are primer sets corresponding to the sequence of SEQ ID NO. 11;
SEQ ID NO.42 and SEQ ID NO.43 are primer sets corresponding to the sequence of SEQ ID NO. 12;
SEQ ID NO.44 and SEQ ID NO.45 are primer sets corresponding to the sequence of SEQ ID NO. 13;
SEQ ID NO.46 and SEQ ID NO.47 are primer sets corresponding to the sequence of SEQ ID NO. 14;
SEQ ID NO.48 and SEQ ID NO.49 are primer sets corresponding to the sequence of SEQ ID NO. 15;
SEQ ID NO.50 and SEQ ID NO.51 are primer sets corresponding to the sequence of SEQ ID NO. 16;
SEQ ID NO.52 and SEQ ID NO.53 are primer sets corresponding to the sequence of SEQ ID NO. 17;
SEQ ID NO.54 and SEQ ID NO.55 are primer sets corresponding to the sequence of SEQ ID NO. 18;
SEQ ID NO.56 and SEQ ID NO.57 are primer sets corresponding to the sequence of SEQ ID NO. 19.
Further, the primer set can be used for identifying Cronobacter sakazakii, Cronobacter malonate, Cronobacter zuchenotii, or Cronobacter dubliniensis.
The present invention also provides a method for identifying Cronobacter sakazakii, comprising the steps of:
s1: carrying out PCR amplification on the DNA of a sample to be detected by using one of the primer groups;
s2: carrying out gel electrophoresis to detect the amplification product;
s3: observing whether the amplification product is in accordance with the expectation.
Generally, a PCR system contains only one set of primers; by setting a plurality of PCR systems and simultaneously amplifying the DNA of a single bacterium by using different primers, the detection efficiency is improved. The primer of the invention has good product specificity, and whether the Cronobacter sakazakii exists can be judged by observing whether the amplification product is at the expected position.
In a preferred embodiment of the present invention, the PCR amplification system in S1 includes 2 × PCR Mix, template DNA, a primer set, and sterilized double distilled water.
As a preferred embodiment of the present invention, the PCR amplification system is 2 XPCR Mix 12.5. mu.L, template DNA100ng, 10. mu.M primers are 1. mu.L each, and sterilized double distilled water is added to make up the volume to 25. mu.L.
In a preferred embodiment of the present invention, the PCR amplification procedure in S1 is: pre-denaturation at 95 ℃ for 5 min; denaturation at 95 ℃ for 30 s; annealing at 50-62 ℃ for 30 s; extension at 72 ℃ for 30 s; 35 cycles of denaturation, annealing and extension are carried out; finally, extension is carried out for 10min at 72 ℃.
The invention discloses specific molecular targets for identifying 4 species (Cronobacter sakazakii, Cronobacter malonate, Cronobacter zuchenii and Cronobacter dubliniensis) in Cronobacter, and provides a related primer group and a corresponding PCR detection method. Compared with the prior art, the method can detect the Cronobacter species level without physiological and biochemical identification, and has the advantages of short detection time, low cost, simple operation and strong specificity; and the probability of false positive or false negative is reduced, the detection result is more accurate, the result judgment is simpler, and the practicability is stronger.
Drawings
FIG. 1 shows the results of the electrophoresis of the PCR detection using the primer set 1 in example 3.
FIG. 2 shows the results of the electrophoresis of the PCR detection using the primer set 2 in example 3.
FIG. 3 shows the results of the electrophoresis of the PCR detection using the primer set 3 in example 4.
FIG. 4 shows the results of the electrophoresis of the PCR detection using the primer set 4 in example 4.
FIG. 5 shows the results of the electrophoresis of the PCR detection using the primer set 5 in example 4.
FIG. 6 shows the results of the electrophoresis of the PCR detection using the primer set 6 in example 4.
FIG. 7 shows the results of the electrophoresis of the PCR detection using the primer set 7 in example 4.
FIG. 8 shows the results of the electrophoresis in the PCR detection using the primer set 8 in example 5.
FIG. 9 shows the results of the electrophoresis in the PCR detection using the primer set 9 in example 5.
FIG. 10 shows the results of the electrophoresis in the PCR detection using the primer set 10 in example 5.
FIG. 11 shows the results of the electrophoresis in the PCR detection using the primer set 11 in example 5.
FIG. 12 shows the results of the electrophoresis of the PCR detection using the primer set 12 in example 5.
FIG. 13 shows the results of the electrophoresis in the PCR detection using the primer set 13 in example 6.
FIG. 14 shows the results of the electrophoresis of the PCR detection using the primer set 14 in example 6.
FIG. 15 shows the results of the electrophoresis in the PCR detection using the primer set 15 in example 6.
FIG. 16 shows the results of the electrophoresis of the PCR detection using the primer set 16 in example 6.
FIG. 17 shows the results of the electrophoresis in the PCR detection using the primer set 17 in example 6.
FIG. 18 shows the results of the electrophoresis in the PCR detection using the primer set 18 in example 6.
FIG. 19 shows the results of the electrophoresis in the PCR detection using the primer set 19 in example 6.
Detailed Description
To better illustrate the objects, aspects and advantages of the present invention, the present invention will be further described with reference to the accompanying drawings and specific embodiments.
Example 1 excavation of novel molecular targets specific for different species within Cronobacter
Performing bioinformatics analysis according to a GenBank database and a Cronobacter sakazakii whole genome DNA sequence self-tested by the team; screening to obtain specific gene fragments of 4 species of Cronobacter sakazakii (Cronobacter sakazakii, Cronobacter malonate, Cronobacter zurich and Cronobacter dubliniensis), wherein the nucleotide sequences of the gene fragments are shown as SEQ ID NO. 1-19.
Wherein, the sequences SEQIDNO.1 and SEQIDNO.2 are used for identifying Cronobacter sakazakii; the sequence SEQID NO. 3-7 is used for identifying the malonates Cronobacter malonate; the sequence SEQ ID NO. 8-12 is used for identifying Cronobacter zurich; the sequence SEQ ID NO. 13-19 is used for identifying Cronobacter dublin.
Example 2 Rapid detection method of Cronobacter sakazakii
1) Primer design
Specific PCR amplification primer sets (including forward primers and reverse primers) were designed according to the sequences of SEQ ID Nos. 1-19 in example 1, and the sequences of the primer sets are shown in Table 1 below.
TABLE 1 specific PCR detection primer set
2) The method for identifying the Cronobacter comprises the following steps:
s1DNA template preparation: respectively culturing the strains to be detected in an LB liquid culture medium in an enrichment manner, and respectively extracting bacterial genome DNA of the strains to be detected by using a commercialized bacterial genome DNA extraction kit to serve as templates to be detected;
s2, PCR amplification: one of the primer groups 1-19 is used for carrying out PCR amplification on the DNA of a sample to be detected
① PCR detection System:
wherein:
when the template DNA is used for identifying the presence or absence of cronobacter sakazakii, the primer is a primer in the primer set 1 or 2;
when the template DNA is used for identifying whether the malonate Cronobacter malonate exists, the primer is any one of primer groups 3-7;
when the template DNA is used for identifying whether Cronobacter huicuensis exists, the primer is any one of the primer groups 8-12;
when the template DNA is used for identifying whether the Cronobacter dublin exists, the primer is any one of the primer groups 13-19;
② PCR amplification procedure:
wherein:
the primers in the primer groups 1-19 are used, and the annealing temperature is 50-62 ℃.
S3: taking the PCR amplification product to carry out gel electrophoresis;
s4: and observing whether a single amplification band exists at the position of each primer group corresponding to the size of the product. If present, indicating that the sample contains the corresponding Cronobacter sakazakii; if no corresponding single amplification band is present, the sample does not contain the corresponding Cronobacter sakazakii.
Example 3 evaluation of specificity of PCR detection method for Cronobacter sakazakii
PCR was carried out using 113 strains of Cronobacter sakazakii, 32 strains of other Cronobacters (including Cronobacter malonate, Cronobacter zuchenensis, etc.) and 18 strains of non-Cronobacter (including Escherichia coli, Shigella, etc.) according to the method of example 2. Wherein, the S1DNA template is prepared by respectively extracting the genome DNA of each bacterium; in the S2PCR amplification, the primers used are the primers in the primer set 1 or 2. A control group is set, and the template of the control group is an aqueous solution without genome.
The results of the PCR amplification product gel are shown in fig. 1 and 2 (fig. 1 shows the amplification product corresponding to the primer set 1, and fig. 2 shows the amplification product corresponding to the primer set 2), where (a) shows the detection result of 113 strains of cronobacter sakazakii in this example, (b) shows the detection result of 32 other cronobacters sakazakii in this example, and (c) shows the detection result of 18 strains of non-cronobacters sakazakii in this example. M is markerDL 2000 (2000 bp, 1000bp, 750bp, 500bp, 250bp and 100bp of 6 fragments from top to bottom in sequence), and C is a control group.
The strains used and the results of the tests are shown in table 2 below; in the table, "+" indicates positive and "-" indicates negative in the test result column.
TABLE 2 test results of evaluation of detection specificity of Cronobacter sakazakii of the present invention
Strain name | Type (B) | Strain numbering | Number of strains | Results | |
C.sakazakii | | ATCC29544 | 1 | + | |
C.sakazakii | Cronobacter sakazakii | Food source isolate | 112 | + | |
C.malonaticus | Other Cronobacter sakazakii | Food source isolate | 10 | - | |
C.dublinensis | Other CrohnNonobacterium sp | Food source isolate | 10 | - | |
C.turicensis | Other Cronobacter sakazakii | Food source isolate | 10 | - | |
C.muytjensii | Other Cronobacter sakazakii | Food source isolate | 2 | - | |
P.aeruginosa | non-Cronobacter sakazakii | ATCC 15442 | 1 | - | |
P.vulgaris | non-Cronobacter sakazakii | CMCC(B)49027 | 1 | - | |
E.cloacae | non-Cronobacter sakazakii | CMCC(B)45301 | 1 | - | |
E.aerogenes | non-Cronobacter sakazakii | ATCC13048 | 1 | - | |
S.marcescens | non-Cronobacter sakazakii | CMCC41002 | 1 | - | |
P.mirabilis | non-Cronobacter sakazakii | CMCC49005 | 1 | - | |
S.flexneri | non-Cronobacter sakazakii | ATCC12022 | 1 | - | |
A.nitrate | non-Cronobacter sakazakii | NICPBP25001 | 1 | - | |
A.baumannii | non-Cronobacter sakazakii | ATCC19606 | 1 | - | |
S.aureus | non-Cronobacter sakazakii | ATCC25923 | 1 | - | |
L.monocytogenes | non-Cronobacter sakazakii | ATCC19115 | 1 | - | |
Y.enterocolitica | non-Cronobacter sakazakii | CMCC52204 | 1 | - | |
E.coli | non-Cronobacter sakazakii | ATCC25922 | 1 | - | |
S.enteritidis | non-Cronobacter sakazakii | CMCC50335 | 1 | - | |
S.sonnei | non-Cronobacter sakazakii | CMCC(B)51592-G2 | 1 | - | |
B.subtilis | non-Cronobacter sakazakii | ATCC6633 | 1 | - | |
B.cereus | non-Cronobacter sakazakii | ATCC14579 | 1 | - | |
B.thuringiensis | non-Cronobacter sakazakii | ATCC10792 | 1 | - |
From FIGS. 1, 2 and Table 2, it can be seen that only Cronobacter sakazakii showed specific amplification bands in all of the detection results of the 2 primer sets, and no specific bands were observed in any of the other Cronobacter sakazakii strains and the non-Cronobacter sakazakii strains, indicating that the method of the present invention has high specificity.
Example 4 evaluation of specificity of the method for PCR detection of Cronobacter malonate
PCR was carried out using 91 strains of Cronobacter malonate, 32 strains of other Cronobacters (including Cronobacter sakazakii, Cronobacter zurich, etc.) and 18 strains of non-Cronobacter (including Escherichia coli, Shigella, etc.) according to the method of example 2. Wherein, the S1DNA template is prepared by respectively extracting the genome DNA of each bacterium; and S2, during PCR amplification, the used primers are primers of any one of the primer groups 3-7. A control group is set, and the template of the control group is an aqueous solution without genome.
Gel results of PCR amplification products corresponding to the primer groups 3-7 are shown in FIGS. 3-7; wherein (d) is the detection result of 91 strains of Cronobacter malonate in the example, (e) is the detection result of 32 strains of other Cronobacters in the example, (f) is the detection result of 18 strains of non-Cronobacter in the example, markerDL 20000, and C is a control group.
The strains used and the results of the tests are shown in table 3 below; in the table, "+" indicates positive and "-" indicates negative in the test result column.
TABLE 3 evaluation test results of the detection specificity of Cronobacter malonate according to the present invention
As can be seen from FIGS. 3 to 7 and Table 3, the detection results of 5 primer sets showed only specific amplification bands of the malonat Cronobacter, and no specific bands of other Cronobacter and non-Cronobacter strains, indicating that the method of the present invention has high specificity.
Example 5 evaluation of specificity of PCR detection method for Cronobacter zurich
14 Cronobacter zuchenkianus strains, 32 other Cronobacters strains (including Cronobacter sakazakii, Cronobacter malonate, etc.) and 18 non-Cronobacter strains (including Escherichia coli, Shigella, etc.) were subjected to PCR detection in accordance with the method of example 2. Wherein, the S1DNA template is prepared by respectively extracting the genome DNA of each bacterium; and in S2PCR amplification, the used primers are primers of any one of the primer groups 8-12. A control group is set, and the template of the control group is an aqueous solution without genome.
Gel results of PCR amplification products corresponding to the primer groups 8-12 are shown in FIGS. 8-12; in this example, (g) shows the results of detection of 14 strains of Cronobacter zucheniformis in this example, (h) shows the results of detection of 32 other Cronobacters in this example, and (i) shows the results of detection of 18 strains of non-Cronobacters in this example. M is markerDL 2000, C is control group.
The strains used and the results of the tests are shown in table 4 below; in the table, "+" indicates positive and "-" indicates negative in the test result column.
TABLE 4 test results of the test for evaluating the detection specificity of Cronobacter zurich of the present invention
Strain name | Type (B) | Strain numbering | Number of strains | Results |
C.turicensis | Cronobacter zurich Li | Food source isolate | 14 | + |
C.sakazakii | Other Cronobacter sakazakii | Food source isolate | 10 | - |
C.malonaticus | Other Cronobacter sakazakii | Food source isolate | 10 | - |
C.dublinensis | Other Cronobacter sakazakii | Food source isolate | 10 | - |
C.muytjensii | Other Cronobacter sakazakii | Food source isolate | 2 | - |
P.aeruginosa | non-Cronobacter sakazakii | ATCC 15442 | 1 | - |
P.vulgaris | non-Cronobacter sakazakii | CMCC(B)49027 | 1 | - |
E.cloacae | non-Cronobacter sakazakii | CMCC(B)45301 | 1 | - |
E.aerogenes | non-Cronobacter sakazakii | ATCC13048 | 1 | - |
S.marcescens | non-Cronobacter sakazakii | CMCC41002 | 1 | - |
P.mirabilis | non-Cronobacter sakazakii | CMCC49005 | 1 | - |
S.flexneri | non-Cronobacter sakazakii | ATCC12022 | 1 | - |
A.nitrate | non-Cronobacter sakazakii | NICPBP25001 | 1 | - |
A.baumannii | non-Cronobacter sakazakii | ATCC19606 | 1 | - |
S.aureus | non-Cronobacter sakazakii | ATCC25923 | 1 | - |
L.monocytogenes | non-Cronobacter sakazakii | ATCC19115 | 1 | - |
Y.enterocolitica | non-Cronobacter sakazakii | CMCC52204 | 1 | - |
E.coli | non-Cronobacter sakazakii | ATCC25922 | 1 | - |
S.enteritidis | non-Cronobacter sakazakii | CMCC50335 | 1 | - |
S.sonnei | non-Cronobacter sakazakii | CMCC(B)51592-G2 | 1 | - |
B.subtilis | non-Cronobacter sakazakii | ATCC6633 | 1 | - |
B.cereus | non-Cronobacter sakazakii | ATCC14579 | 1 | - |
B.thuringiensis | non-Cronobacter sakazakii | ATCC10792 | 1 | - |
As can be seen from FIGS. 8 to 12 and Table 4, only Cronobacter zuchenensis showed specific amplification bands in all of the detection results of the 5 primer sets, and no specific bands were observed in all of the other Cronobacter sachenensis and non-Cronobacter sachenensis strains, indicating that the method of the present invention has high specificity.
Example 6 evaluation of specificity of PCR detection method for Cronobacter zurich
PCR was carried out using 82 Cronobacter dubliniensis, 32 other Cronobacter sakazakii (including Cronobacter sakazakii, Cronobacter malonate, etc.) and 18 non-Cronobacter sakazakii (including Escherichia coli, Shigella, etc.) according to the method of example 2. Wherein, the S1DNA template is prepared by respectively extracting the genome DNA of each bacterium; and in S2PCR amplification, the used primers are primers in any one of the primer groups 13-19. A control group is set, and the template of the control group is an aqueous solution without genome.
Gel results of PCR amplification products corresponding to the primer groups 13-19 are shown in FIGS. 13-19; wherein (j) is the detection result of 82 Cronobacter dubliniensis in this example, (k) is the detection result of 32 other Cronobacters in this example, and (l) is the detection result of 18 non-Cronobacter sakazakii in this example. M is marker DL 2000, C is control group.
The strains used and the results of the tests are shown in table 5 below; in the table, "+" indicates positive and "-" indicates negative in the test result column.
TABLE 5 test results of the test for evaluating the detection specificity of Cronobacter dublin of the present invention
As can be seen from FIGS. 13 to 19 and Table 5, the detection results of 5 primer sets showed specific amplification bands only for Cronobacter dubliniensis, and no specific bands were observed for other Cronobacter sakazakii and non-Cronobacter sakazakii strains, indicating that the method of the present invention has high specificity.
Example 7 detection of suspected Cronobacter sakazakii Strain
The suspected Cronobacter sakazakii strain isolated from 736 strains of food samples collected from supermarkets and commercial markets in Guangdong province was detected by PCR detection method in example 2, and the sample treatment and isolation of the suspected strain were performed according to the national standard method. Wherein, the S1DNA template is prepared by respectively extracting the genome DNA of each bacterium; and in S2PCR amplification, the used primers are primers of any one of the primer groups 1-19. The results are shown in Table 6.
TABLE 6 detection results of suspected Cronobacter sakazakii strains
As can be seen from Table 6, the numbers of strains detected by the method of the present invention for the target Cronobacter sakazakii were as follows: cronobacter sakazakii 482 strain, Cronobacter malonate 155 strain, Cronobacter zurich 11 strain, Cronobacter dublin 84 strain, Cronobacter mokinsonii, Cronobacter comforti, and Cronobacter ewingii were not detected; through 16s rDNA identification, the identification results of the cronobacter sakazakii, the cronobacter malonate, the cronobacter zurich and the cronobacter dublin are consistent, and other suspected strains are identified as other cronobacter species.
Finally, it should be noted that the above embodiments are only used for illustrating the technical solutions of the present invention, and not for limiting the protection scope of the present invention, although the present invention is described in detail with reference to the preferred embodiments, it should be understood by those skilled in the art that modifications or equivalent substitutions can be made on the technical solutions of the present invention without departing from the spirit and scope of the technical solutions of the present invention.
SEQUENCE LISTING
<110> institute of microorganisms of Guangdong province (center for analysis and detection of microorganisms of Guangdong province), Guangdong Huaqiao Biotech Co., Ltd
<120> specific novel molecular target of 4 species in Cronobacter and rapid detection method thereof
<130>2019
<160>57
<170>PatentIn version 3.3
<210>1
<211>513
<212>DNA
<213>Cronobacter sakazakii
<400>1
gtgatgaaaa agttactgct gctgataatg tttgcgcttg gcgcacaccg ggcactggcc 60
gacgatatca acctgcaggt taacggggcg attattgcca gtgcctgcga tgtggaaagt 120
gccagcaaaa acaaaacggt cgatatgggg atcgcgattg ctgacgcgtt ttcacaaccc 180
tctacttatg gcccctgggt accgtttgaa ctaagcgtga tgaactgccc cgtggccacc 240
acggccgttg atgcgacatt ttccggcgaa ctggatccga ctaacagtac ggcttacagg 300
agcaccggaa ccggcaaagg gctggcatta caactggttg acggtaaaaa caatatgtac 360
atgttacccg gtggcgataa atacaccgaa acagtggacg aggccacgca cagcgccacg 420
tttcagctgc gcgcacgcta tgtccgtacc acagagccgc tggtacccgg cacgtttgaa 480
agcgccgtac aggtgacgtt tacttaccgg taa 513
<210>2
<211>975
<212>DNA
<213>Cronobacter sakazakii
<400>2
atgcgattca tcaaattatt aagcgcgctg ctggtacttg ccggtagcct gttctttatg 60
ccccatgcga aggcgtcctg tacggcaccc atgatgccgt atacggtttc agtcgcgtat 120
gtcgccgttt ccagtacgtt accggtcggc gcaaccatac caggcactga cgagctcgtg 180
agtattcacg ggtcctgcaa cggctattca ggccagccga tcatcgcctg ctactatggc 240
agcggcaacg aagtgtccgg aatgccgggc gtttacgaaa caggcgtgga aggcatcggc 300
atttcgctga tgaatgataa aggccagcgc atcatcggcg gcggggtcgg ttgcgacacg 360
cgtaatacac cgctgggcta tgtctccagc gatggcaaca atacgttcga cttcaccgtg 420
acgcttgcgc tcgtcaaaac gtcgacaacg atctatagcg gttcgcttga acaggcgcaa 480
acggtgttcg gcgtaggggt ttacaaccag accgggattg gcgcacccaa taccatcgct 540
tacgcaggcg acataaccta taaaaccgtc acctgttccg tcgatcgtaa caatctcagc 600
gtcactctcg gcaacgtgcc ggccagcgtg tttacaggcg tgggcagcag ctcgggctgg 660
agcagctttg aggtcaacgc cacctgcaac gatccggtac aagtcggagt gaaagtctcc 720
agcgccaatg gctacgcatc caccgagcca tccgtgatta atctcacttc cgaacccggc 780
gtcgccagcg gcataggcgt tcagatgacg ctttttgggc aaaacatcga ttttgaccat 840
tacacctttg ttgcctcatt gaggccgaac tcaacgctca atatcccgtt tgctgttcag 900
tactatcaaa ctgccgacac cgtgacgccg ggcgttgcaa acgccgtcgc gaccattacc 960
gtgtcttacc ggtag 975
<210>3
<211>510
<212>DNA
<213>Cronobacter malonaticus
<400>3
atgaaacaaa tactgatact gatgatcctt accatcaccg ctgcgcaggc actggccgac 60
gatattcatc tgcaaattaa cggtgccatt atggcagcgt cctgtgaagt ggaaggtggc 120
agtaaaaaca aaacggtaga aatgggtgag gcgctggcca gcgacttttc acaaccccac 180
gactgggggc cgagagtgcc ttttgaactg agcgtgatca actgccctgc aacgatcaca 240
gccgttgagg ctgcctttag cggagtaaga gatccgcatg aaaataacgc ttatttaaat 300
aatggtacag gacgcgggct ggcgttacag attattgaaa gcaacagcgg aatgtatatg 360
ttgccagacg gtgaacccgc cactgcgccc gtcgacccca cgacgcacag cgccacctgg 420
gactttagcg cacggtacat ccgcaccacc gacgctttcg caccaggctc attcgatacg 480
gcggtccagg tgacgtttac ttaccggtga 510
<210>4
<211>471
<212>DNA
<213>Cronobacter malonaticus
<400>4
atgtccacct cggatatcat tgttgatggt gccattacct ccggagatgg cgcatgtacc 60
gtcttgatgg ataaagatgt ggttaacctg ttggccgaca aaactaccat tgtccctcag 120
agcaagagga aggccgatca ttttgacggt acgttttccg tttctatgac aggggatgag 180
atctgtatcc ggcgtattca ggaaggcaaa attgctgtcc gctttacagg gcctgccgat 240
gaggttgaag gcagcgtttt tgctaataca gcgaccggtg aaaatgcggc taaaggcgtt 300
ggggttggcc tgtttttaag tagccttgga cgaatcgcga ttaatcaagg ggctattcct 360
gttacaccta aacctttgag tctgagtgcg caagtggttg gccttaccgg tcaggaagtt 420
gtcgaaggta atgtccaggc gtccattaca gtagaagttg ttcgcctgta a 471
<210>5
<211>678
<212>DNA
<213>Cronobacter malonaticus
<400>5
atgaaacctg taattattgc cctgttaggc gtcctttctg tcggcgcagc tcaggcgagt 60
gtggtcgtag gcggcacccg cgtggtattt gatggtcagc aaaaagcagc ctcattatcg 120
gtgcagaata aagataaaac agcggatctt gtgcagtcat ggatttcgcc cgtcgacgcc 180
acctcaggcg caaaagacac catgattatc accccgccac tgtttcgtct ggatgctggt 240
gaaaaagcgt ctgtgcgtat tgtacgttcc ggtaagcctt tgcccgaaga tcgcgaatcg 300
atgttttggc tgaatgtgaa aggtattccg gcaatggaca acgcgccagc caaaaatgaa 360
ctgcaaatcg cgattaattc gcggataaaa ttaatttacc gcccggtaag cttgcatggc 420
agcgtacctg aatcggcaac ggataaactg agctggagca ccgaaggcaa tatgctgaaa 480
gtaaataatc cgacgccctt ttacatgaac ttctctacgg tcatggtgaa taacacgccg 540
gttaaagacg ttacatttgt ggcaccgttt tccagcacta cctttgcaat gcctaaagca 600
caaaatcatg ccgatgttaa atggcacata attaacgatt ttggcatggc tggcagcgaa 660
cacaacgcac atttctaa 678
<210>6
<211>351
<212>DNA
<213>Cronobacter malonaticus
<400>6
atgttaatga gtacgctaat taacgccgta ggccaggcgc tggcttcacc acagtttcaa 60
aaaagtgcct tgaaaatcgt cgcggacgag tttcttggtc tcctgagaca gggcctgaac 120
gatcgtgaaa cctttattaa caccagcgcg gagattgccg ctcaggcggt acttgatcgc 180
tcgcaggggt taattagtga agaggatatg gcagcgctgc tgaataaaca gaaaacgatc 240
gcgcagatcc atgccaacag cagtgagata gcgttacgca cgcgcattca atcgatcact 300
atgcgtcttc tcgatctggc agccagtgct atagcatgcg gactgaagta a 351
<210>7
<211>468
<212>DNA
<213>Cronobacter malonaticus
<400>7
atggtcgcga tatggatctc agcatatgtg ctgttaaacg cagggctcgt gattaaagat 60
attcgtgatg gtctgctacc tgaccgtctc acctgccctc tcctgtggat gggtctttct 120
taccatctca tatttgcgcc acagcatctg gcggatgccg tcgccggggc gttggtcgga 180
taccttctat tatgtttttt ctactgggct tatcgttttc tgcgtggtta tgaagggctg 240
ggatatggcg atgtgaaatt cttaggtgcc ctgggcgcct ggcacggttg gcagttactt 300
agtctgttgc taatcattgc atctgtaatg ggtcttatag ctgcgtttgt tgtctgtcag 360
ataaaaggca aagctccctt acgtaaaacc ccgctacctt ttgggccatg tctggcggca 420
gcggggctga tatgcagcgt ctttacattc caggtagcaa atctttga 468
<210>8
<211>885
<212>DNA
<213>Cronobacter turicensis
<400>8
attgtcagtg tgatttttct gacaacgttt tccgctaagg cgcaagacgt gcctcatgtg 60
aaatatcttt tctcgttcaa atccagtaaa agcacctgcc ttctgcgggc taatgatctg 120
cccgcgtttg acaataccac ggacgatgac ggcacgatcg ccgcaggctt taatatgacc 180
gcctttctgg aaaacggtaa taacgatatt gagttattaa tggggccgca ggatgtgaaa 240
caaccgcaga cgctgtgggc tgactccgca tgccaggtaa ccatctccga tgataccact 300
gacaacagcg ttaaactggc cgactacagc ctgacggtga atgataaaaa agagataagc 360
gcggtcaata cggttattta tgcgaccggt acgaaaacgt ttgaaggtta caccccatca 420
gatgatgatt acgggttata taatatgaag ggggttatta cacttgaccg tctgcctgag 480
tggtcatggg tgaatgcgac gccggtaacg gagaacgatc tgccgaaaat tcgtaaggct 540
tatgaagata tctggatgca gataaaacgc cgcgatgtgg aaggcctgaa acgcacagcg 600
aaaatttcga atgaagagat ggcccaggcg gaaggcgcca cgccagatat tattttcctt 660
tccactgatt ttccacaaca tgtgagtgac ccacaactga ctccggtgga cattgaatgg 720
caagactatc gcctgatgcg ttatcgcggt gggcgtcttt tccgactggc tgccggattc 780
ttccagaatt ctccgctgat gtttaaaaat agcgaagggg aagtggtctt cgtatacaac 840
ccttattttt ccattatcga tggtaatgtc gttttggttc gctaa 885
<210>9
<211>417
<212>DNA
<213>Cronobacter turicensis
<400>9
atgaacacca ggacactgct tgtaggtttt tttctgtttg ctggctcgct gaataacgcg 60
atagcagaca actgcagggc caatatttat ggcggagagg attgccgcta tgacaatgga 120
accacatcaa gcagcagagc caacattttc ggcgggcaga acaccaaata tagcgacggc 180
agaagctcaa gcagccgtcc caatattttc ggcggagagg atacccgaaa cagcgatggc 240
agctcttcaa gtagccgcgc caatatcttt gatggtcagg aaacgcagta cagcgacggc 300
cgctcttcca gcagccgcgc caatatcttc gacggcctgg acacgcaata cagcgacggc 360
cgctcttcca gcagccgtgc gaatatcttc gacagccagg acaccataaa taattaa 417
<210>10
<211>414
<212>DNA
<213>Cronobacter turicensis
<400>10
atgagcgccg ccctgacgct tcccgcgcgg ctcgatgcgc tgggcccgct cgccgacgcg 60
ctggcgcagt ttatggcgtc gctgccggtg gatgacgact ggcgtttcgc gttcgattta 120
gcggtgtgcg aagcggcggc aaacgtcatc cgtcatgcgc tggaagagac gccgacgcgt 180
gagtttaccg ttgagtttca gcacgacgac gcgagcgcaa gcgtgacgtt caccgatgac 240
ggtaacgcta ttcccgatga caaactggat gccgcgcgcg attgcgcgca ggacgacgac 300
acggcgctga tgagtgaagg cgggcgaggg ctgatgctga ttttcgcctg tgtcgatgaa 360
gtggagtatc acgcgggcgg ggttaaccgc ctgacgctga gcaagcggct ttaa 414
<210>11
<211>543
<212>DNA
<213>Cronobacter turicensis
<400>11
atggcgtcga cagaacaggg agccacaatg acctttcgta tcagaaagac cgtaaccgca 60
gatattggct gtcttcaagc cattgagcgt tcggcggaca gcgcatttga gacgatcccg 120
acgctcgcct gggtggcgag cgatggcgtc cagcctgagg atttacatca ccggctttgc 180
gagcagggat attctgcggt cgtggtgaat gaggatgaca ttcccgtcgg gtttatcaac 240
ggggaatata ccgccgacgc gctgcatatt ctgggcgtgg cggtgatgcg cgactgtcag 300
ggaatggggc ttgggaaaat gctgatggcc ggggccattc atcacgcacg ggaaaaacag 360
ctcgccgcgc tgacgctgac gacgttccga aacgtgccgt ggaatcagcc gttttatgcg 420
cgtctgggtt tccacgtgat ttcagacgca gagatgccgg aacgtctggc tcgcctgctt 480
gatgaagaag ccgcgcacgg ctttgcgcgc gccgggcgtt gcgccatggc gttacggctt 540
tag 543
<210>12
<211>336
<212>DNA
<213>Cronobacter turicensis
<400>12
atgcactggc gggtggttga ttctgtagta agcaccgaca ccaattctgt atttagcctg 60
atttcctcgc aacgcgcttt caaacttatc ctgtggtaca aagccacgtt ttatttatcg 120
ccaggcgata agctcactct taatggcgag gcgatcgtgg tgaatgatca ccctgttcag 180
ataaccctgt accggaccac gttttataat ccccgtttct ggcaaaccat cgttcacagc 240
aatacccact gcgcaggcaa ccatcagcga agcgtgagcc gatgtattta ccggcgtaaa 300
tgtaaactcc tctactgtcc gttccagcga cactga 336
<210>13
<211>789
<212>DNA
<213>Cronobacter dublinensis
<400>13
atgtccaccg gcgatttatc cagaatgggt gccgcagcag tggtgttgaa tacccgcgac 60
agccatcatc actatattga aaaatgccct gttggcgacg tggaatacca tttttatcat 120
gacgctgcgg cggcgcttaa tcaggcgggc attgcgacgc cagcgctgtt atccgcggat 180
gcgacccggc gcgcattgag actggagtat attcctcacc ccgttgacca ggctgctttc 240
gccagtgatg acgccctcgc catgctggcg cggctgcatc gttaccctgc ccattctgca 300
tggcgctacc acacgcacgc ctggtcagag gccgcgcttg aaaaatcgct gtcgctcctt 360
gcgttgccag caaacagtgc gcagcagcta cggcgctttc agcagcatag tgacgagttg 420
tttggctacc tgagtctggt gtccggtgac agcaatgccg gcaactgggg aaggcgtgaa 480
aacggtgatg tggtgctttt cgactgggag cggtttggaa aaggcagtcc tgctatcgat 540
ctggctccgc tgataaaggg aatggggacg aagcaagcaa tgctgagcct ggctgaacgc 600
tacggccaga tagcgcgtca tcacaatcca ccggcattag ccagagagat agccattgcc 660
aaagcctgga ttgtcaccga agtcatcgtg cttcttgatg agcggcaaaa ggcagagttt 720
ccgctgtatc gcgactggta cagagcacat cttcccgact ggttagcaac cagcatcacc 780
atgctgtga 789
<210>14
<211>468
<212>DNA
<213>Cronobacter dublinensis
<400>14
atggttacgg tatggatgtt tggatacgta ttgctaaacg cagggctcgt gctcaaggat 60
ctgcgccatg gtctgttacc cgacagtctg acctgccccc tactctggct gggcctgtcg 120
taccatctta tttcccggcc agacgcactc tccgatgcgg tagcaggcgc gcttctcggt 180
tatctctcat tggcgctgct ttactgggct taccgatggt tgcggggagt tgaagggctg 240
ggctatggcg atgtgaaata tgttgccgcg cttagcgcct ggcatggatg gcagatgctg 300
ggtctgttgc ttatgactgc cgctctactg ggccttgccg cgtcttttgt gatgtatcgg 360
aaaagagagc cggctctttt acgaaaaacc ccgctgcctt ttggtccatt tctggcagca 420
gcagggttgg tatgcagtat ctctaccttc cagatactga aggtatag 468
<210>15
<211>1086
<212>DNA
<213>Cronobacter dublinensis
<400>15
atgtccatac gcacactgat cctctctttt acgctacttc tgagcggcat aacccaggcc 60
gacaccgctt ttcgccagtt gcatctcgat gaagataagg ctcgcccgct cgatgtcgcc 120
gtctggtatc ccacggcgca aacgggcaaa actgaaacgg tgggcgacaa cccggttttt 180
gttggcacgc cagcattacg taacgcacag cccgctggtg gcgcgcatcc gttactactt 240
ctctcgcacg ggtatggcgg caactggcgc aacctcaact ggctggcgca acgcatggcg 300
gcgcaggggt atattgtcgc ggcacccgat catccgggaa caaccagccg caataaagcg 360
cagcaggatg cctggcagct ctggcagcgc ccgcgcgatc tgcgccgcgt gatgaatagg 420
cttatcgaca accccgccat tgctggcgat gtggataccg gtcgcattgc cgcgctcggc 480
cattctctgg gcggctggac ggtaatggag ctggcaggcg cgcgttttga tgccgggcac 540
tttcaacggg attgtaaaaa ccatgccgta ctgtcgagtt gtaagctcat ccctgcgctg 600
ggtatcgatc gcccggcggc atccggcccg ttaatggaaa gccagcgcga gccacgaatc 660
aacgcggtgg tctctctcga tttggggctg gcgcgcggtt ttacgcccgg gagcctcgct 720
cagctgaatg tgccggtgct tatcttgtcc gcgcaggccg acagcgacgc gctacccgcc 780
cggctggagt ctggctattt gcagcgttac attccggcgg cgaagcagcg ggcgcaaagc 840
gtcacgggcg cgacgcattt tagctttatg cagctctgca agcctggcgc gaaggcgctg 900
attgaggaac acgatccggg cgaaggcatt gtgtgtgacg atggcggctc gctaagccgg 960
gcagacattc atcagacgct tagcgacacg atcagcgctt ttctgcagca ggcgcttgat 1020
tatccgccgc tgcacgacga aacgccgttg ggctcatccc gctcaaccgc acaaactcac 1080
ggttga 1086
<210>16
<211>291
<212>DNA
<213>Cronobacter dublinensis
<400>16
atgaaggcac tatccatgag cccgattaga tctgaaactg caattccggt cgcgttgcct 60
gatgccgcgc tcagcgacta ttttctccgt gccggcgaaa gactggcgca ggaggccgcg 120
ctgctgggac ggatcgtcaa aagtatgtcg acggacgggg ctgtgctgac gcataaaacc 180
atcattcagc aactgattgt cgaactcgat ggcacgaaag atgtggtgac gggagaggtg 240
atccgcagga cgctggggat tgtggtcgat catacgctcg atgaccggta a 291
<210>17
<211>225
<212>DNA
<213>Cronobacter dublinensis
<400>17
atgggcattg ttaagccaga agacatggat gatatctacc gagtgatagg caaggcggtg 60
tcacgactga tagcatcagg aatacctgta gagaccgata atattatcgc ccagctcaaa 120
gattccgaag agcagacggt ggacggcacc cggcaaatat acgctgaggc gattcggtta 180
gtggcgagtg gcgtgggcgg cgacatgcaa caatggctgt cctga 225
<210>18
<211>468
<212>DNA
<213>Cronobacter dublinensis
<400>18
atgcagatgg aaaatcgtat tcgctcgctt cggctcgccc gcgcctggtc acaggagcaa 60
ctggccgaac tcgcctcggt cagcgtccgc accattcagc gcattgagaa aggcgagccg 120
ccgtcgctcg aaaccttaag cgcgctcgcc gccgtttttg aaacgcgtat tgaagcgctg 180
actggcgagc cgcttaatgc tgcaggccca ctggatgacg ccattacgct tgcacgccag 240
cggcttgatg aagaacgcct tttttaccgc agccttacca ctgcgcttat cgtttgcggg 300
gcgcttttcc tgttgaaccg ttataccgcg ccgcaaagcc actggtcact gtgggtcatt 360
gctatctggg gtgcgttatt actgatgaaa gggattcgct tgtttttact gcgtgagtgg 420
attgcgcaat ggcagcagcg tcggctgcaa aagttactgc gtaagtaa 468
<210>19
<211>399
<212>DNA
<213>Cronobacter dublinensis
<400>19
atgttgatgt acacgacgat tggaacccac gatccagacc gtatgatcgc gttttatgac 60
gcgattttta aggtgttagg cgtgtctcgt ctcccttcct ggaccgaagg ctgggcaacc 120
tggggagagc ccattgaaac cggcttcagt ttttgcattt gtgagccgta taaccagcag 180
aaggcaacgg cgggtaacgg cacgatgttt tcattccggg cggcaagtgc cgcgcaggtc 240
cgagaattcc atgccgccgg cctcaggcat ggcggaagtg atgaaggacg ccccggcata 300
cgagaagcct acgggccaga tttctatgtc gcttatctca gagacccgga cggacataag 360
ctcgcctgcg tatgttatcc ctttcatcct gaaacgtaa 399
<210>20
<211>20
<212>DNA
<213> Artificial sequence
<400>20
<210>21
<211>20
<212>DNA
<213> Artificial sequence
<400>21
<210>22
<211>20
<212>DNA
<213> Artificial sequence
<400>22
<210>23
<211>20
<212>DNA
<213> Artificial sequence
<400>23
<210>24
<211>20
<212>DNA
<213> Artificial sequence
<400>24
<210>25
<211>20
<212>DNA
<213> Artificial sequence
<400>25
<210>26
<211>20
<212>DNA
<213> Artificial sequence
<400>26
<210>27
<211>20
<212>DNA
<213> Artificial sequence
<400>27
<210>28
<211>20
<212>DNA
<213> Artificial sequence
<400>28
<210>29
<211>20
<212>DNA
<213> Artificial sequence
<400>29
<210>30
<211>20
<212>DNA
<213> Artificial sequence
<400>30
<210>31
<211>20
<212>DNA
<213> Artificial sequence
<400>31
<210>32
<211>20
<212>DNA
<213> Artificial sequence
<400>32
<210>33
<211>20
<212>DNA
<213> Artificial sequence
<400>33
<210>34
<211>20
<212>DNA
<213> Artificial sequence
<400>34
<210>35
<211>20
<212>DNA
<213> Artificial sequence
<400>35
<210>36
<211>20
<212>DNA
<213> Artificial sequence
<400>36
<210>37
<211>20
<212>DNA
<213> Artificial sequence
<400>37
<210>38
<211>20
<212>DNA
<213> Artificial sequence
<400>38
<210>39
<211>20
<212>DNA
<213> Artificial sequence
<400>39
<210>40
<211>20
<212>DNA
<213> Artificial sequence
<400>40
<210>41
<211>20
<212>DNA
<213> Artificial sequence
<400>41
<210>42
<211>20
<212>DNA
<213> Artificial sequence
<400>42
<210>43
<211>20
<212>DNA
<213> Artificial sequence
<400>43
<210>44
<211>20
<212>DNA
<213> Artificial sequence
<400>44
<210>45
<211>20
<212>DNA
<213> Artificial sequence
<400>45
<210>46
<211>20
<212>DNA
<213> Artificial sequence
<400>46
<210>47
<211>20
<212>DNA
<213> Artificial sequence
<400>47
<210>48
<211>20
<212>DNA
<213> Artificial sequence
<400>48
<210>49
<211>20
<212>DNA
<213> Artificial sequence
<400>49
<210>50
<211>20
<212>DNA
<213> Artificial sequence
<400>50
<210>51
<211>20
<212>DNA
<213> Artificial sequence
<400>51
<210>52
<211>20
<212>DNA
<213> Artificial sequence
<400>52
<210>53
<211>20
<212>DNA
<213> Artificial sequence
<400>53
<210>54
<211>20
<212>DNA
<213> Artificial sequence
<400>54
<210>55
<211>20
<212>DNA
<213> Artificial sequence
<400>55
<210>56
<211>20
<212>DNA
<213> Artificial sequence
<400>56
<210>57
<211>20
<212>DNA
<213> Artificial sequence
<400>57
Claims (9)
1. The application of the nucleotide sequence in identifying the Cronobacter sakazakii is characterized in that the nucleotide sequence is shown as SEQ ID NO.1-SEQ ID NO. 19; the Cronobacter sakazakii is Cronobacter sakazakii, Cronobacter malonate, Cronobacter zuchenii, or Cronobacter dubliniensis.
2. The use according to claim 1, wherein the sequences of seq id No.1 and seq id No.2 are used to identify cronobacter sakazakii; the sequence SEQ ID NO. 3-7 is used for identifying the malonates Cronobacter malonate; the sequence SEQID NO. 8-12 is used for identifying Cronobacter zurich; the sequence SEQ ID NO. 13-19 is used for identifying Cronobacter dublin.
3. The primer set for identifying Cronobacter sakazakii, wherein the primer set is designed based on the sequence of claim 1.
4. The primer set according to claim 3, wherein the sequence of the primer set is represented by SEQ ID NO.20 to 57 from 5 'to 3'; wherein:
SEQ ID NO.20 and SEQ ID NO.21 are primer sets corresponding to the sequence of SEQ ID NO. 1;
SEQ ID NO.22 and SEQ ID NO.23 are primer sets corresponding to the sequence of SEQ ID NO. 2;
SEQ ID NO.24 and SEQ ID NO.25 are primer sets corresponding to the sequence of SEQ ID NO. 3;
SEQ ID NO.26 and SEQ ID NO.27 are primer sets corresponding to the sequence of SEQ ID NO. 4;
SEQ ID NO.28 and SEQ ID NO.29 are primer sets corresponding to the sequence of SEQ ID NO. 5;
SEQ ID NO.30 and SEQ ID NO.31 are primer sets corresponding to the sequence of SEQ ID NO. 6;
SEQ ID NO.32 and SEQ ID NO.33 are primer sets corresponding to the sequence of SEQ ID NO. 7;
SEQ ID NO.34 and SEQ ID NO.35 are primer sets corresponding to the sequence of SEQ ID NO. 8;
SEQ ID NO.36 and SEQ ID NO.37 are primer sets corresponding to the sequence of SEQ ID NO. 9;
SEQ ID NO.38 and SEQ ID NO.39 are primer sets corresponding to the sequence of SEQ ID NO. 10;
SEQ ID NO.40 and SEQ ID NO.41 are primer sets corresponding to the sequence of SEQ ID NO. 11;
SEQ ID NO.42 and SEQ ID NO.43 are primer sets corresponding to the sequence of SEQ ID NO. 12;
SEQ ID NO.44 and SEQ ID NO.45 are primer sets corresponding to the sequence of SEQ ID NO. 13;
SEQ ID NO.46 and SEQ ID NO.47 are primer sets corresponding to the sequence of SEQ ID NO. 14;
SEQ ID NO.48 and SEQ ID NO.49 are primer sets corresponding to the sequence of SEQ ID NO. 15;
SEQ ID NO.50 and SEQ ID NO.51 are primer sets corresponding to the sequence of SEQ ID NO. 16;
SEQ ID NO.52 and SEQ ID NO.53 are primer sets corresponding to the sequence of SEQ ID NO. 17;
SEQ ID NO.54 and SEQ ID NO.55 are primer sets corresponding to the sequence of SEQ ID NO. 18;
SEQ ID NO.56 and SEQ ID NO.57 are primer sets corresponding to the sequence of SEQ ID NO. 19.
5. Use of the primer set according to claim 3 or 4 for identifying Cronobacter sakazakii, Cronobacter malonate, Cronobacter zuchenotii, or Cronobacter dubliniensis.
6. A method for identifying crohn's disease, comprising the steps of:
s1: performing PCR amplification on a sample DNA to be detected by using one of the primer sets according to claim 3 or 4;
s2: carrying out gel electrophoresis to detect the amplification product;
s3: observing whether the amplification product is in accordance with the expectation.
7. The method of claim 5, wherein the PCR amplification system in S1 comprises 1 XPCR Mix, template DNA, a primer set and sterile double distilled water.
8. The method of claim 7, wherein the PCR amplification system is: 2 XPCR Mix12.5. mu.L, template DNA100ng, 10. mu.M primers 1. mu.L each, sterile double distilled water to make up the volume to 25. mu.L.
9. The method of claim 5, wherein the PCR amplification procedure in S1 is: pre-denaturation at 95 ℃ for 5 min; denaturation at 95 ℃ for 30 s; annealing at 50-62 ℃ for 30 s; extension at 72 ℃ for 30 s; 35 cycles of denaturation, annealing and extension are carried out; finally, extension is carried out for 10min at 72 ℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911403912.2A CN110951898B (en) | 2019-12-30 | 2019-12-30 | New specific molecular target of 4 species in Cronobacter and rapid detection method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911403912.2A CN110951898B (en) | 2019-12-30 | 2019-12-30 | New specific molecular target of 4 species in Cronobacter and rapid detection method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110951898A true CN110951898A (en) | 2020-04-03 |
CN110951898B CN110951898B (en) | 2022-05-20 |
Family
ID=69985017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911403912.2A Active CN110951898B (en) | 2019-12-30 | 2019-12-30 | New specific molecular target of 4 species in Cronobacter and rapid detection method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110951898B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112063564A (en) * | 2020-09-23 | 2020-12-11 | 西华大学 | Cronobacter dubliniensis for efficiently degrading pyrethroid pesticide and application thereof |
CN112899378A (en) * | 2020-12-30 | 2021-06-04 | 广东省微生物研究所(广东省微生物分析检测中心) | Cronobacter sakazakii standard strain containing specific molecular target and detection and application thereof |
CN117230069A (en) * | 2023-08-16 | 2023-12-15 | 江南大学 | Nucleic acid aptamer capable of specifically recognizing Cronobacter and application thereof |
CN117434263A (en) * | 2023-08-16 | 2024-01-23 | 江南大学 | 3D-DNA walker aptamer sensor based on magnetic separation and Cronobacter sakazakii detection method |
CN118389716A (en) * | 2024-04-10 | 2024-07-26 | 中国检验检疫科学研究院 | MIRA-CRISPR CAS a-based pathogenic Cronobacter typing detection method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102154451A (en) * | 2010-12-30 | 2011-08-17 | 广东省微生物研究所 | Loop-mediated isothermal amplification detection primer group, detection method and detection kit for enterobacter sakazakii |
US20120190028A1 (en) * | 2009-08-07 | 2012-07-26 | Biotecon Diagnostics Gmbh | Nucleic acids and methods for the detection of enterobacter sakazakii (cronobacter spp.) |
US20120322676A1 (en) * | 2011-06-17 | 2012-12-20 | Life Technologies Corporation | Compositions and methods for detection of cronobacter spp. and cronobacter species and strains |
CN103819557A (en) * | 2014-03-12 | 2014-05-28 | 南京农业大学 | Enterobacter sakazakii OmpA polyclonal antibody and preparation method and application thereof |
CN103966353A (en) * | 2013-05-29 | 2014-08-06 | 光明乳业股份有限公司 | Detecting method for Cronobacter sakazakii as well as kit and primers used in detecting method |
CN104561295A (en) * | 2014-12-29 | 2015-04-29 | 南京农业大学 | Target nucleotide sequence, detection kit and detection method for detecting cronobacter sakazakii |
CN107245513A (en) * | 2017-04-27 | 2017-10-13 | 中国疾病预防控制中心传染病预防控制所 | Primer pair group, probe, kit and method for identifying various 'species' of Cronobacter |
CN109295184A (en) * | 2018-08-28 | 2019-02-01 | 广东省微生物研究所(广东省微生物分析检测中心) | A kind of rugged Cronobacter sakazakii CRISPR classifying method of slope |
-
2019
- 2019-12-30 CN CN201911403912.2A patent/CN110951898B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120190028A1 (en) * | 2009-08-07 | 2012-07-26 | Biotecon Diagnostics Gmbh | Nucleic acids and methods for the detection of enterobacter sakazakii (cronobacter spp.) |
CN102154451A (en) * | 2010-12-30 | 2011-08-17 | 广东省微生物研究所 | Loop-mediated isothermal amplification detection primer group, detection method and detection kit for enterobacter sakazakii |
US20120322676A1 (en) * | 2011-06-17 | 2012-12-20 | Life Technologies Corporation | Compositions and methods for detection of cronobacter spp. and cronobacter species and strains |
CN103966353A (en) * | 2013-05-29 | 2014-08-06 | 光明乳业股份有限公司 | Detecting method for Cronobacter sakazakii as well as kit and primers used in detecting method |
CN103819557A (en) * | 2014-03-12 | 2014-05-28 | 南京农业大学 | Enterobacter sakazakii OmpA polyclonal antibody and preparation method and application thereof |
CN104561295A (en) * | 2014-12-29 | 2015-04-29 | 南京农业大学 | Target nucleotide sequence, detection kit and detection method for detecting cronobacter sakazakii |
CN107245513A (en) * | 2017-04-27 | 2017-10-13 | 中国疾病预防控制中心传染病预防控制所 | Primer pair group, probe, kit and method for identifying various 'species' of Cronobacter |
CN109295184A (en) * | 2018-08-28 | 2019-02-01 | 广东省微生物研究所(广东省微生物分析检测中心) | A kind of rugged Cronobacter sakazakii CRISPR classifying method of slope |
Non-Patent Citations (3)
Title |
---|
K G JARVIS 等: "Molecular characterization of Cronobacter lipopolysaccharide O-antigen gene clusters and development of serotype-specific PCR assays", 《APPL ENVIRON MICROBIOL》 * |
周杨 等: "食品中克罗诺杆菌属双重PCR检测试剂盒的评价", 《微生物学通报》 * |
田雪等: "克罗诺杆菌种间鉴定recN基因方法建立", 《中国公共卫生》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112063564A (en) * | 2020-09-23 | 2020-12-11 | 西华大学 | Cronobacter dubliniensis for efficiently degrading pyrethroid pesticide and application thereof |
CN112063564B (en) * | 2020-09-23 | 2022-03-08 | 西华大学 | Cronobacter dubliniensis for efficiently degrading pyrethroid pesticide and application thereof |
CN112899378A (en) * | 2020-12-30 | 2021-06-04 | 广东省微生物研究所(广东省微生物分析检测中心) | Cronobacter sakazakii standard strain containing specific molecular target and detection and application thereof |
CN112899378B (en) * | 2020-12-30 | 2022-05-20 | 广东省微生物研究所(广东省微生物分析检测中心) | Cronobacter sakazakii standard strain containing specific molecular target and detection and application thereof |
WO2022141941A1 (en) * | 2020-12-30 | 2022-07-07 | 广东省科学院微生物研究所(广东省微生物分析检测中心) | Cronobacter standard strains containing specific molecular target, and detection and use thereof |
CN117230069A (en) * | 2023-08-16 | 2023-12-15 | 江南大学 | Nucleic acid aptamer capable of specifically recognizing Cronobacter and application thereof |
CN117434263A (en) * | 2023-08-16 | 2024-01-23 | 江南大学 | 3D-DNA walker aptamer sensor based on magnetic separation and Cronobacter sakazakii detection method |
CN117230069B (en) * | 2023-08-16 | 2024-05-31 | 江南大学 | Nucleic acid aptamer capable of specifically recognizing Cronobacter and application thereof |
CN118389716A (en) * | 2024-04-10 | 2024-07-26 | 中国检验检疫科学研究院 | MIRA-CRISPR CAS a-based pathogenic Cronobacter typing detection method |
Also Published As
Publication number | Publication date |
---|---|
CN110951898B (en) | 2022-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110951898B (en) | New specific molecular target of 4 species in Cronobacter and rapid detection method thereof | |
CN106434898B (en) | Method, primer and kit for rapidly detecting yersinia pseudotuberculosis at constant temperature | |
Pinto et al. | Identification and typing of food-borne Staphylococcus aureus by PCR-based techniques | |
CN111378774B (en) | Primer group, kit and method for rapidly detecting listeria monocytogenes | |
CN103421898A (en) | Triple real-time fluorescent PCR (polymerase chain reaction) detection primer, detection probe, detection kit and detection method for methicillin-resistant staphylococcus aureus | |
Pal et al. | Rapid detection and differentiation of Erysipelothrix spp. by a novel multiplex real‐time PCR assay | |
Boussier et al. | Two-step bacterial broad-range polymerase chain reaction analysis of heart valve tissue improves bacteriological diagnosis of infective endocarditis | |
CN111154900B (en) | Pseudomonas aeruginosa specific new molecular target and rapid detection method thereof | |
CN102304573A (en) | Nucleotide sequence for bacterium diagnosis and application | |
CN115198026A (en) | Burkholderia gladioli and coconut toxin pathogenic variety specific new molecular target and rapid detection method thereof | |
CN111073987B (en) | Rapid constant-temperature detection method, primer group and kit for yersinia enterocolitica | |
CN111057775B (en) | Specific novel molecular target for identifying salmonella and rapid detection method thereof | |
CN113957164A (en) | CRISPR One dot detection method of Cronobacter in infant formula milk powder and kit thereof | |
CN111020039B (en) | Campylobacter jejuni species specific molecular target and rapid detection method thereof | |
CN109811073B (en) | Primer for rapidly detecting streptococcus agalactiae and streptococcus iniae at early stage by double PCR (polymerase chain reaction) and application of primer | |
CN111057776B (en) | Listeria and 6 common Listeria specific novel molecular targets and rapid detection method thereof | |
CN113512601B (en) | Molecular targets for screening for Proteus and quantitative detection methods | |
CN112795673B (en) | CRISPR (clustered regularly interspaced short palindromic repeats) detection method for Cronobacter in food and kit thereof | |
CN113930543A (en) | Real-time fluorescent PCR (polymerase chain reaction) kit for detecting fusarium graminearum toxigenic fungi in food | |
CN111690757A (en) | Primer and detection method for rapidly identifying vomitoxin-producing bacillus cereus | |
CN114317790B (en) | Dual-fluorescence quantitative PCR detection method and kit for two pathogenic bacteria in pre-packaged drinking water | |
CN103014024B (en) | Target gene for detecting citrobacter freundii and detection kit | |
CN113373249B (en) | Molecular target for screening flavobacterium and quantitative detection method thereof | |
CN102851361A (en) | Detection primer kit for salmonella, salmonella enteritidis and salmonella typhimurium by PCR pyrophosphoric acid method and detection method | |
CN110358851B (en) | Nucleic acid sequence, primer, method and kit for detecting bacillus cereus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |