[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110824490B - 一种动态距离测量系统及方法 - Google Patents

一种动态距离测量系统及方法 Download PDF

Info

Publication number
CN110824490B
CN110824490B CN201910927160.3A CN201910927160A CN110824490B CN 110824490 B CN110824490 B CN 110824490B CN 201910927160 A CN201910927160 A CN 201910927160A CN 110824490 B CN110824490 B CN 110824490B
Authority
CN
China
Prior art keywords
light
sub
light source
projection pattern
scanning unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910927160.3A
Other languages
English (en)
Other versions
CN110824490A (zh
Inventor
关健
朱亮
徐松
闫敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Oradar Technology Co Ltd
Original Assignee
Shenzhen Oradar Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Oradar Technology Co Ltd filed Critical Shenzhen Oradar Technology Co Ltd
Priority to CN201910927160.3A priority Critical patent/CN110824490B/zh
Priority to PCT/CN2019/113752 priority patent/WO2021056668A1/zh
Publication of CN110824490A publication Critical patent/CN110824490A/zh
Application granted granted Critical
Publication of CN110824490B publication Critical patent/CN110824490B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

本发明公开了一种动态距离测量系统,包括:发射器,用于向目标物体发射光束,所述发射器包括由多个子光源阵列组成的光源单元、用于分束的分束单元以及用于偏转光束的扫描单元,所述多个子光源阵列可以被独立分组控制;采集器,用于采集被所述目标物体反射回的至少部分所述发射光束并形成光信号;处理电路,与所述发射器以及所述采集器连接。通过分组阵列光源以及扫描单元的视场调控,可以在较低功耗下实现更高分辨率的测量。

Description

一种动态距离测量系统及方法
技术领域
本发明涉及计算机技术领域,尤其涉及一种动态距离测量系统及方法。
背景技术
利用飞行时间原理(Time of Flight)、结构光原理可以对目标进行距离测量以获取包含目标深度值的深度图像,进一步基于该深度图像可以实现三维重建、人脸识别、人机交互等功能,相关的距离测量系统已被广泛应用于消费电子、无人架驶、AR/VR等领域。
基于飞行时间原理以及结构光原理的距离测量系统一般都包含有一个光束发射器以及采集器。发射器中的光源向目标空间发射光束以提供照明,采集器接收由目标反射回的光束。其中,飞行时间距离测量系统通过计算光束由发射到反射接收所需要的时间来计算目标物体的距离;而结构光距离测量系统则通过对反射回的光束图案进行处理并利用三角法计算目标物体的距离。
无论是哪一种原理方案的距离测量系统,目前均面临着一些难题亟需解决,最核心的是测量分辨率的难题、功耗的难题以及体积的难题。
其中,测量分辨率往往受到发射器所发射的光束的影响,所发射光束越密集,分辨率往往越高,但密集光束对光源排列密度要求以及相关光学器件的设计要求均较高,同时密集光束也意味着更高的功耗。而功耗的难题也受到发射器的影响,发射器发射光束功率越高、光束密度越大则功耗越高,进一步限制了测量系统更广泛地应用于更多领域。其次,体积的难题往往由于发射器或者采集器中复杂的器件所导致的,比如发射器通常会包含光源以及一些折射、衍射等光学元件,这就导致体积较大不易集成。
以上背景技术内容的公开仅用于辅助理解本发明的发明构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
本发明的目的在于提供一种动态距离测量系统及方法,以解决上述背景技术问题中的至少一种。
为达到上述目的,本发明实施例的技术方案是这样实现的:
一种动态距离测量系统,包括:
发射器,用于向目标物体发射光束;其中所述发射器包括由多个子光源阵列组成的光源单元、用于分束的分束单元以及用于偏转光束的扫描单元,所述多个子光源阵列可以被独立分组控制;
采集器,用于采集被所述目标物体反射回的至少部分所述发射光束并形成光信号;
处理电路,与所述发射器以及所述采集器连接,并用于执行以下步骤:
S1、开启至少一个第一所述子光源阵列,利用所述扫描单元形成具有第一视场的第一投影图案;
S2、获得第一分辨率的第一深度图像,并识别出所述目标物体所在区域;
S3、开启至少一个第二所述子光源阵列,利用所述扫描单元形成仅包含所述目标物体的第二视场的第二投影图案,并计算第二分辨率的第二深度图像。
在一些实施例中,所述第一视场大于所述第二视场。
在一些实施例中,所述第二分辨率高于所述第一分辨率。
在一些实施例中,所述第二投影图案中光束的排列密度高于所述第一投影图案中光束的排列密度。
在一些实施例中,所述第二子光源阵列相对于所述第一子光源阵列具有更高的子光源排列密度。
本发明的另一技术方案为:
一种动态距离测量方法,包括以下步骤:
S10、开启至少一个第一子光源阵列,利用扫描单元形成具有第一视场的第一投影图案;
S20、获得第一分辨率的第一深度图像,并识别出所述目标物体所在区域;
S30、开启至少一个第二子光源阵列,利用所述扫描单元形成仅包含所述目标物体的第二视场的第二投影图案,并计算第二分辨率的第二深度图像。
在一些实施例中,所述第一视场大于所述第二视场。
在一些实施例中,所述第二分辨率高于所述第一分辨率。
在一些实施例中,所述第二投影图案中光束的排列密度高于所述第一投影图案中光束的排列密度。
在一些实施例中,所述第二子光源阵列相对于所述第一子光源阵列具有更高的子光源排列密度。
本发明技术方案的有益效果是:
本发明通过分组阵列光源以及扫描单元的视场调控,可以在较低功耗下实现更高分辨率的测量,解决了现有技术中功耗高的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明一个实施例的飞行时间距离测量系统示意图。
图2是根据本发明第一实施例的发射器示意图。
图3是根据本发明第一实施例的投影图案示意图。
图4是根据本发明第二实施例的发射器示意图。
图5是根据本发明第三实施例的发射器示意图。
图6是根据本发明第二实施例的投影图案示意图。
图7是根据本发明一个实施例的集成分束扫描单元示意图。
图8是根据本发明一个实施例的阵列光源及其稀疏投影图案示意图。
图9是根据本发明一个实施例的阵列光源及其密集投影图案示意图。
具体实施方式
为了使本发明实施例所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。另外,连接即可以是用于固定作用也可以是用于电路连通作用。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明提供了一种飞行时间距离测量系统,其具有更高的分辨率和/或更大的视场角。
图1所示是根据本发明一个实施例的飞行时间距离测量系统示意图。所述距离测量系统10包括发射器11、采集器12以及处理电路13;发射器11提供发射光束30至目标空间中以照明空间中的物体20,其中至少部分发射光束30经物体20反射后形成反射光束40,反射光束40的至少部分光信号(光子)被采集器12采集。处理电路13分别与发射器11以及采集器12连接,同步发射器11以及采集器12的触发信号以计算光束由发射器11发出并被采集器12接收所需要的时间,即发射光束30与反射光束40之间的飞行时间t,进一步的,物体上对应点的距离D可由下式计算出:
D=c·t/2 (1)
其中,c为光速。
发射器11包括光源111、光学元件112。光源111可以是发光二极管(LED)、边发射激光器(EEL)、垂直腔面发射激光器(VCSEL)等光源,也可以是多个光源组成的阵列光源。优选地,阵列光源111是在单块半导体基底上生成多个VCSEL光源以形成的VCSEL阵列光源芯片。光源111所发射的光束可以是可见光、红外光、紫外光等。光源111在处理电路13的控制下向外发射光束,比如在一个实施例中,光源111在处理电路13的控制下以一定的频率(脉冲周期)发射脉冲光束,可以用于直接飞行时间法(Direct TOF)测量中,频率根据测量距离进行设定,比如可以设置成1MHz-100MHz,测量距离在几米至几百米。可以理解的是,可以是处理电路13中的一部分或者独立于处理电路13存在的子电路来控制光源111发射相关的光束,比如脉冲信号发生器。
光学元件112接收来自光源111的脉冲光束,并将脉冲光束进行光学调制,比如衍射、折射、反射等调制,随后向空间中发射被调制后的光束,比如聚焦光束、泛光光束、结构光光束等。光学元件112可以是透镜、衍射光学元件、超表面(Metasurface)光学元件、掩膜板、反射镜、MEMS振镜等形式中的一种或多种组合。
处理电路13可以是独立的专用电路,比如专用SOC芯片、FPGA芯片、ASIC芯片等等,也可以包含通用处理电路,比如当该深度相机被集成到如手机、电视、电脑等智能终端中去,终端中的处理电路可以作为该处理电路13的至少一部分。
采集器12包括像素单元121、成像透镜单元122。其中,成像透镜单元122接收并将由物体反射回的至少部分调制光束引导到像素单元121上。在一个实施例中,像素单元121由单光子雪崩光电二极管(SPAD)组成,也可以由多个SPAD像素组成的阵列像素单元,阵列像素单元的阵列大小代表着该深度相机的分辨率,比如320×240等。SPAD可以对入射的单个光子进行响应从而实现对单光子的检测,由于其具备灵敏度高、响应速度快等优点,可以实现远距离、高精度地测量。与CCD/CMOS等组成的以光积分为原理的图像传感器相比,SPAD可以通过对单光子进行计数,比如利用时间相关单光子计数法(TCSPC)实现对微弱光信号的采集以及飞行时间的计算。一般地,与像素单元121连接的还包括由信号放大器、时数转换器(TDC)、模数转换器(ADC)等器件中的一种或多种组成的读出电路(图中未示出)。这些电路即可以与像素整合在一起,这也可以是处理电路13中的一部分,为了便于描述,将统一视作处理电路13。
在一些实施例中,距离测量系统10还可以包括有彩色相机、红外相机、IMU等器件,与这些器件的组合可以实现更加丰富的功能,比如3D纹理建模、红外人脸识别、SLAM等功能。
在一些实施例中,发射器11与采集器12也可以被设置成共轴形式,即二者之间通过具备反射及透射功能的光学器件来实现,比如半透半反镜等。
传统的距离测量系统中,发射器11被设置成向外发射具有一定视场角的泛光光束,其优点是对被测目标进行了全范围的照明覆盖,采集器12中的每个像素在同一时刻均可以接收到反射回的光束,测量系统输出的深度图像的分辨率受到采集器12的像素单元分辨率影响,缺点则是发射器11的功耗将高,另外也可能会导致采集器11相邻像素同步测量时相互之间有干扰的情形。因此在本发明中,发射器11被设置成向外发射结构光光束,即在空间上仅部分区域被照亮,采用结构光光束的优点是照明更加集中从而提升信噪比,缺点则是分辨率较低,另外在一些情形下也会呈现视场角不够的缺点。
图2是根据本发明第一实施例的发射器示意图。其中,发射器包括光源单元、分束单元204以及扫描单元205,光源单元用于发射第一光束,分束单元204用于接收并对第一光束进行分束后形成光束数量更多的第二光束,扫描单元205用于接收并偏转第二光束一定角度后向外发射第三光束,经过多次偏转之后将会形成多个第三光束,该多个第三光束所形成的综合投影图案光束比第二光束拥有更高的密度和/或更大的视场角。
光源单元包括基底201以及设置在单片基底201(或多片基底)上的一个或多个子光源202,子光源202以一定的图案形式排列在基底上。基底201可以是半导体基底、金属基底等,子光源202可以是发光二极管、边发射激光发射器、垂直腔面激光发射器(VCSEL)等,优选地,光源单元包括半导体基底以及设置在半导体基底上的多个VCSEL子光源所组成的阵列VCSEL芯片。子光源用于发射任意需要波长的光束,比如可见光、红外光、紫外光等。光源单元在驱动电路(可以是处理电路13的一部分)的调制驱动下进行发光,比如幅度调制、相位调制、频率调制、脉冲调制等。子光源202也可以在驱动电路的控制下分组发光或者整体发光,比如子光源202包含第一子光源阵列201、第二子光源阵列202等,第一子光源阵列201在第一驱动电路的控制下发光、第二子光源阵列202在第二驱动电路的控制下发光。子光源202的排列图案可以是一维排列图案、也可以是二维排列图案,可以是规则排列图案、也可以是不规则排列图案或者是规则图案和不规则图案的组合。为了便于分析,图2中仅示意性地给出一种示例,该示例中子光源包括3×3的规则阵列子光源。
在一个实施例中,光源单元还包括透镜(或透镜组)、微透镜阵列等光学元件中的一种或多种,比如在子光源202与分束单元204之间设置了透镜(或透镜组或透镜组与微透镜阵列的组合)203,透镜203用于对子光源发出的光束进行折射以产生聚焦、准直或发散效果(形成聚焦、准直或发散的第一光束),以满足后续光学元件的调制需求。
分束单元204接收来自光源发出的第一光束,并对第一光束进行复制分束以形成光束数量更多的第二光束。在一个实施例中,分束单元204对第一光束进行复制分束以形成排列密度更高的第二光束(对于子光源为多个时的情形);在一个实施例中,分束单元204对第一光束进行复制分束以形成视场角更大的第二光束,例如图3所示实施例;在一个实施例中,分束单元204对第一光束进行复制分束以形成排列密度更高及视场角更大的第二光束。分束单元204可以是衍射光学元件、光栅、光学掩膜板、超表面(Metasurface)光学元件等任意可以实现分束的光学器件中的一种或多种的组合。为了便于分析,假定第二光束的视场角为α,第二光束中相邻两个子光束的角偏移为β,需要说明的是,若第二光束是空间光束,则α、β均包含两个方向的分量(αxy)、(βxy)。
扫描单元205接收来自分束单元204的第二光束后,对第二光束进行偏转扫描后向外发射第三光束。扫描单元205可以对入射的第二光束中的各个子光束通过衍射、折射、反射等方式实现一维偏转或者二维偏转,比如沿至少一方向偏转一定的角度θ(θxy),从而形成第三光束。图2中示意性给出扫描单元205对第二光束沿一个方向依次偏转了两个角度的示意图,其中第一第三光束206可以认为是偏转了0度所形成;第二第三光束207是扫描单元205对第二光束偏转了一个较小的角度θ所形成,该角度小于第二光束中相邻两个子光束之间的夹角,即θ<β,由此通过至少两次扫描之后形成的至少两个第三光束所组成的综合投影图案光束相对于没有扫描单元205时的第二光束具有更高的密度,由此便可以提升测量系统的测量分辨率。具体描述参见图3。扫描单元205可以是液晶空间光调制器、声光调制器、MEMS振镜、旋转棱镜对、单个棱镜+电机、反射式二维OPA器件、液晶超表面器件(LC-Metasurface)等器件中的一种或多种的组合。比如当扫描单元205是液晶空间光调制器时,可以通过调控液晶分子的排列光栅周期来控制对入射光束的偏转角度。
图3是根据本发明第一实施例的投影图案示意图。基于图2所示的发射器11,在一个实施例中,发射器11向目标发射的第三光束所形成的投影图案如图3所示。在本实施例中,分束单元204对第一光束进行复制分束以形成视场角更大的第二光束,复制的方式是3×3的形成,即将3×3规则排列的子光源发出的第一光束进行3×3倍的复制以形成由9个第一光束图案302形成的大视场角的第二光束图案301,第二光束图案301中包含了9×9=81个子光束303,图中用实线空心圆圈表示。假定扫描单元205对第二光束进行偏转,第一次偏转为0度,所形成的第一第三光束图案即图3中实线空心圆圈303所组成的阵列斑点图案;随后扫描单元205对第二光束进行再次偏转,比如沿图3中的竖直方向偏转,偏转角度小于第二光束中相邻两个子光束之间的夹角,由此可以产生图3中虚线空间圆圈304所组成的第二第三光束图案。由于偏转角度较小,本实施例中偏转角度正好是第二光束中相邻两个子光束的一半,即θ=β/2,虚线空心圆圈304将会落在两个实线空心圆圈303之间,多次扫描之后由多个第三光束所形成的综合扫描图案将拥有更高的密度。扫描的方向可以沿单个方向,也可以沿多个方向。
实际上,图2及图3所示的实施例中,扫描单元205通过偏转光束方向后,同样也增加了视场角,只不过所增加的视场角相对于分束单元204所形成的第二光束的视场角而言十分微小。可以理解的是,通过偏转角度的合理设置可以有效地调节投影图案的密度与视场角。在一个实施例中,偏转角度θ可以依次设置成
Figure BDA0002219227720000091
通过n次扫描,扫描角度逐次增加
Figure BDA0002219227720000092
从而将综合的投影图案密度增加n倍。在一个实施例中,偏转角度θ可以依次设置成
Figure BDA0002219227720000093
Figure BDA0002219227720000094
由此可以同时增加投影图案的密度与视场角,即视场角增加了Nβ,中间部分叠加区域的密度增加了n倍。在一个实施例中,偏转角度被设置成超过了第二光束的视场角为α,此时仅仅增加了投影图案的视场角,这一情形如图5所示。
图5是根据本发明第三实施例的发射器示意图。发射器的主要组成部分与图2所示实施例相似,包含由基底501、子光源502以及透镜503所组成的光源单元,以及分束单元504和扫描单元505。与图2所示实施例不同的是,扫描单元505对入射的第二光束进行偏转的偏转角度相对比较大,即θ≥α,比如首次偏转0度形成的第一第三光束图案为506,第二次沿某一方向偏转α后形成第二第三光束图案507,第一与第二第三光束图案所形成的综合投影图案的视场角沿偏转方向得到了2倍的提升,投影图案的密度没有变化。
在一些实施例中,扫描单元505可以沿多个方向进行偏转以形成更大视场角的投影图案,比如图6所示的是根据本发明第二实施例的投影图案示意图。在本实施例中,光源单元包括3×3个子光源组成的规则阵列,分束单元对子光源的规则阵列进行3×3倍的复制分束以形成9×9排列的第二光束,扫描单元分别沿水平、竖直方向进行偏转3次,每次的偏转角度略大于α(避免邻界处的光束重叠),比如图6中的箭头所示的偏转顺序,最终可以形成多个第三光束602、603、604、605,多个第三光束共同组成投影图案601,通过多次偏转之后视场角沿两个方向均得到了2倍的提升。可以理解的是,根据实际需要,每个方向偏转的次数以及偏转的顺序可以进行相应的设定,在此不做限制。
图4是根据本发明第二实施例的发射器示意图。发射器包括光源单元、扫描单元404以及分束单元405,光源单元用于发射第一光束,扫描单元404用于接收并偏转第一光束后向外发射第二光束,分束单元405用于接收并对第二光束进行分束后形成光束数量更多的第三光束。由扫描单元404经过多次偏转之后将形成多个第二光束,相应地,多个第二光束经分束单元分束后也形成对应的多个第三光束,这些第三光束所形成的综合投影图案光束比第二光束拥有更高的密度和/或更大的视场角。
光源单元包括基底401以及设置在单片基底401(或多片基底)上的一个或多个子光源402,子光源402以一定的图案形式排列在基底上。基底401可以是半导体基底、金属基底等,子光源402可以是发光二极管、边发射激光发射器、垂直腔面激光发射器(VCSEL)等,优选地,光源单元包括半导体基底以及设置在半导体基底上的多个VCSEL子光源所组成的阵列VCSEL芯片。子光源用于发射任意需要波长的光束,比如可见光、红外光、紫外光等。光源单元在驱动电路(可以是处理电路13的一部分)的调制驱动下进行发光,比如连续波调制、脉冲调制等。子光源402也可以在驱动电路的控制下分组发光或者整体发光,比如子光源402包含第一子光源阵列401、第二子光源阵列402等,第一子光源阵列401在第一驱动电路的控制下发光、第二子光源阵列402在第二驱动电路的控制下发光。子光源402的排列可以是一维排列、也可以是二维排列,可以是规则排列、也可以是不规则排列。
在一个实施例中,光源单元还包括透镜(或透镜组)、微透镜阵列等光学元件中的一种或多种,比如在子光源402与扫描单元404之间设置了透镜(或透镜组)403,透镜403用于对光源发出的光束进行折射以产生汇聚或聚焦效果,以满足后续光学元件的调制需求。
扫描单元404接收来自光源发出的第一光束,并对第一光束进行偏转扫描后形成第二光束。扫描单元404可以对入射的第二光束中的各个子光束通过衍射、折射、反射等方式实现一维偏转或者二维偏转,比如沿至少一方向偏转一定的角度,从而形成第二光束。
分束单元405接收来自扫描单元404发出的第二光束,并对第二光束进行复制分束以形成光束数量更多的第三光束。在一个实施例中,分束单元405对第二光束进行复制分束以形成排列密度更高的第三光束;在一个实施例中,分束单元405对第二光束进行复制分束以形成视场角更大的第三光束;在一个实施例中,分束单元405对第二光束进行复制分束以形成排列密度更高及视场角更大的第三光束。分束单元405可以是衍射光学元件、光学掩膜板、超表面(Metasurface)光学元件等任意可以实现分束的光学器件。与图2所示实施例类似地,通过设置偏转角度θ与第三光束的视场角α、相邻子光束之间角偏移为β之间的关系,可以形成密度更高、视场角更大的综合投影图案。
在图4所示实施例中,示意性给出扫描单元404对第一光束沿一个方向偏转了两个角度的示意图,其中第一第二光束可以认为是偏转了0度所形成(图中扫描单元404与分束单元405之间的实线);第二第二光束是扫描单元404对第一光束偏转了一个较小的角度θ所形成(图中扫描单元404与分束单元405之间的虚线)。该角度θ小于第三光束中相邻两个子光束之间的夹角θ<β,由此通过至少两次扫描之后形成的至少两个第三光束406及407所组成的综合投影图案相对于没有扫描单元404时的第三光束对应的投影图案具有更高的密度,由此便可以提升测量系统的测量分辨率。
在一个实施例中,偏转角度θ可以依次设置成
Figure BDA0002219227720000121
通过n次扫描,扫描角度逐次增加
Figure BDA0002219227720000122
从而将综合的投影图案密度增加n倍。在一个实施例中,偏转角度θ可以依次设置成
Figure BDA0002219227720000123
由此可以同时增加投影图案的密度与视场角,即视场角增加了Nβ,中间部分叠加区域的密度增加了n倍。在一个实施例中,偏转角度被设置成超过了第二光束的视场角为α,此时仅仅增加了投影图案的视场角,这一情形同样如图5所示,与前面分析类似,此时图5中504为扫描单元、505为分束单元,由此同样可以形成如图6所示的大视场投影图案。
可以理解的是,在图2与图4所示的实施例中,分别给出了分束单元与扫描单元通过相反设置以实现类似的功能,在一些实施例中,也可以在扫描单元前后分别设置第一分束单元以及第二分束单元以实现更加复杂的功能,或者可以在分束单元的前后分别设置第一扫描单元以及第二扫描单元,类似地,可以根据实际需要合理地设置分束单元、扫描单元的数量以及相对位置排布关系。这些方案均落入本发明的保护范围之内。
以上各实施例中,通过对分束单元与扫描单元在功能上进行合理的配置可以形成高密度和/或大视场的投影。然而由于需要将多种光学器件集成在单个发射器中,无疑给制造带来了较大的挑战。为了解决这一问题,本发明还提供一种集成的分束扫描单元。
图7是根据本发明一个实施例的集成分束扫描单元示意图。集成分束扫描单元可以被用于图1-图6所示各实施例中的发射器中,也可以被用于其他任意需要的器件中。集成分束扫描单元用于接收第一光束,并将光束进行分束及扫描后形成第三光束。集成分束扫描单元包括第一透明基底701、第二透明基底702、液晶层703以及设置在第一透明基底和/或第二透明基底上的分束单元704。液晶层703用于对入射的光束进行偏转以实现扫描,分束单元704用于对入射的光束进行分束。第一透明基底701、第二透明基底702可以平行相对设置。液晶层703被安装在第一透明基底701以及第二透明基底702之间,基底可以起到保护液晶层的作用。另外根据需要在两个基底之间的液晶层之外还可以增加其他功能层,比如正负电极层,该正负电极层设置在液晶层两侧;在基底外表面或内表面也可以增加偏光层等。
在一个实施例中,集成分束扫描单元包括设置在第一透明基底701与第二透明基底702之间的支撑705,支撑705设置在液晶层周围以保护液晶层同时起到支撑第一透明基底701以及第二透明基底702的作用。支撑可以是任意材料制成,比如半导体材料、粘合剂等。
在一个实施例中,分束单元704包括衍射光栅、二元光栅等衍射光学元件、超表面(Metasurface)光学元件中的一种或组合,即在透明基底的表面通过光刻、蚀刻等方式生成衍射光学微结构、超表面结构,从而实现分束单元与扫描单元的高度集成。衍射光学微结构、超表面结构根据实际需要可以形成在第一透明基底701和/或第二透明基底的单个表面或者两个表面上。优选地,将衍射光学微结构形成在单个透明基底的内表面,可以有效地对衍射光学微结构进行保护。
本发明还提供了一种制造集成分束扫描单元的方法,包括以下步骤:
提供液晶层,用于对入射光束进行偏转以实现扫描;
提供第一透明基底以及第二透明基底,并在第一透明基底和/或第二透明基底的单个表面或者两个表面生成分束单元;
将液晶层安装在第一透明基底以及第二透明基底之间。
对于包含支撑的集成分束扫描单元而言,还包括将支撑安装在第一透明基底与第二透明基底之间以及在液晶层外围的步骤。
对于通过扫描单元对光束实施偏转以实现大视场投影的发射器而言(如图5所示,分束单元与扫描单元位置不做限定,即分束单元可以在扫描单元前面也可以在后面),本发明还提供一种基于分组阵列光源的发射器的动态距离测量系统。该系统中发射器的光源包括阵列光源,且阵列光源中的子光源被分成多个子光源阵列,且各个子光源阵列可以被独立分组控制,在空间排布上,多个子光源阵列可以分区设置即每个子光源阵列拥有独立的空间分区,多个子光源阵列也可以交叉设置,即不同的子光源阵列中子光源在空间排布上有交错。子光源阵列中应包括至少一个子光源。可以理解的是,当子光源阵列被独立打开时,将形成对应的投影图案,投影图案的密度与子光源阵列的密度、数量有关系,含有更密集排列的子光源阵列所对应的投影图案密度越大,另外开启更多数量的子光源阵列所对应的投影图案的密度也越大。基于该分组阵列光源的大视场投影方案(图5所示),测量系统中的处理电路可以实现如下的动态距离测量方法,具体包括如下步骤:
S1、开启至少一个第一子光源阵列,利用扫描单元形成具有第一视场的稀疏投影图案;
如图8所示的是根据本发明一个实施例的阵列光源及其稀疏投影图案示意图。发射器中的光源包括光源阵列801,其包括多个子光源阵列,比如第一子光源阵列(图8中空心圆圈所示)以及第二子光源阵列(图8中实心圆圈所示)。首先开启第一子光源阵列,发射器中的分束单元以及扫描单元分别对第一子光源阵列所射出的光束进行分束和扫描(或者先扫描再分束)最终以图8中右侧所示的投影图案802出射,并入射到包含目标804的第一视场区域中。这里示意性地给出分束单元对入射光束进行了2×2倍的复制分束,扫描单元则依次对入射光束进行了3×3的扫描将视场沿横、纵向分别扩大了3倍。
S2、获得第一分辨率的第一深度图像,并识别出目标所在区域;采集器采集由稀疏投影图案光束被目标反射回的光信号,并进一步由处理电路计算以获得与稀疏投影图案对应的第一分辨率的第一深度图像,理论上可以获取每个斑点803的深度值,所以斑点的深度值将组成第一深度图像。基于该深度图像可以对视场中的目标进行识别,比如通过阈值分割法、边缘检测法、特征识别等任意合适的方式识别出目标所在的像素区域。
S3、开启至少一个第二子光源阵列,利用扫描单元形成具有第二视场的密集投影图案,并计算第二分辨率的第二深度图像;由于通过上一步骤中对目标进行了识别并定位出目标所在的像素区域,一般而言目标的运动不会太大,同时相邻两次测量的间隔非常短,可以认为相邻两次测量的时间内目标位置不变,因此在本次测量时,则可以由扫描单元仅形成包含目标区域的小于第一视场的第二视场的投影图案,同时可以开启比S1步骤中更多的子光源阵列,以形成相对光束排列密度更大的密集投影图案,基于该密集投影图案,采集器可以获取包含目标的更多斑点的有效数据从而计算出分辨率更高的深度图像,以实现仅对目标区域的高分辨率测量。可以理解的是,这里所说的分辨率泛指的是有效深度值像素的数量,有效深度值像素数量多则分辨率越高,因此第二分辨率要高于第一分辨率。比如图9所示的是根据本发明一个实施例的阵列光源及其密集投影图案示意图。在本实施例中,第一阵列光源与第二阵列光源被同时打开,即同步打开第一子光源阵列与第二子光源阵列,扫描单元仅形成包含目标的由902、903、904、905四个子视场所组成的2×2视场的投影图案,与图8所示实施例相比,视场减小,但投影图案密度增加,由此可以实现在较低功耗下实现更高分辨率的测量。可以理解的是,若光源单元中包含排列密度不同的多个子光源阵列时,比如第一子光源阵列的排列密度小于第二子光源阵列的排列密度,在本步骤中也可以仅开启第二子光源阵列,也可以实现投射密集投影图案的效果。
可以理解的是,以上各实施例中是以飞行时间距离测量系统为例进行说明了,但相关的发射器、动态距离测量方案同样可以应用在其他测量系统如结构光三维测量系统中。
可以理解的是,当将本发明的距离测距系统嵌入装置或硬件中时会作出相应的结构或部件变化以适应需求,其本质仍然采用本发明的距离测距系统,所以应当视为本发明的保护范围。以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。
在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管已经详细描述了本发明的实施例及其优点,但应当理解,在不脱离由所附权利要求限定的范围的情况下,可以在本文中进行各种改变、替换和变更。
此外,本发明的范围不旨在限于说明书中所述的过程、机器、制造、物质组成、手段、方法和步骤的特定实施例。本领域普通技术人员将容易理解,可以利用执行与本文所述相应实施例基本相同功能或获得与本文所述实施例基本相同结果的目前存在的或稍后要开发的上述披露、过程、机器、制造、物质组成、手段、方法或步骤。因此,所附权利要求旨在将这些过程、机器、制造、物质组成、手段、方法或步骤包含在其范围内。

Claims (8)

1.一种动态距离测量系统,其特征在于,包括:
发射器,用于向目标物体发射光束;其中,所述发射器包括由多个子光源阵列组成的光源单元、用于分束的分束单元以及用于偏转光束的扫描单元,所述多个子光源阵列可以被独立分组控制;
采集器,用于采集被所述目标物体反射回的至少部分所述发射光束并形成光信号;
处理电路,与所述发射器以及所述采集器连接,并用于执行以下步骤:
S1、开启至少一个第一所述子光源阵列,利用所述扫描单元形成具有第一视场且稀疏的第一投影图案;
S2、获得与第一投影图案对应的第一分辨率的第一深度图像,并识别出所述目标物体所在区域;
S3、开启至少一个第二所述子光源阵列,利用所述扫描单元形成仅包含所述目标物体的第二视场且密集的第二投影图案,并计算第二分辨率的第二深度图像;其中,所述第二分辨率高于所述第一分辨率。
2.如权利要求1所述的动态距离测量系统,其特征在于,所述第一视场大于所述第二视场。
3.如权利要求1所述的动态距离测量系统,其特征在于,所述第二投影图案中光束的排列密度高于所述第一投影图案中光束的排列密度。
4.如权利要求1所述的动态距离测量系统,其特征在于,所述第二子光源阵列相对于所述第一子光源阵列具有更高的子光源排列密度。
5.一种动态距离测量方法,其特征在于,包括以下步骤:
S10、开启至少一个第一子光源阵列,利用扫描单元形成具有第一视场且稀疏的第一投影图案;
S20、获得与第一投影图案对应的第一分辨率的第一深度图像,并识别出目标物体所在区域;
S30、开启至少一个第二子光源阵列,利用所述扫描单元形成仅包含所述目标物体的第二视场且密集的第二投影图案,并计算第二分辨率的第二深度图像;其中,所述第二分辨率高于所述第一分辨率。
6.如权利要求5所述的动态距离测量方法,其特征在于,所述第一视场大于所述第二视场。
7.如权利要求5所述的动态距离测量方法,其特征在于,所述第二投影图案中光束的排列密度高于所述第一投影图案中光束的排列密度。
8.如权利要求5所述的动态距离测量方法,其特征在于,所述第二子光源阵列相对于所述第一子光源阵列具有更高的子光源排列密度。
CN201910927160.3A 2019-09-27 2019-09-27 一种动态距离测量系统及方法 Active CN110824490B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910927160.3A CN110824490B (zh) 2019-09-27 2019-09-27 一种动态距离测量系统及方法
PCT/CN2019/113752 WO2021056668A1 (zh) 2019-09-27 2019-10-28 一种动态距离测量系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910927160.3A CN110824490B (zh) 2019-09-27 2019-09-27 一种动态距离测量系统及方法

Publications (2)

Publication Number Publication Date
CN110824490A CN110824490A (zh) 2020-02-21
CN110824490B true CN110824490B (zh) 2023-01-03

Family

ID=69548359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910927160.3A Active CN110824490B (zh) 2019-09-27 2019-09-27 一种动态距离测量系统及方法

Country Status (2)

Country Link
CN (1) CN110824490B (zh)
WO (1) WO2021056668A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110716189A (zh) * 2019-09-27 2020-01-21 深圳奥锐达科技有限公司 一种发射器及距离测量系统
CN110716190A (zh) * 2019-09-27 2020-01-21 深圳奥锐达科技有限公司 一种发射器及距离测量系统
CN111289990A (zh) * 2020-03-06 2020-06-16 浙江博升光电科技有限公司 基于垂直腔面发射激光器阵列的测距方法
JP7286573B2 (ja) * 2020-03-12 2023-06-05 株式会社日立エルジーデータストレージ 測距装置及び測距方法
CN115380238A (zh) * 2020-04-16 2022-11-22 华为技术有限公司 一种光发射组件、飞行时间摄像模组及移动终端
CN111458717A (zh) * 2020-04-20 2020-07-28 深圳奥比中光科技有限公司 一种tof深度测量装置、方法及电子设备
CN113805185A (zh) * 2020-05-27 2021-12-17 深圳阜时科技有限公司 飞行时间tof装置和电子设备
CN112633284B (zh) * 2020-12-08 2023-08-15 北京信息科技大学 一种深度学习手写数字识别方法
CN114740625B (zh) * 2022-04-28 2023-08-01 珠海莫界科技有限公司 一种光机、光机的控制方法及ar近眼显示装置
CN117368886B (zh) * 2022-06-30 2024-09-27 深圳市速腾聚创科技有限公司 一种激光发射模组及激光雷达

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107146A2 (en) * 2002-06-18 2003-12-24 Wink Interactive, Llc Method, apparatus and system for management of information content for enhanced accessibility over wireless communication networks
CN103499818B (zh) * 2013-10-10 2015-07-29 中国科学院上海技术物理研究所 一种红外与激光复合探测系统
CN103645745B (zh) * 2013-11-05 2016-05-25 皖江新兴产业技术发展中心 一种双轴激光云高仪收发光学系统光轴平行调整方法及装置
CN105222758B (zh) * 2015-10-20 2017-10-20 西安交通大学 基于鸟类视觉特征的多运动目标搜索与定位装置及方法
CN105676305B (zh) * 2015-12-31 2017-05-31 南京华图信息技术有限公司 一种共口径多视场图谱协同探测系统与方法
CN107367737A (zh) * 2016-05-13 2017-11-21 北醒(北京)光子科技有限公司 一种多线旋转扫描探测方法
US20180074196A1 (en) * 2016-05-27 2018-03-15 Harvey Weinberg Hybrid flash lidar system
CN107105147B (zh) * 2017-06-05 2019-06-21 北京理工大学 一种仿生超分辨成像传感器及成像方法
EP3460519A1 (en) * 2017-09-25 2019-03-27 Hexagon Technology Center GmbH Laser scanner
KR102532603B1 (ko) * 2017-09-25 2023-05-15 삼성전자주식회사 광센싱 시스템 및 이를 포함하는 광학 장치
CN108345002B (zh) * 2018-02-27 2024-08-23 上海图漾信息科技有限公司 结构光测距装置及方法
CN108828622B (zh) * 2018-06-25 2022-03-04 北京理工大学 一种液晶光学相控阵变分辨率分束方法
CN109798873A (zh) * 2018-12-04 2019-05-24 华南理工大学 一种立体视觉光学定位系统
CN209417319U (zh) * 2019-03-11 2019-09-20 杭州海康威视数字技术股份有限公司 探测器
CN110196023B (zh) * 2019-04-08 2024-03-12 奥比中光科技集团股份有限公司 一种双变焦结构光深度相机及变焦方法

Also Published As

Publication number Publication date
WO2021056668A1 (zh) 2021-04-01
CN110824490A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CN110824490B (zh) 一种动态距离测量系统及方法
CN111025317B (zh) 一种可调的深度测量装置及测量方法
CN110658529A (zh) 一种集成分束扫描单元及其制造方法
TWI719325B (zh) 具有電子掃描發射器陣列及同步感測器陣列之光測距裝置
CN110596721B (zh) 双重共享tdc电路的飞行时间距离测量系统及测量方法
CN113330328B (zh) 深度感测方法及装置
CN110716190A (zh) 一种发射器及距离测量系统
CN111856433B (zh) 一种距离测量系统及测量方法
CN110716189A (zh) 一种发射器及距离测量系统
US11435446B2 (en) LIDAR signal acquisition
JP7569334B2 (ja) 電子走査lidarシステム用同期画像捕捉
WO2021072802A1 (zh) 一种距离测量系统及方法
WO2021212915A1 (zh) 一种激光测距装置及方法
CN111722241A (zh) 一种多线扫描距离测量系统、方法及电子设备
CN111175769B (zh) 一种离轴扫描距离测量系统
CN105143820A (zh) 利用多个发射器进行深度扫描
CN110780312B (zh) 一种可调距离测量系统及方法
CN212135134U (zh) 基于时间飞行的3d成像装置
CN111427230A (zh) 基于时间飞行的成像方法及3d成像装置
CN211148903U (zh) 一种发射器及距离测量系统
CN111175768B (zh) 一种离轴扫描距离测量系统及方法
CN111965659A (zh) 一种距离测量系统、方法及计算机可读存储介质
CN211426798U (zh) 一种集成分束扫描单元
CN211148902U (zh) 一种发射器及距离测量系统
CN210835244U (zh) 基于同步ToF离散点云的3D成像装置及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant