[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110928284A - 辅助控制车辆的自动驾驶的方法、设备、介质和系统 - Google Patents

辅助控制车辆的自动驾驶的方法、设备、介质和系统 Download PDF

Info

Publication number
CN110928284A
CN110928284A CN201811096609.8A CN201811096609A CN110928284A CN 110928284 A CN110928284 A CN 110928284A CN 201811096609 A CN201811096609 A CN 201811096609A CN 110928284 A CN110928284 A CN 110928284A
Authority
CN
China
Prior art keywords
vehicle
environment
perception
result
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811096609.8A
Other languages
English (en)
Other versions
CN110928284B (zh
Inventor
陶吉
夏添
胡星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apollo Intelligent Technology Beijing Co Ltd
Original Assignee
Beijing Baidu Netcom Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baidu Netcom Science and Technology Co Ltd filed Critical Beijing Baidu Netcom Science and Technology Co Ltd
Priority to CN201811096609.8A priority Critical patent/CN110928284B/zh
Priority to JP2019145988A priority patent/JP6898394B2/ja
Priority to EP19198121.6A priority patent/EP3627471B1/en
Priority to US16/575,138 priority patent/US11250702B2/en
Publication of CN110928284A publication Critical patent/CN110928284A/zh
Application granted granted Critical
Publication of CN110928284B publication Critical patent/CN110928284B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • B60W60/00276Planning or execution of driving tasks using trajectory prediction for other traffic participants for two or more other traffic participants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/40High definition maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analytical Chemistry (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

根据本公开的实施例,提供了用于辅助控制车辆的自动驾驶的方法、设备、介质和系统。一种用于辅助控制车辆的自动驾驶的方法包括获取由传感器采集到的与环境相关的感知信息,传感器被布置在环境中并且独立于车辆;通过处理所获取的感知信息确定与环境相关的环境感知结果,其指示环境中包括车辆在内的多个物体的相关信息;以及将环境感知结果提供给与车辆相关联的车侧控制装置以用于辅助控制车辆的驾驶行为。由车外传感器来执行对环境的感知,可以降低对车辆本身的感知能力的要求,使得非自动驾驶车辆或具有较弱自动驾驶能力的车辆能够简单且低成本地提升自动驾驶能力。

Description

辅助控制车辆的自动驾驶的方法、设备、介质和系统
技术领域
本公开的实施例主要涉及车外交互领域,并且更具体地,涉及用于辅助控制车辆的自动驾驶的方法、装置、设备、计算机可读存储介质以及车路协同系统。
背景技术
近年来,自动驾驶(也称为无人驾驶)相关技术逐渐崭露头角。车辆的自动驾驶能力越来越令人期待。自动驾驶技术的基础是对车辆周围环境的感知,即识别周围环境的具体状况。在感知环境的基础上才能进一步确定车辆在当前环境下可执行的驾驶行为,进而控制车辆实现相应的驾驶行为。在当前的自动驾驶领域中,要求车辆本身能够感知周围环境,因此车辆上需要装备各种传感器件,诸如激光雷达。这样的传感器器件的造价和维护成本都很高,随着车辆更新而无法重复利用。此外,对于车辆自身感知能力的高要求使得无法容易地且以低成本将非自动驾驶车辆或具有较弱自动驾驶能力的车辆升级为具有较强自动驾驶能力的车辆。
发明内容
根据本公开的实施例,提供了一种用于辅助控制车辆的自动驾驶的方案。
在本公开的第一方面中,提供了一种用于控制车辆的自动驾驶的方法。该方法包括获取由至少一个传感器采集到的与环境相关的感知信息,至少一个传感器被布置在环境中并且独立于车辆;通过处理所获取的感知信息,确定与环境相关的环境感知结果,环境感知结果指示环境中的多个物体的相关信息,多个物体包括车辆;以及将环境感知结果提供给与车辆相关联的车侧控制装置,以用于辅助控制车辆的驾驶行为。
在本公开的第二方面中,提供了一种用于辅助控制车辆的自动驾驶的装置。该装置包括通信模块,被配置为获取由至少一个传感器采集到的与环境相关的感知信息,至少一个传感器被布置在环境中并且独立于车辆;信息处理模块,被配置为通过处理所获取的感知信息,确定与环境相关的环境感知结果,环境感知结果指示环境中的多个物体的相关信息,多个物体包括车辆;其中通信模块还被配置为将环境感知结果提供给与车辆相关联的车侧控制装置,以用于辅助控制车辆的驾驶行为。
在本公开的第三方面中,提供了一种设备,包括一个或多个处理器;以及存储装置,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现根据本公开的第一方面的方法。
在本公开的第四方面中,提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现根据本公开的第一方面的方法。
在本公开的第五方面中,提供了一种车路协同系统。该系统包括:被布置在环境中并且独立于车辆的至少一个传感器,被配置为采集与环境相关的感知信息;路侧辅助装置,包括根据第一方面的装置;车侧控制装置,被配置为基于路侧辅助装置提供的环境感知结果来控制车辆的驾驶行为。
应当理解,发明内容部分中所描述的内容并非旨在限定本公开的实施例的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标注表示相同或相似的元素,其中:
图1示出了本公开的多个实施例能够在其中实现的示例环境的示意图;
图2示出了根据本公开的一些实施例的车路协同系统的框图;
图3示出了根据本公开的一些实施例的示例静态地图的示意图;
图4根据本公开的一些实施例的用于控制车辆的自动驾驶的过程的流程图;
图5根据本公开的一些实施例的用于辅助控制车辆的自动驾驶的过程的流程图;以及
图6示出了能够实施本公开的多个实施例的计算设备的框图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
如以上提及的,为了支持车辆的自动驾驶能力,对于车辆周围环境的感知是很重要的。在传统自动驾驶技术中,要求车辆自身装备高成本的传感器来获得感知能力。这不仅在经济上增加成本,而且也阻碍了对已有车辆的自动驾驶能力的提升。
通常,传感器的精度和成本往往成正比。如果为了节约成本而降低传感器成本,势必带来感知性能的下降,或者需要更多低性能的传感器互相配合才能尽可能降低感知盲区。在使用过程中,车载传感器一旦出现损坏,单独车辆或器件维修又会带来额外的成本。此外,安装在各个车辆上的传感器通常与车辆本身的设计和制造相适配,因此可能随着车辆的报废而无法被再次利用。另一方面,对于车辆自身感知能力的高要求使得无法容易地且以低成本将非自动驾驶车辆或具有较弱自动驾驶能力的车辆升级为具有较强自动驾驶能力的车辆。通常只能够通过更换车辆来获得车辆自动驾驶能力的升级。
根据本公开的实施例,提出了一种具有车外辅助感知的自动驾驶控制的方案。在该方案中,由布置在车辆周围的环境中并且独立于车辆的传感器来采集与环境相关的感知信息。基于这样的感知信息确定环境感知结果。从这样的环境感知结果中排除与车辆相对应的自车感知结果,获得车辆的车外感知结果以用于控制车辆的驾驶行为。由车外传感器来执行对环境的感知,可以降低对车辆本身的感知能力的要求,使得非自动驾驶车辆或具有较弱自动驾驶能力的车辆能够简单且低成本地提升自动驾驶能力。车外传感器还可以用于辅助环境中的多个车辆的自动驾驶控制,这提高了传感器的利用率。
以下将参照附图来具体描述本公开的实施例。
示例环境和系统
图1示出了本公开的多个实施例能够在其中实现的示例交通环境100的示意图。在该示例环境100中示意性示出了一些典型物体,包括道路102、交通指示设施103、道路两侧的植物107以及可能出现的行人109。应当理解,这些示出的设施和物体仅是示例,根据实际情况,不同交通环境中存在可能出现的物体将会变化。本公开的范围在此方面不受限制。
在图1的示例中,一个或多个车辆110-1、110-2正在道路102上行驶。为便于描述,多个车辆110-1、110-2统称为车辆110。车辆110可以是可以承载人和/或物并且通过发动机等动力系统移动的任何类型的车辆,包括但不限于轿车、卡车、巴士、电动车、摩托车、房车、火车等等。环境100中的一个或多个车辆110可以是具有一定自动驾驶能力的车辆,这样的车辆也被称为无人驾驶车辆。当然,环境100中的另外一个或一些车辆110还可以是不具有自动驾驶能力的车辆。
环境100中还布置有一个或多个传感器105-1至105-6(统称为传感器105)。传感器105独立于车辆110,用于监测环境100的状况,以获得与环境100相关的感知信息。为了全方位监测环境100,传感器105可以被布置在道路102附近,并且可以包括一个或多个类型的传感器。例如,传感器105可以按一定间隔被布置在道路102的两侧,用于监测环境100的特定区域。在每个区域中可以布置有多种类型的传感器。在一些示例中,除了将传感器105固定在特定位置之外,还可以设置可移动的传感器105,诸如可移动感知站点等。
由与道路102相应布置的传感器105采集到的感知信息也可以被称为路侧感知信息。路侧感知信息可以被用于促进对车辆110的驾驶控制。为了实现利用路侧感知信息进行车辆110的自动驾驶控制,路侧与车侧可以协作执行车辆的控制。图2示出了这样的车路协同系统200的示意图。为便于描述,下文将结合图1来讨论车路协同系统200。
车路协同系统200包括传感器105,用于辅助车辆110的自动驾驶的路侧辅助装置210,以及用于控制车辆110的自动驾驶的车侧控制装置220。路侧辅助装置210在本文中有时也被称为用于辅助车辆的自动驾驶的装置。路侧辅助装置210与环境100相结合使用,以便辅助控制在环境100中出现的车辆的自动驾驶。路侧辅助装置210可以被安装在任何位置,只需要路侧辅助装置210能够与传感器105和车侧控制装置220通信即可。由于均被部署在路侧,传感器105和路侧辅助装置210还可以构成路侧辅助子系统。
车侧控制装置220在本文中有时也被称为控制车辆的110自动驾驶的装置。车侧控制装置220与一个相应车辆110相关联地使用,例如被集成到车辆110上,以控制该车辆110的自动驾驶。环境100中的一个或多个车辆110上可以分别配备车侧控制装置220。例如,车辆110-1上可以集成有一个车侧控制装置220,车辆110-2上也可以类似地集成有一个车侧控制装置220。在下文中,针对一个车辆110来描述车侧控制装置220的相应功能。
路侧辅助装置210包括通信模块212和信息处理模块214。通信模块212可以支持与传感器105的有线/无线通信,用于从传感器105获取采集到的与环境100相关的感知信息。通信模块212还可以支持与车侧控制装置220的通信,这样的通信通常是无线通信。通信模块212与传感器105和车侧控制装置220的通信可以基于任何通信协议,本公开的实现在此方面不受限制。
如以上提及的,为了全方位监测环境100,被布置在环境100中的传感器105可以包括多种类型的传感器。传感器105的示例可以包括但不限于:图像传感器(例如摄像头)、激光雷达、毫米波雷达、红外传感器、定位传感器、光照传感器、压力传感器、温度传感器、湿度传感器、风速传感器、风向传感器、空气质量传感器等等。图像传感器可以采集与环境100相关的图像信息;激光雷达和毫米波雷达可以采集与环境100相关的激光点云数据;红外传感器可以利用红外线来探测环境100中的环境状况;定位传感器可以采集与环境100相关的物体的位置信息;光照传感器可以采集指示环境100中的光照强度的度量值;压力、温度和湿度传感器可以分别采集指示环境100中的压力、温度和湿度的度量值;风速、风向传感器可以分别采集用于指示环境100中的风速、风向的度量值;空气质量传感器可以采集环境100中一些与空气质量相关的指标,诸如空气中的氧气浓度、二氧化碳浓度、粉尘浓度、污染物浓度等。应当理解,以上仅列出了传感器105的一些示例。根据实际需要,还可以存在其他不同类型的传感器。在一些实施例中,不同的传感器可以被集成在某个位置,或者可以被分布在环境100的一个区域中,以用于监测特定类型的路侧感知信息。
由于传感器105直接采集到的感知信息的数据量较大且类型多样,若直接将传感器105采集到的感知信息传输给车侧控制装置220,不仅造成较大的通信传输开销、造成通信资源过度占用,而且同样的感知信息可能需要在不同车辆处被分别单独处理,造成系统总体性能降低。在本公开的实现中,传感器105采集到的感知信息由路侧辅助装置210(具体由路侧辅助装置210中的信息处理模块214)集中处理。
路侧辅助装置210的信息处理模块214处理从传感器105处获取的感知信息,以确定与环境100相关的环境感知结果。环境感知结果可以指示理解环境100的整体状况,具体可以指示环境中包括车辆110在内的多个物体的相关信息。这样的相关信息包括各个物体的尺寸、位置(例如在地球坐标系中的精确位置)、速度、运动方向、与特定视点的距离等等。信息处理模块214可以将来自不同传感器105的不同类型的感知信息进行融合,以确定环境感知结果。信息处理模块214可以采用各种不同信息融合技术来确定环境感知结果。
为了保证车辆110的安全驾驶,环境感知结果所提供的各个物体的相关信息的精度应当较高。路侧辅助装置210对传感器105采集到的感知信息的具体处理将在下文中详细描述。路侧辅助装置210中的通信模块212被配置为将信息处理模块214处理后获得的环境感知结果传输给车侧控制装置220。
车侧控制装置220基于从路侧辅助装置210获取的环境感知结果来控制对应车辆110(例如,安装有车侧控制装置220的驾驶行为)。车侧控制装置220包括通信模块222、信息处理模块224和驾驶控制模块226。通信模块222被配置为与路侧辅助装置210、特别是路侧辅助装置210中的通信模块212通信耦合,以从通信模块212接收环境感知结果。信息处理模块224被配置为执行对环境感知结果的处理,以使环境感知结果适合用于车辆110的自动驾驶控制。驾驶控制模块226被配置为基于信息处理模块224的处理结果来控制车辆110的驾驶行为。
车侧驾驶控制
下文将首先详细描述车侧控制装置220如何执行对车辆110的自动驾驶控制。
车侧控制装置220的通信模块222可以从路侧辅助装置210获取与车辆110周围的环境100相关的环境感知结果。这样的环境感知结果基于由布置在环境100中并且独立于该车辆110的一个或多个传感器105采集到的感知信息,并且指示环境100中的多个物体的相关信息,诸如物体的尺寸、位置(例如在地球坐标系中的精确位置)、速度、运动方向、与特定视点的距离等等。
在一些实施例中,除了从路侧辅助装置210获得环境感知结果之外,车侧控制装置220还可以从被集成在环境100中的其他车辆上的传感器获得环境感知结果以作为补充。环境100中的一些车辆可能有较强感知能力的传感器(诸如激光雷达)或者具有一般感知能力的传感器(诸如摄像头)。这些传感器采集到的感知信息也有助于辅助其他车辆的自动驾驶控制。对于某个车辆(例如,车辆110-1)来说,与车辆110-1相关联的车侧控制装置220可以从其他车辆(例如,车辆110-2)上的传感器获得原始感知信息或者对原始感知信息进行处理后的感知结果。
通常,被装备在车辆上的传感器将从车辆本身的角度来检测周围环境,因此所获得的感知信息中不包含车辆本身相关的信息。然而,由于车辆外部的传感器(诸如路侧传感器或其他车辆上的传感器)传感器本身而不是车辆的角度来观察整个环境,这些传感器无差别地监测该车辆以及其他物体的相关信息,因此采集到的信息包含整个环境中的物体相关的感知信息。
根据本公开的实施例,信息处理装置224从环境感知结果中排除与车辆110相对应的自车感知结果,以确定车辆110的车外感知结果。自车感知结果可以指的是由环境感知结果中与车辆110本身相关的信息,诸如车辆110的尺寸、位置、速度、方向、与特定视点的距离等信息。车外感知结果包括除了车辆110之外的其他物体的相关信息。在车辆110的驾驶中,车辆110需要将自车之外的其他物体都视为障碍物,从而合理规划行驶路径,避免与障碍物碰撞。在本公开的实施例中,通过从环境感知结果识别和排除自车感知结果,使得车外感知结果更适合于用于车辆110的自动驾驶控制。
为了从全面的环境感知结果中确定车辆110的车外感知结果,在一些实施例中,车辆110可以配备有标签部分,用于识别车辆110。这样的标签部分可以是以下一项或多项:车辆110的车牌、粘贴在车辆110外部的二维码、粘贴在车辆110外部的非可见光标签、以及安装在车辆110上的无线射频标签。
在道路上行驶的机动车辆通常都安装有车牌,用于唯一标识车辆。在一些情况下,对于没有车牌的车辆或者考虑到车牌容易被遮挡,还可以在车辆110外部粘贴特定于车辆110的二维码作为车辆的标签部分。车辆110的车牌和/或二维码可以从图像传感器采集的图像信息中识别。在一些示例中,为了不影响车辆的外观,还可以在车辆110上粘贴非可见光标签,诸如红外、紫外反射标签,用于识别车辆110。这样的非可见光标签可以由非可见光传感器识别。备选地或附加地,车辆110上安装的无线射频标签也可以用于识别车辆110。无线射频标签可以发射信号,并且通过射频读取器读取发射的信号来识别车辆110。
通过车辆110的标签部分,信息处理模块224可以从环境感知结果中标识出与车辆110的标签部分相关的标识信息。这样的标识信息例如可以是车辆110的车牌或二维码图像信息、指示非可见光标签和无线射频标签的特定信号的指示信息等。信息处理模块224通过将自车的标签部分所指示的标识与环境感知结果进行匹配,以从中识别出对应的标识信息。然后,信息处理模块224基于标识信息确定环境感知结果中与车辆110相对应的自车感知结果。通常,路侧辅助装置210将各个物体的相关信息结合在一起。因此,通过车辆110的标识信息,可以确定环境感知结果中与车辆110相关的其他信息,诸如车辆110的位置、尺寸等等。
在一些实施例中,除了利用车辆配备的标签部分来识别车辆110本身之外,还可以基于车辆110的位置来标识环境感知结果中的自车感知结果。如以上提及的,环境感知结果可以包括多个物体的位置。信息处理模块224可以利用各种定位技术来确定车辆110的位置,然后将车辆110的位置与环境感知结果中的多个物体的位置进行匹配,从多个物体中标识出与车辆110相匹配的物体。通过这种方式,信息处理模块224可以识别环境感知结果中哪个物体是车辆110本身。由此,信息处理模块224可以从环境感知结果中排除与车辆110匹配的物体相对应的感知结果,获得车外感知结果。
在基于位置匹配来确定车外感知结果时,车辆110的位置可以是车辆110的精确位置(例如与环境感知结果所包括的物体的位置的精度相似)或者可以是车辆110的粗略位置(例如,亚米级定位)。在环境100中的物体互相之间距离较大时,车辆110的粗略位置也能够准确地从环境感知结果中匹配出在重叠位置处的匹配物体。在一些实施例中,车辆110的位置可以由车辆110自身具有的定位设备,诸如全球定位系统(GPS)天线、位置传感器等来确定。车辆110也可以基于其他定位技术,诸如与通信模块222通信的基站和/或被布置在环境100中的路侧辅助装置210、或者任何其他技术来进行定位。
在识别出车辆110的自车感知结果后,信息处理模块224可以删除或者忽略环境感知结果中与车辆110相对应的自车感知结果,并且仅考虑其他环境感知结果(即车外感知结果)。车外感知结果由车侧控制装置220中的驾驶控制模块226用于控制车辆110的驾驶行为。驾驶控制模块226可以在已知车外感知结果的基础上,利用各种自动驾驶策略来控制车辆110的驾驶行为。车辆110的驾驶行为可以包括车辆110的行驶路径、行驶方向、行驶速度等。驾驶控制模块226可以生成针对车辆110的驾驶行为的具体操作命令,诸如针对汽车的行驶系、转向系等的操作命令,使得车辆110根据这样的操作命令进行驾驶。操作命令例如可以是加速、减速、左转向、右转向、停车、鸣笛、打开或关闭车灯等等任何与车辆110的驾驶相关的命令。
在一些实施例中,在控制车辆110的驾驶行为时,驾驶控制模块226可以基于车外感知结果来确定环境100中的一个或多个物体(即障碍物)的行为预测。行为预测包括物体的预期运动轨迹、预期运动速度、预期运动方向等一个或多个方面。物体的行为预测对于车辆的自动驾驶控制而言也是有用的,因为车辆的自动驾驶控制往往需要判断车辆周围的物体即将如何运动,以便于采取相应的驾驶行为进行应对。在一些实施例中,驾驶控制模块226可以基于预先训练的预测模型来执行行为预测。这样的预测模型例如可以一个通用的行为预测模式,或者包括针对不同类型的物体的不同预测模型。驾驶控制模块226可以基于物体的行为预测来确定车辆110的驾驶行为。
在一些实施例中,在控制车辆的驾驶行为时,除了车外感知结果之外,信息处理模块224还基于车辆110的位置来控制车辆的驾驶。通常,为了准确、安全的自动驾驶控制,期望获知车辆110的精确位置。在一个实施例中,车辆110可以配备有能够执行精确定位的传感器。在另一个实施例中,还可以从环境感知结果中确定车辆110的精确位置,这也可以降低对车辆110的精确定位硬件的要求,并且提高定位精度和稳定性。
如以上讨论的,环境感知结果包括车辆110的较高精度位置。在车辆110的自动驾驶控制中使用的精确位置可以从环境感知结果中确定。在这样的实施例中,车侧控制装置220可以包括车辆定位模块(未示出)。车辆定位模块可以被配置为通过位置匹配的方式从环境感知结果中标识车辆110。
具体地,车辆定位模块可以首先确定车辆110的粗略位置,例如通过车辆110的GPS天线或者借助诸如基站等辅助设备进行定位。车辆定位模块基于车辆110的粗略位置,从环境感知结果中确定与车辆110匹配的物体,并且将环境感知结果中与车辆110匹配的物体的位置确定为车辆110的精细位置(即具有更高精度的位置)。以此方式,可以无需要求车辆110或者车侧控制装置220具备精确车载定位装置,即可获得车辆110的精确位置用于控制车辆110的驾驶行为。
在另外一些实施例中,如以上讨论的,还可以通过车辆110配备的标签部分来标识车辆110相对应的自车感知结果。因此,可以从标识的自车感知结果中获得车辆110的精确定位。这可以使车辆110甚至无需车载定位装置即可实现准确定位。
在本公开的一些实施例中,车侧控制装置220除了从路侧辅助装置210获得环境感知结果之外,还可以获得其他辅助驾驶信息用于辅助车辆110的自动驾驶。在一个实施例中,车侧控制装置220的通信模块222可以从路侧辅助装置210(例如从通信模块214)获取环境100中的一个或多个物体的行为预测。行为预测包括物体的预期运动轨迹、预期运动速度、预期运动方向等一个或多个方面。在另一个实施例中,车侧控制装置220的通信模块222可以从路侧辅助装置210(例如从通信模块214)获取针对车辆110的自动驾驶推荐,包括车辆110的行驶路径推荐、行驶方向推荐和控制车辆的驾驶行为的具体操作指令推荐等一个或多个。
除了车外感知结果之外,车侧控制装置220的驾驶控制模块226还可以基于从路侧辅助装置210获得的关于物体的行为预测和/或自动驾驶推荐来控制车辆110的驾驶行为。车侧控制模块226在控制车辆110的驾驶行为时,可以参考或调整从路侧辅助装置210获得的行为预测和/或自动驾驶推荐,以便确定车辆110的实际驾驶行为。
由路侧辅助装置210执行行为预测和自动驾驶推荐,可以进一步降低对车辆110本身或者对车侧控制装置220的自动驾驶能力的要求,降低了车侧的处理和控制复杂度。例如,车侧控制装置220可以基于简单的自动驾驶控制策略,在从路侧辅助装置210获得的行为预测和/或自动驾驶推荐的基础上,结合实际的车外感知结果来确定车辆110的驾驶行为。
以上已经描述了车侧控制装置220从路侧辅助装置210获得环境感知结果以及还可能获得物体的行为预测和/或自动驾驶推荐,来控制车辆110的驾驶行为。在上述实施例中,传感器105和路侧辅助装置210承担对车辆110周围环境的感知功能,此外还可以提供诸如行为预测和/或自动驾驶推荐等辅助驾驶信息。借助路侧辅助装置210和传感器105获得的环境感知结果以及其他辅助驾驶信息可以被提供给环境100中的多个车辆110,实现了集中式的环境感知和信息处理。
在这样的实现下,可以不要求车辆110本身具备强大的环境感知能力、自定位能力、行为预测能力和/或自动驾驶规划能力,就能够实现自动驾驶。车辆110的自动驾驶能力的提升可以通过集成车侧控制装置220来实现。例如,可以通过升级车辆110的软件系统并且通过附加通信功能或者借助车辆110本身具有的通信功能,来将车侧控制装置220的功能集成到车辆110。此外,通过路侧辅助装置210提供行为预测能力和/或自动驾驶推荐,还可以在车辆110的硬件和/或软件出现故障无法执行行为预测和驾驶规划的情况下,保障车辆110的自动驾驶过程持续。
在一个具体示例中,如果车辆行驶道路系统的某一个路段中部署了路侧辅助装置210和传感器105,只需要集成车侧控制装置220,行驶到该路段的车辆110就可以获得更强大的自动驾驶能力。在一些情况下,不具有自动驾驶能力的车辆110(例如被划分为自动驾驶分级中的L0、L1级别的车辆)或者具有较弱驾驶能力的车辆110(例如,L2级别的车辆)可以借助于环境感知结果而获得更强大的自动驾驶能力(例如类似于L3或L4级别的自动驾驶车辆)。
路侧辅助驾驶控制
以上的实施例主要描述了在图2的协同控制系统200中车侧控制装置220的具体实现。下文将继续描述在协同控制系统200中的路侧辅助装置210的一些实施例。
根据本公开的实施例中,路侧辅助装置210获取传感器105的感知信息并且通过处理感知信息来确定环境感知结果。路侧辅助装置210然后将环境感知结果提供给车侧控制装置220,以用于辅助控制车辆110的驾驶行为。
在一些实施例中,为了进一步降低车侧控制装置220的处理复杂度,路侧辅助装置210可以从环境感知结果中确定与一个或多个车辆110相对应的车外感知结果,并且将车外感知结果提供给车侧控制装置220。也就是说,路侧辅助装置210可以向各个车辆110提供的感知结果是针对各个车辆并且可被直接用于这些车辆的驾驶控制的不同车外感知结果。具体地,路侧辅助装置210的信息处理模块214从环境感知结果中排除与某个车辆110相对应的自车感知结果,从而确定该车辆110的车外感知结果。路侧辅助装置210然后将确定的车外感知结果提供给与该车辆相关联的车侧控制装置,以用于辅助控制该车辆的驾驶行为。
信息处理模块214标识某个车辆110的车外感知结果的方式与车侧控制装置220所采用的方式类似。例如,信息处理模块214也可以基于车辆110配备的标签部分来识别车辆110,标签部分诸如是车辆110的车牌、二维码、非可见光标签和无线射频标签中的一个或多个。具体地,信息处理模块214从环境感知结果中标识与车辆110配备的标签部分相关的标识信息,然后基于标识信息确定环境感知结果中与车辆110相对应的自车感知结果。信息处理模块214可以从环境感知结果中排除自车感知结果,以获得车外感知结果用于提供给车侧控制装置220。
在一些实施例中,为了更快速、准确地从传感器105获得的感知信息中确定出环境感知结果,信息处理模块214还可以借助与环境100相关联的静态高精地图来确定环境感知结果。静态高精地图包括环境100的静态物体的相关信息。静态高精地图可以由环境100中布置的传感器105预先采集到的与环境100相关的信息而生成。静态高精地图中仅包括环境100中突出于地面并且在相对较长时间内保持静止的物体的相关信息。
图3示出了与图1的环境100相关联的一个静态高精地图300的示例。相较于环境100而言,静态高精地图300中仅包括静止物体、诸如布置有传感器105的立杆、交通指示设施103、道路两侧的植物107等。这些物体在一段时间内是保持静止的。诸如车辆110和行人109等物体有时候会出现在环境100中,有时候会从环境100中消失,或者在环境100中移动。因此,这样的物体被称为动态物体。
应当理解,图3示出的静态高精地图300仅是为了图示的目的而给出。通常,高精地图中除了示意性示出物体或者给出物体的图像之外,还会标注物体的其他信息,诸如精确位置、速度、方向等等。在一些实现中,静态高精地图包括三维静态高精地图,其包括物体在三维空间中的相关信息。
在初始时候,静态高精地图,诸如静态高精地图300可以由高精地图采集车采集环境100相关的信息并且基于这样的信息而生成。环境100相关联的静态高精地图也可以定时或者由相应事件触发而被更新。静态高精地图的更新周期可以设置为相对长的一段时间。静态高精地图的更新可以基于被布置在环境100中并且实时监测环境100的传感器105采集到的感知信息。
在使用静态高精地图来确定环境感知结果时,为了自动驾驶的目的,环境感知结果要反映环境100的实时状况。因此,信息处理模块214可以利用传感器105提供的实施感知结果来更新静态高精地图,以获得与环境100相关联的实时高精地图作为环境感知结果。在更新静态高精地图时,可以将来自传感器105的感知信息和静态高精地图融合,将感知信息中的动态物体以及动态物体的相关信息被结合到静态高精地图中。
在确定环境感知结果时,静态高精地图的使用可以将实时感知信息中可能错误检测出的物体纠正或删除,提升了环境感知结果的准确度。例如,由于实时感知信息的误差,环境100中的某个物体被检测为具有一定速度,通过结合静态高精地图可以确定该物体实际上是静态物体,因此可以避免错误标记物体速度、进而影响车辆110的自动驾驶控制。
在一些实施例中,静态高精地图有助于标注环境100中的物体的精确位置,这样的精确位置可以形成环境感知结果的一部分。具体而言,信息处理模块214可以利用传感器105采集到的感知结果中的图像感知信息。信息处理模块214从图像感知信息中识别出环境中的物体,所识别的物体包括环境中的静态物体以及其他物体(例如新进入环境100中的动态物体)。这可以通过用于物体识别的图像处理技术来实现。
然后,信息处理模块214基于识别出的静态物体与其他物体之间的相对位置关系,从静态高精地图指示的静态物体的位置确定其他物体的位置。通过图像传感器采集到的图像感知信息通常不能指示其中的物体的地理位置、例如在地球坐标系中的具体位置,但是图像感知信息可以反映不同物体之间的相对位置关系。基于这样的相对位置关系,可以从已知的静态高精地图指示的静态物体的位置确定其他物体的精确位置。在确定时,还可以参考静态物体从图像感知信息到静态高精地图的转换关系,来确定其他物体在环境100中的绝对地理位置。利用静态高精地图的物体定位可以快速准确地获得高精度的位置,降低了精确定位所需要的计算开销。
如以上关于车侧控制装置220的讨论中提及的,路侧辅助装置210除了提供环境感知结果或者车外感知结果之外,还可以处理环境感知结果以获得针对环境100中的一个或多个车辆的其他辅助驾驶信息,诸如环境100中的物体的行为预测和/或特定车辆110的自动驾驶推荐。下文将详细讨论如何在路侧辅助装置210中确定物体的行为预测和车辆的自动驾驶推荐。
在一些实施例中,路侧辅助装置210还包括行为预测模块(未示出),其被配置为基于环境感知结果来确定环境100中的一个或多个物体的行为预测。所确定的预测行为经由通信模块212被提供给车侧控制装置220,以用于进一步辅助控制相应车辆110的驾驶行为。物体的行为预测包括物体的预期运动轨迹、预期运动速度、预期运动方向等一个或多个方面。物体的行为预测对于车辆的自动驾驶控制而言也是有用的,因为车辆的自动驾驶控制往往需要判断车辆周围的物体即将如何运动,以便于采取相应的驾驶行为进行应对。
在一些实施例中,路侧辅助装置210的行为预测模块可以利用特定于传感器105所处的位置或区域的预测模型来确定物体的行为预测。不同于在车侧使用的针对全部物体或不同类型的物体的通用预测模型,传感器105本地的预测模型可以基于传感器105所在区域处出现的物体的行为来训练。用于训练预测模型的训练数据可以是先前记录的在传感器105所处区域处的一个或多个物体的行为。
在不同地理区域出现的物体可能会表现出与该区域相关的特定行为模式。例如,如果传感器105被布置在旅游景点附近,那么在这个区域中的行人的行走可能是方向性较弱,类似于徘徊漫步的模式。如果传感器105被布置在接近写字楼等办公场所附近的,在这个区域中的行人的行走可能是目的性更强,例如走向特定的一个或多个建筑中。因此,通过训练特定于区域处的预测模型,可以更准确地预测出物体在特定区域处将发生的行为。
在一些实施例中,路侧辅助装置210还包括驾驶推荐模块(未示出),其被配置为基于环境感知结果来确定针对一个或多个车辆110的自动驾驶推荐。自动驾驶推荐可以包括车辆110的行驶路径推荐、车辆110的行驶方向推荐,或者甚至可以包括控制车辆110的驾驶行为的具体操作指令推荐。驾驶推荐模块确定的自动驾驶推荐经由通信模块212提供给车侧控制装置220,以用于进一步辅助控制相应车辆110的驾驶行为。
在一些实施例中,路侧辅助装置210的驾驶推荐模块利用特定于传感器105所处的区域的推荐模型来确定自动驾驶推荐。推荐模型基于车辆在传感器105所处区域中执行的驾驶行为而训练。用于训练推荐模型的数据可以是先前记录的在传感器105所处区域处的一个或多个车辆所采取的驾驶行为。在不同地理区域中,车辆可能会表现出与该区域相关的特定驾驶行为模式。例如,在人流密集的十字路口,车辆可能会提前执行减速操作。在某些路口,更多车辆可能会左转弯。通过训练特定于区域处的推荐模型,可以更准确地提供适合于在特定区域处执行的车辆驾驶行为。
在一些实施例中,路侧辅助装置210还可以向车侧控制装置220提供其他辅助驾驶信息,诸如由传感器105监测的环境100中的交通状况、事故状况等等,这些信息均有助于车侧控制装置220更准确合理地控制车辆110的驾驶行为。
根据本公开的实施例,路侧辅助装置210和传感器105共同为车侧控制装置220提供环境感知结果以及还可能提供物体的行为预测和/或自动驾驶推荐,用于辅助控制车辆110的驾驶行为。借助路侧辅助装置210和传感器105获得的环境感知结果以及其他辅助驾驶信息可以被提供给环境100中的多个车辆110,实现了集中式的环境感知和信息处理。
在这样的实现下,可以不要求车辆110本身具备强大的环境感知能力、自定位能力、行为预测能力和/或自动驾驶规划能力,就能够实现自动驾驶。车辆110的自动驾驶能力的提升可以通过集成车侧控制装置220来实现。例如,可以通过升级车辆110的软件系统并且通过附加通信功能或者借助车辆110本身具有的通信功能,来将车侧控制装置220的功能集成到车辆110。此外,通过路侧辅助装置210提供行为预测能力和/或自动驾驶推荐,还可以在车辆110的硬件和/或软件出现故障无法执行行为预测和驾驶规划的情况下,保障车辆110的自动驾驶过程持续。
以上描述了由路侧辅助装置210实现环境感知结果、物体的行为预测和/或针对车辆的自动驾驶控制等功能。在一些实施例中,这些功能中的一个、一些或全部可以由其他具有更强计算能力的设备来执行,诸如在云端、边缘计算站点、路侧的基站或服务器等设备处执行。路侧辅助装置210可以将传感器105的感知信息提供给相应处理设备、获得处理结果并且将相应处理结果提供给车侧控制装置220。
车侧示例流程
图4示出了根据本公开实施例的用于控制车辆的自动驾驶的方法400的流程图。方法400可以由图2的车侧控制装置220实现。在框410,车侧控制装置220获取与车辆周围的环境相关的环境感知结果。环境感知结果基于由布置在环境中并且独立于车辆的至少一个传感器采集到的感知信息,并且环境感知结果指示环境中的多个物体的相关信息。在框420,车侧控制装置220通过从环境感知结果中排除与车辆相对应的自车感知结果,确定车辆的车外感知结果。在框430,车侧控制装置220至少基于车外感知结果,控制车辆的驾驶行为。
在一些实施例中,控制车辆的驾驶行为还包括:获取多个物体中的至少一个的行为预测,行为预测包括以下至少一项:至少一个物体的预期运动轨迹、至少一个物体的预期运动速度和至少一个物体的预期运动方向;以及还基于至少一个物体的行为预测,控制车辆的驾驶行为。
在一些实施例中,控制车辆的驾驶行为还包括:获取针对车辆的自动驾驶推荐,自动驾驶推荐包括以下至少一项:车辆的行驶路径推荐、车辆的行驶方向推荐和控制车辆的驾驶行为的操作指令推荐;以及还基于针对车辆的自动驾驶推荐,控制车辆的驾驶行为。
在一些实施例中,确定车辆的车外感知结果包括:从环境感知结果中标识与车辆配备的标签部分相关的标识信息;基于标识信息确定环境感知结果中与车辆相对应的自车感知结果;以及从环境感知结果中排除自车感知结果,以获得车外感知结果。
在一些实施例中,车辆配备的标签部分包括以下至少一项:车辆的车牌、粘贴在车辆外部的二维码、粘贴在车辆外部的非可见光标签、以及安装在车辆上的无线射频标签。
在一些实施例中,环境感知结果包括多个物体的位置,确定车辆的车外感知结果包括:确定车辆的位置;通过将车辆的位置和多个物体的位置进行匹配,从多个物体中标识出与车辆匹配的物体;以及从环境感知结果中排除与车辆匹配的物体相对应的感知结果,以获得车外感知结果。
在一些实施例中,方法400还包括:确定车辆在环境中的粗略位置;基于粗略位置,从环境感知结果中确定多个物体中与车辆相对应的物体;以及将环境感知结果中包括的与车辆相对应的物体的位置信息确定为车辆在环境中的精细位置。
在一些实施例中,控制车辆的驾驶行为还包括:还基于车辆的精细位置,控制车辆的驾驶行为。
在一些实施例中,至少一个传感器包括以下至少一项:被布置在车辆正在其上行驶的道路附近的传感器,以及被集成在环境中的其他车辆上的传感器。
路侧示例流程
图5示出了根据本公开实施例的用于辅助控制车辆的自动驾驶的方法500的流程图。方法500可以由图2的路侧控制装置210实现。在框510,路侧控制装置210获取由至少一个传感器采集到的与环境相关的感知信息。至少一个传感器被布置在环境中并且独立于车辆。在框520,路侧控制装置210通过处理所获取的感知信息,确定与环境相关的环境感知结果,环境感知结果指示环境中的多个物体的相关信息,多个物体包括车辆。在框530,路侧控制装置210将环境感知结果提供给与车辆相关联的车侧控制装置,以用于辅助控制车辆的驾驶行为。
在一些实施例中,方法500还包括基于环境感知结果,确定多个物体中的至少一个的行为预测,行为预测包括以下至少一项:至少一个物体的预期运动轨迹、至少一个物体的预期运动速度和至少一个物体的预期运动方向;以及将所确定的行为预测提供给车载控制系统,以用于进一步辅助控制车辆的驾驶行为。
在一些实施例中,确定行为预测包括:利用特定于至少一个传感器所处的区域的预测模型来确定行为预测,预测模型基于区域处出现的另一物体的行为而训练。
在一些实施例中,方法500还包括:基于环境感知结果,确定针对车辆的自动驾驶推荐,自动驾驶推荐包括以下至少一项:车辆的行驶路径推荐、车辆的行驶方向推荐和控制车辆的驾驶行为的操作指令推荐;以及将所确定的自动驾驶推荐提供给车载控制系统,以用于进一步辅助控制车辆的驾驶行为。
在一些实施例中,确定自动驾驶推荐包括:利用特定于至少一个传感器所处的区域的推荐模型来确定自动驾驶推荐,推荐模型基于另一车辆在区域处执行的驾驶行为而训练。
在一些实施例中,确定环境感知结果包括:获取与环境相关联的静态高精地图,静态地图至少指示环境中的静态物体的位置;以及基于感知信息和静态高精地图来确定环境感知结果。
在一些实施例中,基于感知信息和静态高精地图来确定环境感知结果包括:利用感知信息更新静态高精地图,以获得与环境相关联的实时高精地图作为环境感知结果。
在一些实施例中,感知信息包括图像感知信息,基于感知信息和静态高精地图来确定环境感知结果包括:从图像感知信息中标识环境中的静态物体和其他物体;以及基于静态物体与其他物体在图像感知信息中的相对位置关系,从静态高精地图指示的静态物体的位置确定其他物体的位置。
在一些实施例中,将环境外感知结果提供给车侧控制装置包括通过从环境感知结果中排除与车辆相对应的自车感知结果,来确定车辆的车外感知结果;以及将车外感知结果发送给车侧控制装置。
在一些实施例中,确定车辆的车外感知结果包括:从环境感知结果中标识与车辆配备的标签部分相关的标识信息;基于标识信息确定环境感知结果中与车辆相对应的自车感知结果;以及从环境感知结果中排除自车感知结果,以获得车外感知结果。
在一些实施例中,车辆配备的标签部分包括以下至少一项:车辆的车牌、粘贴在车辆外部的二维码、粘贴在车辆外部的非可见光标签、以及安装在车辆上的无线射频标签。
在一些实施例中,至少一个传感器包括以下至少一项:被布置在车辆正在其上行驶的道路附近的传感器,以及被集成在环境中的其他车辆上的传感器。
示例设备实现
图6示出了可以用来实施本公开的实施例的示例设备600的示意性框图。设备600可以用于实现图2的路侧辅助装置210或车侧控制装置220。如图所示,设备600包括计算单元601,其可以根据存储在只读存储器(ROM)602中的计算机程序指令或者从存储单元608加载到随机访问存储器(RAM)603中的计算机程序指令,来执行各种适当的动作和处理。在RAM603中,还可存储设备600操作所需的各种程序和数据。计算单元601、ROM 602以及RAM 603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。
设备600中的多个部件连接至I/O接口605,包括:输入单元606,例如键盘、鼠标等;输出单元607,例如各种类型的显示器、扬声器等;存储单元608,例如磁盘、光盘等;以及通信单元609,例如网卡、调制解调器、无线通信收发机等。通信单元609允许设备600通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
计算单元601可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元601的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元601可以执行上文所描述的各个方法和处理,例如过程400或过程500。例如,在一些实施例中,过程400或过程500可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元608。在一些实施例中,计算机程序的部分或者全部可以经由ROM 602和/或通信单元609而被载入和/或安装到设备600上。当计算机程序加载到RAM 603并由计算单元601执行时,可以执行上文描述的过程400或过程500的一个或多个步骤。备选地,在其他实施例中,计算单元601可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行过程400或过程500。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)等等。
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实现中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (27)

1.一种用于辅助车辆的自动驾驶的方法,包括:
获取由至少一个传感器采集到的与环境相关的感知信息,所述至少一个传感器被布置在所述环境中并且独立于车辆;
通过处理所获取的感知信息,确定与所述环境相关的环境感知结果,所述环境感知结果指示所述环境中的多个物体的相关信息,所述多个物体包括车辆;以及
将所述环境感知结果提供给与所述车辆相关联的车侧控制装置,以用于辅助控制所述车辆的驾驶行为。
2.根据权利要求1所述的方法,还包括:
基于所述环境感知结果,确定所述多个物体中的至少一个的行为预测,所述行为预测包括以下至少一项:所述至少一个物体的预期运动轨迹、所述至少一个物体的预期运动速度和所述至少一个物体的预期运动方向;以及
将所确定的行为预测提供给所述车载控制系统,以用于进一步辅助控制所述车辆的所述驾驶行为。
3.根据权利要求2所述的方法,其中确定所述行为预测包括:
利用特定于所述至少一个传感器所处的区域的预测模型来确定所述行为预测,所述预测模型基于所述区域处出现的另一物体的行为而训练。
4.根据权利要求1所述的方法,还包括:
基于所述环境感知结果,确定针对所述车辆的自动驾驶推荐,所述自动驾驶推荐包括以下至少一项:所述车辆的行驶路径推荐、所述车辆的行驶方向推荐和控制所述车辆的驾驶行为的操作指令推荐;以及
将所确定的自动驾驶推荐提供给所述车载控制系统,以用于进一步辅助控制所述车辆的所述驾驶行为。
5.根据权利要求4所述的方法,其中确定所述自动驾驶推荐包括:
利用特定于所述至少一个传感器所处的区域的推荐模型来确定所述自动驾驶推荐,所述推荐模型基于另一车辆在所述区域处执行的驾驶行为而训练。
6.根据权利要求1所述的方法,其中确定所述环境感知结果包括:
获取与所述环境相关联的静态高精地图,所述静态地图至少指示所述环境中的静态物体的位置;以及
基于所述感知信息和所述静态高精地图来确定所述环境感知结果。
7.根据权利要求6所述的方法,其中基于所述感知信息和所述静态高精地图来确定所述环境感知结果包括:
利用所述感知信息更新所述静态高精地图,以获得与所述环境相关联的实时高精地图作为所述环境感知结果。
8.根据权利要求6所述的方法,其中所述感知信息包括图像感知信息,基于所述感知信息和所述静态高精地图来确定所述环境感知结果包括:
从所述图像感知信息中标识所述环境中的所述静态物体和其他物体;以及
基于所述静态物体与所述其他物体在所述图像感知信息中的相对位置关系,从所述静态高精地图指示的所述静态物体的所述位置确定所述其他物体的位置。
9.根据权利要求1所述的方法,其中将所述环境外感知结果提供给所述车侧控制装置包括:
通过从所述环境感知结果中排除与所述车辆相对应的自车感知结果,来确定所述车辆的车外感知结果;以及
将所述车外感知结果发送给所述车侧控制装置。
10.根据权利要求9所述的方法,其中确定所述车辆的车外感知结果包括:
从所述环境感知结果中标识与所述车辆配备的标签部分相关的标识信息;
基于所述标识信息确定所述环境感知结果中与所述车辆相对应的自车感知结果;以及
从所述环境感知结果中排除所述自车感知结果,以获得所述车外感知结果。
11.根据权利要求10所述的方法,其中所述车辆配备的所述标签部分包括以下至少一项:所述车辆的车牌、粘贴在所述车辆外部的二维码、粘贴在所述车辆外部的非可见光标签、以及安装在所述车辆上的无线射频标签。
12.根据权利要求1至11中任一项所述的方法,其中所述至少一个传感器包括以下至少一项:
被布置在所述车辆正在其上行驶的道路附近的传感器,以及
被集成在所述环境中的其他车辆上的传感器。
13.一种用于辅助车辆的自动驾驶的装置,包括:
通信模块,被配置为获取由至少一个传感器采集到的与环境相关的感知信息,所述至少一个传感器被布置在所述环境中并且独立于车辆;以及
信息处理模块,被配置为通过处理所获取的感知信息,确定与所述环境相关的环境感知结果,所述环境感知结果指示所述环境中的多个物体的相关信息,所述多个物体包括车辆,
其中所述通信模块还被配置为将所述环境感知结果提供给与所述车辆相关联的车侧控制装置,以用于辅助控制所述车辆的驾驶行为。
14.根据权利要求13所述的装置,还包括行为预测模块,被配置为:
基于所述环境感知结果,确定所述多个物体中的至少一个的行为预测,所述行为预测包括以下至少一项:所述至少一个物体的预期运动轨迹、所述至少一个物体的预期运动速度和所述至少一个物体的预期运动方向;以及
将所确定的行为预测提供给所述车载控制系统,以用于进一步辅助控制所述车辆的所述驾驶行为。
15.根据权利要求14所述的装置,其中所述行为预测被配置为:
利用特定于所述至少一个传感器所处的区域的预测模型来确定所述行为预测,所述预测模型基于所述区域处出现的另一物体的行为而训练。
16.根据权利要求13所述的装置,还包括驾驶推荐模块,被配置为:
基于所述环境感知结果,确定针对所述车辆的自动驾驶推荐,所述自动驾驶推荐包括以下至少一项:所述车辆的行驶路径推荐、所述车辆的行驶方向推荐和控制所述车辆的驾驶行为的操作指令推荐;以及
将所确定的自动驾驶推荐提供给所述车载控制系统,以用于进一步辅助控制所述车辆的所述驾驶行为。
17.根据权利要求16所述的装置,其中所述驾驶推荐模块被配置为:
利用特定于所述至少一个传感器所处的区域的推荐模型来确定所述自动驾驶推荐,所述推荐模型基于另一车辆在所述区域处执行的驾驶行为而训练。
18.根据权利要求13所述的装置,其中所述信息处理模块被配置为:
获取与所述环境相关联的静态高精地图,所述静态地图至少指示所述环境中的静态物体的位置;以及
基于所述感知信息和所述静态高精地图来确定所述环境感知结果。
19.根据权利要求18所述的装置,其中所述信息处理模块被配置为:
利用所述感知信息更新所述静态高精地图,以获得与所述环境相关联的实时高精地图作为所述环境感知结果。
20.根据权利要求18所述的装置,其中所述感知信息包括图像感知信息,所述信息处理模块被配置为:
从所述图像感知信息中标识所述环境中的所述静态物体和其他物体;以及
基于所述静态物体与所述其他物体在所述图像感知信息中的相对位置关系,从所述静态高精地图指示的所述静态物体的所述位置确定所述其他物体的位置。
21.根据权利要求13所述的装置,其中所述信息处理模块被配置为通过从所述环境感知结果中排除与所述车辆相对应的自车感知结果,来确定所述车辆的车外感知结果,并且
其中所述通信模块被配置为将所述车外感知结果发送给所述车侧控制装置。
22.根据权利要求21所述的装置,其中所述信息处理模块被配置为:
从所述环境感知结果中标识与所述车辆配备的标签部分相关的标识信息;
基于所述标识信息确定所述环境感知结果中与所述车辆相对应的自车感知结果;以及
从所述环境感知结果中排除所述自车感知结果,以获得所述车外感知结果。
23.根据权利要求22所述的装置,其中所述车辆配备的所述标签部分包括以下至少一项:所述车辆的车牌、粘贴在所述车辆外部的二维码、粘贴在所述车辆外部的非可见光标签、以及安装在所述车辆上的无线射频标签。
24.根据权利要求13至23中任一项所述的装置,其中所述至少一个传感器包括以下至少一项:
被布置在所述车辆正在其上行驶的道路附近的传感器,以及
被集成在所述环境中的其他车辆上的传感器。
25.一种设备,所述设备包括:
一个或多个处理器;以及
存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1至12中任一项所述的方法。
26.一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如权利要求1至12中任一项所述的方法。
27.一种车路协同系统,包括:
被布置在环境中并且独立于车辆的至少一个传感器,被配置为采集与所述环境相关的感知信息;
路侧辅助装置,包括根据权利要求13至24中任一项所述的装置;以及
车侧控制装置,被配置为基于所述路侧辅助装置提供的环境感知结果来控制所述车辆的驾驶行为。
CN201811096609.8A 2018-09-19 2018-09-19 辅助控制车辆的自动驾驶的方法、设备、介质和系统 Active CN110928284B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201811096609.8A CN110928284B (zh) 2018-09-19 2018-09-19 辅助控制车辆的自动驾驶的方法、设备、介质和系统
JP2019145988A JP6898394B2 (ja) 2018-09-19 2019-08-08 車両の自動運転制御補助方法、車両の自動運転制御補助装置、機器、コンピュータ読み取り可能な記憶媒体及び車路連携システム
EP19198121.6A EP3627471B1 (en) 2018-09-19 2019-09-18 Method and device for assisting in controlling automatic driving of vehicle, and system
US16/575,138 US11250702B2 (en) 2018-09-19 2019-09-18 Method and device for assisting in controlling automatic driving of vehicle, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811096609.8A CN110928284B (zh) 2018-09-19 2018-09-19 辅助控制车辆的自动驾驶的方法、设备、介质和系统

Publications (2)

Publication Number Publication Date
CN110928284A true CN110928284A (zh) 2020-03-27
CN110928284B CN110928284B (zh) 2024-03-29

Family

ID=67999577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811096609.8A Active CN110928284B (zh) 2018-09-19 2018-09-19 辅助控制车辆的自动驾驶的方法、设备、介质和系统

Country Status (4)

Country Link
US (1) US11250702B2 (zh)
EP (1) EP3627471B1 (zh)
JP (1) JP6898394B2 (zh)
CN (1) CN110928284B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356083A (zh) * 2020-04-03 2020-06-30 许昌泛网信通科技有限公司 一种自动驾驶车辆的地图数据过滤及传输方法
CN111429734A (zh) * 2020-04-30 2020-07-17 福建中科云杉信息技术有限公司 港口内外集卡实时监控系统及监控方法
CN111477030A (zh) * 2020-04-14 2020-07-31 北京汽车集团有限公司 车辆协同避险方法、车端平台、云端平台及存储介质
CN111583630A (zh) * 2020-04-10 2020-08-25 河北德冠隆电子科技有限公司 基于时空轨迹重构全新道路高精地图快速生成系统与方法
CN112085960A (zh) * 2020-09-21 2020-12-15 北京百度网讯科技有限公司 车路协同信息处理方法、装置、设备及自动驾驶车辆
CN113011517A (zh) * 2021-03-30 2021-06-22 上海商汤临港智能科技有限公司 定位结果检测方法、装置、电子设备及存储介质
CN113753070A (zh) * 2020-06-04 2021-12-07 百度(美国)有限责任公司 自动车辆的锁定行人检测与预测
CN113971883A (zh) * 2021-10-29 2022-01-25 四川省公路规划勘察设计研究院有限公司 车路协同自动驾驶方法及高效运输系统
CN114005300A (zh) * 2020-07-28 2022-02-01 丰田自动车株式会社 车辆管理系统、管理方法及计算机可读介质
CN114179829A (zh) * 2021-12-24 2022-03-15 中汽创智科技有限公司 多端协同的车辆行驶方法、装置、系统及介质
CN114664088A (zh) * 2021-06-15 2022-06-24 上海丰豹商务咨询有限公司 一种网联、高级网联参考信标系统
CN115187742A (zh) * 2022-09-07 2022-10-14 西安深信科创信息技术有限公司 自动驾驶仿真测试场景生成方法、系统及相关装置
CN115352452A (zh) * 2022-08-10 2022-11-18 中国电信股份有限公司 车辆环境的感知方法、系统、电子设备及存储介质
WO2023142613A1 (zh) * 2022-01-28 2023-08-03 腾讯科技(深圳)有限公司 车辆的控制方法、装置、存储介质、电子设备及程序产品

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12030484B2 (en) * 2019-02-13 2024-07-09 Beijing Baidu Netcom Science And Technology Co., Ltd. Driving control method and apparatus, device, medium, and system
JP6731128B1 (ja) 2020-03-16 2020-07-29 株式会社Adeka 粒状核剤、樹脂組成物およびその製造方法ならびに成形品
CN113330497A (zh) * 2020-06-05 2021-08-31 曹庆恒 一种基于智能交通系统的自动驾驶方法、装置和智能交通系统
DE102021201133A1 (de) 2021-02-08 2022-08-11 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum infrastrukturgestützten Assistieren eines Kraftfahrzeugs
DE102021201130A1 (de) 2021-02-08 2022-08-11 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum infrastrukturgestützten Assistieren mehrerer Kraftfahrzeuge
CN114291114B (zh) * 2022-01-05 2024-06-18 天地科技股份有限公司 车辆控制系统及方法
DE102022208369B3 (de) 2022-08-11 2023-10-12 Zf Friedrichshafen Ag Verfahren zum Generieren von Steuerungsdaten zum zumindest teilweise autonomen Betrieb eines Egofahrzeugs und Steuerungssystem

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2956848A1 (fr) * 2010-02-04 2011-09-02 Bosch Gmbh Robert Systeme d'assistance de conduite et procede d'assistance de conduite automatique
EP2390862A2 (de) * 2010-05-26 2011-11-30 Audi AG Verfahren zur Steuerung des Betriebs eines vollautomatischen, zur unabhängigen Fahrzeugführung ausgebildeten Fahrerassistenzsystems eines Kraftfahrzeugs und Kraftfahrzeug
WO2013039574A1 (en) * 2011-09-16 2013-03-21 Steven Pashko, Llc Bodily self-image and methods for predicting placebo response or response shift
CN103093647A (zh) * 2011-11-08 2013-05-08 奥迪股份公司 用于运行机动车的车辆系统的方法以及机动车
CN103303306A (zh) * 2012-03-07 2013-09-18 奥迪股份公司 就所出现的危险状况对车辆驾驶员作出警示的方法
DE102013005362A1 (de) * 2013-03-28 2013-10-10 Daimler Ag Verfahren zur Analyse einer Verkehrssituation
CN104240535A (zh) * 2013-06-13 2014-12-24 奥迪股份公司 用于对机动车的运行进行协调的方法
US20170075355A1 (en) * 2015-09-16 2017-03-16 Ford Global Technologies, Llc Vehicle radar perception and localization
CN106875736A (zh) * 2017-04-01 2017-06-20 江苏大学 一种无线自动泊车系统及方法
CN106956679A (zh) * 2016-01-11 2017-07-18 福特全球技术公司 自主车辆车道管理
CN107438873A (zh) * 2017-07-07 2017-12-05 驭势科技(北京)有限公司 一种用于控制车辆行驶的方法与设备
CN108417087A (zh) * 2018-02-27 2018-08-17 浙江吉利汽车研究院有限公司 一种车辆安全通行系统及方法
US10074279B1 (en) * 2017-03-07 2018-09-11 Denso International America, Inc. Inference-aware motion planning

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798597B1 (ko) * 2001-08-29 2008-01-28 엘지전자 주식회사 노변기지국의 채널정보 제공방법
JP5056613B2 (ja) * 2008-06-20 2012-10-24 トヨタ自動車株式会社 運転支援システム
CN102725780B (zh) * 2010-04-19 2015-04-22 丰田自动车株式会社 车辆的控制装置
US9146898B2 (en) * 2011-10-27 2015-09-29 Magna Electronics Inc. Driver assist system with algorithm switching
JP6257482B2 (ja) * 2014-09-03 2018-01-10 株式会社デンソーアイティーラボラトリ 自動運転支援システム、自動運転支援方法及び自動運転装置
JP6361618B2 (ja) * 2015-09-15 2018-07-25 トヨタ自動車株式会社 運転支援装置
JP6394914B2 (ja) * 2015-11-11 2018-09-26 トヨタ自動車株式会社 運転支援装置
JP6512084B2 (ja) * 2015-12-04 2019-05-15 株式会社デンソー 走行軌跡生成装置、走行軌跡生成方法
JP6756101B2 (ja) * 2015-12-04 2020-09-16 トヨタ自動車株式会社 物体認識装置
US10692365B2 (en) * 2017-06-20 2020-06-23 Cavh Llc Intelligent road infrastructure system (IRIS): systems and methods
US10950130B2 (en) * 2018-03-19 2021-03-16 Derq Inc. Early warning and collision avoidance

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2956848A1 (fr) * 2010-02-04 2011-09-02 Bosch Gmbh Robert Systeme d'assistance de conduite et procede d'assistance de conduite automatique
EP2390862A2 (de) * 2010-05-26 2011-11-30 Audi AG Verfahren zur Steuerung des Betriebs eines vollautomatischen, zur unabhängigen Fahrzeugführung ausgebildeten Fahrerassistenzsystems eines Kraftfahrzeugs und Kraftfahrzeug
WO2013039574A1 (en) * 2011-09-16 2013-03-21 Steven Pashko, Llc Bodily self-image and methods for predicting placebo response or response shift
CN103093647A (zh) * 2011-11-08 2013-05-08 奥迪股份公司 用于运行机动车的车辆系统的方法以及机动车
CN103303306A (zh) * 2012-03-07 2013-09-18 奥迪股份公司 就所出现的危险状况对车辆驾驶员作出警示的方法
DE102013005362A1 (de) * 2013-03-28 2013-10-10 Daimler Ag Verfahren zur Analyse einer Verkehrssituation
CN104240535A (zh) * 2013-06-13 2014-12-24 奥迪股份公司 用于对机动车的运行进行协调的方法
US20170075355A1 (en) * 2015-09-16 2017-03-16 Ford Global Technologies, Llc Vehicle radar perception and localization
CN106546977A (zh) * 2015-09-16 2017-03-29 福特全球技术公司 车辆雷达感知和定位
CN106956679A (zh) * 2016-01-11 2017-07-18 福特全球技术公司 自主车辆车道管理
US10074279B1 (en) * 2017-03-07 2018-09-11 Denso International America, Inc. Inference-aware motion planning
CN106875736A (zh) * 2017-04-01 2017-06-20 江苏大学 一种无线自动泊车系统及方法
CN107438873A (zh) * 2017-07-07 2017-12-05 驭势科技(北京)有限公司 一种用于控制车辆行驶的方法与设备
CN108417087A (zh) * 2018-02-27 2018-08-17 浙江吉利汽车研究院有限公司 一种车辆安全通行系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄武陵;: "基于ROS构建无人驾驶车辆环境感知系统", 单片机与嵌入式系统应用, no. 11, pages 5 - 9 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356083A (zh) * 2020-04-03 2020-06-30 许昌泛网信通科技有限公司 一种自动驾驶车辆的地图数据过滤及传输方法
CN111583630A (zh) * 2020-04-10 2020-08-25 河北德冠隆电子科技有限公司 基于时空轨迹重构全新道路高精地图快速生成系统与方法
CN111583630B (zh) * 2020-04-10 2022-01-07 河北德冠隆电子科技有限公司 基于时空轨迹重构全新道路高精地图快速生成系统与方法
CN111477030A (zh) * 2020-04-14 2020-07-31 北京汽车集团有限公司 车辆协同避险方法、车端平台、云端平台及存储介质
CN111429734A (zh) * 2020-04-30 2020-07-17 福建中科云杉信息技术有限公司 港口内外集卡实时监控系统及监控方法
CN113753070A (zh) * 2020-06-04 2021-12-07 百度(美国)有限责任公司 自动车辆的锁定行人检测与预测
CN114005300A (zh) * 2020-07-28 2022-02-01 丰田自动车株式会社 车辆管理系统、管理方法及计算机可读介质
US11636764B2 (en) 2020-09-21 2023-04-25 Apollo Intelligent Connectivity (Beijing) Technology Co., Ltd. Vehicle-to-infrastructure cooperation information processing method, apparatus, device and autonomous vehicle
CN112085960A (zh) * 2020-09-21 2020-12-15 北京百度网讯科技有限公司 车路协同信息处理方法、装置、设备及自动驾驶车辆
CN113011517A (zh) * 2021-03-30 2021-06-22 上海商汤临港智能科技有限公司 定位结果检测方法、装置、电子设备及存储介质
CN114664088B (zh) * 2021-06-15 2024-05-14 上海丰豹商务咨询有限公司 一种网联、高级网联参考信标系统
CN114664088A (zh) * 2021-06-15 2022-06-24 上海丰豹商务咨询有限公司 一种网联、高级网联参考信标系统
CN113971883A (zh) * 2021-10-29 2022-01-25 四川省公路规划勘察设计研究院有限公司 车路协同自动驾驶方法及高效运输系统
CN114179829A (zh) * 2021-12-24 2022-03-15 中汽创智科技有限公司 多端协同的车辆行驶方法、装置、系统及介质
WO2023142613A1 (zh) * 2022-01-28 2023-08-03 腾讯科技(深圳)有限公司 车辆的控制方法、装置、存储介质、电子设备及程序产品
CN115352452A (zh) * 2022-08-10 2022-11-18 中国电信股份有限公司 车辆环境的感知方法、系统、电子设备及存储介质
CN115187742B (zh) * 2022-09-07 2023-02-17 西安深信科创信息技术有限公司 自动驾驶仿真测试场景生成方法、系统及相关装置
CN115187742A (zh) * 2022-09-07 2022-10-14 西安深信科创信息技术有限公司 自动驾驶仿真测试场景生成方法、系统及相关装置

Also Published As

Publication number Publication date
CN110928284B (zh) 2024-03-29
US20200090511A1 (en) 2020-03-19
EP3627471B1 (en) 2022-01-05
JP2020045090A (ja) 2020-03-26
US11250702B2 (en) 2022-02-15
JP6898394B2 (ja) 2021-07-07
EP3627471A1 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
CN110928284B (zh) 辅助控制车辆的自动驾驶的方法、设备、介质和系统
CN110928286B (zh) 用于控制车辆的自动驾驶的方法、设备、介质和系统
CN108732589B (zh) 利用3d lidar和定位自动采集用于对象识别的训练数据
CN111169479B (zh) 一种巡航控制方法、装置、系统、车辆及存储介质
CN110103953B (zh) 用于辅助车辆的驾驶控制的方法、设备、介质和系统
CN109429518B (zh) 基于地图图像的自动驾驶交通预测
US11004000B1 (en) Predicting trajectory intersection by another road user
US11216000B2 (en) System and method for estimating lane prediction errors for lane segments
JP7526795B2 (ja) 自動運転装置、車両制御方法
JP2024045402A (ja) 車両制御装置、車両制御方法、車両制御プログラム
CN116249644B (zh) 由自主车辆执行出路推断以确定通过交叉路口的可行路径的方法和系统
CN104574952A (zh) 车辆导航用航摄数据
US20190135296A1 (en) Methods and systems for predicting object action
CN113677581A (zh) 一种车道保持方法、车载设备和存储介质
CN112729316A (zh) 自动驾驶车辆的定位方法、装置、车载设备、系统及车辆
CN112099483A (zh) 监控自动驾驶车辆中的定位功能的方法
US11531349B2 (en) Corner case detection and collection for a path planning system
JP2018172052A (ja) 車両制御装置
CN117836184A (zh) 用于自主车辆的互补控制系统
WO2021261167A1 (ja) 情報処理システム、情報処理装置および情報処理方法
US20220001896A1 (en) Control device, control method, and storage medium
US20220055659A1 (en) Mode selection according to system conditions
CN116783105A (zh) 自主车辆的车载反馈系统
CN117416344A (zh) 自主驾驶系统中校车的状态估计
CN114475634A (zh) 用于通过控制器沿着路段控制车辆的方法及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211018

Address after: 105 / F, building 1, No. 10, Shangdi 10th Street, Haidian District, Beijing 100085

Applicant after: Apollo Intelligent Technology (Beijing) Co.,Ltd.

Address before: 100080 No.10, Shangdi 10th Street, Haidian District, Beijing

Applicant before: BAIDU ONLINE NETWORK TECHNOLOGY (BEIJING) Co.,Ltd.

GR01 Patent grant
GR01 Patent grant