CN110665465A - Magnetic covalent organic framework material for glycopeptide enrichment and preparation method and application thereof - Google Patents
Magnetic covalent organic framework material for glycopeptide enrichment and preparation method and application thereof Download PDFInfo
- Publication number
- CN110665465A CN110665465A CN201910952400.5A CN201910952400A CN110665465A CN 110665465 A CN110665465 A CN 110665465A CN 201910952400 A CN201910952400 A CN 201910952400A CN 110665465 A CN110665465 A CN 110665465A
- Authority
- CN
- China
- Prior art keywords
- organic framework
- magnetic
- covalent organic
- framework material
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013310 covalent-organic framework Substances 0.000 title claims abstract description 171
- 239000000463 material Substances 0.000 title claims abstract description 128
- 108010015899 Glycopeptides Proteins 0.000 title claims abstract description 79
- 102000002068 Glycopeptides Human genes 0.000 title claims abstract description 79
- 238000002360 preparation method Methods 0.000 title claims abstract description 33
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 title claims abstract description 29
- 239000002105 nanoparticle Substances 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 29
- 229960003180 glutathione Drugs 0.000 claims description 84
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 claims description 66
- 239000012265 solid product Substances 0.000 claims description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 28
- 239000000243 solution Substances 0.000 claims description 28
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 27
- 239000011259 mixed solution Substances 0.000 claims description 27
- XPRYFYWFZXMGMV-UHFFFAOYSA-N 2,5-bis(ethenyl)terephthalaldehyde Chemical compound C(=C)C1=C(C=O)C=C(C(=C1)C=O)C=C XPRYFYWFZXMGMV-UHFFFAOYSA-N 0.000 claims description 18
- 108010024636 Glutathione Proteins 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 claims description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 14
- QHQSCKLPDVSEBJ-UHFFFAOYSA-N 1,3,5-tri(4-aminophenyl)benzene Chemical compound C1=CC(N)=CC=C1C1=CC(C=2C=CC(N)=CC=2)=CC(C=2C=CC(N)=CC=2)=C1 QHQSCKLPDVSEBJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000008367 deionised water Substances 0.000 claims description 13
- 229910021641 deionized water Inorganic materials 0.000 claims description 13
- 238000005406 washing Methods 0.000 claims description 10
- 238000012650 click reaction Methods 0.000 claims description 8
- 238000007885 magnetic separation Methods 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 238000007259 addition reaction Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 238000006392 deoxygenation reaction Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000010926 purge Methods 0.000 claims description 3
- SYBFZFROLBNDDF-UHFFFAOYSA-N 4-[2,3-bis(4-aminophenyl)phenyl]aniline Chemical compound C1=CC(N)=CC=C1C1=CC=CC(C=2C=CC(N)=CC=2)=C1C1=CC=C(N)C=C1 SYBFZFROLBNDDF-UHFFFAOYSA-N 0.000 claims description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000007983 Tris buffer Substances 0.000 claims description 2
- IPZJQDSFZGZEOY-UHFFFAOYSA-N dimethylmethylene Chemical group C[C]C IPZJQDSFZGZEOY-UHFFFAOYSA-N 0.000 claims description 2
- 238000011534 incubation Methods 0.000 claims description 2
- 150000003457 sulfones Chemical class 0.000 claims description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 2
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 claims 1
- 239000012798 spherical particle Substances 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 14
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 abstract description 8
- 230000013595 glycosylation Effects 0.000 abstract description 3
- 238000006206 glycosylation reaction Methods 0.000 abstract description 2
- 230000008560 physiological behavior Effects 0.000 abstract description 2
- 238000011084 recovery Methods 0.000 abstract description 2
- 238000011160 research Methods 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 131
- 239000010410 layer Substances 0.000 description 31
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 12
- 239000000872 buffer Substances 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 238000002296 dynamic light scattering Methods 0.000 description 10
- 229940027941 immunoglobulin g Drugs 0.000 description 10
- 239000002994 raw material Substances 0.000 description 9
- 238000003795 desorption Methods 0.000 description 8
- 210000003296 saliva Anatomy 0.000 description 8
- 239000013110 organic ligand Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 6
- 230000029087 digestion Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229910021389 graphene Inorganic materials 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 230000035484 reaction time Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000001027 hydrothermal synthesis Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000002122 magnetic nanoparticle Substances 0.000 description 4
- 238000004949 mass spectrometry Methods 0.000 description 4
- 239000002077 nanosphere Substances 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000003760 magnetic stirring Methods 0.000 description 3
- 239000002114 nanocomposite Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000002336 sorption--desorption measurement Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 102000035122 glycosylated proteins Human genes 0.000 description 2
- 108091005608 glycosylated proteins Proteins 0.000 description 2
- 238000002013 hydrophilic interaction chromatography Methods 0.000 description 2
- 150000002433 hydrophilic molecules Chemical class 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000013384 organic framework Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 108010001441 Phosphopeptides Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 239000011173 biocomposite Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/223—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
- B01J20/226—Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28009—Magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
技术领域technical field
本发明属于生物材料技术领域,涉及磁性共价有机框架材料及其制备方法与在内源性糖肽富集中的应用。The invention belongs to the technical field of biological materials, and relates to a magnetic covalent organic framework material, a preparation method thereof, and an application in the enrichment of endogenous glycopeptides.
背景技术Background technique
现有磁性共价有机框架材料是由磁性纳米球及包裹在磁性纳米球表面的亲水性共价有机框架(covalent organic frameworks,COFs)构成,在具有良好磁响应性能的同时,兼具了COFs的孔隙率高、高度有序介孔、有机配体丰富以及结构稳定等独特性质。因此,近年来磁性共价有机框架材料备受关注,已经被广泛应用于生物医学领域,尤其是蛋白或多肽分离、药物传递、磁共振成像等方面。The existing magnetic covalent organic framework materials are composed of magnetic nanospheres and hydrophilic covalent organic frameworks (COFs) wrapped on the surface of the magnetic nanospheres. It has unique properties such as high porosity, highly ordered mesopores, abundant organic ligands, and structural stability. Therefore, magnetic covalent organic framework materials have attracted much attention in recent years and have been widely used in the field of biomedicine, especially protein or peptide separation, drug delivery, magnetic resonance imaging and so on.
目前磁性共价有机框架材料对于糖肽的富集应用基本都是采用亲水作用色谱方法,即只利用共价有机框架本身的亲水性来对于糖肽进行富集。Xiangmin Zhang等公开了一种共价有机框架修饰的磁性石墨烯复合材料的制备方法,并给出了该复合材料在糖肽富集方面的应用,该共价有机框架修饰的磁性石墨烯复合材料以石墨烯为基底材料,然后在石墨烯表面修饰上纳米磁球,最后再在磁球修饰的石墨烯表面修饰一层以2,3,6,7,10,11-六羟基三苯(HHTP)和对苯二硼酸(BDBA)为有机配体的共价有机框架层,即获得该共价有机框架修饰的磁性石墨烯复合材料,该磁性复合材料基于共价有机框架的亲水性能用于糖肽的富集(Self-assembling covalent organic framework functionalized magneticgraphene hydrophilic biocomposites as an ultrasensitiv matrix for N-linkedglycopeptide recognition,Nanoscale,2017,9,10750-10756,Xiangmin Zhang等)。At present, the application of magnetic covalent organic framework materials for the enrichment of glycopeptides basically adopts the method of hydrophilic interaction chromatography, that is, only the hydrophilicity of the covalent organic framework itself is used to enrich the glycopeptides. Xiangmin Zhang et al. disclosed a preparation method of a covalent organic framework modified magnetic graphene composite material, and gave the application of the composite material in glycopeptide enrichment, the covalent organic framework modified magnetic graphene composite material Graphene is used as the base material, then the surface of graphene is decorated with nano-magnetic balls, and finally a layer of 2,3,6,7,10,11-hexahydroxytriphenyl (HHTP) is modified on the surface of the graphene modified by the magnetic balls. ) and terephenyldiboronic acid (BDBA) as the covalent organic framework layer of the organic ligand, namely the magnetic graphene composite material modified by the covalent organic framework is obtained, and the magnetic composite material is based on the hydrophilic properties of the covalent organic framework. Enrichment of glycopeptides (Self-assembling covalent organic framework functionalized magneticgraphene hydrophilic biocomposites as an ultrasensitiv matrix for N-linked glycopeptide recognition, Nanoscale, 2017, 9, 10750-10756, Xiangmin Zhang et al.).
然而,由于共价有机框架材料本身亲水性能的局限性以及缺乏灵活的功能修饰,使得上述基于共价有机框架复合材料对于糖肽的富集性能并不是十分理想。However, due to the limitation of hydrophilic properties of covalent organic framework materials and the lack of flexible functional modification, the above-mentioned covalent organic framework-based composite materials are not very ideal for the enrichment of glycopeptides.
发明内容SUMMARY OF THE INVENTION
本发明的目的旨在针对上述现有技术中存在的问题,提供一种用于糖肽富集的磁性共价有机框架材料及其制备方法,以提高共价有机框架材料的亲水性,实现对糖肽的高效率富集。The purpose of the present invention is to aim at the problems existing in the above-mentioned prior art, to provide a magnetic covalent organic framework material for glycopeptide enrichment and a preparation method thereof, so as to improve the hydrophilicity of the covalent organic framework material and achieve Efficient enrichment of glycopeptides.
本发明所述用于糖肽富集的磁性共价有机框架材料,由Fe3O4纳米磁球、包覆于Fe3O4纳米磁球表面的共价有机框架(COF)层、接枝于共价有机框架层上的谷胱甘肽(GSH)构成;所述共价有机框架层是由1,3,5-三(4-氨苯基)苯和2,5-二乙烯基-1,4-苯二甲醛按照物质的量之比1:1.5经加成反应得到的蜂窝状结构,所述谷胱甘肽接接枝于共价有机框架层的乙烯基上。The magnetic covalent organic framework material for glycopeptide enrichment according to the present invention is composed of Fe 3 O 4 nano-magnetic spheres, a covalent organic framework (COF) layer coated on the surface of Fe 3 O 4 nano-magnetic spheres, a grafted Glutathione (GSH) on a covalent organic framework layer; the covalent organic framework layer is composed of 1,3,5-tris(4-aminophenyl)benzene and 2,5-divinyl- 1,4-benzenedicarboxaldehyde is a honeycomb structure obtained by addition reaction according to the ratio of substance amount 1:1.5, and the glutathione is grafted on the vinyl group of the covalent organic framework layer.
本发明所述用于糖肽富集的磁性共价有机框架材料,呈现完整的球形,粒径均匀且分布较窄,平均粒径为240~300nm左右,这种形状规整、尺寸均匀的纳米粒子比较适合用于蛋白和多肽的富集与分离应用。该磁性共价有机框架材料以超顺磁性四氧化三铁(Fe3O4纳米磁球)作为内核,具有高的磁饱和强度,从而对外加磁场具有很好的磁响应性能;本发明采用的Fe3O4纳米磁球占磁性共价有机框架材料质量的48%左右,从而使磁性共价有机框架材料的饱和磁化强度达到45emu g-1左右。包覆于Fe3O4纳米磁球表面的COF层具有高的孔隙率、高度有序的介孔以及大的比表面积,从而有利于糖肽的富集应用。上述COF层的原料选用1,3,5-三(4-氨苯基)苯和2,5-二乙烯基-1,4-苯二甲醛两种有机配体。其中对于2,5-二乙烯基-1,4-苯二甲醛有机配体,一方面其为合成共价有机框架的组分之一,同时其剩余的碳碳双键可以为进一步引入高亲水性能的两性离子谷胱甘肽作为反应活性位点。本发明在COF层利用高效率的巯烯点击方法修饰上谷胱甘肽(GSH),GSH为两性离子,从而在很大程度上提高了基于COFs的磁性共价有机框架材料的亲水性能,克服了已有的COFs复合材料在亲水性能上的局限性,同时GSH能够实现对糖肽的高效率富集。The magnetic covalent organic framework material for glycopeptide enrichment of the present invention presents a complete spherical shape, with a uniform particle size and a narrow distribution, and the average particle size is about 240-300 nm. The nanoparticle with regular shape and uniform size It is more suitable for enrichment and separation of proteins and peptides. The magnetic covalent organic framework material uses superparamagnetic triiron tetroxide (Fe 3 O 4 nanometer magnetic balls) as the core, and has high magnetic saturation strength, so that it has good magnetic response performance to an external magnetic field; Fe 3 O 4 nanomagnetic spheres account for about 48% of the mass of the magnetic covalent organic framework material, so that the saturation magnetization of the magnetic covalent organic framework material reaches about 45 emu g -1 . The COF layer coated on the surface of Fe 3 O 4 nanomagnetic spheres has high porosity, highly ordered mesopores, and large specific surface area, which is beneficial for the enrichment application of glycopeptides. Two kinds of organic ligands, 1,3,5-tris(4-aminophenyl)benzene and 2,5-divinyl-1,4-benzenedicarboxaldehyde, are selected as the raw materials of the above COF layer. Among them, for the 2,5-divinyl-1,4-benzenedicarboxaldehyde organic ligand, on the one hand, it is one of the components for the synthesis of covalent organic frameworks, and at the same time, the remaining carbon-carbon double bonds can be used to further introduce high affinity Aqueous zwitterionic glutathione as reactive site. In the present invention, glutathione (GSH) is modified on the COF layer by a high-efficiency thioene click method, and GSH is a zwitterion, thereby greatly improving the hydrophilic performance of the magnetic covalent organic framework material based on COFs, overcoming The limitations of the existing COFs composites in terms of hydrophilic properties are overcome, and GSH can achieve high-efficiency enrichment of glycopeptides.
本发明所述用于糖肽富集的磁性共价有机框架材料的制备方法,主要是通过外延生长的机理来实现,在温和的条件下通过外延生长的方法在磁球表面包裹一层共价有机框架层(两种配体通过共价键作用形成COF层),然后通过高效率的巯烯点击的方法在共价有机框架层表面修饰上高亲水性能的两性离子谷胱甘肽。The preparation method of the magnetic covalent organic framework material for glycopeptide enrichment of the present invention is mainly realized by the mechanism of epitaxial growth, and the surface of the magnetic sphere is wrapped with a layer of covalent covalent by the method of epitaxial growth under mild conditions. The organic framework layer (two ligands form a COF layer through covalent bonding), and then the surface of the covalent organic framework layer is modified with highly hydrophilic zwitterion glutathione by the method of efficient thioene click.
本发明所述用于糖肽富集的磁性共价有机框架材料的制备方法,步骤如下:The preparation method of the magnetic covalent organic framework material for glycopeptide enrichment according to the present invention, the steps are as follows:
(1)制备Fe3O4/COFs纳米粒子(1) Preparation of Fe 3 O 4 /COFs nanoparticles
在超声条件下,将Fe3O4纳米磁球、1,3,5-三(4-氨苯基)苯和2,5-二乙烯基-1,4-苯二甲醛于二甲基亚砜中混合分散均匀形成混合液;之后在超声的条件下,向上述混合液中滴加醋酸形成反应体系;继后将所得反应体系于室温静置孵育10~30分钟;孵育结束后对所得反应液进行磁分离并收集分离出的固体产物,将所得固体产物进行洗涤除去吸附在固体产物表面未反应的物料,得到共价有机框架层包覆Fe3O4纳米磁球的纳米粒子,简称Fe3O4/COFs纳米粒子;所述Fe3O4纳米磁球与1,3,5-三(4-氨苯基)苯的质量比为1:(0.2~1),1,3,5-三(4-氨苯基)苯与2,5-二乙烯基-1,4-苯二甲醛的物质的量之比为1:1.5,所述1,3,5-三(4-氨苯基)苯和2,5-二乙烯基-1,4-苯二甲醛两种配体的质量之和与醋酸的体积比为(30~210):1,质量的单位为mg,体积的单位为mL;Under ultrasonic conditions, Fe 3 O 4 nanomagnetic spheres, 1,3,5-tris(4-aminophenyl)benzene and 2,5-divinyl-1,4-benzenedicarboxaldehyde were mixed in dimethylmethylene The sulfone is mixed and dispersed uniformly to form a mixed solution; then, under the condition of ultrasonic, acetic acid is added dropwise to the above mixed solution to form a reaction system; then the obtained reaction system is left to incubate at room temperature for 10-30 minutes; The liquid is magnetically separated and the separated solid product is collected, the obtained solid product is washed to remove the unreacted material adsorbed on the surface of the solid product, and the covalent organic framework layer is coated with Fe 3 O 4 nanometer magnetic ball nanoparticles, referred to as Fe 3 O 4 /COFs nanoparticles; the mass ratio of the Fe 3 O 4 nano-magnetic spheres to 1,3,5-tris(4-aminophenyl)benzene is 1:(0.2~1),1,3,5 - the substance ratio of tris(4-aminophenyl)benzene to 2,5-divinyl-1,4-benzenedicarboxaldehyde is 1:1.5, the 1,3,5-tris(4-aminobenzene) The volume ratio of the sum of the mass of phenyl)benzene and 2,5-divinyl-1,4-benzenedicarboxaldehyde to acetic acid is (30-210): 1, the unit of mass is mg, and the volume of The unit is mL;
(2)制备Fe3O4/COF-GSH磁性共价有机框架材料(2) Preparation of Fe 3 O 4 /COF-GSH magnetic covalent organic framework material
将偶氮二异丁腈、谷胱甘肽和Fe3O4/COFs纳米粒子依次加入到复合溶剂中形成混合液,然后在氮气保护下,将所得混合液于60~80℃进行巯烯点击反应至Fe3O4/COFs纳米粒子表面呈黄色;巯烯点击反应完成后对所得反应液进行磁分离并收集分离出的固体产物,所得固体产物经洗涤除去吸附在固体产物表面未反应的物料并干燥后即得到用于糖肽富集的磁性共价有机框架材料,简称Fe3O4/COF-GSH材料;所述复合溶剂由乙醇与去离子水按照体积比1:3混合均匀得到,所述混合液中,Fe3O4/COFs纳米粒子与谷胱甘肽的质量比为1:(0.3~1);所述谷胱甘肽与偶氮二异丁腈的质量比为1:(0.05~0.25)。Azobisisobutyronitrile, glutathione and Fe 3 O 4 /COFs nanoparticles were sequentially added to the composite solvent to form a mixed solution, and then under nitrogen protection, the obtained mixed solution was subjected to mercaptoene click at 60-80 °C Reaction until the surface of Fe 3 O 4 /COFs nanoparticles turns yellow; after the completion of the mercaptoene click reaction, the obtained reaction solution is subjected to magnetic separation and the separated solid product is collected, and the obtained solid product is washed to remove unreacted materials adsorbed on the surface of the solid product After drying, a magnetic covalent organic framework material for glycopeptide enrichment, referred to as Fe 3 O 4 /COF-GSH material for short, is obtained; the composite solvent is uniformly obtained by mixing ethanol and deionized water in a volume ratio of 1:3, In the mixed solution, the mass ratio of Fe 3 O 4 /COFs nanoparticles to glutathione is 1:(0.3~1); the mass ratio of the glutathione to azobisisobutyronitrile is 1: (0.05~0.25).
上述用于糖肽富集的磁性共价有机框架材料的制备方法,步骤(1)中,所述Fe3O4纳米磁球主要是以氯化铁、醋酸钠、柠檬酸钠为原料,以乙二醇为溶剂的水热法合成粒径大概在200nm~250nm的超顺磁性四氧化三铁纳米球;此外通过调节水热反应时间可调控磁球粒径分布。制备Fe3O4纳米磁球的具体实现方式可以参考现有技术中已经披露的常规制备方法得到,参见The design and synthesis of a hydrophilic core-shell-shellstructured magnetic metal-organic framework as a novel immobilized metal ionaffinity platform for phosphoproteome research Chem.Commun.,2014,50,6228-6231,Chunhui Deng等以及Ti4+-immobilized multilayer polysaccharide coatedmagnetic nanoparticles for highly selective enrichment of phosphopeptidesJ.Mater.Chem.B 2014,2,4473-4480,Hanfa Zou等。In the above preparation method of magnetic covalent organic framework material for glycopeptide enrichment, in step (1), the Fe 3 O 4 nano-magnetic balls are mainly made of ferric chloride, sodium acetate and sodium citrate as raw materials, with The superparamagnetic iron tetroxide nanospheres with a particle size of about 200nm-250nm were synthesized by a hydrothermal method using ethylene glycol as a solvent; in addition, the particle size distribution of the magnetic spheres can be adjusted by adjusting the hydrothermal reaction time. The specific implementation of the preparation of Fe 3 O 4 nanomagnetic spheres can be obtained by referring to the conventional preparation methods disclosed in the prior art, see The design and synthesis of a hydrophilic core-shell-shell structured magnetic metal-organic framework as a novel immobilized metal ionaffinity platform for phosphoproteome research Chem. Commun., 2014, 50, 6228-6231, Chunhui Deng et al. and Ti 4+ -immobilized multilayer polysaccharide coated magnetic nanoparticles for highly selective enrichment of phosphopeptides J.Mater.Chem.B 2014,2,4473-4480, Hanfa Zou et al.
上述用于糖肽富集的磁性共价有机框架材料的制备方法,步骤(1)中,两种配体是通过加成反应制备得到COF层的,其中醋酸作为催化剂,Fe3O4纳米磁球作为载体。在超声条件下,将Fe3O4纳米磁球、1,3,5-三(4-氨苯基)苯和2,5-二乙烯基-1,4-苯二甲醛混合分散均匀,一般超声5~10min即可;二甲基亚砜的用量只要能够将1,3,5-三(4-氨苯基)苯和2,5-二乙烯基-1,4-苯二甲醛完全溶解,并使Fe3O4纳米磁球分散均匀即可。之后再在超声条件下,向混合液中滴加醋酸,一般控制滴加时间为5~15min。醋酸滴加结束后,所得混合液在室温的条件下静置孵育10-30分钟,所得反应液中的固体产物即为Fe3O4/COFs纳米粒子。因此将反应液进行固液分离、并对固体产物进行洗涤,即得到Fe3O4/COFs纳米粒子。洗涤的目的是除去吸附在固体产物表面未反应的物料,本发明中采用的洗涤方式为:将分离出的固体产物依次用无水四氢呋喃、无水甲醇、乙醇、去离子水洗涤,一般每种洗液洗涤3~5遍即可。In the above preparation method of the magnetic covalent organic framework material for glycopeptide enrichment, in step (1), two ligands are prepared by addition reaction to obtain the COF layer, wherein acetic acid is used as a catalyst, Fe 3 O 4 nanomagnetic ball as a carrier. Under ultrasonic conditions, Fe 3 O 4 nanomagnetic spheres, 1,3,5-tris(4-aminophenyl)benzene and 2,5-divinyl-1,4-benzenedicarboxaldehyde were mixed and dispersed uniformly. Ultrasonic 5~10min is enough; the amount of dimethyl sulfoxide is as long as it can completely dissolve 1,3,5-tris(4-aminophenyl)benzene and 2,5-divinyl-1,4-benzenedicarboxaldehyde , and the Fe 3 O 4 nano-magnetic balls can be uniformly dispersed. Then, under ultrasonic conditions, add acetic acid dropwise to the mixed solution, and the dropwise addition time is generally controlled to be 5 to 15 minutes. After the dropwise addition of acetic acid, the obtained mixed solution is left to incubate at room temperature for 10-30 minutes, and the solid product in the obtained reaction solution is Fe 3 O 4 /COFs nanoparticles. Therefore, the reaction solution is subjected to solid-liquid separation and the solid product is washed to obtain Fe 3 O 4 /COFs nanoparticles. The purpose of washing is to remove the unreacted material adsorbed on the surface of the solid product. The washing method adopted in the present invention is: the isolated solid product is washed successively with anhydrous tetrahydrofuran, anhydrous methanol, ethanol, and deionized water. The lotion can be washed 3 to 5 times.
上述用于糖肽富集的磁性共价有机框架材料的制备方法,步骤(2)中,通过高效率的巯烯点击的方法,将两性离子谷胱甘肽修饰在共价有机框架层表面。该反应需要在无氧的条件下进行,本发明所得混合液在氮气保护下反应之前,先进行除氧处理以除去混合液内及反应器内混合液上方的氧气。具体处理方式为:先将偶氮二异丁腈、谷胱甘肽和Fe3O4/COFs纳米粒子依次加入到含有去离子水和乙醇的复合溶剂中超声混匀;然后采用氮气吹扫方式对混合液进行除氧,除氧时间约为0.5-2h;再采用抽真空-通氮气的循环操作方式除去反应器内的氧气,一般循环3~5次,每个循环中,先将反应器内抽真空至真空度不大于100Pa,然后再通氮气至常压。为了便于后期清洗操作,用于偶氮二异丁腈、谷胱甘肽和Fe3O4/COFs纳米粒子依次加入到复合溶剂中超声混匀的容器与后面巯烯点击反应的反应器可以不同,混合液和反应器分别除氧后,再将上述除氧后的混合液转移至除氧后的反应器中,再在磁力搅拌条件下、于60~80℃反应至纳米粒子表面呈黄色,且混合液中磁性纳米粒子分散良好、无贴壁现象即可,一般反应时间约为6~24h。所得反应液中的固体产物即为Fe3O4/COF-GSH材料。因此将反应液进行固液分离、并对固体产物进行洗涤、干燥即得到Fe3O4/COF-GSH磁性共价有机框架材料。洗涤的目的是除去吸附在固体产物表面未反应的物料,本发明中采用的洗涤方式为:将分离出的固体产物依次用乙醇和去离子水洗涤,一般每种洗液洗涤3~5遍即可。In the above preparation method of the magnetic covalent organic framework material for glycopeptide enrichment, in step (2), the zwitterion glutathione is modified on the surface of the covalent organic framework layer by a high-efficiency thioene click method. The reaction needs to be carried out under anoxic conditions. Before the mixed solution obtained in the present invention reacts under nitrogen protection, deoxidation treatment is performed to remove oxygen in the mixed solution and above the mixed solution in the reactor. The specific treatment method is as follows: firstly, azobisisobutyronitrile, glutathione and Fe 3 O 4 /COFs nanoparticles are added to the composite solvent containing deionized water and ethanol in turn and ultrasonically mixed; then nitrogen purging is used. Deoxidize the mixed solution, and the deoxidation time is about 0.5-2h; then the oxygen in the reactor is removed by the cyclic operation mode of vacuum pumping and nitrogen passing, generally circulating 3 to 5 times. In each cycle, the reactor is first Evacuate the interior to a degree of vacuum not greater than 100Pa, and then pass nitrogen to normal pressure. In order to facilitate the later cleaning operation, the ultrasonic mixing vessel for adding azobisisobutyronitrile, glutathione and Fe 3 O 4 /COFs nanoparticles into the composite solvent in turn can be different from the reactor for the subsequent thioene click reaction. , after the mixed solution and the reactor are deoxidized respectively, then the deaerated mixed solution is transferred to the deoxidized reactor, and then reacted under the condition of magnetic stirring at 60-80 ℃ until the surface of the nanoparticles turns yellow, And the magnetic nanoparticles in the mixed solution are well dispersed and there is no wall sticking phenomenon, and the general reaction time is about 6-24h. The solid product in the obtained reaction solution is Fe 3 O 4 /COF-GSH material. Therefore, the solid-liquid separation of the reaction solution, the washing and drying of the solid product, and the Fe 3 O 4 /COF-GSH magnetic covalent organic framework material are obtained. The purpose of washing is to remove the unreacted material adsorbed on the surface of the solid product. The washing method adopted in the present invention is as follows: the separated solid product is washed with ethanol and deionized water in turn. Generally, each washing solution is washed 3 to 5 times. Can.
本发明进一步提供了所述磁性共价有机框架材料在内源性糖肽富集中的应用。所述磁性共价有机框架材料对于生物样本中的糖肽具有很好的富集效果,尤其是在对于人唾液中内源性的糖肽富集过程中显现出极其优异的性能,在研究生理行为蛋白糖基化过程中具有很重要的意义。The present invention further provides the application of the magnetic covalent organic framework material in the enrichment of endogenous glycopeptides. The magnetic covalent organic framework material has a very good enrichment effect for glycopeptides in biological samples, especially in the process of enriching endogenous glycopeptides in human saliva, showing extremely excellent performance. It is very important in the process of behavioral protein glycosylation.
本发明所述磁性共价有机框架材料富集糖肽的操作为:The operation of enriching glycopeptides in the magnetic covalent organic framework material of the present invention is as follows:
(1)对糖肽的吸附:首先将糖基化蛋白免疫球蛋白G用胰蛋白酶消化成糖肽,并用缓冲液进行稀释,然后加入本发明所述磁性共价有机框架材料混合搅拌均匀,之后于室温下利用摇床摇动10~60min使糖肽都富集在磁性共价有机框架材料表面,再在外加磁场的作用下利用磁分离将表面吸附了糖肽的磁性共价有机框架材料从溶液中分离出来;(1) Adsorption of glycopeptides: First, the glycosylated protein immunoglobulin G is digested into glycopeptides with trypsin, and diluted with buffer, then the magnetic covalent organic framework material of the present invention is added and mixed and stirred evenly, and then Shake with a shaker for 10-60 min at room temperature to enrich the glycopeptides on the surface of the magnetic covalent organic framework material, and then use magnetic separation under the action of an external magnetic field to separate the magnetic covalent organic framework material with glycopeptides on the surface from the solution. separated from
(2)对糖肽的解吸附:将表面吸附了糖肽的磁性共价有机框架材料加入到解吸附液中将糖肽从磁性共价有机框架材料上解吸附下来。(2) Desorption of glycopeptides: adding the magnetic covalent organic framework material with glycopeptides adsorbed on the surface into the desorption solution to desorb the glycopeptides from the magnetic covalent organic framework material.
上述对糖肽的吸附过程中,其中共价有机框架上的修饰的高亲水分子GSH利用亲水作用色谱层析法原理实现对糖肽的富集。由于本发明所提供的磁性共价有机框架材料中,COF层为高度有序的介孔材料,其孔径约为3.6nm左右,可以将大分子(蛋白,外泌体等)阻挡在材料外面,从而有利于内源性糖肽肽段的富集应用。通过改变缓冲液的组分实现了被吸附糖肽从磁性共价有机框架材料表面脱离,从而实现了糖肽的捕获和分离。In the above-mentioned adsorption process for glycopeptides, the modified highly hydrophilic molecule GSH on the covalent organic framework utilizes the principle of hydrophilic interaction chromatography to realize the enrichment of glycopeptides. In the magnetic covalent organic framework material provided by the present invention, the COF layer is a highly ordered mesoporous material with a pore size of about 3.6 nm, which can block macromolecules (proteins, exosomes, etc.) Therefore, it is beneficial to the enrichment and application of endogenous glycopeptide peptides. By changing the components of the buffer, the adsorbed glycopeptides are detached from the surface of the magnetic covalent organic framework material, thereby realizing the capture and separation of the glycopeptides.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明提供的磁性共价有机框架材料,以Fe3O4纳米磁球作为内核,在Fe3O4纳米磁球表面引入由1,3,5-三(4-氨苯基)苯和2,5-二乙烯基-1,4-苯二甲醛组成的共价有机框架,以2,5-二乙烯基-1,4-苯二甲醛上剩余的碳碳双键为反应位点,通过巯烯点击反应修饰上亲水的两性离子GSH,该材料不仅表现出良好的磁响应性能,而且通过将COF层和两性离子相结合的设计,从而在很大程度上提高了基于COF的磁性共价有机框架材料的亲水性能,在糖肽富集方面表现出选择性高、结合能力强、富集效率高、回收效率好等优势,在研究生理行为糖基化过程中具有十分重要的意义,且应用前景良好。1. The magnetic covalent organic framework material provided by the present invention uses Fe 3 O 4 nano-magnetic spheres as the core, and introduces 1,3,5-tris(4-aminophenyl) benzene on the surface of Fe 3 O 4 nano-magnetic spheres. A covalent organic framework composed of 2,5-divinyl-1,4-benzenedicarboxaldehyde, using the remaining carbon-carbon double bond on 2,5-divinyl-1,4-benzenedicarboxaldehyde as the reaction site , the hydrophilic zwitterion GSH was modified by the thioene click reaction, the material not only exhibited good magnetic response properties, but also greatly improved the COF-based The hydrophilic properties of magnetic covalent organic framework materials show the advantages of high selectivity, strong binding ability, high enrichment efficiency, and good recovery efficiency in glycopeptide enrichment, which are very important in the study of physiological behavior glycosylation process. significance, and the application prospect is good.
2、本发明提供的磁性共价有机框架材料,在Fe3O4纳米磁球表面引入共价有机框架,其具有高的比表面积及高度有序的介孔结构,使得磁性共价有机框架材料十分适合用于蛋白或者肽段,尤其是内源性糖肽的富集分离应用。2. In the magnetic covalent organic framework material provided by the present invention, a covalent organic framework is introduced on the surface of the Fe 3 O 4 nano-magnetic sphere, which has a high specific surface area and a highly ordered mesoporous structure, which makes the magnetic covalent organic framework material. It is very suitable for enrichment and separation of proteins or peptides, especially endogenous glycopeptides.
3、本发明提供的磁性共价有机框架材料的制备方法,首先采用外延生长方式在Fe3O4纳米磁球表面包裹上COF层,然后采用高效率的巯烯点击反应在COF层上接枝亲水分子GSH,整个过程操作简单、反应条件温和,并且可在短时间内制备得到磁性共价有机框架材料,因此易于在生物医药领域内推广。3. The preparation method of the magnetic covalent organic framework material provided by the present invention firstly adopts an epitaxial growth method to wrap a COF layer on the surface of the Fe 3 O 4 nano-magnetic sphere, and then adopts a high-efficiency thioene click reaction to graft on the COF layer. The hydrophilic molecule GSH has simple operation and mild reaction conditions in the whole process, and the magnetic covalent organic framework material can be prepared in a short time, so it is easy to be popularized in the field of biomedicine.
附图说明Description of drawings
图1为本发明所述用于糖肽富集的磁性共价有机框架材料制备工艺流程图以及对糖肽的富集流程图,A为磁性共价有机框架材料制备工艺流程图,B为磁性共价有机框架材料对糖肽的富集流程图。Fig. 1 is the flow chart of the preparation process of the magnetic covalent organic framework material for glycopeptide enrichment according to the present invention and the flow chart of the enrichment of glycopeptides, A is the preparation process flow chart of the magnetic covalent organic framework material, and B is the magnetic covalent organic framework material. Flow chart for the enrichment of glycopeptides by covalent organic framework materials.
图2为本发明实施例制备的磁性纳米材料形貌表征图,其中A为实施例1制备的Fe3O4纳米磁球的扫描电镜(SEM)图,B为实施例2制备的Fe3O4/COFs纳米粒子的扫描电镜(SEM)图,C为实施例12制备的Fe3O/COF-GSH材料的扫描电镜(SEM)图,D为实施例1制备的Fe3O4纳米磁球的透射电镜(TEM)图,E为实施例2制备的Fe3O4/COFs纳米粒子的透射电镜(TEM)图,F为实施例12制备的Fe3O4/COF-GSH材料的扫描电镜(SEM)图。2 is a characterization diagram of the magnetic nanomaterials prepared in the embodiment of the present invention, wherein A is the scanning electron microscope (SEM) image of the Fe 3 O 4 nanomagnetic spheres prepared in the
图3为本发明实施例制备的磁性纳米材料的X射线衍射图谱,其中a对应实施例1制备的Fe3O4纳米磁球,b对应实施例2制备的Fe3O4/COFs纳米粒子,c对应实施例12制备的Fe3O4/COF-GSH材料。3 is an X-ray diffraction pattern of the magnetic nanomaterial prepared in the embodiment of the present invention, wherein a corresponds to the Fe 3 O 4 nanomagnetic ball prepared in the
图4为本发明实施例12制备的Fe3O4/COF-GSH材料的元素组成表征图。FIG. 4 is a characterization diagram of the elemental composition of the Fe 3 O 4 /COF-GSH material prepared in Example 12 of the present invention.
图5为本发明实施例2和实施例12制备的磁性纳米材料的氮气吸附-解吸附曲线和介孔尺寸分布图,其中A为实施例2制备的Fe3O4/COFs纳米粒子的氮气吸附-解吸附曲线,B为实施例12制备的Fe3O4/COF-GSH材料的氮气吸附-解吸附曲线,C为实施例2制备的Fe3O4/COFs纳米粒子的介孔尺寸分布图,D为实施例12制备的Fe3O4/COF-GSH材料的介孔尺寸分布图。5 is the nitrogen adsorption-desorption curve and mesopore size distribution diagram of the magnetic nanomaterials prepared in Example 2 and Example 12 of the present invention, wherein A is the nitrogen adsorption of Fe 3 O 4 /COFs nanoparticles prepared in Example 2 -Desorption curve, B is the nitrogen adsorption-desorption curve of Fe 3 O 4 /COF-GSH material prepared in Example 12, C is the mesopore size distribution of Fe 3 O 4 /COFs nanoparticles prepared in Example 2 , D is the mesopore size distribution diagram of Fe 3 O 4 /COF-GSH material prepared in Example 12.
图6为本发明实施例制备的磁性纳米材料在-18000Oe到18000Oe范围内的磁滞回线图谱,其中a对应实施例1制备的Fe3O4纳米磁球,b对应实施例2制备的Fe3O4/COFs纳米粒子,c对应实施例12制备的Fe3O4/COF-GSH材料。6 is a hysteresis loop spectrum of the magnetic nanomaterial prepared in the embodiment of the present invention in the range of -18000Oe to 18000Oe, wherein a corresponds to the Fe 3 O 4 nanomagnetic ball prepared in Example 1, and b corresponds to Fe prepared in Example 2 3 O 4 /COFs nanoparticles, c corresponds to the Fe 3 O 4 /COF-GSH material prepared in Example 12.
图7为本发明应用例1中免疫球蛋白G消化液的MS图谱,其中A为未经富集处理的免疫球蛋白G消化液的MS图谱,B为经实施例12制备的Fe3O4/COF-GSH材料富集处理的免疫球蛋白G消化液的MS图。7 is the MS spectrum of the immunoglobulin G digestion solution in Application Example 1 of the present invention, wherein A is the MS spectrum of the immunoglobulin G digestion solution without enrichment treatment, and B is the Fe 3 O 4 prepared in Example 12 / MS image of immunoglobulin G digested solution enriched with COF-GSH material.
具体实施方式Detailed ways
以下将通过实施例并结合附图对本发明的技术方案进行清楚、完整的描述,显然,所描述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。The technical solutions of the present invention will be clearly and completely described below through the embodiments and in conjunction with the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
本发明提出的用于糖肽富集的磁性共价有机框架材料结构,如图1所示,该磁性共价有机框架材料由Fe3O4纳米磁球,包覆于Fe3O4纳米磁球表面的COF中间层、接枝于COF层上的两性离子GSH构成。本发明是基于图1给出的工艺流程制备该磁性共价有机框架材料的,如图1A所示,首先利用水热法制备Fe3O4纳米磁球;再依据外延生长法在制得的Fe3O4纳米磁球表面包覆一层COF中间层,得到COF层包覆Fe3O4的磁性纳米粒子(Fe3O4/COFs纳米粒子),最后将两性离子GSH通过巯烯点击反应接枝到Fe3O4/COFs纳米粒子表面制备得到Fe3O4/COF-GSH材料。The structure of the magnetic covalent organic framework material for glycopeptide enrichment proposed by the present invention is shown in Figure 1. The magnetic covalent organic framework material is composed of Fe 3 O 4 nano-magnetic spheres, which are coated on Fe 3 O 4 nano-magnetic The COF intermediate layer on the spherical surface and the zwitterion GSH grafted on the COF layer are composed. The present invention prepares the magnetic covalent organic framework material based on the process flow shown in FIG. 1. As shown in FIG. 1A, firstly, Fe 3 O 4 nano-magnetic spheres are prepared by hydrothermal method; The surface of Fe 3 O 4 magnetic nanospheres is coated with a layer of COF intermediate layer to obtain magnetic nanoparticles (Fe 3 O 4 /COFs nanoparticles ) coated with COF layer . The Fe 3 O 4 /COF-GSH material was prepared by grafting onto the surface of Fe 3 O 4 /COFs nanoparticles.
从理论上分析,1,3,5-三(4-氨苯基)苯和2,5-二乙烯基-1,4-苯二甲醛两种有机配体按照物质的量的比为1:1.5通过加成反应得到如图1A中所示的以六元环为基本单元的蜂窝状结构的COF层。每个六元环是由六个1,3,5-三(4-氨苯基)苯和六个2,5-二乙烯基-1,4-苯二甲醛通过共价键间隔排列形成。这种蜂窝状结构的COF层理论介孔尺寸约为3.9nm。每个2,5-二乙烯基-1,4-苯二甲醛有两个碳碳双键作为巯烯点击反应的反应位点。Theoretically, the ratio of two organic ligands, 1,3,5-tris(4-aminophenyl)benzene and 2,5-divinyl-1,4-benzenedicarboxaldehyde, is 1 according to the amount of substance: 1.5 The COF layer of honeycomb structure with six-membered ring as the basic unit as shown in Fig. 1A is obtained by addition reaction. Each six-membered ring is formed from six 1,3,5-tris(4-aminophenyl)benzenes and six 2,5-divinyl-1,4-benzenedicarboxaldehydes spaced by covalent bonds. The theoretical mesopore size of the COF layer of this honeycomb structure is about 3.9 nm. Each 2,5-divinyl-1,4-benzenedicarbaldehyde has two carbon-carbon double bonds as the reactive sites for the mercaptoene click reaction.
从上述分析可知,通过本发明提供的Fe3O4/COFs纳米粒子表面能够修饰较多的两性离子GSH,从而在很大程度上提高磁性共价有机框架材料的亲水性能。It can be seen from the above analysis that the surface of the Fe 3 O 4 /COFs nanoparticles provided by the present invention can be modified with more zwitterion GSH, thereby greatly improving the hydrophilic properties of the magnetic covalent organic framework material.
实施例1水热法制备超顺磁性Fe3O4纳米磁球Example 1 Preparation of superparamagnetic Fe3O4 nanomagnetic balls by hydrothermal method
以下实施例中采用的Fe3O4纳米磁球的具体制备过程为:将原料2.43g FeCl3·6H2O、3.6gNaAc(醋酸钠)和0.4g Na3CT(柠檬酸钠)加入到盛有60mL乙二醇的反应釜中,磁力搅拌1h使上述原料混合均匀;然后移除搅拌子,将反应釜升温至200℃,反应12小时;再将反应釜冷却至室温,对反应液进行磁分离并收集分离出的固体产物;然后依次用乙醇、去离子水对固体产物进行洗涤(每种洗液洗涤五遍),即得到Fe3O4纳米磁球。The specific preparation process of the Fe 3 O 4 nano-magnetic balls adopted in the following examples is: adding raw materials 2.43g FeCl 3 ·6H 2 O, 3.6g NaAc (sodium acetate) and 0.4g Na 3 CT (sodium citrate) to a In a reaction kettle with 60 mL of ethylene glycol, magnetic stirring for 1 h to mix the above raw materials uniformly; then remove the stirrer, heat the reaction kettle to 200 ° C, and react for 12 hours; then cool the reaction kettle to room temperature, and magnetically conduct the reaction liquid. Separate and collect the separated solid product; then wash the solid product with ethanol and deionized water in sequence (five times for each washing solution) to obtain Fe 3 O 4 nanomagnetic spheres.
通过该方法得到的Fe3O4纳米磁球能够均匀分散在水中,形成稳定的超顺磁性纳米颗粒悬浮液。对得到的Fe3O4纳米磁球进行DLS(Dynamic Light Scattering,动态光散射)分析显示,所述Fe3O4磁球粒径在220nm左右。 The Fe3O4 nanomagnetic spheres obtained by this method can be uniformly dispersed in water to form a stable superparamagnetic nanoparticle suspension. The DLS (Dynamic Light Scattering, dynamic light scattering) analysis of the obtained Fe 3 O 4 nanomagnetic spheres shows that the Fe 3 O 4 magnetic spheres have a particle size of about 220 nm.
通过调节水热反应时间10~16h,可以调节得到的Fe3O4纳米磁球粒径在200~300nm之间。By adjusting the hydrothermal reaction time from 10 to 16 h, the particle size of the obtained Fe 3 O 4 nanomagnetic spheres can be adjusted to be between 200 and 300 nm.
实施例2-实施例8制备Fe3O4/COFs纳米粒子(选用220nm的Fe3O4纳米磁球)Example 2-Example 8 Preparation of Fe 3 O 4 /COFs nanoparticles (select 220nm Fe 3 O 4 nano-magnetic balls)
按照表1称取原料,并结合表1中给出的工艺参数依据下述操作过程制备Fe3O4/COFs纳米粒子:Weigh the raw materials according to Table 1, and prepare Fe 3 O 4 /COFs nanoparticles according to the following operation process in combination with the process parameters given in Table 1:
将Fe3O4纳米磁球,1,3,5-三(4-氨苯基)苯(Tab)和2,5-二乙烯基-1,4-苯二甲醛(Dva)两种有机配体加入到含有二甲基亚砜溶剂的锥形瓶中,之后在超声条件下将两种有机配体完全溶解,并使Fe3O4纳米磁球完全分散得到分散均匀的混合液,继后在超声条件下,向所得混合液中逐滴滴加醋酸,滴加完毕后将整个反应体系于室温下静置孵育。最后,对所得反应液进行磁分离并收集分离出的固体产物,所得固体产物依次用无水四氢呋喃,无水甲醇,乙醇、去离子水洗涤(每种洗液洗涤三次),即得到Fe3O4/COFs纳米粒子。对得到的Fe3O4/COFs纳米粒子进行DLS(Dynamic Light Scattering,动态光散射)分析显示,所得Fe3O4/COFs纳米粒子粒径在250~670nm左右,见表1所示。Fe 3 O 4 nanomagnetic spheres, 1,3,5-tris(4-aminophenyl)benzene (Tab) and 2,5-divinyl-1,4-benzenedicarboxaldehyde (Dva) were combined with two organic compounds. The two organic ligands were completely dissolved under ultrasonic conditions, and the Fe 3 O 4 nano-magnetic spheres were completely dispersed to obtain a uniformly dispersed mixed solution. Under ultrasonic conditions, acetic acid was added dropwise to the obtained mixed solution, and after the dropwise addition, the entire reaction system was left to incubate at room temperature. Finally, the obtained reaction solution is subjected to magnetic separation and the separated solid product is collected. The obtained solid product is washed with anhydrous tetrahydrofuran, anhydrous methanol, ethanol and deionized water in turn (each washing solution is washed three times) to obtain Fe 3 O 4 /COFs nanoparticles. DLS (Dynamic Light Scattering, dynamic light scattering) analysis of the obtained Fe 3 O 4 /COFs nanoparticles showed that the obtained Fe 3 O 4 /COFs nanoparticles had a particle size of about 250-670 nm, as shown in Table 1.
表1制备Fe3O4/COFs纳米粒子的原料及其配比和工艺参数Table 1 Raw materials and their ratios and process parameters for preparing Fe 3 O 4 /COFs nanoparticles
从表1中可以看出,通过调控两个有机配体的比例、超声时间、以及孵育时间可以调整包裹在Fe3O4纳米磁球表面的COF中间层的厚度以及纳米复合材料的形貌。从COF中间层包覆牢固性、尺寸大小、纳米复合材料的形貌及节约药品等因素考虑,现选择实施例2所述方法制备的270nm的Fe3O4/COFs纳米粒子用于以下实施例Fe3O4/COF-GSH磁性共价有机框架材料的制备。As can be seen from Table 1 , the thickness of the COF interlayer and the morphology of the nanocomposite can be adjusted by adjusting the ratio of the two organic ligands, the ultrasonic time, and the incubation time. Considering factors such as the coating firmness of the COF intermediate layer, the size, the morphology of the nanocomposite material, and the saving of medicines, the Fe 3 O 4 /COFs nanoparticles of 270 nm prepared by the method described in Example 2 are now selected for the following examples. Preparation of Fe 3 O 4 /COF-GSH Magnetic Covalent Organic Framework Materials.
实施例9-实施例16制备Fe3O4/COF-GSH材料(选用270nm的Fe3O4/COFs纳米粒子)Example 9-Example 16 Preparation of Fe 3 O 4 /COF-GSH materials (Fe 3 O 4 /COFs nanoparticles of 270 nm were selected)
以下实施例9-实施例16采用的是巯烯点击的反应方法,用到的反应装置为油浴加热、磁力搅拌的二口瓶反应容器。The following examples 9-16 adopt the reaction method of mercaptoene click, and the reaction device used is a two-necked flask reaction vessel heated in an oil bath and magnetically stirred.
按照表2称取原料,并结合表2中给出的工艺参数依据下述操作过程制备Fe3O4/COF-GSH材料:Weigh the raw materials according to Table 2, and prepare Fe 3 O 4 /COF-GSH material according to the following operation process in combination with the process parameters given in Table 2:
将偶氮二异丁腈、谷胱甘肽和Fe3O4/COFs纳米粒子依次加入到含有20mL复合溶剂中(复合由乙醇与去离子水按照体积比1:3混合均匀得到),利用超声处理,使得Fe3O4/COFs纳米粒子完全分散,偶氮二异丁腈、谷胱甘肽完全溶解。然后采用氮气吹扫方式对混合液进行除氧1h;再采用抽真空-通氮气的循环操作方式对作为反应器的支口瓶除氧(循环次数为3次)。继后在氮气保护下,将除氧后的混合液加入到提前除好氧气的支口瓶中,之后通过油浴得到表2所述反应温度,在磁力搅拌下按表2所述反应温度、反应时间完成巯烯点击反应。最后,对所得反应液进行磁分离并收集分离出的固体产物,所得固体产物依次用乙醇、去离子水洗涤(每种洗液洗涤三次),即得到Fe3O4/COF-GSH材料。对得到的Fe3O4/COF-GSH材料进行DLS(DynamicLight Scattering,动态光散射)分析考察其在水中的分散性能:GSH改性越成功,Fe3O4/COF-GSH材料在水中的分散性能越好,DLS测试的PDI值越小。Azobisisobutyronitrile, glutathione and Fe 3 O 4 /COFs nanoparticles were sequentially added to a compound solvent containing 20 mL (the compound was obtained by uniformly mixing ethanol and deionized water according to a volume ratio of 1:3), and ultrasonic waves were used. Treatment, the Fe 3 O 4 /COFs nanoparticles are completely dispersed, and the azobisisobutyronitrile and glutathione are completely dissolved. Then, the mixed solution was deoxygenated by nitrogen purging for 1 h; and then the branch-mouth bottle as the reactor was deoxygenated by the cyclic operation mode of vacuuming and passing nitrogen (the number of cycles was 3). Subsequently, under the protection of nitrogen, the mixed solution after deoxygenation is added to the branch-neck flask that removes oxygen in advance, and then the reaction temperature described in Table 2 is obtained by the oil bath, and the reaction temperature described in Table 2 is obtained under magnetic stirring, The reaction time completes the thioene click reaction. Finally, the obtained reaction solution is magnetically separated and the separated solid product is collected. The obtained solid product is washed with ethanol and deionized water in turn (each washing solution is washed three times) to obtain Fe 3 O 4 /COF-GSH material. The obtained Fe 3 O 4 /COF-GSH material was analyzed by DLS (Dynamic Light Scattering, dynamic light scattering) to investigate its dispersibility in water: the more successful GSH modification was, the better the dispersion of Fe 3 O 4 /COF-GSH material in water. The better the performance, the smaller the PDI value of the DLS test.
表2制备Fe3O4/COF-GSH材料的原料及其配比和工艺参数Table 2 Raw materials and their proportions and process parameters for preparing Fe 3 O 4 /COF-GSH materials
从表2中可以看出,通过调控加入两性离子GSH和催化剂AIBN的量、反应温度以及反应时间可以达到最佳的GSH修饰效果。从修饰效果、节省反应时间及节约原料等因素考虑,现选择实施例12的方案制备Fe3O4/COF-GSH材料对结构特征、性能以及对糖肽的富集等方面进行研究。It can be seen from Table 2 that the best GSH modification effect can be achieved by adjusting the amount of zwitterion GSH and catalyst AIBN, reaction temperature and reaction time. Considering factors such as modification effect, saving reaction time and saving raw materials, the scheme of Example 12 is now selected to prepare Fe 3 O 4 /COF-GSH material to study the structural characteristics, properties and enrichment of glycopeptides.
结构表征Structure Characterization
为了探究COFs是否成功复合到Fe3O4纳米磁球上,对实施例1制备的Fe3O4纳米磁球、实施例2制备的Fe3O4/COFs纳米粒子、实施例12制备的Fe3O4/COF-GSH磁性共价有机框架材料的形貌尺寸和微观结构进行了表征,如图2至图5所示。In order to explore whether COFs were successfully compounded on Fe 3 O 4 nanomagnetic spheres, the Fe 3 O 4 nanomagnetic spheres prepared in Example 1, the Fe 3
对实施例2制备的Fe3O4/COFs纳米粒子和实施例12制备的Fe3O4/COF-GSH磁性共价有机框架材料采用扫描电镜(SEM)和透射电子显微镜(TEM)进行形貌分析,结果如图2所示。从图2可以看出,制备的Fe3O4/COFs纳米粒子以及Fe3O4/COF-GSH材料均成大小均一、形貌规整的球形。此外,从图2E看出,纳米粒子表面呈现粗糙的网络结构,表明COFs层已经成功包裹在Fe3O4纳米磁球表面;从图2F看出,Fe3O4/COF-GSH材料与Fe3O4/COFs纳米粒子形貌几乎相同,表面修饰两性离子GSH后对Fe3O4/COFs纳米粒子的形貌没有明显的影响。The Fe 3 O 4 /COFs nanoparticles prepared in Example 2 and the Fe 3 O 4 /COF-GSH magnetic covalent organic framework material prepared in Example 12 were morphologically characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Analysis, the results are shown in Figure 2. It can be seen from Figure 2 that the prepared Fe 3 O 4 /COFs nanoparticles and Fe 3 O 4 /COF-GSH materials are spherical with uniform size and regular morphology. In addition, it can be seen from Figure 2E that the surface of the nanoparticles presents a rough network structure, indicating that the COFs layer has been successfully wrapped on the surface of the Fe 3 O 4 nanomagnetic spheres; from Figure 2F, it can be seen that the Fe 3 O 4 /COF-GSH material is closely related to Fe 3
对实施例1制备的Fe3O4纳米磁球、实施例2制备的Fe3O4/COFs纳米粒子和实施例12制备的Fe3O4/COF-GSH材料进行X射线衍射分析,分析结果如图3所示。从图3中可以看出,三种材料均具有与标准Fe3O4衍射峰一致的特征峰,说明Fe3O4/COF-GSH材料保留了Fe3O4纳米磁球的晶体结构。同时Fe3O4/COF-GSH材料在2.7°出现了新的衍射峰,该衍射峰为共价有机框架的特征衍射峰,说明共价有机框架成功合成在了磁性纳米粒子表面。The Fe 3 O 4 nanomagnetic balls prepared in Example 1, the Fe 3 O 4 /COFs nanoparticles prepared in Example 2, and the Fe 3 O 4 /COF-GSH materials prepared in Example 12 were subjected to X-ray diffraction analysis, and the analysis results were As shown in Figure 3. It can be seen from Figure 3 that all three materials have characteristic peaks consistent with the standard Fe 3 O 4 diffraction peaks, indicating that the Fe 3 O 4 /COF-GSH material retains the crystal structure of Fe 3 O 4 nanomagnetic spheres. At the same time, Fe 3 O 4 /COF-GSH material has a new diffraction peak at 2.7°, which is the characteristic diffraction peak of covalent organic framework, indicating that the covalent organic framework was successfully synthesized on the surface of magnetic nanoparticles.
对实施例12制备的Fe3O4/COF-GSH磁性共价有机框架材料进行X射线能谱分析(EDX),分析结果如图4及表3所示所示。从图4及表3中可以,Fe3O4/COF-GSH磁性共价有机框架材料中,C元素原子百分比为55.97%、N元素原子百分比为15.52%、O元素原子百分比为23.28%、S元素原子百分比为2.01%,Fe原子百分比为3.22%。从上述检测结果可以看出,Fe3O4/COF-GSH材料中存在S元素以及高含量的N元素,进一步证明COFs层和两性离子GSH已经成功在Fe3O4纳米磁球表面形成以及修饰,高含量的GSH有利于对于糖肽的富集应用。X-ray energy spectrum analysis (EDX) was performed on the Fe 3 O 4 /COF-GSH magnetic covalent organic framework material prepared in Example 12, and the analysis results are shown in FIG. 4 and Table 3. As can be seen from Figure 4 and Table 3, in the Fe 3 O 4 /COF-GSH magnetic covalent organic framework material, the atomic percentage of C element is 55.97%, the atomic percentage of N element is 15.52%, the atomic percentage of O element is 23.28%, and the atomic percentage of S element is 55.97%. The element atomic percentage is 2.01%, and the Fe atomic percentage is 3.22%. It can be seen from the above test results that there are S element and high content of N element in Fe 3 O 4 /COF-GSH material, which further proves that the COFs layer and zwitterion GSH have been successfully formed and modified on the surface of Fe 3 O 4 nanomagnetic spheres , high content of GSH is beneficial to the enrichment of glycopeptides.
表3 EDX分析中得到的各元素原子百分比Table 3 Atomic percentage of each element obtained in EDX analysis
对实施例2和实施例12制备的Fe3O4/COFs纳米粒子和Fe3O4/COF-GSH材料进行N2吸附/解吸附测试,测试结果如图5所示,所得N2吸附/解吸附等温曲线表明此磁性共价有机框架纳米复合材料具有较大的比表面积和孔隙率,同时孔径分布较窄,大在3.6nm左右(与理论分析结果相近),说明具有高度有序的介孔材料共价有机框架成功合成在了磁球表面,这有利于对于肽段的富集应用。The Fe 3 O 4 /COFs nanoparticles and Fe 3 O 4 /COF-GSH materials prepared in Example 2 and Example 12 were subjected to N adsorption/desorption tests. The test results are shown in Figure 5. The desorption isotherm curve shows that the magnetic covalent organic framework nanocomposite has a large specific surface area and porosity, and a narrow pore size distribution, which is about 3.6 nm (similar to the theoretical analysis results), indicating that it has a highly ordered mesostructure. The covalent organic framework of the porous material was successfully synthesized on the surface of the magnetic sphere, which is beneficial for the enrichment of peptides.
综上所述,Fe3O4/COF-GSH材料中的壳层具有共价有机框架结构,且该结构并没有明显影响复合纳米材料的磁晶体结构,这种独特的COF壳层将有利于在糖肽捕获和分离中的应用。In summary, the shell layer in Fe 3 O 4 /COF-GSH material has a covalent organic framework structure, and this structure does not significantly affect the magnetocrystalline structure of the composite nanomaterials. This unique COF shell layer will be beneficial to Applications in glycopeptide capture and isolation.
磁性能测试Magnetic performance test
对实施例1制备的Fe3O4纳米磁球、实施例2制备的Fe3O4/COFs纳米粒子、实施例12制备的Fe3O4/COF-GSH材料采用Model BHV-525型振动样品磁强计(VSM)在-18000Oe到18000Oe范围内进行磁性测试,测试得到的磁滞回线如图6所示。从图6中可以看出,所有样品的磁滞回线均经过原点,无剩磁和矫顽力,说明Fe3O4纳米磁球、Fe3O4/COFs纳米粒子、Fe3O4/COF-GSH材料都具有超顺磁性,其中Fe3O4/COF-GSH材料的饱和磁化强度达到45emug-1左右。Model BHV-525 vibration samples were used for Fe 3 O 4 nanomagnetic balls prepared in Example 1, Fe 3 O 4 /COFs nanoparticles prepared in Example 2, and Fe 3 O 4 /COF-GSH materials prepared in Example 12 The magnetometer (VSM) conducts magnetic tests in the range of -18000Oe to 18000Oe, and the hysteresis loop obtained from the test is shown in Figure 6. It can be seen from Figure 6 that the hysteresis loops of all samples pass through the origin without remanence and coercivity, indicating that Fe 3 O 4 nanomagnetic balls, Fe 3 O 4 /COFs nanoparticles, Fe 3 O 4 / All COF-GSH materials are superparamagnetic, and the saturation magnetization of Fe 3 O 4 /COF-GSH material reaches about 45emug -1 .
应用例Application example
本发明进一步提供了上述Fe3O4/COF-GSH材料在富集糖肽方面的应用,Fe3O4/COF-GSH材料对于糖肽的捕获与分离过程,如图1B所示,首先将Fe3O4/COF-GSH材料加入到待处理的样本中,然后在摇床中进行捕获,时间可以根据样本多少进行调整,捕获过程结束后通过磁分离方式将固体产物分离出来,之后再用解吸附的缓冲液对表面吸附有糖肽的磁球进行解吸附,从而得到含有糖肽的缓冲液。可以对得到的含有糖肽的缓冲液进行MS(MassSpectrometry,质谱)分析,以进一步确定Fe3O4/COF-GSH材料对糖肽的富集效果。The present invention further provides the application of the above Fe 3 O 4 /COF-GSH material in the enrichment of glycopeptides, the capture and separation process of the Fe 3 O 4 /COF-GSH material for glycopeptides, as shown in FIG. Fe 3 O 4 /COF-GSH material is added to the sample to be treated, and then captured in a shaker. The time can be adjusted according to the sample size. After the capture process, the solid product is separated by magnetic separation, and then used The desorbed buffer desorbs the magnetic spheres with glycopeptides adsorbed on the surface, thereby obtaining a buffer containing glycopeptides. The obtained buffer solution containing glycopeptides can be analyzed by MS (Mass Spectrometry, mass spectrometry) to further determine the enrichment effect of Fe 3 O 4 /COF-GSH material on glycopeptides.
应用例1糖基化蛋白免疫球蛋白G消化液中糖肽的富集Application example 1 Enrichment of glycopeptides in the digested solution of glycosylated protein immunoglobulin G
取2mg免疫球蛋白G溶解在1ml 50Mm pH为8.2的NH4HCO3缓冲液里,再加入50μg的胰蛋白酶,于37℃条件下消化16h;然后用第一缓冲液(体积浓度为90%的乙腈水溶液,其中含有体积浓度为1%的三氟乙酸,即90%ACN-H2O包含1%TFA)稀释到10-7M的浓度得到免疫球蛋白G消化液。取1mg实施例12制备的Fe3O4/COF-GSH材料加入到200μl免疫球蛋白G消化液样本中,然后在摇床150-200rpm条件下于室温孵育45min;之后用第一缓冲液清洗3遍(每次200μl)把非特异性吸附的多肽从磁性共价有机框架材料表面除去;最后将吸附了糖肽的磁性共价有机框架材料加入到10μl第二缓冲液(体积浓度为30%的乙腈水溶液,其中含有体积浓度为0.1%的三氟乙酸,即30%ACN-H2O包含0.1%TFA)中,在摇床800-1200rpm剧烈摇动状态下解吸附30min,利用磁分离分离出磁性共价有机框架材料,得到解吸附液。然后取1μl解吸附液和1μl未经富集处理的免疫球蛋白G消化液进行质谱分析,分析结果如图7所示。Dissolve 2 mg of immunoglobulin G in 1 ml of 50Mm NH 4 HCO 3 buffer with a pH of 8.2, add 50 μg of trypsin, and digest at 37 ° C for 16 h; then use the first buffer (volume concentration of 90% Aqueous acetonitrile solution containing 1% trifluoroacetic acid by volume (ie, 90% ACN-H 2 O containing 1% TFA) was diluted to a concentration of 10 -7 M to obtain an immunoglobulin G digestion solution. Take 1 mg of Fe 3 O 4 /COF-GSH material prepared in Example 12 and add it to 200 μl of immunoglobulin G digestion solution sample, then incubate at room temperature for 45 min on a shaker at 150-200 rpm; then wash with the first buffer for 3 The non-specifically adsorbed polypeptides were removed from the surface of the magnetic covalent organic framework material by pass (200 μl each time); finally, the magnetic covalent organic framework material with adsorbed glycopeptides was added to 10 μl of the second buffer (30% acetonitrile by volume). In an aqueous solution containing 0.1% trifluoroacetic acid by volume, that is, 30% ACN-H 2 O containing 0.1% TFA), desorption was carried out for 30 min under vigorous shaking on a shaker at 800-1200 rpm, and magnetic co-polymers were separated by magnetic separation. The valence organic framework material is obtained to obtain a desorption solution. Then, 1 μl of the desorption solution and 1 μl of the unenriched immunoglobulin G digestion solution were taken for mass spectrometry analysis, and the analysis results are shown in FIG. 7 .
从图7可以看出,未经富集处理的免疫球蛋白G消化液,用质谱检只得到5条糖肽的信号,而且信号很低,整个MS图基本都是杂肽段的信号【见图7】;用Fe3O4/COF-GSH材料富集后,整个质谱图上可以检测到35条糖肽的信号,而且整个MS图都是糖肽的信号峰【见图7,圆点标记的都为糖肽的特征峰】。上述分析结果表明本发明所述的Fe3O4/COF-GSH材料能很好的富集糖肽,同时具有很好的选择性和很高的效率。As can be seen from Figure 7, the immunoglobulin G digestion solution without enrichment treatment only obtained 5 glycopeptide signals by mass spectrometry, and the signals were very low, and the entire MS image was basically the signal of heteropeptides [see Figure 7]; After enrichment with Fe 3 O 4 /COF-GSH material, 35 glycopeptide signals can be detected on the entire mass spectrum, and the entire MS map is the signal peak of glycopeptides [see Figure 7, dots The labeled peaks are all characteristic peaks of glycopeptides]. The above analysis results show that the Fe 3 O 4 /COF-GSH material of the present invention can enrich glycopeptides well, and has good selectivity and high efficiency at the same time.
应用例2人唾液中内源性糖肽的富集Application example 2 Enrichment of endogenous glycopeptides in human saliva
取10微升健康人唾液加入到200μl第一缓冲液(体积浓度为90%的乙腈水溶液,其中含有体积浓度为1%的三氟乙酸,即90%ACN-H2O包含1%TFA)中。取1mg实施例12制备的Fe3O4/COF-GSH材料加入到上述样本中,然后在摇床150-200rpm条件下于室温孵育45min;之后用第一缓冲液清洗3遍(每次200μl)把非特异性吸附的多肽从磁性共价有机框架材料表面除去;最后将吸附了糖肽的磁性共价有机框架材料加入到60μl第二缓冲液(体积浓度为30%的乙腈水溶液,其中含有体积浓度为0.1%的三氟乙酸,即30%ACN-H2O包含0.1%TFA)中,在摇床800-1200rpm剧烈摇动状态下解吸附30min,利用磁分离分离出磁性共价有机框架材料,得到解吸附液。然后将吸附液体用于LC-MS-MS分析,结果如表4显示,一共可以检测到322条内源性糖肽。Take 10 μl of healthy human saliva and add it to 200 μl of the first buffer (90% acetonitrile aqueous solution by volume, which contains 1% volume concentration of trifluoroacetic acid, that is, 90% ACN-H 2 O contains 1% TFA) . Take 1 mg of Fe 3 O 4 /COF-GSH material prepared in Example 12 and add it to the above sample, then incubate at room temperature for 45 min under the condition of a shaker at 150-200 rpm; then wash with the
表5给出了本发明所提供的Fe3O4/COF-GSH材料与已经报道材料对人唾液中内源性糖肽富集性能比较。从表5中看出,相比已经报道的材料,本发明提供的Fe3O4/COF-GSH材料可以在人唾液中富集最多的内源性糖肽。Table 5 shows the comparison of the Fe 3 O 4 /COF-GSH material provided by the present invention with the reported material for enriching endogenous glycopeptides in human saliva. It can be seen from Table 5 that, compared with the reported materials, the Fe 3 O 4 /COF-GSH material provided by the present invention can enrich the most endogenous glycopeptides in human saliva.
综上所述,本发明所述的Fe3O4/COF-GSH磁性共价有机框架材料可以实现对于糖肽以及人唾液中内源性糖肽的优异富集性能。In conclusion, the Fe 3 O 4 /COF-GSH magnetic covalent organic framework material of the present invention can achieve excellent enrichment performance for glycopeptides and endogenous glycopeptides in human saliva.
表4 Fe3O4@COF-GSH磁性共价有机框架材料Table 4 Fe 3 O 4 @COF-GSH magnetic covalent organic framework materials
从人唾液中富集得到的内源性糖肽的详细信息Details of endogenous glycopeptides enriched from human saliva
表5 Fe3O4/COF-GSH磁性共价有机框架材料与已经报道的材料在人唾液中富集内源性糖肽的性能比较Table 5 Performance comparison of Fe 3 O 4 /COF-GSH magnetic covalent organic framework material and reported materials for enriching endogenous glycopeptides in human saliva
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910952400.5A CN110665465B (en) | 2019-10-09 | 2019-10-09 | Magnetic covalent organic framework material for glycopeptide enrichment and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910952400.5A CN110665465B (en) | 2019-10-09 | 2019-10-09 | Magnetic covalent organic framework material for glycopeptide enrichment and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110665465A true CN110665465A (en) | 2020-01-10 |
CN110665465B CN110665465B (en) | 2020-11-03 |
Family
ID=69081032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910952400.5A Active CN110665465B (en) | 2019-10-09 | 2019-10-09 | Magnetic covalent organic framework material for glycopeptide enrichment and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110665465B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111111618A (en) * | 2020-02-03 | 2020-05-08 | 齐鲁工业大学 | Magnetic covalent organic framework material and preparation method and its application in detecting perfluorinated compounds |
CN111202060A (en) * | 2020-02-28 | 2020-05-29 | 南开大学 | Antibacterial fermentation additive based on covalent organic framework material, and preparation and application thereof |
CN112675821A (en) * | 2020-11-26 | 2021-04-20 | 四川大学 | Magnetic covalent organic framework material for glycopeptide enrichment based on amphiphilic site and preparation method and application thereof |
CN114487083A (en) * | 2022-01-19 | 2022-05-13 | 中国地质大学(北京) | A magnetic hydroxyl nanomaterial Fe3O4@COFs and its application in the field of sulfonamide mass spectrometry |
CN115124722A (en) * | 2022-05-20 | 2022-09-30 | 宁波大学医学院附属医院 | Magnetic guanidyl functionalized covalent organic framework composite material and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105664861A (en) * | 2016-04-20 | 2016-06-15 | 福州大学 | Magnetic covalent organic framework nanocomposite material and preparation method and application |
CN108176384A (en) * | 2018-01-17 | 2018-06-19 | 四川大学 | It is grafted magnetic nano-balls of arginine polymer brush and preparation method and application |
CN110152624A (en) * | 2018-02-12 | 2019-08-23 | 中国科学院大连化学物理研究所 | A microporous polymer-coated hydrophilic resin and its application in glycopeptide enrichment |
-
2019
- 2019-10-09 CN CN201910952400.5A patent/CN110665465B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105664861A (en) * | 2016-04-20 | 2016-06-15 | 福州大学 | Magnetic covalent organic framework nanocomposite material and preparation method and application |
CN108176384A (en) * | 2018-01-17 | 2018-06-19 | 四川大学 | It is grafted magnetic nano-balls of arginine polymer brush and preparation method and application |
CN110152624A (en) * | 2018-02-12 | 2019-08-23 | 中国科学院大连化学物理研究所 | A microporous polymer-coated hydrophilic resin and its application in glycopeptide enrichment |
Non-Patent Citations (2)
Title |
---|
WEN-HUA JIA,ET.AL.: "Amino-modified covalent organic framework as solid phase extraction absorbent for determination of carboxylic acid pesticides in environmental water samples", 《JOURNAL OF CHROMATOGRAPHY A》 * |
YU-FANG MA,ET.AL.: "A facilely synthesized glutathione-functionalized silver nanoparticle-grafted covalent organic framework for rapid and highly efficient enrichment of N-linked glycopeptides", 《NANOSCALE》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111111618A (en) * | 2020-02-03 | 2020-05-08 | 齐鲁工业大学 | Magnetic covalent organic framework material and preparation method and its application in detecting perfluorinated compounds |
CN111202060A (en) * | 2020-02-28 | 2020-05-29 | 南开大学 | Antibacterial fermentation additive based on covalent organic framework material, and preparation and application thereof |
CN111202060B (en) * | 2020-02-28 | 2021-12-03 | 南开大学 | Antibacterial fermentation additive based on covalent organic framework material, and preparation and application thereof |
CN112675821A (en) * | 2020-11-26 | 2021-04-20 | 四川大学 | Magnetic covalent organic framework material for glycopeptide enrichment based on amphiphilic site and preparation method and application thereof |
CN114487083A (en) * | 2022-01-19 | 2022-05-13 | 中国地质大学(北京) | A magnetic hydroxyl nanomaterial Fe3O4@COFs and its application in the field of sulfonamide mass spectrometry |
CN114487083B (en) * | 2022-01-19 | 2024-05-07 | 中国地质大学(北京) | Magnetic hydroxyl nano material Fe3O4@COFs and application thereof in field of sulfanilamide mass spectrum detection |
CN115124722A (en) * | 2022-05-20 | 2022-09-30 | 宁波大学医学院附属医院 | Magnetic guanidyl functionalized covalent organic framework composite material and preparation method and application thereof |
CN115124722B (en) * | 2022-05-20 | 2023-07-07 | 宁波大学附属第一医院 | Magnetic guanidinium-functionalized covalent organic framework composite material and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN110665465B (en) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110665465B (en) | Magnetic covalent organic framework material for glycopeptide enrichment and preparation method and application thereof | |
CN104072762B (en) | The preparation method of the magnetic carbon nano-tube that the poly-Dopamine HCL in a kind of surface is modified | |
CN109433158B (en) | Magnetic nano composite material for multi-mode peptide fragment enrichment and preparation method and application thereof | |
CN106552603B (en) | pH-responsive magnetic metal-organic framework composite nanomaterials and their preparation methods and applications | |
Yang et al. | pH-Responsive magnetic metal–organic framework nanocomposites for selective capture and release of glycoproteins | |
CN108176384B (en) | Magnetic nanosphere of grafted arginine polymer brush as well as preparation method and application of magnetic nanosphere | |
Jian et al. | Click chemistry: a new facile and efficient strategy for the preparation of Fe 3 O 4 nanoparticles covalently functionalized with IDA-Cu and their application in the depletion of abundant protein in blood samples | |
Ma et al. | Recent advances in preparation and applications of magnetic framework composites | |
CN108467490A (en) | Functional metal organic frame porous material and its preparation method and application | |
CN107486177B (en) | Magnetic metal with how affine site-organic backbone nanosphere and the preparation method and application thereof | |
CN113274981B (en) | Magnetic nanoparticles and preparation method thereof | |
CN105233799A (en) | Magnetic metal-organic framework material with core-shell structure and preparation method therefor | |
Gao et al. | Specific recognition of bovine serum albumin using superparamagnetic molecularly imprinted nanomaterials prepared by two-stage core–shell sol–gel polymerization | |
CN110075770A (en) | Magnetic order mesoporous carbon-based or polymer-based core-shell structure microballoon and preparation method thereof | |
CN114405479B (en) | Magnetic covalent organic framework nano material, preparation method and application | |
Guo et al. | Novel smart chiral magnetic microspheres for enantioselective adsorption of tryptophan enantiomers | |
Yan et al. | Phytic acid functionalized magnetic bimetallic metal–organic frameworks for phosphopeptide enrichment | |
Liang et al. | Metal affinity-carboxymethyl cellulose functionalized magnetic graphene composite for highly selective isolation of histidine-rich proteins | |
Luan et al. | Construction of magnetic covalent organic frameworks functionalized by benzoboroxole for efficient enrichment of glycoproteins in the physiological environment | |
CN104307481A (en) | Magnetic MOFs solid-phase extractant, and preparation method and application thereof | |
CN109503858A (en) | A kind of magnetism sandwich structure metal-organic framework materials and preparation method | |
CN113952935B (en) | A kind of magnetic MOFs composite material and its preparation method and application | |
Gan et al. | Hierarchical core–shell nanoplatforms constructed from Fe 3 O 4@ C and metal–organic frameworks with excellent bilirubin removal performance | |
CN112675821B (en) | Magnetic covalent organic framework material for glycopeptide enrichment based on amphiphilic site and preparation method and application thereof | |
CN110860273B (en) | Preparation method and application of magnetic graphene oxide nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |