CN110639536A - Catalyst for preparing acrylic acid by acrolein oxidation - Google Patents
Catalyst for preparing acrylic acid by acrolein oxidation Download PDFInfo
- Publication number
- CN110639536A CN110639536A CN201810674898.9A CN201810674898A CN110639536A CN 110639536 A CN110639536 A CN 110639536A CN 201810674898 A CN201810674898 A CN 201810674898A CN 110639536 A CN110639536 A CN 110639536A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- solution
- acrylic acid
- mol
- catalyst precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 87
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 title claims abstract description 78
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 title claims abstract description 47
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 230000003647 oxidation Effects 0.000 title claims abstract description 13
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 13
- 229910052713 technetium Inorganic materials 0.000 claims abstract description 12
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 11
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052718 tin Inorganic materials 0.000 claims abstract description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 3
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 3
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 3
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 3
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 3
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 3
- 229910052737 gold Inorganic materials 0.000 claims abstract description 3
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 3
- 229910052738 indium Inorganic materials 0.000 claims abstract description 3
- 229910052741 iridium Inorganic materials 0.000 claims abstract description 3
- 229910052745 lead Inorganic materials 0.000 claims abstract description 3
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 3
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 3
- 229910052703 rhodium Inorganic materials 0.000 claims abstract description 3
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 3
- 229910052709 silver Inorganic materials 0.000 claims abstract description 3
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 17
- 238000002156 mixing Methods 0.000 claims description 14
- 238000001354 calcination Methods 0.000 claims description 9
- 229910052746 lanthanum Inorganic materials 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 2
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 21
- 239000003377 acid catalyst Substances 0.000 abstract description 4
- 238000009776 industrial production Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 118
- 239000012018 catalyst precursor Substances 0.000 description 76
- 239000011701 zinc Substances 0.000 description 47
- 239000011734 sodium Substances 0.000 description 37
- 238000011068 loading method Methods 0.000 description 34
- 238000005507 spraying Methods 0.000 description 33
- 238000001035 drying Methods 0.000 description 29
- 238000011156 evaluation Methods 0.000 description 21
- 239000011572 manganese Substances 0.000 description 21
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 20
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 19
- 239000007864 aqueous solution Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- 239000002002 slurry Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- PMJNEQWWZRSFCE-UHFFFAOYSA-N 3-ethoxy-3-oxo-2-(thiophen-2-ylmethyl)propanoic acid Chemical compound CCOC(=O)C(C(O)=O)CC1=CC=CS1 PMJNEQWWZRSFCE-UHFFFAOYSA-N 0.000 description 10
- 229910015667 MoO4 Inorganic materials 0.000 description 10
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 10
- 239000011609 ammonium molybdate Substances 0.000 description 10
- 229940010552 ammonium molybdate Drugs 0.000 description 10
- 235000018660 ammonium molybdate Nutrition 0.000 description 10
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 10
- 238000007664 blowing Methods 0.000 description 10
- 229910052593 corundum Inorganic materials 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 10
- 238000005470 impregnation Methods 0.000 description 10
- 239000011259 mixed solution Substances 0.000 description 10
- 239000011148 porous material Substances 0.000 description 10
- 235000010344 sodium nitrate Nutrition 0.000 description 10
- 239000004317 sodium nitrate Substances 0.000 description 10
- 229910001845 yogo sapphire Inorganic materials 0.000 description 10
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 9
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 8
- 230000002195 synergetic effect Effects 0.000 description 7
- IOWOAQVVLHHFTL-UHFFFAOYSA-N technetium(vii) oxide Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Tc+7].[Tc+7] IOWOAQVVLHHFTL-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 4
- HYERJXDYFLQTGF-UHFFFAOYSA-N rhenium Chemical compound [Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re] HYERJXDYFLQTGF-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000010981 drying operation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/888—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
- C07C51/235—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The invention relates to an acrylic acid catalyst prepared by acrolein oxidation, which mainly solves the problems of low acrolein conversion rate and low acrylic acid yield of the existing catalyst, and the acrylic acid catalyst prepared by acrolein oxidation comprises a carrier and an active component loaded on the carrier, wherein the general formula of the active component is as follows: VMoaZnbWcXdYeZfOgWherein X is selected from one or more of Sc, Ti, Y, Zr, Hf, Ta and Cr, Y is selected from Ga, Ge, In, Sn, TI, Pb, Cd, Mn, Tc, Re, Rh, Ir, Pd, Pt, Ag, Au and LaOne or more, Z is selected from alkali metal or alkaline earth metal, better solves the technical problem, can be used in the industrial production of acrylic acid.
Description
Technical Field
The invention relates to a catalyst for preparing acrylic acid by acrolein oxidation, a preparation method thereof and application thereof in preparing acrylic acid by acrolein oxidation.
Background
Acrolein is the simplest unsaturated aldehyde, is an important chemical synthesis intermediate, and is widely used for synthesis of important chemical products such as picoline, pyridine, glutaraldehyde, acrylic acid and the like. Acrylic acid is an important organic chemical raw material, is mainly used for manufacturing multifunctional high polymer materials such as acrylates, and is widely applied to the fields of papermaking, leather, coating, textile, plastics, rubber, oil additives, petroleum exploitation and the like. In recent years, the market demand for acrylic acid has increased worldwide, and the production of acrylic acid has been a focus of research.
The synthesis of acrylic acid by the acrolein oxidation process is currently used on a large industrial scale. The catalyst used for synthesizing acrylic acid by acrolein oxidation method is generally Mo-V series oxide, the basic elements of the catalyst are Mo and V, and other elements used for improving the performance of the catalyst, such as Nb, Sn, Cr, W, Fe, Co, Ni, Sb and the like, are added. US Pat7220698B2 describes the introduction of a trace amount of a catalyst poison into the catalyst preparation process to inhibit thermal degradation of the catalyst and provide stability to the catalyst. US Pat7456129B2 describes varying acid content, controlling acid strength, and improving catalyst performance during catalyst support preparation. CN 16997701 and CN1210511 propose a preparation method of a composite oxide catalyst, which is to Co-precipitate mixed liquor of various element components (containing Fe, Co, Mo, V, Bi, Ni, etc.), dry into powder, perform tabletting, extrusion molding, and finally bake to obtain the composite oxide catalyst. The acrylic acid catalyst can be successfully prepared by the methods and the performance of the catalyst is improved, but the catalyst has poor mechanical strength and low catalytic activity ratio, so that the practical application is limited.
The active components of the catalyst are loaded on the carrier with large specific surface area, so that the mechanical strength of the catalyst can be increased, the loading capacity of the active components is greatly increased, and the active components of the catalyst are exerted to a great extent through a synergistic effect. CN1130172 (preparation method of acrylic acid) describes a preparation method of a spherical catalyst, in which a carrier is added into an active component mixed solution, and is evaporated and dried, so that the active component is deposited on the surface of the carrier. However, the catalytic activity, selectivity and yield of the acrylic acid catalyst obtained in the prior art need to be further improved.
Disclosure of Invention
The invention aims to solve the technical problems of low acrolein conversion rate and low acrylic acid yield of the existing catalyst, and provides a novel catalyst for preparing acrylic acid by acrolein oxidation, which has the characteristics of high acrolein conversion rate and high acrylic acid yield.
The second technical problem to be solved by the invention is a preparation method of the catalyst.
The invention solves the technical problem of the prior art, and the other technical problem is the application of the catalyst.
In order to solve one of the above technical problems, the technical solution of the present invention is as follows:
the catalyst for preparing acrylic acid by acrolein oxidation comprises a carrier and an active component loaded on the carrier, wherein the active component is represented by a general formula: VMoaZnbWcXdYeZfOgWherein X is selected from one or more of Sc, Ti, Y, Zr, Hf, Ta and Cr, Y is selected from at least one of Ga, Ge, In, Sn, TI, Pb, Cd, Mn, Tc, Re, Rh, Ir, Pd, Pt, Ag, Au and La, and Z is selected from one or more of alkali metal or alkaline earth metal; a is the molar ratio of Mo to V, and the value of a is 2.0-8.0; b is the molar ratio of Zn to V, and the value of b is 0.2-0.8; c is the molar ratio of W to V, and the value of c is 0.2-1.0; d is the molar ratio of X to V, and the value of d is 0.2-1.0; e is the molar ratio of Y to V, and the value of e is 0.05-1.2; f is the molar ratio of Z to V, and the value of f is 0.05-1.2; g is the mole number of oxygen atoms needed to satisfy the valence of each element in the active component.
In the above-mentioned embodiments, as one of preferable embodiments, Y preferably includes Tc and Re together, and Tc and Re have a synergistic effect in improving the yield of acrylic acid.
In the above-mentioned second preferred embodiment, Y preferably includes both Tc and Mn, and Tc and Mn have a synergistic effect in increasing the yield of acrylic acid.
In the above technical solution, as a third preferred technical solution, Y preferably includes Tc and La simultaneously, and Tc and La have a synergistic effect in improving the yield of acrylic acid.
In the above technical solutions, as one of the more preferable technical solutions, Y simultaneously includes Tc, Re and Mn, and the three have a synergistic effect of ternary combination in the aspect of improving the yield of acrylic acid.
In the above-mentioned second preferred embodiment, Y simultaneously includes Tc, Mn and La, and the three components have a synergistic effect of ternary combination in improving the yield of acrylic acid.
In the above-mentioned technical solutions, as a third preferred technical solution, Y simultaneously includes Tc, Re and La, and the three have a synergistic effect of ternary combination in the aspect of improving the yield of acrylic acid.
In the above technical scheme, the molar ratio of Mo to V may be, but not limited to, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, and the like.
In the above technical solution, the molar ratio of Zn to V may be, but not limited to, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.70, and the like.
In the above technical scheme, the molar ratio of W to V may be, but not limited to, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.70, and the like.
In the above technical solution, the molar ratio of Cr to V may be, but not limited to, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.70, and the like.
In the above technical scheme, the molar ratio of Na to V may be, but not limited to, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.70, and the like.
In the above technical scheme, the molar ratio of Tc to V may be, but not limited to, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, etc.
In the above technical scheme, the molar ratio of Re to V may be, but not limited to, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, etc.
In the above technical scheme, the molar ratio of Mn to V may be, but not limited to, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, and the like.
In the above technical scheme, the molar ratio of La to V may be, but not limited to, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, etc.
In the above technical scheme, more specific examples of the general formula of the active ingredient can be, but are not limited to:
VMo2.0~8.0Zn0.2~0.8W0.2~1.0Cr0.2~1.0Tc0.05~0.60Re0.05~0.60Na0.05~1.2Og;
VMo2.0~8.0Zn0.2~0.8W0.2~1.0Cr0.2~1.0Tc0.05~0.60Mn0.05~0.60Na0.05~1.2Og;
VMo2.0~8.0Zn0.2~0.8W0.2~1.0Cr0.2~1.0Tc0.05~0.60La0.05~0.60Na0.05~1.2Og;
VMo2.0~8.0Zn0.2~0.8W0.2~1.0Cr0.2~1.0Tc0.05~0.45Re0.05~0.3Mn0.05~0.45Na0.05~1.2Og;
VMo2.0~8.0Zn0.2~0.8W0.2~1.0Cr0.2~1.0Tc0.05~0.45Mn0.05~0.3La0.05~0.45Na0.05~1.2Og;
VMo2.0~8.0Zn0.2~0.8W0.2~1.0Cr0.2~1.0Tc0.05~0.45Re0.05~0.3La0.05~0.45Na0.05~1.2Og;
wherein g is the mole number of oxygen atoms required to satisfy the valence of each element in the active component.
In the technical scheme, the content of the active component in the catalyst is preferably 10-60 w% by weight.
In the technical scheme, the content of the carrier in the catalyst is preferably 40-90 w% by weight.
In the above technical solutions, the shape and size of the carrier are not particularly limited, and all the carriers can obtain comparable technical effects, for which the skilled person can reasonably select. For convenience of comparison, the carriers of the embodiments of the present invention are all spherical.
In the above technical solution, the support is preferably at least one of alumina, lithium oxide, magnesia, zirconia, silica and titania.
To solve the second technical problem, the technical solution of the present invention is as follows:
the method for preparing a catalyst according to any of the preceding technical problems, comprising:
mixing the dispersion liquid of the active component elements with a carrier;
and (4) roasting.
In the above technical solution, the dispersion may be a solution, a suspension, or a mixture of a solution and a suspension.
In the above technical solution, the conditions for calcination are not particularly limited as long as the conditions are such that the specific compounds of all the active elements present in the dispersion can be calcined to the form of oxides, and those skilled in the art can select the conditions for calcination appropriately without creative efforts.
In the above technical scheme, the roasting temperature is 300-550 ℃ by way of example only.
In the above technical scheme, the roasting time is 1-12 hours, which is only an example.
In the above technical scheme, the roasting atmosphere is an inert atmosphere or an atmosphere containing O by way of example only2Of the atmosphere (c). However, the atmosphere for the calcination is preferably air from the economical viewpoint. The atmosphere for calcination in the present invention is air unless otherwise specified.
In the above technical scheme, the catalyst can be prepared by a two-step loading method, specifically as follows:
1. preparation of active element solution
Dissolving a compound of the required active component element to obtain an aqueous solution of the active element; the dissolution step is not particularly limited, and the specific dissolution procedure and process conditions may be appropriately selected by those skilled in the art.
2. Active element loading
2.1 first step load
And (3) mixing the carrier particles with the aqueous solution of the active element obtained in the step (1) (wherein the dosage of the aqueous solution of the active element is 5-50 w% of the required amount of the catalyst), and drying to obtain a catalyst precursor I. The drying temperature can be, but is not limited to, 60-100 ℃, and the drying time can be, but is not limited to, 2-8 hours.
2.2 second step load
Spraying the active element slurry obtained in the step 1 on the catalyst precursor I obtained in the step 2.1, and drying the mixture of the catalyst precursor I and the active element to obtain a catalyst precursor II; wherein the spraying operation and the drying operation are carried out simultaneously or alternately, and no adhesion between particles is suitable, and in order to achieve the degree, the skilled person can match the drying operation process by adjusting the slurry spraying operation. The drying can be carried out by hot air, and the temperature of the hot air can be, but is not limited to, 60-120 ℃.
3. Roasting
Calcining the catalyst precursor II to obtain the catalyst. The catalyst precursor II may further comprise a drying step before calcination, wherein the drying temperature is, for example and without limitation, 60-100 ℃, and the drying time is, for example and without limitation, 2-12 hours. The roasting temperature is, for example, but not limited to, 300-550 ℃, and the roasting time is, for example, but not limited to, 1-12 hours.
The catalyst prepared by the two-step supporting method is surprisingly better in acrolein conversion rate and acrylic acid yield than other methods.
To solve the third technical problem, the technical scheme of the invention is as follows: use of a catalyst according to any of the preceding claims for the preparation of acrylic acid by oxidation of acrolein.
The technical key of the invention is the selection of the catalyst, which can be reasonably selected by the skilled person for the specific application method and process conditions without creative efforts, such as:
a process for producing acrylic acid by oxidizing acrolein, which comprises reacting acrolein with an oxygen-containing oxidizing gas in the presence of the catalyst according to any one of the above-mentioned technical problems.
In the above technical scheme, in order to make the reaction more stable and controllable, the reaction is preferably carried out in the presence of a dilute gas phase material.
In the above embodiment, the oxidizing gas may be pure oxygen or oxygen-rich, but air is preferred from the economical viewpoint.
In the above technical solution, the dilute gas phase material is preferably steam.
In the technical scheme, the reaction temperature can be selected from 100-500 ℃.
In the above technical scheme, in the raw material gas composed of acrolein, air and water vapor, in terms of volume ratio, acrolein: air: the steam is 1 (1-6) and 0.5-5.
In the technical scheme, the volume space velocity of the feed gas is 800-2000 hours-1。
The catalyst evaluation method of the present invention is as follows:
a reactor: a fixed bed reactor with an inner diameter of 25 mm and a reactor length of 750 mm;
catalyst loading: 200 g;
reaction temperature: 280 ℃;
reaction time: 4 hours;
the volume ratio of raw materials is as follows: acrolein: air: water vapor 1: 3.5: 2;
total volume space velocity of raw materials: 1400 hours-1。
Acrolein conversion and acrylic acid yield are defined as follows:
acrolein conversion ═ 100% (molar amount of acrolein reaction/molar amount of acrolein total added);
the yield of acrylic acid (molar amount of acrylic acid produced/total molar amount of acrolein added) × 100%.
The catalyst of the present invention has acrolein converting rate up to 99% and acrylic acid yield up to 96%, and may be used in industrial production of acrylic acid.
Detailed Description
[ example 1 ]
1. Preparation of active element solution
Ammonium metavanadate (molecular formula: NH) containing 0.1 mol of V4VO3) Dissolved in hot water (200 g) at 80 ℃. Ammonium molybdate (molecular formula is (NH)) containing 0.4 mol of Mo4)2MoO4) Adding the mixture, and respectively adding ammonium tungstate (molecular formula: (NH)4)10W12O41) Ammonium chromate containing 0.04 mol Cr (formula: (NH)4)2CrO4) Technetium heptaoxide containing 0.04 mol Tc (formula: tc2O7) Sodium nitrate (molecular formula of NaNO) containing 0.04 mol of Na3) And stirred to dissolve the whole solution to obtain a solution I. Zinc nitrate (molecular formula: Zn (NO): containing 0.04 mol of Zn3)2) Adding the aqueous solution into the above solutions respectively, mixing, evaporating at 80 deg.C until the mixed solution is equivalent to VMo containing active component4Zn0.4W0.4Cr0.4Tc0.4Na0.4OgWas 0.4g/g, to obtain a solution II.
2. Active element loading
First-step loading: solution impregnation
A spherical alumina carrier (BET specific surface area of 3 m) with a diameter of 5mm was used2Per g, pore volume of 0.1m3/g)200g was mixed with 50g of the solution II uniformly and dried at 80 ℃ for 4 hours to obtain a catalyst precursor I.
And a second step of loading: solution spraying
And (2) putting the catalyst precursor I in a coating machine, spraying a solution II on the catalyst precursor I under rotation, blowing hot air at 90 ℃ to the catalyst precursor I sprayed with the solution II for drying, spraying and drying simultaneously without adhesion among particles, and obtaining the catalyst precursor II after the slurry I is completely sprayed to the catalyst precursor I.
3. Roasting
The catalyst precursor II was dried at 90 ℃ for 6 hours and calcined at 400 ℃ for 3 hours to give a catalyst having the following composition:
31w%VMo4Zn0.4W0.4Cr0.4Tc0.4Na0.4Og+69w%Al2O3。
4. catalyst evaluation
The acrolein conversion and acrylic acid yield were examined.
The evaluation results of the supporting step in the catalyst and the catalyst are shown in Table 1 for convenience of comparison.
[ example 2 ]
1. Preparation of active element solution
Ammonium metavanadate (molecular formula: NH) containing 0.1 mol of V4VO3) Dissolved in hot water (200 g) at 80 ℃. Ammonium molybdate (molecular formula is (NH)) containing 0.4 mol of Mo4)2MoO4) Adding the mixture, and respectively adding ammonium tungstate (molecular formula: (NH)4)10W12O41) Ammonium chromate containing 0.04 mol Cr (formula: (NH)4)2CrO4) Rhenium heptoxide (molecular formula: re2O7) Sodium nitrate (molecular formula of NaNO) containing 0.04 mol of Na3) And stirred to dissolve the whole solution to obtain a solution I. Zinc nitrate (molecular formula: Zn (NO): containing 0.04 mol of Zn3)2) Adding the aqueous solution into the above solutions respectively, mixing, evaporating at 80 deg.C until the mixed solution is equivalent to VMo containing active component4Zn0.4W0.4Cr0.4Re0.4Na0.4OgWas 0.4g/g, to obtain a solution II.
2. Active element loading
First-step loading: solution impregnation
A spherical alumina carrier (BET specific surface area of 3 m) with a diameter of 5mm was used2Per g, pore volume of 0.1m3/g)200g was mixed with 50g of the solution II uniformly and dried at 80 ℃ for 4 hours to obtain a catalyst precursor I.
And a second step of loading: solution spraying
And (2) putting the catalyst precursor I in a coating machine, spraying a solution II on the catalyst precursor I under rotation, blowing hot air at 90 ℃ to the catalyst precursor I sprayed with the solution II for drying, spraying and drying simultaneously without adhesion among particles, and obtaining the catalyst precursor II after the slurry I is completely sprayed to the catalyst precursor I.
3. Roasting
The catalyst precursor II was dried at 90 ℃ for 6 hours and calcined at 400 ℃ for 3 hours to give a catalyst having the following composition:
31w%VMo4Zn0.4W0.4Cr0.4Re0.4Na0.4Og+69w%Al2O3
4. catalyst evaluation
The acrolein conversion and acrylic acid yield were examined.
The evaluation results of the supporting step in the catalyst and the catalyst are shown in Table 1 for convenience of comparison.
[ example 3 ]
1. Preparation of active element solution
Ammonium metavanadate (molecular formula: NH) containing 0.1 mol of V4VO3) Dissolved in hot water (200 g) at 80 ℃. Ammonium molybdate (molecular formula is (NH)) containing 0.4 mol of Mo4)2MoO4) Adding the mixture, and respectively adding ammonium tungstate (molecular formula: (NH)4)10W12O41) Ammonium chromate containing 0.04 mol Cr (formula: (NH)4)2CrO4) Manganese nitrate containing 0.04 mol of Mn (molecular formula: mn (NO)3)2) Sodium nitrate (molecular formula of NaNO) containing 0.04 mol of Na3) And stirred to dissolve the whole solution to obtain a solution I. Will contain 0.04 mol of Zn is zinc nitrate (molecular formula: Zn (NO))3)2) Adding the aqueous solution into the above solutions respectively, mixing, evaporating at 80 deg.C until the mixed solution is equivalent to VMo containing active component4Zn0.4W0.4Cr0.4Mn0.4Na0.4OgWas 0.4g/g, to obtain a solution II.
2. Active element loading
First-step loading: solution impregnation
A spherical alumina carrier (BET specific surface area of 3 m) with a diameter of 5mm was used2Per g, pore volume of 0.1m3/g)200g was mixed with 50g of the solution II uniformly and dried at 80 ℃ for 4 hours to obtain a catalyst precursor I.
And a second step of loading: solution spraying
And (2) putting the catalyst precursor I in a coating machine, spraying a solution II on the catalyst precursor I under rotation, blowing hot air at 90 ℃ to the catalyst precursor I sprayed with the solution II for drying, spraying and drying simultaneously without adhesion among particles, and obtaining the catalyst precursor II after the slurry I is completely sprayed to the catalyst precursor I.
3. Roasting
The catalyst precursor II was dried at 90 ℃ for 6 hours and calcined at 400 ℃ for 3 hours to give a catalyst having the following composition:
31w%VMo4Zn0.4W0.4Cr0.4Mn0.4Na0.4Og+69w%Al2O3
4. catalyst evaluation
The acrolein conversion and acrylic acid yield were examined.
The evaluation results of the supporting step in the catalyst and the catalyst are shown in Table 1 for convenience of comparison.
[ example 4 ]
1. Preparation of active element solution
Ammonium metavanadate (molecular formula: NH) containing 0.1 mol of V4VO3) Dissolved in hot water (200 g) at 80 ℃. Ammonium molybdate (molecular formula is (NH)) containing 0.4 mol of Mo4)2MoO4) Adding into it, and dividingAmmonium tungstate (molecular formula is (NH)) with the weight of 0.04 mol of W is added4)10W12O41) Ammonium chromate containing 0.04 mol Cr (formula: (NH)4)2CrO4) Lanthanum oxide containing 0.04 mol of La (formula: la2O3) Sodium nitrate (molecular formula of NaNO) containing 0.04 mol of Na3) And stirred to dissolve the whole solution to obtain a solution I. Zinc nitrate (molecular formula: Zn (NO): containing 0.04 mol of Zn3)2) Adding the aqueous solution into the above solutions respectively, mixing, evaporating at 80 deg.C until the mixed solution is equivalent to VMo containing active component4Zn0.4W0.4Cr0.4La0.4Na0.4OgWas 0.4g/g, to obtain a solution II.
2. Active element loading
First-step loading: solution impregnation
A spherical alumina carrier (BET specific surface area of 3 m) with a diameter of 5mm was used2Per g, pore volume of 0.1m3/g)200g was mixed with 50g of the solution II uniformly and dried at 80 ℃ for 4 hours to obtain a catalyst precursor I.
And a second step of loading: solution spraying
And (2) putting the catalyst precursor I in a coating machine, spraying a solution II on the catalyst precursor I under rotation, blowing hot air at 90 ℃ to the catalyst precursor I sprayed with the solution II for drying, spraying and drying simultaneously without adhesion among particles, and obtaining the catalyst precursor II after the slurry I is completely sprayed to the catalyst precursor I.
3. Roasting
The catalyst precursor II was dried at 90 ℃ for 6 hours and calcined at 400 ℃ for 3 hours to give a catalyst having the following composition:
31w%VMo4Zn0.4W0.4Cr0.4La0.4Na0.4Og+69w%Al2O3
4. catalyst evaluation
The acrolein conversion and acrylic acid yield were examined.
The evaluation results of the supporting step in the catalyst and the catalyst are shown in Table 1 for convenience of comparison.
[ example 5 ]
1. Preparation of active element solution
Ammonium metavanadate (molecular formula: NH) containing 0.1 mol of V4VO3) Dissolved in hot water (200 g) at 80 ℃. Ammonium molybdate (molecular formula is (NH)) containing 0.4 mol of Mo4)2MoO4) Adding the mixture, and respectively adding ammonium tungstate (molecular formula: (NH)4)10W12O41) Ammonium chromate containing 0.04 mol Cr (formula: (NH)4)2CrO4) Technetium heptaoxide containing 0.02 mol Tc (formula: tc2O7) Rhenium heptoxide (molecular formula: re2O7) Sodium nitrate (molecular formula of NaNO) containing 0.04 mol of Na3) And stirred to dissolve the whole solution to obtain a solution I. Zinc nitrate (molecular formula: Zn (NO): containing 0.04 mol of Zn3)2) Adding the aqueous solution into the above solutions respectively, mixing, evaporating at 80 deg.C until the mixed solution is equivalent to VMo containing active component4Zn0.4W0.4Cr0.4Tc0.2Re0.2Na0.4OgWas 0.4g/g, to obtain a solution II.
2. Active element loading
First-step loading: solution impregnation
A spherical alumina carrier (BET specific surface area of 3 m) with a diameter of 5mm was used2Per g, pore volume of 0.1m3/g)200g was mixed with 50g of the solution II uniformly and dried at 80 ℃ for 4 hours to obtain a catalyst precursor I.
And a second step of loading: solution spraying
And (2) putting the catalyst precursor I in a coating machine, spraying a solution II on the catalyst precursor I under rotation, blowing hot air at 90 ℃ to the catalyst precursor I sprayed with the solution II for drying, spraying and drying simultaneously without adhesion among particles, and obtaining the catalyst precursor II after the slurry I is completely sprayed to the catalyst precursor I.
3. Roasting
The catalyst precursor II was dried at 90 ℃ for 6 hours and calcined at 400 ℃ for 3 hours to give a catalyst having the following composition:
31w%VMo4Zn0.4W0.4Cr0.4Tc0.2Re0.2Na0.4Og+69w%Al2O3。
4. catalyst evaluation
The acrolein conversion and acrylic acid yield were examined.
The evaluation results of the supporting step in the catalyst and the catalyst are shown in Table 1 for convenience of comparison.
[ example 6 ]
1. Preparation of active element solution
Ammonium metavanadate (molecular formula: NH) containing 0.1 mol of V4VO3) Dissolved in hot water (200 g) at 80 ℃. Ammonium molybdate (molecular formula is (NH)) containing 0.4 mol of Mo4)2MoO4) Adding the mixture, and respectively adding ammonium tungstate (molecular formula: (NH)4)10W12O41) Ammonium chromate containing 0.04 mol Cr (formula: (NH)4)2CrO4) Technetium heptaoxide containing 0.02 mol Tc (formula: tc2O7) Manganese nitrate containing 0.02 mol of Mn (molecular formula: mn (NO)3)2) Sodium nitrate (molecular formula of NaNO) containing 0.04 mol of Na3) And stirred to dissolve the whole solution to obtain a solution I. Zinc nitrate (molecular formula: Zn (NO): containing 0.04 mol of Zn3)2) Adding the aqueous solution into the above solutions respectively, mixing, evaporating at 80 deg.C until the mixed solution is equivalent to VMo containing active component4Zn0.4W0.4Cr0.4Tc0.2Mn0.2Na0.4OgWas 0.4g/g, to obtain a solution II.
2. Active element loading
First-step loading: solution impregnation
A spherical alumina carrier (BET specific surface area of 3 m) with a diameter of 5mm was used2Per g, pore volume of 0.1m3Per g)200g and 50g of solutionII, mixing them uniformly, and drying at 80 ℃ for 4 hours to obtain the catalyst precursor I.
And a second step of loading: solution spraying
And (2) putting the catalyst precursor I in a coating machine, spraying a solution II on the catalyst precursor I under rotation, blowing hot air at 90 ℃ to the catalyst precursor I sprayed with the solution II for drying, spraying and drying simultaneously without adhesion among particles, and obtaining the catalyst precursor II after the slurry I is completely sprayed to the catalyst precursor I.
3. Roasting
The catalyst precursor II was dried at 90 ℃ for 6 hours and calcined at 400 ℃ for 3 hours to give a catalyst having the following composition:
31w%VMo4Zn0.4W0.4Cr0.4Tc0.2Mn0.2Na0.4Og+69w%Al2O3。
4. catalyst evaluation
The acrolein conversion and acrylic acid yield were examined.
The evaluation results of the supporting step in the catalyst and the catalyst are shown in Table 1 for convenience of comparison.
[ example 7 ]
1. Preparation of active element solution
Ammonium metavanadate (molecular formula: NH) containing 0.1 mol of V4VO3) Dissolved in hot water (200 g) at 80 ℃. Ammonium molybdate (molecular formula is (NH)) containing 0.4 mol of Mo4)2MoO4) Adding the mixture, and respectively adding ammonium tungstate (molecular formula: (NH)4)10W12O41) Ammonium chromate containing 0.04 mol Cr (formula: (NH)4)2CrO4) Technetium heptaoxide containing 0.02 mol Tc (formula: tc2O7) Lanthanum oxide containing 0.02 mol of La (molecular formula: la2O3) Sodium nitrate (molecular formula of NaNO) containing 0.04 mol of Na3) And stirred to dissolve the whole solution to obtain a solution I. Zinc nitrate (molecular formula: Zn (NO): containing 0.04 mol of Zn3)2) Adding the aqueous solution into the above solutions respectivelyUniformly mixing, evaporating at 80 ℃ until the mixed material solution is equivalent to VMo containing active component4Zn0.4W0.4Cr0.4Tc0.2La0.2Na0.4OgWas 0.4g/g, to obtain a solution II.
2. Active element loading
First-step loading: solution impregnation
A spherical alumina carrier (BET specific surface area of 3 m) with a diameter of 5mm was used2Per g, pore volume of 0.1m3/g)200g was mixed with 50g of the solution II uniformly and dried at 80 ℃ for 4 hours to obtain a catalyst precursor I.
And a second step of loading: solution spraying
And (2) putting the catalyst precursor I in a coating machine, spraying a solution II on the catalyst precursor I under rotation, blowing hot air at 90 ℃ to the catalyst precursor I sprayed with the solution II for drying, spraying and drying simultaneously without adhesion among particles, and obtaining the catalyst precursor II after the slurry I is completely sprayed to the catalyst precursor I.
3. Roasting
The catalyst precursor II was dried at 90 ℃ for 6 hours and calcined at 400 ℃ for 3 hours to give a catalyst having the following composition:
31w%VMo4Zn0.4W0.4Cr0.4Tc0.2La0.2Na0.4Og+69w%Al2O3。
4. catalyst evaluation
The acrolein conversion and acrylic acid yield were examined.
The evaluation results of the supporting step in the catalyst and the catalyst are shown in Table 1 for convenience of comparison.
[ example 8 ]
1. Preparation of active element solution
Ammonium metavanadate (molecular formula: NH) containing 0.1 mol of V4VO3) Dissolved in hot water (200 g) at 80 ℃. Ammonium molybdate (molecular formula is (NH)) containing 0.4 mol of Mo4)2MoO4) Adding the mixture, and respectively adding ammonium tungstate (molecular formula: (NH)4)10W12O41) Ammonium chromate containing 0.04 mol Cr (formula: (NH)4)2CrO4) Technetium heptaoxide containing 0.015 mol of Tc (molecular formula: tc2O7) Rhenium heptoxide (molecular formula: re2O7) Manganese nitrate containing 0.015 mol of Mn (molecular formula: mn (NO)3)2) Sodium nitrate (molecular formula of NaNO) containing 0.04 mol of Na3) And stirred to dissolve the whole solution to obtain a solution I. Zinc nitrate (molecular formula: Zn (NO): containing 0.04 mol of Zn3)2) Adding the aqueous solution into the above solutions respectively, mixing, evaporating at 80 deg.C until the mixed solution is equivalent to VMo containing active component4Zn0.4W0.4Cr0.4Tc0.15Re0.1Mn0.15Na0.4OgWas 0.4g/g, to obtain a solution II.
2. Active element loading
First-step loading: solution impregnation
A spherical alumina carrier (BET specific surface area of 3 m) with a diameter of 5mm was used2Per g, pore volume of 0.1m3/g)200g was mixed with 50g of the solution II uniformly and dried at 80 ℃ for 4 hours to obtain a catalyst precursor I.
And a second step of loading: solution spraying
And (2) putting the catalyst precursor I in a coating machine, spraying a solution II on the catalyst precursor I under rotation, blowing hot air at 90 ℃ to the catalyst precursor I sprayed with the solution II for drying, spraying and drying simultaneously without adhesion among particles, and obtaining the catalyst precursor II after the slurry I is completely sprayed to the catalyst precursor I.
3. Roasting
The catalyst precursor II was dried at 90 ℃ for 6 hours and calcined at 400 ℃ for 3 hours to give a catalyst having the following composition:
31w%VMo4Zn0.4W0.4Cr0.4Tc0.15Re0.1Mn0.15Na0.4Og+69w%Al2O3
4. catalyst evaluation
The acrolein conversion and acrylic acid yield were examined.
The evaluation results of the supporting step in the catalyst and the catalyst are shown in Table 1 for convenience of comparison.
[ example 9 ]
1. Preparation of active element solution
Ammonium metavanadate (molecular formula: NH) containing 0.1 mol of V4VO3) Dissolved in hot water (200 g) at 80 ℃. Ammonium molybdate (molecular formula is (NH)) containing 0.4 mol of Mo4)2MoO4) Adding the mixture, and respectively adding ammonium tungstate (molecular formula: (NH)4)10W12O41) Ammonium chromate containing 0.04 mol Cr (formula: (NH)4)2CrO4) Technetium heptaoxide containing 0.015 mol of Tc (molecular formula: tc2O7) Manganese nitrate containing 0.01 mol of Mn (molecular formula: mn (NO)3)2) Lanthanum oxide containing 0.015 mol of La (molecular formula: la2O3) Sodium nitrate (molecular formula of NaNO) containing 0.04 mol of Na3) And stirred to dissolve the whole solution to obtain a solution I. Zinc nitrate (molecular formula: Zn (NO): containing 0.04 mol of Zn3)2) Adding the aqueous solution into the above solutions respectively, mixing, evaporating at 80 deg.C until the mixed solution is equivalent to VMo containing active component4Zn0. 4W0.4Cr0.4Tc0.15Mn0.1La0.15Na0.4OgWas 0.4g/g, to obtain a solution II.
2. Active element loading
First-step loading: solution impregnation
A spherical alumina carrier (BET specific surface area of 3 m) with a diameter of 5mm was used2Per g, pore volume of 0.1m3/g)200g was mixed with 50g of the solution II uniformly and dried at 80 ℃ for 4 hours to obtain a catalyst precursor I.
And a second step of loading: solution spraying
And (2) putting the catalyst precursor I in a coating machine, spraying a solution II on the catalyst precursor I under rotation, blowing hot air at 90 ℃ to the catalyst precursor I sprayed with the solution II for drying, spraying and drying simultaneously without adhesion among particles, and obtaining the catalyst precursor II after the slurry I is completely sprayed to the catalyst precursor I.
3. Roasting
The catalyst precursor II was dried at 90 ℃ for 6 hours and calcined at 400 ℃ for 3 hours to give a catalyst having the following composition:
31w%VMo4Zn0.4W0.4Cr0.4Tc0.15Mn0.1La0.15Na0.4Og+69w%Al2O3
4. catalyst evaluation
The acrolein conversion and acrylic acid yield were examined.
The evaluation results of the supporting step in the catalyst and the catalyst are shown in Table 1 for convenience of comparison.
[ example 10 ]
1. Preparation of active element solution
Ammonium metavanadate (molecular formula: NH) containing 0.1 mol of V4VO3) Dissolved in hot water (200 g) at 80 ℃. Ammonium molybdate (molecular formula is (NH)) containing 0.4 mol of Mo4)2MoO4) Adding the mixture, and respectively adding ammonium tungstate (molecular formula: (NH)4)10W12O41) Ammonium chromate containing 0.04 mol Cr (formula: (NH)4)2CrO4) Technetium heptaoxide containing 0.015 mol of Tc (molecular formula: tc2O7) Rhenium heptoxide (molecular formula: re2O7) Lanthanum oxide containing 0.015 mol of La (molecular formula: la2O3) Sodium nitrate (molecular formula of NaNO) containing 0.04 mol of Na3) And stirred to dissolve the whole solution to obtain a solution I. Zinc nitrate (molecular formula: Zn (NO): containing 0.04 mol of Zn3)2) Adding the aqueous solution into the above solutions respectively, mixing, evaporating at 80 deg.C until the mixed solution is equivalent to VMo containing active component4Zn0. 4W0.4Cr0.4Tc0.15Re0.1La0.15Na0.4OgWas 0.4g/g, to obtain a solution II.
2. Active element loading
First-step loading: solution impregnation
A spherical alumina carrier (BET specific surface area of 3 m) with a diameter of 5mm was used2Per g, pore volume of 0.1m3/g)200g was mixed with 50g of the solution II uniformly and dried at 80 ℃ for 4 hours to obtain a catalyst precursor I.
And a second step of loading: solution spraying
And (2) putting the catalyst precursor I in a coating machine, spraying a solution II on the catalyst precursor I under rotation, blowing hot air at 90 ℃ to the catalyst precursor I sprayed with the solution II for drying, spraying and drying simultaneously without adhesion among particles, and obtaining the catalyst precursor II after the slurry I is completely sprayed to the catalyst precursor I.
3. Roasting
The catalyst precursor II was dried at 90 ℃ for 6 hours and calcined at 400 ℃ for 3 hours to give a catalyst having the following composition:
31w%VMo4Zn0.4W0.4Cr0.4Tc0.15Re0.1La0.15Na0.4Og+69w%Al2O3
4. catalyst evaluation
The acrolein conversion and acrylic acid yield were examined.
The evaluation results of the supporting step in the catalyst and the catalyst are shown in Table 1 for convenience of comparison.
TABLE 1
Claims (10)
1. The catalyst for preparing acrylic acid by acrolein oxidation comprises a carrier and an active component loaded on the carrier, wherein the active component is represented by a general formula: VMoaZnbWcXdYeZfOgWherein X is a bagComprises one or more selected from Sc, Ti, Y, Zr, Hf, Ta and Cr, wherein Y comprises at least one selected from Ga, Ge, In, Sn, TI, Pb, Cd, Mn, Tc, Re, Rh, Ir, Pd, Pt, Ag, Au and La, and Z is one or more selected from alkali metal or alkaline earth metal; a is the molar ratio of Mo to V, and the value of a is 2.0-8.0; b is the molar ratio of Zn to V, and the value of b is 0.2-0.8; c is the molar ratio of W to V, and the value of c is 0.2-1.0; d is the molar ratio of X to V, and the value of d is 0.2-1.0; e is the molar ratio of Y to V, and the value of e is 0.05-1.2; f is the molar ratio of Z to V, and the value of f is 0.05-1.2; g is the mole number of oxygen atoms needed to satisfy the valence of each element in the active component.
2. The catalyst according to claim 1, wherein the active component content in the catalyst is 10 to 60 w% by weight.
3. The catalyst according to claim 1, wherein the carrier content in the catalyst is 40 to 90 w% by weight.
4. The catalyst according to claim 1, wherein the carrier is at least one selected from the group consisting of alumina, lithium oxide, magnesia, zirconia, silica and titania.
5. A method of preparing the catalyst of claim 1, comprising:
mixing the dispersion liquid of the active component elements with a carrier;
and (4) roasting.
6. The method according to claim 5, wherein the dispersion is a solution, a suspension or a mixture of a solution and a suspension.
7. The method according to claim 5, wherein the calcination temperature is 300 to 550 ℃.
8. The method according to claim 5, wherein the calcination time is 1 to 12 hours.
9. The method according to claim 5, wherein the atmosphere for calcination is an inert atmosphere or an atmosphere containing O2Of the atmosphere (c).
10. Use of the catalyst of claim 1 in the manufacture of acrylic acid by oxidation of acrolein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810674898.9A CN110639536A (en) | 2018-06-27 | 2018-06-27 | Catalyst for preparing acrylic acid by acrolein oxidation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810674898.9A CN110639536A (en) | 2018-06-27 | 2018-06-27 | Catalyst for preparing acrylic acid by acrolein oxidation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110639536A true CN110639536A (en) | 2020-01-03 |
Family
ID=68988824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810674898.9A Pending CN110639536A (en) | 2018-06-27 | 2018-06-27 | Catalyst for preparing acrylic acid by acrolein oxidation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110639536A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112774673A (en) * | 2021-02-05 | 2021-05-11 | 西安凯立新材料股份有限公司 | Catalyst for preparing acrylic acid by acrolein air oxidation and preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012102411A2 (en) * | 2011-01-28 | 2012-08-02 | 日本化薬株式会社 | Catalyst for selectively reducing saturated aldehyde, and production method therefor |
CN103769148A (en) * | 2012-10-25 | 2014-05-07 | 中国石油化工股份有限公司 | Acrolein oxidation to acrylic acid catalyst, preparation method and application of catalyst |
CN104185617A (en) * | 2012-03-29 | 2014-12-03 | 株式会社日本触媒 | Process for producing acrylic acid using fixed-bed multitubular reactor |
CN104226328A (en) * | 2013-06-17 | 2014-12-24 | 中国石油化工股份有限公司 | Catalyst for synthesis of acrylic acid, preparation method thereof and synthetic method of acrylic acid |
CN104646017A (en) * | 2013-11-19 | 2015-05-27 | 中国石油天然气股份有限公司 | Catalyst for selective oxidation of acrolein and preparation method thereof |
JP2018043197A (en) * | 2016-09-15 | 2018-03-22 | 日本化薬株式会社 | Catalyst for manufacturing acrylic acid |
-
2018
- 2018-06-27 CN CN201810674898.9A patent/CN110639536A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012102411A2 (en) * | 2011-01-28 | 2012-08-02 | 日本化薬株式会社 | Catalyst for selectively reducing saturated aldehyde, and production method therefor |
CN104185617A (en) * | 2012-03-29 | 2014-12-03 | 株式会社日本触媒 | Process for producing acrylic acid using fixed-bed multitubular reactor |
CN103769148A (en) * | 2012-10-25 | 2014-05-07 | 中国石油化工股份有限公司 | Acrolein oxidation to acrylic acid catalyst, preparation method and application of catalyst |
CN104226328A (en) * | 2013-06-17 | 2014-12-24 | 中国石油化工股份有限公司 | Catalyst for synthesis of acrylic acid, preparation method thereof and synthetic method of acrylic acid |
CN104646017A (en) * | 2013-11-19 | 2015-05-27 | 中国石油天然气股份有限公司 | Catalyst for selective oxidation of acrolein and preparation method thereof |
JP2018043197A (en) * | 2016-09-15 | 2018-03-22 | 日本化薬株式会社 | Catalyst for manufacturing acrylic acid |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112774673A (en) * | 2021-02-05 | 2021-05-11 | 西安凯立新材料股份有限公司 | Catalyst for preparing acrylic acid by acrolein air oxidation and preparation method and application thereof |
CN112774673B (en) * | 2021-02-05 | 2022-10-18 | 西安凯立新材料股份有限公司 | Catalyst for preparing acrylic acid by acrolein air oxidation and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111068698A (en) | Catalyst for preparing acrolein by propylene oxidation and application thereof | |
CN111068699A (en) | Catalyst suitable for producing acrolein and use thereof | |
CN111068711A (en) | Acrylic acid catalyst and application thereof | |
CN110639536A (en) | Catalyst for preparing acrylic acid by acrolein oxidation | |
CN110642709A (en) | Method for preparing acrylic acid by acrolein oxidation | |
CN110639537A (en) | Method for synthesizing acrylic acid by oxidizing acrolein | |
CN110590539A (en) | Method for producing acrylic acid | |
CN110639506A (en) | Catalyst for producing acrylic acid | |
CN110586122A (en) | Acrylic acid catalyst | |
CN110586075A (en) | Catalyst for producing acrylic acid by acrolein oxidation | |
CN110052265A (en) | The oxidation of aldehydes catalyst and preparation method thereof for preparing methacrylic acid of metering system | |
CN109304155B (en) | Catalyst for acrylic acid synthesis | |
CN109305905B (en) | Method for synthesizing acrylic acid | |
CN110586074A (en) | Catalyst for acrylic acid production | |
CN110586121A (en) | Supported acrylic acid catalyst | |
CN109305910A (en) | Methacrylaldehyde acrylic acid | |
CN110586071A (en) | Supported catalyst for production of acrylic acid | |
CN110642710A (en) | Catalyst for synthesizing acrylic acid by oxidizing acrolein | |
CN110590537A (en) | Method for producing acrylic acid by acrolein oxidation | |
CN110586070A (en) | Method for producing acrylic acid by using supported catalyst | |
CN110586123A (en) | Method for preparing acrylic acid by using supported catalyst | |
CN110586076A (en) | Catalyst for synthesizing acrylic acid | |
CN110586119A (en) | Supported catalyst for preparing acrylic acid | |
CN110590538A (en) | Acrylic acid synthesis method | |
CN110639505A (en) | Method for producing acrylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200103 |