CN110698816B - Wear-resistant heat-resistant epoxy composite material and preparation method thereof - Google Patents
Wear-resistant heat-resistant epoxy composite material and preparation method thereof Download PDFInfo
- Publication number
- CN110698816B CN110698816B CN201910972309.XA CN201910972309A CN110698816B CN 110698816 B CN110698816 B CN 110698816B CN 201910972309 A CN201910972309 A CN 201910972309A CN 110698816 B CN110698816 B CN 110698816B
- Authority
- CN
- China
- Prior art keywords
- epoxy
- zro
- composite material
- resistant
- bromide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004593 Epoxy Substances 0.000 title claims abstract description 55
- 239000002131 composite material Substances 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000003822 epoxy resin Substances 0.000 claims abstract description 59
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 59
- 239000002114 nanocomposite Substances 0.000 claims abstract description 42
- 239000000463 material Substances 0.000 claims abstract description 32
- 229910009819 Ti3C2 Inorganic materials 0.000 claims abstract description 24
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 24
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims abstract description 23
- 239000011159 matrix material Substances 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims description 16
- 239000000843 powder Substances 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 239000006185 dispersion Substances 0.000 claims description 12
- 239000011259 mixed solution Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- -1 polytetrafluoroethylene Polymers 0.000 claims description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 4
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 4
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 claims description 4
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000011065 in-situ storage Methods 0.000 claims description 4
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- HWCKGOZZJDHMNC-UHFFFAOYSA-M tetraethylammonium bromide Chemical compound [Br-].CC[N+](CC)(CC)CC HWCKGOZZJDHMNC-UHFFFAOYSA-M 0.000 claims description 4
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 claims description 3
- 150000001412 amines Chemical group 0.000 claims description 3
- JBIROUFYLSSYDX-UHFFFAOYSA-M benzododecinium chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 JBIROUFYLSSYDX-UHFFFAOYSA-M 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- SZEMGTQCPRNXEG-UHFFFAOYSA-M trimethyl(octadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C SZEMGTQCPRNXEG-UHFFFAOYSA-M 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 claims description 2
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 claims description 2
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 claims description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 claims description 2
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 claims description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 2
- 239000012670 alkaline solution Substances 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- KHSLHYAUZSPBIU-UHFFFAOYSA-M benzododecinium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 KHSLHYAUZSPBIU-UHFFFAOYSA-M 0.000 claims description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 claims description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 claims description 2
- UMGXUWVIJIQANV-UHFFFAOYSA-M didecyl(dimethyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCC[N+](C)(C)CCCCCCCCCC UMGXUWVIJIQANV-UHFFFAOYSA-M 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 2
- 239000002105 nanoparticle Substances 0.000 claims description 2
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 claims 1
- CXRFDZFCGOPDTD-UHFFFAOYSA-M Cetrimide Chemical compound [Br-].CCCCCCCCCCCCCC[N+](C)(C)C CXRFDZFCGOPDTD-UHFFFAOYSA-M 0.000 claims 1
- OJIYIVCMRYCWSE-UHFFFAOYSA-M Domiphen bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)CCOC1=CC=CC=C1 OJIYIVCMRYCWSE-UHFFFAOYSA-M 0.000 claims 1
- 229910006213 ZrOCl2 Inorganic materials 0.000 claims 1
- 229910003130 ZrOCl2·8H2O Inorganic materials 0.000 claims 1
- 150000008064 anhydrides Chemical group 0.000 claims 1
- 238000004821 distillation Methods 0.000 claims 1
- 238000009210 therapy by ultrasound Methods 0.000 claims 1
- 238000001132 ultrasonic dispersion Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- IPCAPQRVQMIMAN-UHFFFAOYSA-L zirconyl chloride Chemical compound Cl[Zr](Cl)=O IPCAPQRVQMIMAN-UHFFFAOYSA-L 0.000 claims 1
- 230000009477 glass transition Effects 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000010936 titanium Substances 0.000 description 54
- 238000000034 method Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000945 filler Substances 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 239000002135 nanosheet Substances 0.000 description 5
- 241000446313 Lamella Species 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920001046 Nanocellulose Polymers 0.000 description 1
- 241000233805 Phoenix Species 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920010741 Ultra High Molecular Weight Polyethylene (UHMWPE) Polymers 0.000 description 1
- 150000008065 acid anhydrides Chemical group 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- XLBGHUGBSRWNRI-UHFFFAOYSA-M azanium trimethyl(tetradecyl)azanium dibromide Chemical compound [Br-].C(CCCCCCCCCCCCC)[N+](C)(C)C.[NH4+].[Br-] XLBGHUGBSRWNRI-UHFFFAOYSA-M 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-O dimethylaminium Chemical compound C[NH2+]C ROSDSFDQCJNGOL-UHFFFAOYSA-O 0.000 description 1
- 125000006222 dimethylaminomethyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])C([H])([H])* 0.000 description 1
- VZXFEELLBDNLAL-UHFFFAOYSA-N dodecan-1-amine;hydrobromide Chemical compound [Br-].CCCCCCCCCCCC[NH3+] VZXFEELLBDNLAL-UHFFFAOYSA-N 0.000 description 1
- PGQAXGHQYGXVDC-UHFFFAOYSA-N dodecyl(dimethyl)azanium;chloride Chemical compound Cl.CCCCCCCCCCCCN(C)C PGQAXGHQYGXVDC-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/06—Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
- C08K3/14—Carbides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/08—Stabilised against heat, light or radiation or oxydation
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
技术领域technical field
本发明属于聚合物基复合材料的制备领域,具体地说是涉及一种耐磨耐热环氧复合材料制备方法。The invention belongs to the field of preparation of polymer-based composite materials, and particularly relates to a preparation method for wear-resistant and heat-resistant epoxy composite materials.
背景技术Background technique
环氧树脂是一类具有杰出力学性能、高化学稳定性、低收缩率的热固性树脂,其作为基体树脂制造的复合材料被广泛应用在航空航天、轨道交通、体育运动器材等领域。然而,固化形成的三维交联网络结构使得环氧树脂表现出一定的脆性和较差的耐磨性。并且,环氧树脂较差的耐热性也难以满足日益发展的工程技术要求,从而也限制了其应用。因此,改善耐磨性和耐热性对于环氧树脂的实际应用具有重要意义。Epoxy resin is a kind of thermosetting resin with outstanding mechanical properties, high chemical stability and low shrinkage rate. As a composite material made of matrix resin, it is widely used in aerospace, rail transit, sports equipment and other fields. However, the three-dimensional cross-linked network structure formed by curing makes the epoxy resin exhibit certain brittleness and poor abrasion resistance. In addition, the poor heat resistance of epoxy resin is difficult to meet the requirements of the increasingly developed engineering technology, which also limits its application. Therefore, improving wear resistance and heat resistance is of great significance for the practical application of epoxy resins.
提高环氧树脂耐磨性的主要途径是通过在环氧树脂中添加耐磨填料以提高环氧树脂的交联网络强度或降低摩擦系数,从而提高其耐磨性。研究证明,纳米橡胶、TiO2、Al2O3等能够有效改善环氧树脂的耐磨性。提高环氧树脂耐热性的主要方法包括:开发具有耐热性骨架的环氧树脂;合成具有新型结构的环氧树脂固化剂;与无机纳米材料共混或共聚。研究表明,经过表面处理的纳米材料在基体中起到交联点的作用,使体系的交联密度增大、玻璃化转变温度Tg升高,从而提高耐热性。The main way to improve the wear resistance of epoxy resins is to increase the wear resistance of epoxy resins by adding wear-resistant fillers to the epoxy resins to increase the strength of the epoxy resin's cross-linked network or reduce the friction coefficient. Studies have shown that nano-rubber, TiO 2 , Al 2 O 3 and so on can effectively improve the wear resistance of epoxy resin. The main methods for improving the heat resistance of epoxy resins include: developing epoxy resins with heat-resistant skeletons; synthesizing epoxy resin curing agents with novel structures; blending or copolymerizing with inorganic nanomaterials. Studies have shown that the surface-treated nanomaterials play the role of cross-linking points in the matrix, which increases the cross-linking density of the system and the glass transition temperature Tg, thereby improving the heat resistance.
MXene是一类具有优异电学、热学、力学和光学等性能的二维过渡金属碳氮化物材料,用通式可表示为Mn+1Xn(n=1~3),其中M代表前过渡金属,X是碳、氮或两者都有,其表面含有丰富的终止基团,例如-OH、-F等。其中,Ti3C2是一种典型的MXene材料,其具有较高的机械强度和较低的摩擦系数。研究发现,往超高分子量聚乙烯(UHMWPE)中添加Ti3C2颗粒可以有效降低UHMWPE的摩擦系数,提高UHMWPE耐磨性。因此,通过添加Ti3C2颗粒预计可以有效提高环氧树脂的耐磨性。MXene is a kind of two-dimensional transition metal carbonitride material with excellent electrical, thermal, mechanical and optical properties. It can be expressed as M n+1 X n (n=1~3) by the general formula, where M represents the pre-transition Metals, where X is carbon, nitrogen, or both, have abundant termination groups on their surfaces, such as -OH, -F, etc. Among them, Ti3C2 is a typical MXene material with high mechanical strength and low friction coefficient. The study found that adding Ti 3 C 2 particles to ultra-high molecular weight polyethylene (UHMWPE) can effectively reduce the friction coefficient of UHMWPE and improve the wear resistance of UHMWPE. Therefore, it is expected that the wear resistance of epoxy resins can be effectively improved by adding Ti3C2 particles .
ZrO2是一类常用的金属氧化物无机填料,其具有优异的耐磨性、耐化学性、高硬度和高耐热性。研究表明,纳米ZrO2填料不但能够改善环氧树脂的耐磨性,同时还能够有效提高其耐热性。然而,由于纳米级材料的极易团聚现象,纳米ZrO2对环氧树脂耐磨性和耐热性的提高效果受到了严重制约。因此,提高纳米ZrO2在环氧树脂中的分散程度是制备耐磨耐热环氧复合材料过程中的关键问题之一。ZrO2 is a class of commonly used metal oxide inorganic fillers, which have excellent wear resistance, chemical resistance, high hardness and high heat resistance. Research shows that nano ZrO 2 filler can not only improve the wear resistance of epoxy resin, but also can effectively improve its heat resistance. However, due to the extremely easy agglomeration phenomenon of nanoscale materials, the improvement effect of nano-ZrO2 on epoxy resin wear resistance and heat resistance is severely restricted. Therefore, improving the dispersion degree of nano - ZrO2 in epoxy resin is one of the key issues in the process of preparing wear-resistant and heat-resistant epoxy composites.
有部分现有技术研究了环氧树脂和MXene的复合材料。专利文献CN102977745A公开了一种一种可室温固化耐超高温涂料及其制备方法,其为双组份产品,A组分中包括酚醛环氧树脂与碳化钛、氧化锆和填料,填料包括粘土、碳纤维、聚酰亚胺和聚醚醚酮,涂料B组分为胺类固化剂,按照该方法制备得到了耐超高温涂层,但是其中所用MXene分量很多,远远超过了环氧树脂的用量,不具有产业上实用的价值。专利文献CN10980290A公开了一种环氧树脂/MXene复合材料,其中MXene材料是将Ti、Nb、V、Cr或Ta的金属和铝粉、碳粉以后烧结、磨粉、侵刻、超声分层得到单层MXene后,与甲基四氢苯酐、固化剂、促进剂和环氧树脂混合后加温固化制得。但是该方法繁复,且超声后的单层MXene产率通常较低,获得的MXene是单层/多层混合物,同时单层/多层MXene的质量比极难控制,因此使得最终制备的MXene/环氧树脂复合材料产品性能稳定性较差。专利CN110105711A公开了一种改善环氧树脂摩擦性能的方法,其是将Ti3C2纳米片和纳米纤维素制得均匀的Ti3C MXene/纤维素溶液,经单一方向冷冻后得到Ti3C2纳米片的三维网络结构块体。加入环氧树脂,充分浸入三维结构,制得环氧树脂复合材料,所得材料摩擦系数、磨损率、磨损体积均得到了很大改善。但是该专利方法存在工艺流程复杂、难以工业化生产等缺陷,不具备大规模工业化生产条件。而且这些方法中,只是简单地将环氧树脂和MXene进行物理混合或者浸渍,并不能有效地将两种材料复合起来,并不能有效提升环氧树脂的各项性能。Some of the prior art studies the composite material of epoxy resin and MXene. Patent document CN102977745A discloses a room temperature-curable and ultra-high temperature resistant coating and a preparation method thereof, which is a two-component product, and component A includes phenolic epoxy resin, titanium carbide, zirconia and filler, and the filler includes clay, Carbon fiber, polyimide and polyether ether ketone, the B component of the coating is an amine curing agent, and the ultra-high temperature resistant coating is prepared according to this method, but the amount of MXene used in it is very large, far exceeding the amount of epoxy resin , does not have industrial practical value. Patent document CN10980290A discloses an epoxy resin/MXene composite material, wherein the MXene material is obtained by sintering, grinding, etching, and ultrasonic layering of Ti, Nb, V, Cr or Ta metal, aluminum powder, and carbon powder. After a single layer of MXene is mixed with methyl tetrahydrophthalic anhydride, curing agent, accelerator and epoxy resin, it is prepared by heating and curing. However, this method is complicated, and the yield of monolayer MXene after ultrasonication is usually low, the obtained MXene is a monolayer/multilayer mixture, and the mass ratio of monolayer/multilayer MXene is extremely difficult to control, thus making the final prepared MXene/multilayer MXene extremely difficult to control. The performance stability of epoxy resin composite products is poor. Patent CN110105711A discloses a method for improving the friction performance of epoxy resin, which is to prepare a uniform Ti3C MXene /cellulose solution from Ti3C2 nanosheets and nanocellulose, and obtain Ti3C after freezing in one direction A 3D network structural block of 2 nanosheets. Adding epoxy resin, fully immersing the three-dimensional structure, the epoxy resin composite material is prepared, and the friction coefficient, wear rate and wear volume of the obtained material have been greatly improved. However, the patented method has defects such as complicated technological process and difficulty in industrialized production, and does not have the conditions for large-scale industrialized production. Moreover, in these methods, simply physically mixing or impregnating epoxy resin and MXene cannot effectively combine the two materials, and cannot effectively improve various properties of epoxy resin.
发明内容SUMMARY OF THE INVENTION
为克服上述现有技术的缺陷,本发明的目的在于提供一种耐磨耐热环氧复合材料及其制备方法。发明人预料不到地发现ZrO2/Ti3C2纳米复合颗粒用一定量季铵盐处理后,再和液体环氧树脂在合适条件下固化后得到的复合材料耐磨性能、耐热性能得到了极大提高,拉伸强度也有一定程度提高。In order to overcome the above-mentioned defects of the prior art, the purpose of the present invention is to provide a wear-resistant and heat-resistant epoxy composite material and a preparation method thereof. The inventor unexpectedly found that after the ZrO 2 /Ti 3 C 2 nanocomposite particles were treated with a certain amount of quaternary ammonium salt, and then cured with liquid epoxy resin under suitable conditions, the wear resistance and heat resistance of the composite material were obtained. The tensile strength is also improved to a certain extent.
本发明的技术方案如下:The technical scheme of the present invention is as follows:
本发明的一个目的在于提供一种耐磨耐热环氧复合材料,包括环氧树脂基体材料和均匀分散于该环氧树脂基体材料中的ZrO2/Ti3C2纳米复合材料,所述ZrO2/Ti3C2纳米复合材料相对于环氧树脂基体材料的0.1-3wt%,所述环氧复合材料是将ZrO2/Ti3C2纳米复合材料和环氧树脂在季铵盐存在下固化得到。An object of the present invention is to provide a wear-resistant and heat-resistant epoxy composite material, comprising an epoxy resin matrix material and a ZrO 2 /Ti 3 C 2 nanocomposite material uniformly dispersed in the epoxy resin matrix material, the ZrO 0.1-3wt% of 2 /Ti 3 C 2 nanocomposite relative to epoxy resin matrix material, the epoxy composite material is ZrO 2 /Ti 3 C 2 nanocomposite and epoxy resin in the presence of quaternary ammonium salt solidified.
优选地,所述ZrO2/Ti3C2纳米复合材料占环氧树脂基体材料的0.5-1wt%。Preferably, the ZrO 2 /Ti 3 C 2 nanocomposite material accounts for 0.5-1 wt % of the epoxy resin matrix material.
Ti3C2具有独特的类手风琴片层结构,其片层表面积较大,片层与片层之间存在一定的间隙,并且片层表面具备丰富的-OH等官能团,适合纳米ZrO2在其表面的生长。利用水热法直接将纳米ZrO2均匀生长在Ti3C2片层结构上,同时对获得的ZrO2/Ti3C2纳米复合颗粒进行表面改性,极大改善了环氧树脂的耐磨性和耐热性,并且其拉伸强度也有一定程度提升。采用ZrO2/Ti3C2纳米复合颗粒来改性环氧树脂的研究尚未见到公开报道。Ti 3 C 2 has a unique accordion-like lamella structure, the surface area of the lamella is large, there is a certain gap between the lamellae, and the surface of the lamella is rich in functional groups such as -OH, which is suitable for nano-ZrO 2 in its surface growth. The nano ZrO 2 was directly grown on the Ti 3 C 2 lamella structure by the hydrothermal method, and the ZrO 2 /Ti 3 C 2 nanocomposite particles obtained were surface modified, which greatly improved the wear resistance of the epoxy resin. and heat resistance, and its tensile strength is also improved to a certain extent. The research on using ZrO 2 /Ti 3 C 2 nanocomposite particles to modify epoxy resin has not been reported publicly.
本发明提供的耐磨耐热环氧复合材料是用ZrO2/Ti3C2纳米复合材料为填充剂,先把ZrO2/Ti3C2纳米复合材料用季铵盐处理后,和液体环氧进行充分混合,再与固化剂、促进剂一起混合得到预固化的环氧前驱体混合液,再把此前驱体混合液通过高温固化交联得到所述环氧复合材料。The wear-resistant and heat-resistant epoxy composite material provided by the invention uses ZrO 2 /Ti 3 C 2 nano-composite material as filler, firstly treats the ZrO 2 /Ti 3 C 2 nano-composite material with quaternary ammonium salt, and then mixes it with liquid ring The oxygen is fully mixed, and then mixed with the curing agent and the accelerator to obtain a pre-cured epoxy precursor mixture, and then the epoxy precursor mixture is cured and crosslinked at high temperature to obtain the epoxy composite material.
所述环氧树脂基体材料是液体环氧、固化剂和促进剂的混合物。The epoxy resin matrix material is a mixture of liquid epoxy, curing agent and accelerator.
优选地,所述液体环氧选自E-51、E-55、E-44、E-42中的至少一种;和/或Preferably, the liquid epoxy is selected from at least one of E-51, E-55, E-44, E-42; and/or
所述固化剂为酸酐类固化剂,选自四氢苯酐、甲基四氢苯酐、六氢苯酐、甲基六氢苯酐、邻苯二甲酸酐、马来酸酐的至少一种;和/或The curing agent is an acid anhydride curing agent, selected from at least one of tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phthalic anhydride, and maleic anhydride; and/or
所述促进剂为胺类促进剂,选自四乙基溴化铵、二甲基苄胺、2-乙基-4-甲基咪唑、2,4,6-三(二甲基胺基甲基)苯酚、三乙醇胺、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二甲基苯胺、N,N-二甲基苄胺的至少一种。The accelerator is an amine accelerator selected from tetraethylammonium bromide, dimethylbenzylamine, 2-ethyl-4-methylimidazole, 2,4,6-tris(dimethylaminomethyl) base) at least one of phenol, triethanolamine, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylaniline, and N,N-dimethylbenzylamine.
所述季铵盐为带有长链烷基或芳基的卤化铵,优选为十六烷基三甲基溴化铵、十二烷基二甲基苄基溴化铵、N,N二甲基十二烷基溴化铵、十八烷基三甲基氯化铵、十烷基三甲基溴化铵、十二烷基三甲基溴化铵、十四烷基三甲基溴化铵、十八烷基三甲基溴化铵、双十烷基二甲基溴化铵、十二烷基二甲基苄基氯化铵,十六烷基三甲基氯化铵,十二烷基二甲基苯氧乙基溴化铵,双(十二烷基二甲基)乙撑溴化铵。The quaternary ammonium salt is an ammonium halide with a long-chain alkyl or aryl group, preferably cetyltrimethylammonium bromide, dodecyldimethylbenzylammonium bromide, N,N dimethyl ammonium bromide. dodecyl ammonium bromide, octadecyl trimethyl ammonium chloride, dodecyl trimethyl ammonium bromide, dodecyl trimethyl ammonium bromide, tetradecyl trimethyl ammonium bromide Ammonium, octadecyltrimethylammonium bromide, didecyldimethylammonium bromide, dodecyldimethylbenzylammonium chloride, cetyltrimethylammonium chloride, dodecyldimethylammonium chloride Alkyldimethylphenoxyethylammonium bromide, bis(dodecyldimethyl)ethylene ammonium bromide.
优选地,季铵盐和ZrO2/Ti3C2纳米复合材料的质量比为1:2-5,具体是将制备得到的ZrO2/Ti3C2纳米复合材料添加到季铵盐水溶液中充分混合,所述季铵盐水溶液的浓度没有特别限定,一般是季铵盐水溶液的质量分数为0.2-2%。Preferably, the mass ratio of the quaternary ammonium salt and the ZrO 2 /Ti 3 C 2 nanocomposite is 1:2-5, specifically adding the prepared ZrO 2 /Ti 3 C 2 nanocomposite to the quaternary ammonium salt aqueous solution Mix well, the concentration of the quaternary ammonium salt aqueous solution is not particularly limited, generally the mass fraction of the quaternary ammonium salt aqueous solution is 0.2-2%.
所述ZrO2/Ti3C2纳米复合材料是通过在Ti3C2分散液中,以ZrOCl2·8H2O为ZrO2的前驱体,原位水热生长ZrO2纳米颗粒于Ti3C2表面而获得的,ZrOCl2·8H2O与Ti3C2的摩尔比为1:1-5。The ZrO 2 /Ti 3 C 2 nanocomposite is prepared by in-situ hydrothermal growth of ZrO 2 nanoparticles on Ti 3 C by using ZrOCl 2 ·8H 2 O as the precursor of ZrO 2 in the Ti 3 C 2 dispersion. 2 surfaces, the molar ratio of ZrOCl 2 ·8H 2 O to Ti 3 C 2 is 1:1-5.
本发明所述ZrO2/Ti3C2纳米复合材料通过包括以下步骤的制备方法制得:The ZrO 2 /Ti 3 C 2 nanocomposite material of the present invention is prepared by a preparation method comprising the following steps:
1)将Ti3C2粉末和ZrOCl2·8H2O加入到30ml去离子水中,超声30min,形成分散液,将碱性溶液缓慢滴加到分散液中,室温下充分搅拌,获得均匀的混合溶液;1) Add Ti 3 C 2 powder and ZrOCl 2 8H 2 O to 30 ml of deionized water, ultrasonicate for 30 min to form a dispersion, slowly add the alkaline solution dropwise to the dispersion, stir well at room temperature to obtain uniform mixing solution;
2)将步骤1)中所得混合溶液转移到聚四氟乙烯内胆高压反应釜中,在100~220℃充分反应6~36h;2) Transfer the mixed solution obtained in step 1) into a polytetrafluoroethylene liner autoclave, and fully react at 100-220° C. for 6-36 hours;
3)在步骤2)反应结束并自然冷却后,离心收集反应所得粉末,然后用去离子水和无水乙醇分别洗涤,再将洗涤后的粉末放置在真空干燥箱中干燥,所得粉末产品即为ZrO2/Ti3C2纳米复合材料。3) After the reaction in step 2) is finished and naturally cooled, the powder obtained from the reaction is collected by centrifugation, then washed with deionized water and dehydrated ethanol, respectively, and then the washed powder is placed in a vacuum drying box to dry, and the obtained powder product is ZrO 2 /Ti 3 C 2 nanocomposites.
其中所用Ti3C2粉末粒径没有特别限定,一般常规方法得到Ti3C2粒径、尺寸都可用于本申请制备TiO2/Ti3C2纳米复合材料。优选地,Ti3C2直径为5-10μm,厚度为3-6μm。The particle size of the Ti 3 C 2 powder used is not particularly limited, and the particle size and size of the Ti 3 C 2 obtained by general conventional methods can be used to prepare the TiO 2 /Ti 3 C 2 nanocomposite material in this application. Preferably, the Ti 3 C 2 is 5-10 μm in diameter and 3-6 μm in thickness.
将ZrOCl2·8H2O前驱体溶液和Ti3C2分散液均匀混合,采用本领域所熟知的方式,可以分别滴加、也可以将其中一种溶液滴加在另一种溶液中。本发明优选将前驱体溶液缓慢滴加到Ti3C2分散液中的方式。The ZrOCl 2 ·8H 2 O precursor solution and the Ti 3 C 2 dispersion are uniformly mixed, and can be added dropwise separately or one of the solutions can be added dropwise to the other solution in a manner well known in the art. In the present invention, the method of slowly dropping the precursor solution into the Ti 3 C 2 dispersion liquid is preferred.
本发明的第二个目的在于提供上述耐磨耐热环氧复合材料的制备方法,包括以下步骤:The second object of the present invention is to provide a method for preparing the above-mentioned wear-resistant and heat-resistant epoxy composite material, comprising the following steps:
1)将ZrO2/Ti3C2纳米复合材料添加到季铵盐水溶液中,超声分散,然后加入到液体环氧中,在减压蒸馏,得到ZrO2/Ti3C2/环氧混合液,再加入固化剂和促进剂,真空下搅拌,得环氧混合体系;1) The ZrO 2 /Ti 3 C 2 nanocomposite is added to the quaternary ammonium salt aqueous solution, ultrasonically dispersed, and then added to the liquid epoxy, and distilled under reduced pressure to obtain a ZrO 2 /Ti 3 C 2 /epoxy mixed solution , then add curing agent and accelerator, and stir under vacuum to obtain epoxy mixed system;
2)将步骤1)中所得环氧混合体系浇筑到不锈钢模具中,加热固化,得到所述耐磨耐热环氧复合材料。2) pouring the epoxy mixed system obtained in step 1) into a stainless steel mold, heating and curing to obtain the wear-resistant and heat-resistant epoxy composite material.
其中,液体环氧、固化剂、促进剂之间的质量比为100:60-100:1-5,优选为100:80-90:1-2。Wherein, the mass ratio between liquid epoxy, curing agent and accelerator is 100:60-100:1-5, preferably 100:80-90:1-2.
本发明的优点和特点是:The advantages and characteristics of the present invention are:
一、本发明通过原位水热生长的纳米级ZrO2均匀分布在Ti3C2表面,Ti3C2具有较高的机械强度和较低摩擦系数,能够提高环氧树脂耐磨性;而ZrO2优异的耐磨和耐热性,能够提高环氧树脂的耐磨和耐热性。1. In the present invention, the nano-scale ZrO 2 grown by in-situ hydrothermal is evenly distributed on the surface of Ti 3 C 2 , and Ti 3 C 2 has higher mechanical strength and lower friction coefficient, and can improve the wear resistance of epoxy resin; ZrO 2 has excellent wear resistance and heat resistance, which can improve the wear resistance and heat resistance of epoxy resin.
二、发明人还预料不到地发现,ZrO2/Ti3C2/纳米复合颗粒用一定量季铵盐处理后,再和环氧树脂固化,两种材料之间的机械及化学结合更好,所得环氧复合材料的耐磨性和耐热性都得到极大提高,拉伸强度也有一定程度提高。2. The inventors also unexpectedly found that after the ZrO 2 /Ti 3 C 2 /nanocomposite particles are treated with a certain amount of quaternary ammonium salt, and then cured with epoxy resin, the mechanical and chemical bonding between the two materials is better. , the wear resistance and heat resistance of the obtained epoxy composite material are greatly improved, and the tensile strength is also improved to a certain extent.
三、本发明提供的耐磨耐热环氧复合材料制备方法简单,原料易得,是一种适合工业化大规模生产环氧树脂的方法。3. The preparation method of the wear-resistant and heat-resistant epoxy composite material provided by the present invention is simple, and the raw materials are easily obtained, which is a method suitable for industrialized large-scale production of epoxy resin.
附图说明Description of drawings
图1为本发明Ti3C2纳米材料的SEM照片Fig. 1 is the SEM photograph of the Ti3C2 nanomaterial of the present invention
图2为实施例1中的ZrO2/Ti3C2纳米复合材料的SEM照片FIG. 2 is a SEM photograph of the ZrO 2 /Ti 3 C 2 nanocomposite in Example 1
具体实施方式Detailed ways
以下结合具体实施例对本发明技术内容做进一步解释说明。但本发明并不限于以下实施例。除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。The technical content of the present invention will be further explained below with reference to specific embodiments. However, the present invention is not limited to the following examples. Unless otherwise defined, all technical terms used hereinafter have the same meaning as commonly understood by those skilled in the art. The technical terms used herein are only for the purpose of describing specific embodiments, and are not intended to limit the protection scope of the present invention.
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。The experimental methods described in the following examples are conventional methods unless otherwise specified; the reagents and materials can be obtained from commercial sources unless otherwise specified.
本发明实施例所用Ti3C2通过自制获得。其制备方法已被业界广泛采用,即将商用Ti3AlC2粉末加入到氢氟酸中,常温下搅拌,刻蚀即可得到Ti3C2粉末,其直径为其直径约为8μm,厚度约为4μm。采用的E51型环氧树脂采购自凤凰牌。The Ti 3 C 2 used in the examples of the present invention was obtained by self-production. Its preparation method has been widely adopted in the industry, namely adding commercial Ti 3 AlC 2 powder to hydrofluoric acid, stirring at room temperature, and etching to obtain Ti 3 C 2 powder with a diameter of about 8 μm and a thickness of about 8 μm. 4μm. The E51 epoxy resin used was purchased from Phoenix.
实施例1Example 1
1)将3mmol直径为4.5μm,厚度为2.4μm的Ti3C2粉末和1.25mmol ZrOCl2·8H2O加入到30ml去离子水中,超声30min,形成分散液A;将2.5mmol的NaOH加入到45ml去离子水中,搅拌得溶液B;1) Add 3 mmol of Ti 3 C 2 powder with a diameter of 4.5 μm and a thickness of 2.4 μm and 1.25 mmol of ZrOCl 2 ·8H 2 O into 30 ml of deionized water, and ultrasonically for 30 min to form dispersion A; add 2.5 mmol of NaOH to 45ml of deionized water, stirred to obtain solution B;
2)将溶液B缓慢滴加到分散液A中,室温下剧烈搅拌2小时,获得均匀的混合溶液;2) Slowly add solution B dropwise to dispersion A, and stir vigorously for 2 hours at room temperature to obtain a uniform mixed solution;
3)将步骤2)中所得混合溶液转移到聚四氟乙烯内胆高压反应釜中,在160℃反应24h;3) Transfer the mixed solution obtained in step 2) into a polytetrafluoroethylene liner autoclave, and react at 160° C. for 24 hours;
4)在步骤3)反应结束并自然冷却后,于6000r/min下离心收集反应所得粉末,然后用去离子水和无水乙醇分别洗涤,再将洗涤后的粉末放置在真空干燥箱中60℃干燥12h,所得粉末产品即为ZrO2/Ti3C2纳米复合材料;4) After the reaction in step 3) is completed and naturally cooled, the powder obtained from the reaction is collected by centrifugation at 6000 r/min, and then washed with deionized water and absolute ethanol, respectively, and then the washed powder is placed in a vacuum drying box at 60° C. After drying for 12h, the obtained powder product is ZrO 2 /Ti 3 C 2 nanocomposite;
5)准确称量步骤4)所得ZrO2/Ti3C2纳米复合材料0.945g,添加到50mL含有0.41g十六烷基三甲基溴化铵(CTAB)水溶液中,超声0.5h形成分散液,然后加入到100g液体环氧E51中,在100℃下减压蒸馏5h,得到ZrO2/Ti3C2/环氧混合液。冷却至室温后,,加入88g甲基六氢苯酐溶液和1g四乙基溴化铵,真空搅拌0.5h,得环氧混合体系。ZrO2/Ti3C2纳米复合材料相对于环氧树脂基体(液体环氧、甲基六氢苯酐和四乙基溴化铵质量之和)的0.5wt%;5) Accurately weigh 0.945 g of the ZrO 2 /Ti 3 C 2 nanocomposite material obtained in step 4, add it to 50 mL of an aqueous solution containing 0.41 g of hexadecyltrimethylammonium bromide (CTAB), and ultrasonically for 0.5 h to form a dispersion liquid , and then added to 100 g of liquid epoxy E51, and distilled under reduced pressure at 100° C. for 5 h to obtain a ZrO 2 /Ti 3 C 2 /epoxy mixed solution. After cooling to room temperature, 88 g of methyl hexahydrophthalic anhydride solution and 1 g of tetraethylammonium bromide were added, and the mixture was stirred under vacuum for 0.5 h to obtain an epoxy mixed system. 0.5wt% of ZrO 2 /Ti 3 C 2 nanocomposite relative to epoxy resin matrix (the sum of the mass of liquid epoxy, methylhexahydrophthalic anhydride and tetraethylammonium bromide);
6)将步骤5)中所得环氧混合体系浇筑到不锈钢模具中,在150℃下固化2h,得ZrO2/Ti3C2/环氧复合材料。6) The epoxy mixed system obtained in step 5) is poured into a stainless steel mold, and cured at 150° C. for 2 hours to obtain a ZrO 2 /Ti 3 C 2 /epoxy composite material.
图1为实施例1所用Ti3C2纳米材料的SEM照片,图2为制备例1制备得到的ZrO2/Ti3C2纳米复合材料的SEM照片。从图中可以看出,在Ti3C2纳米片原位生长ZrO2后,Ti3C2纳米片上出现了大量均匀分布的ZrO2颗粒,同时Ti3C2纳米片表面明显粗糙化,这可能使得ZrO2/Ti3C2纳米复合颗粒与环氧树脂基体之间的机械结合更加牢固,提升后续制备的ZrO2/Ti3C2环氧复合材料的力学强度和耐磨性。FIG. 1 is the SEM photograph of the Ti 3 C 2 nanomaterial used in Example 1, and FIG. 2 is the SEM photograph of the ZrO 2 /Ti 3 C 2 nanocomposite prepared in Preparation Example 1. It can be seen from the figure that after the in-situ growth of ZrO2 on the Ti3C2 nanosheets, a large number of uniformly distributed ZrO2 particles appeared on the Ti3C2 nanosheets , and the surface of the Ti3C2 nanosheets was significantly roughened. It may make the mechanical bond between the ZrO 2 /Ti 3 C 2 nanocomposite particles and the epoxy resin matrix stronger, and improve the mechanical strength and wear resistance of the ZrO 2 /Ti 3 C 2 epoxy composite material prepared subsequently.
实施例2Example 2
其他步骤和实施例1一致,区别在于步骤1)中ZrOCl2·8H2O用量改为2.5mmol。The other steps are the same as those in Example 1, except that the amount of ZrOCl 2 ·8H 2 O in step 1) is changed to 2.5 mmol.
实施例3Example 3
其他步骤和实施例1一致,区别在于步骤1)中ZrOCl2·8H2O用量改为0.625mmol。The other steps are the same as those in Example 1, except that the amount of ZrOCl 2 ·8H 2 O in step 1) is changed to 0.625 mmol.
实施例4Example 4
其他步骤和实施例2一致,区别在于步骤5)中ZrO2/Ti3C2纳米复合材料用量为1.42g,即相对于环氧树脂基体的0.75wt%。The other steps are the same as those in Example 2, except that the amount of ZrO 2 /Ti 3 C 2 nanocomposite in step 5) is 1.42 g, which is 0.75 wt % relative to the epoxy resin matrix.
实施例5Example 5
其他步骤和实施例2一致,区别在于步骤5)中ZrO2/Ti3C2纳米复合材料用量为1.89g,即相对于环氧树脂基体的1wt%。The other steps are the same as in Example 2, except that the amount of ZrO 2 /Ti 3 C 2 nanocomposite in step 5) is 1.89 g, that is, 1 wt % relative to the epoxy resin matrix.
实施例6Example 6
其它与实施例2相同,区别在于步骤5)中季铵盐替换为十二烷基三甲基溴化铵。Others are the same as Example 2, except that in step 5), the quaternary ammonium salt is replaced by dodecyltrimethylammonium bromide.
实施例7Example 7
其它与实施例2相同,区别在于步骤5)中季铵盐替换为十八烷基三甲基溴化铵。Others are the same as in Example 2, except that in step 5), the quaternary ammonium salt is replaced by octadecyltrimethylammonium bromide.
实施例8Example 8
其它与实施例2相同,区别在于步骤5)中季铵盐替换为十二烷基二甲基苄基氯化铵。Others are the same as in Example 2, except that in step 5), the quaternary ammonium salt is replaced by dodecyldimethylbenzylammonium chloride.
对比例1Comparative Example 1
其它与实施例1相同,区别在于步骤5)中不加入季铵盐。Others are the same as in Example 1, except that no quaternary ammonium salt is added in step 5).
对比例2Comparative Example 2
其它与实施例1相同,区别在于步骤5)中以硅烷偶联剂替换季铵盐。Others are the same as in Example 1, except that in step 5), the quaternary ammonium salt is replaced with a silane coupling agent.
对比例3Comparative Example 3
其它与实施例1相同,区别在于步骤5)中以十二烷基磺酸钠(SDS)替换季铵盐。Others are the same as in Example 1, except that in step 5), sodium dodecylsulfonate (SDS) is used to replace the quaternary ammonium salt.
对比例4Comparative Example 4
其它与实施例1相同,区别在于步骤5)中以Ti3C2纳米材料替换ZrO2/Ti3C2纳米复合材料。Others are the same as in Example 1, except that in step 5), the ZrO 2 /Ti 3 C 2 nanocomposite material is replaced by the Ti 3 C 2 nanomaterial.
对比例5Comparative Example 5
采用市售环氧树脂E51,不加入ZrO2/Ti3C2纳米复合材料,按照实施例1相同的固化条件进行固化。Commercially available epoxy resin E51 was used, without adding ZrO 2 /Ti 3 C 2 nanocomposite material, and curing was performed according to the same curing conditions as in Example 1.
应用例Application example
对上述实施例核对比例所得环氧树脂材料进行耐磨性和耐热性的测试,结果如表1所示,测试方法如下:The epoxy resin material obtained by the above-mentioned embodiment check example is tested for abrasion resistance and heat resistance, the results are shown in Table 1, and the test method is as follows:
(1)耐磨性(1) Wear resistance
试样耐磨性通过摩擦磨损试验机进行测试:在载荷为8N、转速为780r/min、摩擦力矩为500N·m的条件下摩擦1h,测试结果用比磨耗量表示。The wear resistance of the sample was tested by a friction and wear testing machine: friction was performed for 1 h under the conditions of a load of 8 N, a rotational speed of 780 r/min, and a friction torque of 500 N m, and the test results were expressed as specific wear.
(2)耐热性(2) Heat resistance
试样耐热性通过动态机械热分析仪来进行评估:在振动频率为1Hz、升温速率为3℃/min的条件下升温至220℃,测试结果用玻璃化转变温度表示。The thermal resistance of the sample was evaluated by a dynamic mechanical thermal analyzer: the temperature was raised to 220 °C under the conditions of a vibration frequency of 1 Hz and a heating rate of 3 °C/min, and the test results were expressed as glass transition temperature.
(3)拉伸强度(3) Tensile strength
按国家标准GB/T2568-1995进行测试。Tested according to the national standard GB/T2568-1995.
表1Table 1
从表1数据可以看出,本发明通过将ZrO2/Ti3C2纳米复合材料和环氧树脂改性后,所得环氧复合材料的耐磨性和耐热性相对于市售的普通环氧树脂,得到了极大提高,而且拉伸强度也有一定程度提高。通过与实施例与对比例1-3的比较,如果不加入季铵盐,或者加入其它类型改性剂,都无法得到ZrO2/Ti3C2纳米复合颗粒和环氧树脂分散良好的复合材料,从而其耐磨性和耐热性提升有限,不能满足实际需求。It can be seen from the data in Table 1 that the wear resistance and heat resistance of the epoxy composite obtained by the present invention are better than those of the commercially available common ring Oxygen resin has been greatly improved, and the tensile strength has also been improved to a certain extent. By comparing with the examples and comparative examples 1-3, if no quaternary ammonium salt is added, or other types of modifiers are added, the composite material with ZrO 2 /Ti 3 C 2 nanocomposite particles and epoxy resin well dispersed cannot be obtained , so that its wear resistance and heat resistance are limited and cannot meet the actual needs.
本发明制备方法简单,原料价廉易得,所得环氧树脂复合材料综合性能优异,相比于未经ZrO2/Ti3C2纳米复合材料改性的环氧树脂,具有突出的耐磨性和耐热性的优点,具有市场竞争力。The preparation method of the invention is simple, the raw materials are cheap and easy to obtain, the obtained epoxy resin composite material has excellent comprehensive properties, and has outstanding wear resistance compared with the epoxy resin not modified by the ZrO 2 /Ti 3 C 2 nanocomposite material. And the advantages of heat resistance, with market competitiveness.
以上具体实施方式只是对本发明内容的示意性说明,不代表本发明内容的限制。本领域技术人员可以想到的是本发明中具体结构可以有其它的变化形式。上述详细说明是针对本发明其中之一可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本发明技术方案的范围内。The above specific embodiments are only schematic illustrations of the content of the present invention, and do not represent the limitation of the content of the present invention. Those skilled in the art can think of other variations of the specific structures in the present invention. The above detailed description is a specific description of one of the feasible embodiments of the present invention, which is not intended to limit the scope of the present invention. Any equivalent implementation or modification that does not depart from the present invention shall be included in the present invention. within the scope of the technical solution.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910972309.XA CN110698816B (en) | 2019-10-14 | 2019-10-14 | Wear-resistant heat-resistant epoxy composite material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910972309.XA CN110698816B (en) | 2019-10-14 | 2019-10-14 | Wear-resistant heat-resistant epoxy composite material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110698816A CN110698816A (en) | 2020-01-17 |
CN110698816B true CN110698816B (en) | 2022-05-27 |
Family
ID=69198369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910972309.XA Active CN110698816B (en) | 2019-10-14 | 2019-10-14 | Wear-resistant heat-resistant epoxy composite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110698816B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112226043A (en) * | 2020-10-14 | 2021-01-15 | 大连理工大学 | Preparation method of ultrahigh wear-resistant graphene epoxy resin composite material |
CN112226188A (en) * | 2020-10-20 | 2021-01-15 | 中国电力科学研究院有限公司 | Composite adhesive and preparation method and use method thereof |
CN115259874B (en) * | 2021-04-29 | 2023-11-17 | 中国科学院福建物质结构研究所 | Toughened, conductive MXene-zirconia composite ceramics and preparation method thereof |
CN113667274B (en) * | 2021-08-20 | 2023-07-07 | 嘉兴学院 | Tough epoxy composite material and preparation method thereof |
CN113789582A (en) * | 2021-09-18 | 2021-12-14 | 东部湾(扬州)生物新材料有限公司 | Preparation method of antibacterial polypropylene fiber |
CN116589832A (en) * | 2023-04-04 | 2023-08-15 | 西安理工大学 | ZrO 2 MXene/HBPSi-EP composite material and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102775732A (en) * | 2012-08-10 | 2012-11-14 | 昆山乔锐金属制品有限公司 | Formula of composite high-performance nonmetal material |
CN109485421A (en) * | 2018-12-25 | 2019-03-19 | 清华大学深圳研究生院 | Structural ceramics and preparation method thereof based on carbonitride nanometer two-dimensional material toughening |
CN110312766A (en) * | 2018-01-25 | 2019-10-08 | 株式会社Lg化学 | coating composition, coating film and electromagnetic interference shielding composite material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9646722B2 (en) * | 2012-12-28 | 2017-05-09 | Global Nuclear Fuel—Americas, LLC | Method and apparatus for a fret resistant fuel rod for a light water reactor (LWR) nuclear fuel bundle |
US9409823B2 (en) * | 2013-02-15 | 2016-08-09 | Deborah D. L. Chung | Microstructured high-temperature hybrid material, its composite material and method of making |
-
2019
- 2019-10-14 CN CN201910972309.XA patent/CN110698816B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102775732A (en) * | 2012-08-10 | 2012-11-14 | 昆山乔锐金属制品有限公司 | Formula of composite high-performance nonmetal material |
CN110312766A (en) * | 2018-01-25 | 2019-10-08 | 株式会社Lg化学 | coating composition, coating film and electromagnetic interference shielding composite material |
CN109485421A (en) * | 2018-12-25 | 2019-03-19 | 清华大学深圳研究生院 | Structural ceramics and preparation method thereof based on carbonitride nanometer two-dimensional material toughening |
Also Published As
Publication number | Publication date |
---|---|
CN110698816A (en) | 2020-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110698816B (en) | Wear-resistant heat-resistant epoxy composite material and preparation method thereof | |
Wang et al. | Effect of nanoclay grafting onto flax fibers on the interfacial shear strength and mechanical properties of flax/epoxy composites | |
Liang et al. | Synergetic enhancement of thermal conductivity by constructing BN and AlN hybrid network in epoxy matrix | |
CN103965745A (en) | Epoxy resin composite coating solution, and preparation method and application method thereof | |
Zhang et al. | Enhanced toughness and lowered dielectric loss of reactive POSS modified bismaleimide resin as well as the silica fiber reinforced composites | |
CN101392090A (en) | A kind of piezoelectric conductive epoxy resin composite damping material and preparation method thereof | |
CN102796374A (en) | Carbon nanotube/benzoxazine/bimaleimide composite material and preparation method thereof | |
CN114015199B (en) | A kind of wear-resistant epoxy resin composite material and preparation method | |
CN105733408B (en) | A kind of self-lubricating coat in use and preparation method thereof for oscillating bearing | |
Damacena et al. | High‐performance hierarchical composites based on polyamide 6, carbon fiber and graphene oxide | |
Yang et al. | Glucose-assisted exfoliation of hexagonal boron nitride nanosheets and modification with hyperbranched polymers for thermally conductive epoxy composites: implications for thermal management | |
Peng et al. | Synthesis of a benzoxazine-type dispersant and its application on epoxy/benzoxazine/ZrO2 composite: Dispersion performance and tensile behavior | |
Tong et al. | Effect of nanosilica on the thermal, mechanical, and dielectric properties of polyarylene ether nitriles terminated with phthalonitrile | |
Li et al. | Thermomechanical properties of epoxy resin/basalt fiber/hydrotalcite composites and influence of hydrotalcite particle size on their properties | |
CN108641356A (en) | Graphene/class graphene WS of three phosphonitrilic polymer of ring modification2/ Bismaleimide composites and preparation method | |
CN117264375A (en) | Epoxy resin composition and preparation method thereof | |
Zhang et al. | Preparation of poly glycidyl methacrylate (PGMA) chain-grafted boron nitride/epoxy composites and their thermal conductivity properties | |
CN104031355A (en) | Epoxy resin composition cured and modified by carboxyl-containing polyether nitrile sulphone ketone copolymer as well as preparation method and application of epoxy resin composition | |
Chen et al. | Effective reinforcement of amino-functionalized molybdenum disulfide on epoxy-based composites via strengthened interfacial interaction | |
CN110229464A (en) | A kind of epoxy silicon oil modified graphene oxide and epoxy resin composite material preparation method | |
Huang et al. | Perfluoroalkylsilane-modified boron nitride nanosheets for epoxy composites with improved thermal conductivity and dielectric performance | |
Wang et al. | Modification mechanism of modified diatomite with flexible amine‐based structure as a filler of epoxy resin and mechanical properties and curing kinetic of composites | |
Liang et al. | Preparation and physical properties of CeO2 doped and modified epoxy resin composites | |
Luo et al. | Enhanced thermal conductivity and dielectric property of polyphenylene oxide/SiO2 composite by adding functional boron nitride strategy | |
Molaei et al. | The synergistic impacts of hybrid nanofillers of graphene nanoplatelets/carbon nanotubes on curing behavior of an epoxy‐vinyl ester interpenetrating polymer network nanocomposite coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 314001 building 7, smart industry innovation park, Jiaxing University, No. 36, Changsheng South Road, Jiaxing Economic Development Zone, Zhejiang Province Applicant after: JIAXING University Address before: 314001 Yuexiu South Road, Nanhu District, Jiaxing, Zhejiang Province, No. 56 Applicant before: JIAXING University |
|
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Tang Bailin Inventor after: Zhang Yalin Inventor after: Shen Xiaojun Inventor after: Yang Yaru Inventor after: Lu Jingjing Inventor after: Zhang Tongtong Inventor after: Liu Kun Inventor after: Jia Rui Inventor before: Zhang Yalin Inventor before: Tang Bailin Inventor before: Shen Xiaojun Inventor before: Yang Yaru Inventor before: Lu Jingjing Inventor before: Zhang Tongtong Inventor before: Liu Kun Inventor before: Jia Rui |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 314000 No. 899, guangqiong Road, Nanhu District, Jiaxing City, Zhejiang Province Patentee after: Jiaxing University Country or region after: China Address before: No. 899 Guangqiong Road, Nanhu District, Jiaxing City, Zhejiang Province Patentee before: JIAXING University Country or region before: China |