CN110792567A - Power generation and refrigeration combined cycle system based on ocean temperature difference energy - Google Patents
Power generation and refrigeration combined cycle system based on ocean temperature difference energy Download PDFInfo
- Publication number
- CN110792567A CN110792567A CN201911173795.5A CN201911173795A CN110792567A CN 110792567 A CN110792567 A CN 110792567A CN 201911173795 A CN201911173795 A CN 201911173795A CN 110792567 A CN110792567 A CN 110792567A
- Authority
- CN
- China
- Prior art keywords
- working medium
- sea water
- generator
- temperature difference
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 24
- 238000005057 refrigeration Methods 0.000 title claims abstract description 24
- 239000013535 sea water Substances 0.000 claims abstract description 68
- 238000001816 cooling Methods 0.000 claims abstract description 26
- 239000012530 fluid Substances 0.000 claims abstract description 24
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 239000003507 refrigerant Substances 0.000 claims abstract description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/04—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
- F03G7/05—Ocean thermal energy conversion, i.e. OTEC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
- F01K25/106—Ammonia
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/005—Compression machines, plants or systems with non-reversible cycle of the single unit type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Oceanography (AREA)
- Sustainable Development (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明属于冷电联产技术领域,涉及一种基于海洋温差能的发电制冷联合循环系统。本发明以海洋表层温海水作为主要热源,对从混合器出来的低沸点工质加热汽化,汽化后的工质进入膨胀机并推动膨胀机做功,膨胀机为发电机和压缩机提供机械能,从膨胀机排出的乏汽由深层冷海水在冷凝器中将其冷凝为液态并流入分流器,分流器将液态工质分为两路,一路经过工质泵加压后流入混合器,另一路工质经过膨胀阀降压后进入蒸发器吸热,使得冷库获得冷量,从蒸发器中出来的工质进入压缩机中压缩后流入混合器与从工质泵流入的工质混合,从混合器出来的工质进入发生器从而完成一次循环过程。本发明实现对海洋温差能的充分利用,可以同时输出电能和冷量。
The invention belongs to the technical field of combined cooling and power generation, and relates to a combined cycle system for power generation and refrigeration based on ocean temperature difference energy. The invention uses the warm seawater on the ocean surface as the main heat source, heats and vaporizes the low-boiling-point working fluid from the mixer, and the vaporized working fluid enters the expander and pushes the expander to do work, and the expander provides mechanical energy for the generator and the compressor. The exhausted steam discharged from the expander is condensed into liquid state by deep cold seawater in the condenser and flows into the flow divider. The flow divider divides the liquid working medium into two paths. The refrigerant is depressurized by the expansion valve and then enters the evaporator to absorb heat, so that the cold storage can obtain cooling capacity. The working medium from the evaporator enters the compressor and is compressed and then flows into the mixer and is mixed with the working medium from the working medium pump. The outgoing working fluid enters the generator to complete a cycle. The invention realizes full utilization of ocean temperature difference energy, and can output electric energy and cooling capacity at the same time.
Description
技术领域technical field
本发明属于冷电联产技术领域,涉及一种基于海洋温差能的发电制冷联合循环系统,是一种利用海洋温差能进行发电和制冷的循环系统。The invention belongs to the technical field of combined cooling and power generation, and relates to a combined cycle system for power generation and refrigeration based on ocean temperature difference energy, which is a cycle system for generating electricity and refrigeration by utilizing ocean temperature difference energy.
背景技术Background technique
煤炭、石油和天然气等传统化石燃料作为不可再生能源,随着人类的不断开采,终将会被消耗殆尽,随着化石能源不断地消耗,全球性的气温升高、空气污染和环境变化等问题已屡见不鲜。海洋中蕴藏着极为丰富的可再生能源,海洋能具有无污染、可循环利用等诸多优势。达到地球表面的太阳辐射绝大部分被地球表面的海水吸收,因此海水表层储存着取之不尽用之不竭的太阳能,利用表层温海水和深层冷海水的之间的温差发电的海洋温差发电具有广阔的前景。Traditional fossil fuels such as coal, oil and natural gas, as non-renewable energy sources, will eventually be exhausted with the continuous exploitation of human beings. With the continuous consumption of fossil energy, the global temperature rise, air pollution and environmental changes, etc. The problem is not uncommon. The ocean is rich in renewable energy, and ocean energy has many advantages such as pollution-free and recyclable. Most of the solar radiation reaching the earth's surface is absorbed by the seawater on the earth's surface, so the seawater surface stores inexhaustible solar energy, and uses the temperature difference between the surface warm seawater and the deep cold seawater to generate electricity. Has broad prospects.
基于有机朗肯循环的海洋温差能发电技术,是利用表层温海水作热源,将低沸点工质加热使其汽化,汽化后的工质在膨胀机内膨胀做功将膨胀机机械能转变为电能,随后工质被海洋深处的冷海水冷凝后完成一次循环。我国南海地区属于热带气候,太阳能资源十分充足,海洋表层温海水全年都在25℃以上,而在500-800米以下的深海,其水温在5℃左右,其温度差可达20℃以上,蕴藏着十分丰富的温差能资源。基于有机朗肯循环的海洋温差能发电循环虽然具有设备简单,维护方便等优点,但是其热效率较低,因此该技术市场竞争力不足,一直以来很难实现商业化。The ocean thermoelectric power generation technology based on the organic Rankine cycle uses the surface warm seawater as the heat source to heat the low-boiling-point working fluid to vaporize it. The vaporized working fluid expands in the expander and does work to convert the mechanical energy of the expander into electrical energy. The working fluid is condensed by cold seawater deep in the ocean to complete a cycle. The South my country Sea has a tropical climate, with abundant solar energy resources. The warm seawater on the ocean surface is above 25°C throughout the year, while in the deep sea below 500-800 meters, the water temperature is around 5°C, and the temperature difference can reach more than 20°C. It contains very rich thermal energy resources. Although the ocean thermoelectric power generation cycle based on the organic Rankine cycle has the advantages of simple equipment and convenient maintenance, but its thermal efficiency is low, so the market competitiveness of this technology is insufficient, and it has been difficult to achieve commercialization.
目前冰箱等制冷设备的能效比大都低于4,我国南方地区高温持续时间较长,尤其夏季对空调的依赖程度很高,每年夏季空调的耗电量占总耗电量的比例很大;我国南部沿海地区渔业资源丰富,从海洋中打捞上来的海鲜需要及时放入冷库中进行保存,防止其腐烂。因此,建立大型的低运行成本的冷库是我国南海渔业储存行业的一个发展趋势。At present, the energy efficiency ratio of refrigeration equipment such as refrigerators is mostly lower than 4. The high temperature in southern my country lasts for a long time, especially in summer, the dependence on air conditioners is very high, and the power consumption of air conditioners in summer accounts for a large proportion of the total power consumption; The southern coastal areas are rich in fishery resources. Seafood salvaged from the ocean needs to be stored in cold storage in time to prevent it from rotting. Therefore, the establishment of large-scale cold storage with low operating cost is a development trend of the fishery storage industry in the South my country Sea.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于解决现有技术中存在的上述问题,提出了一种基于海洋温差能的发电制冷联合循环系统,其利用海洋温差能这种环境友好的可再生能源,驱动R123、R134a或者R600a等低沸点工质进行冷电联供循环;该循环系统仅需要海洋温差能作为驱动,不需要太阳能、废热等其他能源就可以独立实现运转做功。The purpose of the present invention is to solve the above problems existing in the prior art, and proposes a combined cycle system for power generation and refrigeration based on ocean thermal energy, which uses ocean thermal energy, an environmentally friendly renewable energy, to drive R123, R134a or R600a A low-boiling-point working medium is used to perform a combined cooling and power cycle; the cycle system only needs the ocean temperature difference energy as a drive, and can operate independently without other energy sources such as solar energy and waste heat.
本发明的技术方案是:The technical scheme of the present invention is:
一种基于海洋温差能的发电制冷联合循环系统,包括温海水泵1、发生器2、冷海水泵3、膨胀机4、冷凝器5、发电机6、压缩机7、蒸发器8、需要冷量的场所9、膨胀阀10、可调节流量分流器11、工质泵12和混合器13。A combined cycle system for power generation and refrigeration based on ocean temperature difference energy, comprising a warm
所述的温海水泵1通过温海水输送管道与发生器2的温海水入口端相连,发生器2的温海水出口端与温海水排水管连接,发生器2的工质出口端与膨胀机4的工质入口端相连,膨胀机4与发电机6和压缩机7连接,将输出功传递给发电机6和压缩机7,驱动发电机6和压缩机7运转,且发电机6与温海水泵1、冷海水泵3以及工质泵12相连,对设备进行供电;膨胀机4的工质出口端与冷凝器5的工质入口端相连,冷海水泵3通过冷海水输送管道与冷凝器5的冷海水入口端相连,冷凝器5的冷海水出口端与冷海水排水管相连,冷凝器5的工质出口端与可调节流量分流器11的工质入口端相连;可调节流量分流器11的两个工质出口端分别与工质泵12的工质入口端和膨胀阀10的工质入口端相连,工质泵12的工质出口端与混合器13的液态工质入口端相连,膨胀阀10的工质出口端与蒸发器8的工质入口端相连,蒸发器8的冷量输出端与需要冷量的场所9相连,蒸发器8的工质出口端与压缩机7的工质入口端相连;压缩机7的工质出口端与混合器13的汽态工质入口端相连,混合器13的工质出口端与发生器2的工质入口端相连。The warm
所述的需要冷量的场所8为冷库。The
所述的可调节流量分流器11通过自动控制或者人为的方式调节两个出口端流量大小。The
所述的工质为氨、R123、R134a、R32、R152a或R600a制冷剂。The working medium is ammonia, R123, R134a, R32, R152a or R600a refrigerant.
所述的压缩机7可以和外界供电设备通过机械装置连接,在必要的情况下,从外界获取额外的机械能。The
工作原理如下:It works as follows:
温海水泵1与温海水管连接将温海水送入发生器2中,温海水在发生器2中将热量传递给从混合器13中流过来的工质;在发生器2中加热后的工质变为饱和或过饱和蒸汽并进入膨胀机4中推动膨胀机4做功,膨胀机4输出的机械能带动发电机6和压缩机7运转,其中发电机6发出的电量一部分用于工质泵12、温海水泵2以及冷海水泵3的运转,剩余电量可以输送给用户使用;膨胀机4的工质出口端与冷凝器5的工质入口端相连,从膨胀机4中出来的乏汽进入冷凝器5中将热量传递给冷海水后变为液态工质,冷海水泵3通过冷海水管与冷凝器5的冷海水入口端相连,冷海水由冷海水泵3从深海中抽取并送入冷凝器5中。The warm
可调节流量分流器11与冷凝器5相连,工质从冷凝器5出来后进入可调节流量分流器11进行分流,通过可调节流量分流器11控制工质进入膨胀阀9和工质泵12中的流量,进而控制整个系统制冷量的多少。The
外界所需要的冷量增加,即需要调节进入膨胀阀10中的工质流量增加,当膨胀机4输出的功率不够压缩机7使用时,压缩机7可以通过机械装置从外界获取机械能以保证系统可以继续运转。The cooling capacity required by the outside world increases, that is, the flow rate of the working medium entering the
工质从膨胀阀10降压流出后进入蒸发器8吸收热量,产生冷量,从蒸发器8中出来的工质流入压缩机7被压缩升压后进入混合器13,另一部分从可调节流量分流器11中出来的工质经工质泵12加压流入混合器13后与从压缩机7流进来的工质混合,从混合器13中出来的工质流入发生器2,从而完成循环过程。The working fluid is depressurized and flowed out from the
本发明的有益效果:Beneficial effects of the present invention:
1、利用海洋温差能进行冷电联产,海洋温差能利用率得以提高,提高了系统的效率;1. The use of ocean temperature difference energy for combined cooling and power generation can improve the utilization rate of ocean temperature difference energy and improve the system's efficiency. efficiency;
2、由于将从蒸发器中流出的工质中所携带的热量作为发电循环中的一部分热量而不是将这部分热量排出,即工质流经蒸发器,不仅为冷库提供了冷量,冷库也在此循环中作为了次要热源,为工质的后续蒸发提供了部分热量,减少了温海水的抽取量;2. Since the heat carried in the working medium flowing out of the evaporator is used as a part of the heat in the power generation cycle instead of discharging this part of the heat, that is, the working medium flows through the evaporator, which not only provides cooling capacity for the cold storage, but also the cold storage. As a secondary heat source in this cycle, it provides part of the heat for the subsequent evaporation of the working medium, reducing the extraction of warm seawater;
3、该循环是以冷海水作为冷源,普通制冷循环大都直接利用处于环境温度下的空气进行冷却,使得该循环制冷的能效比远高于普通制冷循环;3. The cycle uses cold seawater as the cooling source, and most of the ordinary refrigeration cycles directly use the air at ambient temperature for cooling, so that the energy efficiency ratio of this cycle refrigeration is much higher than that of ordinary refrigeration cycles;
4、采用可调节流量分流器,使得循环输出的制冷量可以通过调节分流器进行调节;4. The adjustable flow diverter is adopted, so that the cooling capacity of the circulating output can be adjusted by adjusting the diverter;
5、当流入膨胀阀的工质流量达到一定比例后,从混合器出来的工质变为气液共存的沸腾状态,工质在发生器中吸热量减小,使得发生器的体积可以减小;工质在发生器中被加热时无需经历单相对流换热过程直接进入沸腾过程,此过程表面传热系数更高,使得发生器的换热效率更高;5. When the flow rate of the working medium flowing into the expansion valve reaches a certain proportion, the working medium from the mixer becomes a boiling state of coexistence of gas and liquid, and the heat absorbed by the working medium in the generator decreases, so that the volume of the generator can be reduced. ; When the working fluid is heated in the generator, it directly enters the boiling process without going through the single-phase heat transfer process, and the surface heat transfer coefficient of this process is higher, which makes the heat exchange efficiency of the generator higher;
6、采用压缩蒸汽循环进行制冷,当所需冷量较大时,可以通过外接设备为压缩机提供机械能,使得系统制冷量的调节范围扩大;6. Compressed vapor cycle is used for refrigeration. When the required cooling capacity is large, mechanical energy can be provided to the compressor through external equipment, so that the adjustment range of the cooling capacity of the system can be expanded;
7、本发明不仅可以用温海水作为热源,也可以利用太阳能、废热、余热等其他热源。7. The present invention can not only use warm seawater as a heat source, but also other heat sources such as solar energy, waste heat, and waste heat.
附图说明Description of drawings
图1是本发明的一种基于海洋温差能的发电制冷联合循环系统的示意图。FIG. 1 is a schematic diagram of a combined cycle system of power generation and refrigeration based on ocean temperature difference energy according to the present invention.
图中:1温海水泵、2发生器、3冷海水泵、4膨胀机、5冷凝器、6发电机、7压缩机、8蒸发器、9需要冷量的场所、10膨胀阀、11可调节流量分流器、12工质泵、13混合器。In the picture: 1 warm sea water pump, 2 generator, 3 cold sea water pump, 4 expander, 5 condenser, 6 generator, 7 compressor, 8 evaporator, 9 place where cooling is needed, 10 expansion valve, 11 adjustable Flow divider, 12 working fluid pumps, 13 mixers.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明做进一步的描述。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
如图1所示,一种基于海洋温差能的发电制冷联合循环系统包括:温海水泵1、发生器2、冷海水泵3、膨胀机4、冷凝器5、发电机6、压缩机7、蒸发器8、需要冷量的场所9、膨胀阀10、可调节流量分流器11、工质泵12和混合器13。As shown in Figure 1, a combined cycle system for power generation and refrigeration based on ocean temperature difference energy includes: warm
温海水泵1从海洋表层抽取温海水作为本发明基于海洋温差能的发电制冷联合循环的热源,发生器2作为一个换热器,使得温海水的热量可以高效地传递给流经发生器2的工质,并使工质完全汽化,释放热量后的温海水从发生器2中排出;从发生器2中出来的气体工质进入膨胀机4推动膨胀机4做功,膨胀机4带动发电机6和压缩机7运转;发电机6发出的电量中,除供应温海水泵1、冷海水泵3以及工质泵12使用外,其余电量可以输出给用户;冷海水泵3将从海洋深处抽取的冷海水作为本发明的基于海洋温差能的发电制冷联合循环的冷源输送到冷凝器5中,使得流经冷凝器5的工质在此处释放热量给冷海水并完全液化,冷海水从冷凝器5中吸收热量后流出;从冷凝器5出来的液态工质流入可调节流量分流器11,通过自动控制系统或者人工控制的方式调节可调节流量分流器11,从而调节从可调节流量分流器11中出来后进入膨胀阀10中和工质泵12中的工质流量大小;进入膨胀阀10后的工质由于压力降低使得温度也降低,从膨胀阀10中出来的低温低压的工质进入蒸发器8中吸收热量,从而使得需要冷量的场所9可以保持低温环境;从蒸发器8吸热后的工质流入压缩机7被压缩升压然后进入混合器13中;外界所需要的冷量增加,即需要调节进入膨胀阀10中的工质流量增加,当膨胀机4输出的功率不够压缩机7使用时,压缩机7可以通过机械装置从外界获取机械能以保证系统可以继续运转;从可调节流量分流器11另一工质出口端中出来的工质进入工质泵12中进行加压,加压后的液态工质进入混合器13与从压缩机7中流入的汽态工质混合,从混合器13中出来的工质流入发生器2,从而完成循环过程。The warm
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911173795.5A CN110792567A (en) | 2019-11-26 | 2019-11-26 | Power generation and refrigeration combined cycle system based on ocean temperature difference energy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911173795.5A CN110792567A (en) | 2019-11-26 | 2019-11-26 | Power generation and refrigeration combined cycle system based on ocean temperature difference energy |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110792567A true CN110792567A (en) | 2020-02-14 |
Family
ID=69446108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911173795.5A Pending CN110792567A (en) | 2019-11-26 | 2019-11-26 | Power generation and refrigeration combined cycle system based on ocean temperature difference energy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110792567A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111396144A (en) * | 2020-04-15 | 2020-07-10 | 捷通智慧科技股份有限公司 | A data center waste heat power generation device based on liquid-cooled IT equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101737282A (en) * | 2008-11-05 | 2010-06-16 | 上海海事大学 | High-efficiency hybrid ocean temperature difference power generating system |
CN102213199A (en) * | 2011-06-02 | 2011-10-12 | 东方电气集团东方汽轮机有限公司 | Ocean thermal energy conversion method and ocean thermal energy conversion device |
KR101356122B1 (en) * | 2012-10-17 | 2014-01-29 | 한국해양과학기술원 | Multi-turbine power plant system by using ocean thermal energy conversion (otec) |
CN103742291A (en) * | 2013-12-26 | 2014-04-23 | 宁波工程学院 | Waste heat recovery type distributed energy and ocean thermal energy coupling power generation system |
CN104405600A (en) * | 2014-11-28 | 2015-03-11 | 郑州大学 | Solar energy and ocean temperature difference energy cascading type power generation device and utilization method thereof |
CN211116438U (en) * | 2019-11-26 | 2020-07-28 | 大连理工大学 | Power generation and refrigeration combined cycle system based on ocean temperature difference energy |
-
2019
- 2019-11-26 CN CN201911173795.5A patent/CN110792567A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101737282A (en) * | 2008-11-05 | 2010-06-16 | 上海海事大学 | High-efficiency hybrid ocean temperature difference power generating system |
CN102213199A (en) * | 2011-06-02 | 2011-10-12 | 东方电气集团东方汽轮机有限公司 | Ocean thermal energy conversion method and ocean thermal energy conversion device |
KR101356122B1 (en) * | 2012-10-17 | 2014-01-29 | 한국해양과학기술원 | Multi-turbine power plant system by using ocean thermal energy conversion (otec) |
CN103742291A (en) * | 2013-12-26 | 2014-04-23 | 宁波工程学院 | Waste heat recovery type distributed energy and ocean thermal energy coupling power generation system |
CN104405600A (en) * | 2014-11-28 | 2015-03-11 | 郑州大学 | Solar energy and ocean temperature difference energy cascading type power generation device and utilization method thereof |
CN211116438U (en) * | 2019-11-26 | 2020-07-28 | 大连理工大学 | Power generation and refrigeration combined cycle system based on ocean temperature difference energy |
Non-Patent Citations (1)
Title |
---|
黄贤坤;袁瀚;梅宁;: "太阳能海洋热能驱动的冷电联供循环热力分析", 太阳能学报, no. 04, 28 April 2019 (2019-04-28), pages 906 - 912 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111396144A (en) * | 2020-04-15 | 2020-07-10 | 捷通智慧科技股份有限公司 | A data center waste heat power generation device based on liquid-cooled IT equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105888992B (en) | A kind of solar energy and ground heat integration double flash evaporation double-work medium circulating generation hot-water heating system | |
CN102182655B (en) | Low-temperature Rankine double-cycle power generation device | |
CN102563987A (en) | Vapor-compression refrigerating plant driven by organic Rankine cycle and method | |
CN104912758B (en) | It is a kind of to divide the organic Rankine cycle power generation system utilized based on photo-thermal photoelectricity | |
CN107940789B (en) | A combined cooling, heating and power generation system based on movable solar collectors | |
CN105402926B (en) | A kind of combined cooling and power system and refrigeration, power generation and combined cooling and power method based on the system | |
CN106958963A (en) | Solar cold co-generation unit based on organic Rankine bottoming cycle and lithium bromide refrigerating | |
CN202579063U (en) | Thio rubber (TR) organic Rankine cycle geothermal power generation device | |
CN101307751A (en) | Mixed working fluid distributed low temperature solar thermal power generation system and power generation process | |
CN102338051A (en) | Solar/ground source heat integrated electricity generation/cold/heating co-supply device | |
CN105135722A (en) | Energy supply device and method for power generation, refrigeration and heating of buildings through medium-and-low temperature geothermal water | |
WO2012131860A1 (en) | Device using constant volume heater | |
CN109306879A (en) | A compressed air energy storage system | |
KR20150022311A (en) | Heat pump electricity generation system | |
CN211116438U (en) | Power generation and refrigeration combined cycle system based on ocean temperature difference energy | |
Wang et al. | Theoretical analysis of organic rankine cycle combine power and ejector refrigeration driven by solar energy | |
CN101800500B (en) | Small temperature difference thermal electric generator | |
CN105042939A (en) | Method and device for acquiring cool air and electric energy by utilizing low-temperature medium | |
KR101315918B1 (en) | Organic rankine cycle for using low temperature waste heat and absorbtion type refrigerator | |
CN103148587A (en) | Method and device for preparing domestic hot water with waste heat of power plant | |
CN113654261A (en) | Ocean temperature difference energy cold, heat and electricity and fresh water poly-generation system based on solar energy assistance | |
CN202501677U (en) | Vapor Compression Refrigeration Device Driven by Organic Rankine Cycle | |
CN102383882A (en) | A new type of air energy refrigeration power generation device | |
CN110792567A (en) | Power generation and refrigeration combined cycle system based on ocean temperature difference energy | |
CN205349435U (en) | Well high temperature heat source flash distillation - organic rankine cycle's hot water cogeneration test system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200214 |