CN110599499B - MRI image heart structure segmentation method based on multipath convolutional neural network - Google Patents
MRI image heart structure segmentation method based on multipath convolutional neural network Download PDFInfo
- Publication number
- CN110599499B CN110599499B CN201910780248.7A CN201910780248A CN110599499B CN 110599499 B CN110599499 B CN 110599499B CN 201910780248 A CN201910780248 A CN 201910780248A CN 110599499 B CN110599499 B CN 110599499B
- Authority
- CN
- China
- Prior art keywords
- heart
- cardiac
- segmentation
- mri
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000011218 segmentation Effects 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 11
- 238000000605 extraction Methods 0.000 claims abstract description 49
- 238000012549 training Methods 0.000 claims abstract description 36
- 239000000284 extract Substances 0.000 claims abstract description 17
- 230000000747 cardiac effect Effects 0.000 claims description 104
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 61
- 239000010410 layer Substances 0.000 claims description 28
- 239000011229 interlayer Substances 0.000 claims description 23
- 238000013184 cardiac magnetic resonance imaging Methods 0.000 claims description 16
- 238000011176 pooling Methods 0.000 claims description 11
- 238000002372 labelling Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 6
- 230000004927 fusion Effects 0.000 claims description 6
- 230000002159 abnormal effect Effects 0.000 claims description 5
- 230000003205 diastolic effect Effects 0.000 claims description 5
- 101100295091 Arabidopsis thaliana NUDT14 gene Proteins 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims 3
- 238000013528 artificial neural network Methods 0.000 abstract description 3
- 238000013135 deep learning Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 230000002861 ventricular Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 210000001174 endocardium Anatomy 0.000 description 3
- 230000004217 heart function Effects 0.000 description 3
- 238000003709 image segmentation Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 210000005240 left ventricle Anatomy 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- 230000002107 myocardial effect Effects 0.000 description 2
- 238000011158 quantitative evaluation Methods 0.000 description 2
- 210000005241 right ventricle Anatomy 0.000 description 2
- 208000020446 Cardiac disease Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/174—Segmentation; Edge detection involving the use of two or more images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30048—Heart; Cardiac
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明涉及医学图像处理领域,尤其涉及基于多路卷积神经网络的MRI图像心脏结构分割方法。The invention relates to the field of medical image processing, in particular to a method for segmenting a cardiac structure of an MRI image based on a multi-channel convolutional neural network.
背景技术Background technique
根据世界卫生组织统计,心血管疾病是全球致死率最高的疾病,2016年约有1970万人死于心血管疾病。在临床中,心脏功能分析对于心脏疾病诊断、风险评估、患者管理、治疗决策具有重要作用。这通常是借助心脏数字图像通过评估一系列临床指标例如心室体积、射血分数、每搏量、心肌质量等,来定量分析全局或局部心脏功能。由于对软组织的良好判别性,通过电影MRI图像进行左、右心室射血分数、每搏量、左心室质量、心肌厚度的评估成为心脏功能分析的金标准.而这些定量指标的评估,需要对舒张及收缩末期这两个阶段的左心室内膜和心外膜,以及右室内膜进行准确的分割。在临床实践中,医生手动分割不仅费时费力,依赖医生经验,不同医生甚至同一医生的两次分割结果还都具有很大的可变性。因此,迫切需要准确的自动分割方法。According to the World Health Organization, cardiovascular disease is the disease with the highest fatality rate in the world, and about 19.7 million people died of cardiovascular disease in 2016. In clinical practice, cardiac function analysis plays an important role in cardiac disease diagnosis, risk assessment, patient management, and treatment decision-making. This is typically the quantitative analysis of global or local cardiac function with the aid of digital images of the heart by assessing a range of clinical indicators such as ventricular volume, ejection fraction, stroke volume, myocardial mass, etc. Due to the good discrimination of soft tissue, the evaluation of left and right ventricular ejection fraction, stroke volume, left ventricular mass, and myocardial thickness through cine MRI images has become the gold standard for cardiac function analysis. The evaluation of these quantitative indicators requires The endocardium and epicardium of the left ventricle, as well as the endocardium of the right ventricle, were accurately segmented during both diastolic and end-systolic phases. In clinical practice, manual segmentation by doctors is not only time-consuming and labor-intensive, but also depends on the doctor's experience, and the two segmentation results of different doctors or even the same doctor also have great variability. Therefore, accurate automatic segmentation methods are urgently needed.
心脏电影MRI图像中心脏结构的分割目前有人工手动分割方式,传统自动分割方法以及基于深度学习的分割方法。人工手动分割方式是医生在二维图像上逐层进行人工描绘,再根据人工描绘的结果进行进一步的分析和诊断。但人工标注工作量大,耗时费力,可重复性差,使得医生标注能力不足以满足大量潜在病人的需求;同时,标注人员专业水平及经验差异较大,人工分割结果存在较大差异,质量无法保证。The segmentation of cardiac structures in cardiac cine MRI images currently includes manual segmentation methods, traditional automatic segmentation methods, and segmentation methods based on deep learning. The manual manual segmentation method is that doctors manually describe layer by layer on the two-dimensional image, and then conduct further analysis and diagnosis according to the results of the manual description. However, the manual labeling workload is large, time-consuming and labor-intensive, and the repeatability is poor, so that the doctor's labeling ability is not enough to meet the needs of a large number of potential patients; at the same time, the professional level and experience of the labeling personnel are quite different, and the results of manual segmentation are quite different, and the quality cannot be ensure.
传统自动分割方法,基于图像或可变形模型的方法可通过与用户交互的方式完成分割过程,需要人工进行分割结果的确认及标注结果调整。基于模型的分割方法如活动形状模型、图谱模型,可采用以大量数据构建大体模型的方式来减少用户交互,来完成自动分割过程。然而,基于图像和可变形模型的心脏分割方法通常需要用户交互,鲁棒性差,且分割准确度低。基于模型的方法如活动形状模型、图谱模型的方法虽然可减少用户交互,但是不同人(包括正常人以及有心脏疾病的病人)心脏形状以及动态多种多样,建立包含心室所有可能的形状的通用模型是很困难的,存在模型通用性、泛化性能差的问题。Traditional automatic segmentation methods, methods based on images or deformable models can complete the segmentation process by interacting with users, requiring manual confirmation of segmentation results and adjustment of annotation results. Model-based segmentation methods, such as active shape model and graph model, can be used to reduce user interaction by constructing a general model with a large amount of data to complete the automatic segmentation process. However, image- and deformable-model-based cardiac segmentation methods usually require user interaction, suffer from poor robustness, and have low segmentation accuracy. Although model-based methods such as active shape models and atlas model methods can reduce user interaction, the heart shapes and dynamics of different people (including normal people and patients with heart disease) are diverse, and a universal model that includes all possible shapes of the ventricle is established. The model is very difficult, and there are problems of model generality and poor generalization performance.
随着近年深度学习的发展,基于深度学习的分割方法被引入到心脏MRI图像分割中来。基于深度学习的分割方法自动从原始心脏图像中提取特征完成自动分割过程,通常无需用户交互。基于深度学习的方法可以得到较为准确的全自动分割结果,但是现有基于深度学习的心脏分割方法,多采用2D的分割方法并未考虑层间上下文信息,层间上下文信息对于准确分割、提升分割性能是很有价值的。忽略层间上下文信息不符合临床医生的实际工作流程。同时,由于心脏电影MRI图像自身扫描层厚、间距大的特点,直接通过3D分割方法利用层间上下文信息不仅计算开销大而且可能无法带来性能提升。With the development of deep learning in recent years, segmentation methods based on deep learning have been introduced into cardiac MRI image segmentation. Deep learning-based segmentation methods automatically extract features from raw cardiac images to complete the automatic segmentation process, usually without user interaction. The method based on deep learning can obtain more accurate automatic segmentation results, but the existing heart segmentation methods based on deep learning mostly use 2D segmentation methods without considering the context information between layers, which is important for accurate segmentation and improved segmentation. Performance is valuable. Ignoring inter-layer contextual information is not in line with the clinician's actual workflow. At the same time, due to the characteristics of thick slices and large spacing in the scanning of cardiac cine MRI images, the direct use of inter-layer context information through 3D segmentation method not only has high computational cost but also may not bring about performance improvement.
因此,如何提高心脏电影MRI图像自动分割的准确性、提升分割性能成为急需解决的问题。Therefore, how to improve the accuracy of automatic segmentation of cardiac cine MRI images and improve the segmentation performance has become an urgent problem to be solved.
发明内容SUMMARY OF THE INVENTION
针对现有技术之不足,本发明提出一种基于多路卷积神经网络的MRI图像心脏结构分割方法,所述方法包括:In view of the deficiencies of the prior art, the present invention proposes a method for segmenting the cardiac structure of an MRI image based on a multi-channel convolutional neural network, the method comprising:
步骤1:收集心脏电影MRI训练数据,包括正常人的正常心脏电影MRI图像和心脏病人的异常心脏电影MRI图像,所述心脏电影MRI训练数据包括心脏舒张及收缩阶段的电影MRI图像;Step 1: collecting cardiac cine MRI training data, including normal cardiac cine MRI images of normal persons and abnormal cardiac cine MRI images of cardiac patients, the cardiac cine MRI training data including cine MRI images of the diastolic and systolic phases of the heart;
步骤2:由经验丰富的医生手动对心脏电影MRI训练数据中的心脏结构进行逐层标注,并将标注结果作为心脏分割标准结果;Step 2: The cardiac structure in the cardiac cine MRI training data is manually labeled layer by layer by an experienced doctor, and the labeling result is used as the standard result of cardiac segmentation;
步骤3:心脏区域提取生成对抗网络训练,设计并建立基于生成对抗网络的心脏区域提取模型,从收集到的所述心脏电影MRI训练数据中提取出心脏区域图像,提取出的心脏区域图像由多个心脏MRI切片图像叠加构成;Step 3: heart region extraction generative adversarial network training, design and build a heart region extraction model based on generative adversarial network, extract cardiac region images from the collected cardiac cine MRI training data, and the extracted cardiac region images are composed of multiple Each cardiac MRI slice image is superimposed;
步骤4:基于多路卷积神经网络的心脏分割网络训练,设计并建立结合层间上下文信息的深度卷积分割网络,步骤包括:Step 4: Design and build a deep convolutional segmentation network combining context information between layers based on the training of the heart segmentation network of the multi-channel convolutional neural network. The steps include:
步骤41:对步骤3提取出的心脏区域进行心脏结构的分割,以迭代的方式将相邻层的MRI切片图像信息以及相邻上层的已有分割结果信息作为层间上下文信息;Step 41: segment the cardiac structure on the heart region extracted in step 3, and use the MRI slice image information of the adjacent layer and the existing segmentation result information of the adjacent upper layer as the inter-layer context information in an iterative manner;
步骤42:将所述层间上下文信息分别输入到各自对应的特征提取分支中,,每个所述特征提取分支采用独立的并行结构,即每个层间上下文特征提取分支采用相同的网络结构但是独立处理其对应的一种层间上下文信息;Step 42: Input the inter-layer context information into the respective corresponding feature extraction branches, each of the feature extraction branches adopts an independent parallel structure, that is, each inter-layer context feature extraction branch adopts the same network structure but Independently process a corresponding inter-layer context information;
步骤43:各分支通过叠加多个卷积及池化操作提取图像的高层抽象特征,并经特征融合模块进行融合;Step 43: Each branch extracts the high-level abstract features of the image by stacking multiple convolution and pooling operations, and fuses them through the feature fusion module;
步骤44:特征融合模块先将每个所述特征提取分支提取到的高层抽象特征进行串连,然后通过ASPP模块进一步融合这些高层特征,融合后的特征经由解码模块的上采样、局部细节信息补偿以及卷积操作将图像恢复到输入进分割网络时的尺寸,得到端到端的密集多结构同时分割概率图,并由概率图确定各个像素所属类别从而得到最终的分割结果;Step 44: The feature fusion module first concatenates the high-level abstract features extracted by each of the feature extraction branches, and then further fuses these high-level features through the ASPP module, and the fused features are subjected to upsampling by the decoding module and compensation of local detail information. And the convolution operation restores the image to the size of the input into the segmentation network, obtains an end-to-end dense multi-structure simultaneous segmentation probability map, and determines the category of each pixel from the probability map to obtain the final segmentation result;
步骤5:将步骤4心脏结构分割网络得到的分割结果与步骤2得到的心脏标准分割结果进行比较,通过性能评价指标进行分割结果量化评估;Step 5: compare the segmentation result obtained by the cardiac structure segmentation network in step 4 with the cardiac standard segmentation result obtained in step 2, and perform quantitative evaluation of the segmentation result through the performance evaluation index;
步骤6:收集待分割心脏电影MRI数据,利用步骤3训练好的心脏区域提取模型提取心脏区域,并记录提取位置信息,然后将提取的心脏区域的MRI切片图像输入到步骤4训练好的心脏分割网络中,自心底到心顶依次迭代完成心脏区域体数据的分割,剔除分割结果中各个心脏结构可能存在的不连续的零散区域,得到心脏结构初始分割结果;Step 6: Collect the cardiac cine MRI data to be segmented, extract the cardiac region using the cardiac region extraction model trained in Step 3, record the extraction location information, and then input the extracted MRI slice images of the cardiac region into the cardiac segmentation trained in Step 4. In the network, iteratively completes the segmentation of the volume data of the heart region from the bottom of the heart to the top of the heart, removes the discontinuous and scattered areas that may exist in each cardiac structure in the segmentation result, and obtains the initial segmentation result of the cardiac structure;
步骤7:根据所述提取位置信息,将所述心脏结构初始分割结果恢复到原图尺寸,得到最终的分割结果。Step 7: According to the extracted position information, restore the initial segmentation result of the cardiac structure to the original image size to obtain a final segmentation result.
根据一种优选的实施方式,步骤3中的所述心脏区域提取模型包括生成器和判别器,According to a preferred embodiment, the heart region extraction model in step 3 includes a generator and a discriminator,
所述生成器以心脏MRI切片图像作为输入,采用编码解码结构,即先通过卷积、池化操作、下采样提取特征,再通过上采样、局部细节补偿以及卷积操作生成与输入的心脏MRI切片图像尺寸一致的伪心脏轮廓图像;The generator takes cardiac MRI slice images as input, and adopts an encoding-decoding structure, that is, first extracts features through convolution, pooling, and downsampling, and then generates and input cardiac MRI through upsampling, local detail compensation, and convolution operations. Pseudo-heart contour images with the same size of slice images;
所述判别器以心脏MRI切片图像和相应的真实心脏区域轮廓图像对或心脏MRI切片图像和生成器生成的伪心脏轮廓图像对作为输入,通过卷积和池化操作提取特征,判别输入的心脏轮廓图像是真实的还是由生成器生成的;The discriminator takes the cardiac MRI slice image and the corresponding real cardiac region contour image pair or the cardiac MRI slice image and the pseudo-heart contour image pair generated by the generator as input, extracts features through convolution and pooling operations, and discriminates the input heart. whether the contour image is real or generated by a generator;
生成对抗网络训练好后,通过生成器生成准确的各个心脏MRI切片图像对应的心脏轮廓图像,定位出心脏在图像上的位置,从而提取出三维心脏区域图像。After the generative adversarial network is trained, the generator generates accurate cardiac contour images corresponding to each cardiac MRI slice image, locates the position of the heart on the image, and extracts a three-dimensional cardiac region image.
本发明的有益效果在于:The beneficial effects of the present invention are:
1、本发明采用基于生成对抗网络的心脏区域提取模型,能够自动的、更加准确的提取心脏区域,并记录提取位置,无需人工进行交互,通用性、泛化能力较好。1. The present invention adopts the heart region extraction model based on the generative confrontation network, which can automatically and more accurately extract the heart region, and record the extraction position, without manual interaction, and has good versatility and generalization ability.
2、本发明技术方案在训练分割心脏结构的神经网络中,利用层间上下文信息,即利用相邻层之间的空间关联信息,来提高心脏结构分割的精度和准确度,训练好的神经网络可完成心脏结构的自动分割。2. The technical solution of the present invention is to use the context information between layers, that is, use the spatial correlation information between adjacent layers, to improve the accuracy and accuracy of the segmentation of the cardiac structure in the training of the neural network for segmenting the cardiac structure. The trained neural network Automatic segmentation of cardiac structures can be accomplished.
3、由于直接通过3D分割方法利用层间上下文信息具有计算开销大,且有限数据集下性能受限的缺点,本发明在2D分割方法框架下,采用独立的并行结构来处理对应的层间上下文信息,有效提高了分割性能。3. Since the direct use of inter-layer context information through the 3D segmentation method has the disadvantages of high computational overhead and limited performance under limited data sets, the present invention adopts an independent parallel structure to process the corresponding inter-layer context under the framework of the 2D segmentation method. information, which effectively improves the segmentation performance.
附图说明Description of drawings
图1是本发明心脏结构自动分割方法的流程图;Fig. 1 is the flow chart of the cardiac structure automatic segmentation method of the present invention;
图2是本发明基于生成对抗网络提取心脏的工作原理图;和Fig. 2 is the working principle diagram of the present invention based on generative adversarial network extraction heart; and
图3是本发明基于多路卷积神经网络进行心脏分割网络的工作原理图。FIG. 3 is a working principle diagram of a heart segmentation network based on a multi-channel convolutional neural network according to the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the specific embodiments and the accompanying drawings. It should be understood that these descriptions are exemplary only and are not intended to limit the scope of the invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present invention.
本发明中的心脏电影MRI图像是指:由心脏磁共振电影成像技术获取到的图像,是心脏MRI图像的一种。The cardiac cine MRI image in the present invention refers to an image obtained by cardiac magnetic resonance cine imaging technology, which is a type of cardiac MRI image.
本发明中的ASPP模块是指:带扩张卷积的金字塔池化模块。The ASPP module in the present invention refers to a pyramid pooling module with dilated convolution.
心脏磁共振电影成像技术是一种常用的心脏磁共振成像技术,通常是指在心动周期内的各个特定阶段快速获取多幅图像,以电影的形式呈现显示。心脏磁共振电影成像技术不仅可用于评估心室功能、室壁异常,还可以用于评价心脏的瓣膜形态与功能。Cardiac magnetic resonance cine imaging technology is a commonly used cardiac magnetic resonance imaging technology, which usually refers to the rapid acquisition of multiple images at various specific stages in the cardiac cycle, which are displayed in the form of movies. Cardiac magnetic resonance cine imaging technology can be used not only to evaluate ventricular function and wall abnormalities, but also to evaluate the shape and function of heart valves.
本发明的原图是指核磁共振原始扫描得到的图像,即收集到的心脏电影MRI图像。The original image in the present invention refers to the image obtained by the original MRI scan, that is, the collected cardiac cine MRI image.
针对目前现有技术存在的不足,本发明提出一种基于多路卷积神经网络的MRI图像心脏结构分割方法,如图1所示,本发明的方法包括:In view of the deficiencies in the current prior art, the present invention proposes a method for segmenting the cardiac structure of an MRI image based on a multi-channel convolutional neural network. As shown in FIG. 1 , the method of the present invention includes:
步骤1:收集心脏电影MRI训练数据,包括正常人的正常心脏电影MRI图像和心脏病人的异常心脏电影MRI图像。心脏电影MRI图像采集了心动周期中心脏舒张及收缩阶段的图像。扫描得到的心脏电影MRI数据是体数据,即由多个切片MRI数据构成。Step 1: Collect cardiac cine MRI training data, including normal cardiac cine MRI images of normal people and abnormal cardiac cine MRI images of cardiac patients. Cardiac cine MRI images capture images of the diastolic and systolic phases of the cardiac cycle. The scanned cardiac cine MRI data is volume data, that is, composed of a plurality of slice MRI data.
同时采用正常人和心脏病人心脏数据是为了保证本发明技术方案的泛化能力,即本发明的自动分割方法既适用于正常心脏结构的的分割,同时也适用于异常心脏结构的分割。Simultaneous use of normal and cardiac patient heart data is to ensure the generalization capability of the technical solution of the present invention, that is, the automatic segmentation method of the present invention is suitable for segmentation of normal cardiac structures and abnormal cardiac structures at the same time.
在训练阶段采用了心脏舒张及收缩阶段的数据,一方面这部分数据是有标注的,更重要的是这两个阶段的心脏结构分割是通常在临床上比较关注的。In the training stage, the data of the diastolic and systolic stages of the heart are used. On the one hand, this part of the data is marked, and more importantly, the segmentation of the cardiac structure in these two stages is usually a clinical concern.
步骤2:由经验丰富的医生手动对心脏电影MRI训练数据中的心脏结构进行逐层标注,并将标注结果作为心脏分割标准结果,待分割心脏结构包括正常心脏结构和异常心脏结构。标注的心脏结构主要包括左心室、右心室、心肌,在实际应用中,还可以对左心室内膜和外膜等进行标注。具体的,逐层是指自心底到心顶的MRI切片层,并且对所有的训练数据都进行标注。Step 2: An experienced doctor manually labels the cardiac structures in the cardiac cine MRI training data layer by layer, and uses the labeling results as the standard results of cardiac segmentation. The cardiac structures to be segmented include normal cardiac structures and abnormal cardiac structures. The annotated cardiac structures mainly include left ventricle, right ventricle, and myocardium. In practical applications, the endocardium and epicardium of the left ventricle can also be annotated. Specifically, layer-by-layer refers to the MRI slice layer from the bottom of the heart to the top of the heart, and all training data are labeled.
考虑到实际操作中收集到的心脏电影MRI图像数据都具有较大的扫描范围,覆盖了心脏周围很大的范围,因此心脏区域在图像上所占的显示比例相对较小,考虑到计算有效性并为了在一定程度上规避类别不平衡问题,在进行心脏结构分割之前,需要将心脏区域提取出来,使得提取出来的心脏区域在图像上占据较大的显示比例,这样也减低了后续分割处理的计算量。Considering that the cardiac cine MRI image data collected in the actual operation all have a large scanning range and cover a large area around the heart, the display ratio of the cardiac region on the image is relatively small, considering the computational efficiency. And in order to avoid the problem of class imbalance to a certain extent, it is necessary to extract the heart region before performing the segmentation of the heart structure, so that the extracted heart region occupies a larger display ratio on the image, which also reduces the subsequent segmentation processing. amount of calculation.
因此,本发明技术方案在分割之前设计并建立基于生成对抗网络的心脏区域提取模型,并针对心脏电影MRI训练数据训练该模型以提取心脏区域,具体如步骤3所示。Therefore, the technical solution of the present invention designs and establishes a generative adversarial network-based cardiac region extraction model before segmentation, and trains the model for cardiac cine MRI training data to extract the cardiac region, as shown in step 3.
步骤3:心脏区域提取生成对抗网络训练,设计并建立基于生成对抗网络的心脏区域提取模型,从收集到的心脏电影MRI训练数据中提取出心脏图像,提取出的心脏区域是三维图像,由多个MRI切片图像叠加形成。Step 3: Heart region extraction Generative adversarial network training, design and build a heart region extraction model based on generative adversarial network, extract cardiac images from the collected cardiac cine MRI training data, and the extracted cardiac region is a three-dimensional image, which is composed of multiple MRI slice images are superimposed.
生成对抗网络是一种深度学习模型,包括生成器和判别器两部分。生成对抗网络的工作原理如图2所示。心脏区域提取可以手工提取也可以基于一些方法进行自动提取。由于近年来生成对抗网络在图像处理领域取得了较好的性能,因此本发明选择将生成对抗网络应用到心脏区域提取模型中,以实现自动提取同时获得优良的提取性能。Generative adversarial network is a deep learning model, including generator and discriminator. The working principle of Generative Adversarial Network is shown in Figure 2. Heart region extraction can be done manually or automatically based on some methods. Since the generative adversarial network has achieved good performance in the field of image processing in recent years, the present invention chooses to apply the generative adversarial network to the heart region extraction model to achieve automatic extraction and obtain excellent extraction performance.
生成器以训练数据中的心脏MRI切片图像作为输入,采用编码解码结构,即先通过卷积、池化操作下采样提取特征,再通过上采样、局部细节补偿以及卷积操作生成与输入的心脏MRI切片图像尺寸一致的伪心脏轮廓图像。在心脏区域提取模型训练阶段,生成器生成伪心脏轮廓图像,医生标记的图像为真实心脏区域轮廓图像。生成对抗网络训练的目标是生成器可以生成真实的心脏轮廓图像,即在训练完成后,理想的效果是生成器可以生成与医生标记图像一致的心脏轮廓图像。The generator takes the cardiac MRI slice images in the training data as input, and adopts an encoding-decoding structure, that is, the features are extracted by downsampling through convolution and pooling operations, and then generated and inputted through upsampling, local detail compensation, and convolution operations. Pseudo-heart contour images consistent with the size of MRI slice images. During the training phase of the heart region extraction model, the generator generates a pseudo-heart contour image, and the image marked by the doctor is the real heart region contour image. The goal of generative adversarial network training is that the generator can generate real heart contour images, that is, after training, the ideal effect is that the generator can generate heart contour images that are consistent with the doctor's labeled images.
现有技术中还没有采用基于生成对抗网络来提取心脏区域的方法,本发明技术方案主要利用生成对抗网络来实现无需人工交互以及无需人工设计特征的心脏区域自动提取。There is no method for extracting heart region based on generative adversarial network in the prior art. The technical solution of the present invention mainly utilizes generative adversarial network to realize automatic extraction of heart region without manual interaction and without manual design features.
判别器以心脏MRI切片图像和相应的真实心脏区域轮廓图像对或心脏MRI切片图像和生成器生成的伪心脏轮廓图像对作为输入。通过卷积、池化操作提取特征,判别输入到判别器中的心脏区域轮廓图像是真实的还是由生成器生成的。具体的,判别器判别输入的真实心脏区域轮廓图像或伪心脏轮廓图像是真实的还是生成器生成的。The discriminator takes as input a cardiac MRI slice image and a corresponding true cardiac region contour image pair or a cardiac MRI slice image and a pseudo cardiac contour image generated by the generator. Features are extracted through convolution and pooling operations to determine whether the contour image of the heart region input to the discriminator is real or generated by the generator. Specifically, the discriminator discriminates whether the input real heart region contour image or pseudo heart contour image is real or generated by the generator.
以使得生成器可生成逼近真实心脏轮廓图像的分割结果,同时以判别器可准确的区分出真实心脏轮廓图像以及生成器生成的伪心脏轮廓图像为优化目标,对心脏区域提取生成对抗网络进行训练,使得生成器最终可生成准确度高的心脏轮廓图像。网络训练好后,应用生成器生成准确的各个心脏MRI切片图像对应的心脏轮廓图像,定位出心脏在图像上的位置,从而将三维心脏区域提取出来。本发明将心脏区域提取问题看作了一个图像像素级二分类问题,即图像分割问题,参考生成对抗网络做图像分割的方法,本发明采用图像对作为判别器的输入。In order to enable the generator to generate segmentation results that are close to the real heart contour image, and at the same time, the discriminator can accurately distinguish the real heart contour image and the pseudo heart contour image generated by the generator as the optimization goal, and train the heart region extraction generative adversarial network. , so that the generator can finally generate a high-accuracy heart contour image. After the network is trained, the generator is used to generate accurate cardiac contour images corresponding to each cardiac MRI slice image, locate the position of the heart on the image, and extract the three-dimensional cardiac region. The present invention regards the heart region extraction problem as an image pixel-level two-classification problem, that is, an image segmentation problem. Referring to the method of image segmentation using a generative adversarial network, the present invention uses image pairs as the input of the discriminator.
一种优选的实施方式,可通过指定训练迭代次数并结合训练损失曲线来判断生成对抗网络是否已经训练完成。In a preferred embodiment, it can be determined whether the generative adversarial network has been trained by specifying the number of training iterations and combining with the training loss curve.
采用生成对抗网络是为了提取出心脏区域;为了这个目的,分两步,一、需要知道心脏在图像的什么位置上,二、将对应区域提取出来。对于第一步,心脏位置的确定是通过生成对抗网络来实现的,训练好生成对抗网络后,生成器可以生成准确的心脏轮廓图像,也就是知道了图像上哪个位置是心脏,即知道了心脏的位置。第二步,将确定的心脏区域提取出来。The generative adversarial network is used to extract the heart area; for this purpose, it is divided into two steps, first, you need to know where the heart is in the image, and second, extract the corresponding area. For the first step, the determination of the position of the heart is achieved through the generative adversarial network. After training the generative adversarial network, the generator can generate an accurate heart contour image, that is, knowing which position on the image is the heart, that is, knowing the heart s position. The second step is to extract the determined heart region.
生成对抗网络训练好后,再基于定位的心脏位置,提取出心脏区域,提取的方法包括:对于一个待提取心脏区域的心脏电影MRI图像数据,首先,利用已经训练好的生成器生成各个MRI切片图像对应的心脏轮廓图像,然后,根据轮廓生成包围心脏的矩形区域,取各切片中矩形区域最大的一个并在其基础上长宽各拓展0.3倍以保证可提取到完整的心脏区域,并将此拓展后的矩形区域作为待提取的区域。最后,对所有切片提取该区域,并叠加在一起,从而提取出三维心脏区域图像,以用于后续心脏分割网络的训练。After the generative adversarial network is trained, the heart region is extracted based on the located heart position. The extraction method includes: for a cardiac cine MRI image data of the heart region to be extracted, first, use the trained generator to generate each MRI slice The heart contour image corresponding to the image, and then generate a rectangular area surrounding the heart according to the contour, take the largest rectangular area in each slice and expand the length and width by 0.3 times to ensure that the complete heart area can be extracted. The expanded rectangular area is used as the area to be extracted. Finally, the region is extracted for all slices and stacked together to extract a 3D cardiac region image for subsequent training of the cardiac segmentation network.
步骤4:基于多路卷积神经网络的心脏分割网络训练,设计并建立结合层间上下文信息的深度卷积分割网络。基于多路卷积神经网络进行心脏结构分割的工作原理图如图3所示。Step 4: Design and build a deep convolutional segmentation network combining contextual information between layers based on the training of the heart segmentation network of the multi-channel convolutional neural network. The working principle of heart structure segmentation based on multi-channel convolutional neural network is shown in Figure 3.
步骤41:对步骤3提取出的心脏区域进行心脏结构的分割,以迭代的方式将相邻层的MRI切片图像信息以及相邻上层的已有分割结果信息作为层间上下文信息。Step 41 : segment the cardiac structure on the heart region extracted in step 3, and use the MRI slice image information of the adjacent layer and the existing segmentation result information of the adjacent upper layer as the inter-layer context information in an iterative manner.
一种优选的实施方案,采用相邻两层,即相邻的上一层和相邻的下一层的MRI切片图像信息以及相邻一个上层的已有分割结果信息作为层间上下文信息。In a preferred embodiment, the MRI slice image information of two adjacent layers, that is, the adjacent upper layer and the adjacent lower layer, and the existing segmentation result information of an adjacent upper layer are used as the inter-layer context information.
步骤42:将这些层间上下文信息分别输入到各自的特征提取分支中,各个层间上下文特征提取分支采用独立的并行结构,即每个层间上下文特征提取分支采用相同的网络结构但是独立处理其对应的一种层间上下文信息。上下文特征提取分支通过卷积和池化操作来进行特征提取。Step 42: Input these inter-layer contextual information into their respective feature extraction branches, each inter-layer contextual feature extraction branch adopts an independent parallel structure, that is, each inter-layer contextual feature extraction branch adopts the same network structure but processes its features independently. A corresponding inter-layer context information. The contextual feature extraction branch performs feature extraction through convolution and pooling operations.
具体的,层间上下文特征提取分支的个数根据要处理的层间上下文信息数目来确定。一种优选的实施方式,取相邻上下两层MRI切片图像和1个相邻上层的分割结果信息作为层间上下文信息,则层间上下文特征提取分支为3个。此外,再加上当前待分割的MRI切片自身的特征提取分支,共4个特征提取分支。图3即为本实施方式的4个特征提取分支的心脏结构分割工作原理图,如图3所示,input M[i+1]表示相邻上层MRI切片图像的分割结果,input S[i-1]和input S[i+1]表示相邻上下两层MRI切片图像,input S[i]表示当前待分割的MRI切片图像。Specifically, the number of inter-layer context feature extraction branches is determined according to the number of inter-layer context information to be processed. In a preferred embodiment, the MRI slice images of two adjacent upper and lower layers and the segmentation result information of one adjacent upper layer are taken as the inter-layer context information, then there are three inter-layer context feature extraction branches. In addition, plus the feature extraction branch of the MRI slice currently to be segmented, there are a total of 4 feature extraction branches. Fig. 3 is a working principle diagram of the cardiac structure segmentation of the four feature extraction branches of the present embodiment. As shown in Fig. 3, input M[i+1] represents the segmentation result of the adjacent upper-layer MRI slice images, and input S[i- 1] and input S[i+1] represent the adjacent upper and lower layers of MRI slice images, and input S[i] represents the current MRI slice image to be segmented.
步骤43:各分支通过叠加多个卷积及池化操作提取图像的高层抽象特征,并经特征融合模块进行融合。Step 43: Each branch extracts the high-level abstract features of the image by stacking multiple convolution and pooling operations, and fuses them through a feature fusion module.
步骤44:特征融合模块先将各个分支提取到的高层抽象特征进行串连,然后通过设计的ASPP模块进一步融合这些高层特征,融合后的特征经由解码模块的上采样、局部细节信息补偿以及卷积操作将图像恢复到输入进心脏结构分割网络时的尺寸,得到端到端的密集多结构联合分割概率图,分割概率图是指MRI切片图像上每一像素点代表待分割图像对应像素点属于对应分类的概率,并由概率图确定各个像素所属类别从而得到最终的分割结果。Step 44: The feature fusion module first concatenates the high-level abstract features extracted by each branch, and then further fuses these high-level features through the designed ASPP module. The fused features are subjected to upsampling, local detail information compensation and convolution by the decoding module. The operation restores the image to the size of the input into the cardiac structure segmentation network, and obtains an end-to-end dense multi-structure joint segmentation probability map. The segmentation probability map means that each pixel on the MRI slice image represents that the corresponding pixel of the image to be segmented belongs to the corresponding classification The probability of each pixel is determined by the probability map to obtain the final segmentation result.
步骤5:将心脏结构分割网络得到的分割结果与步骤2得到的心脏标准分割结果进行比较,通过性能评价指标进行分割结果量化评估。本发明采用Dice系数和/或ASSD指标对分割结果进行量化评估。同时,通过性能评价指标来评估分割结果的好坏。Step 5: Compare the segmentation result obtained by the cardiac structure segmentation network with the cardiac standard segmentation result obtained in step 2, and perform quantitative evaluation of the segmentation result through the performance evaluation index. The present invention uses Dice coefficient and/or ASSD index to quantitatively evaluate the segmentation result. At the same time, the performance evaluation index is used to evaluate the quality of the segmentation results.
步骤6:收集待分割心脏电影MRI数据,通过步骤3训练好的心脏区域自动提取网络提取心脏区域,并记录提取位置信息。提取出来的心脏区域为三维体数据,是由多个MRI切片图像叠加构成的。然后将提取的心脏区域的MRI切片图像输入到步骤4训练好的深度卷积分割网络中,自心底到心顶依次迭代完成心脏区域体数据的分割,剔除分割结果中各结构可能存在的不连续的零散区域,得到心脏结构初始分割结果。Step 6: Collect the cine MRI data of the heart to be segmented, extract the heart region through the automatic heart region extraction network trained in step 3, and record the extraction location information. The extracted heart region is three-dimensional volume data, which is composed of multiple MRI slice images superimposed. Then, the extracted MRI slice images of the heart region are input into the deep convolutional segmentation network trained in step 4, and the segmentation of the volume data of the heart region is completed iteratively from the bottom of the heart to the top of the heart, and the possible discontinuities of each structure in the segmentation results are eliminated. The scattered area of is obtained, and the initial segmentation result of the cardiac structure is obtained.
步骤6是为了应用本发明提出的方法进行心脏结构的分割。Step 6 is to segment the cardiac structure by applying the method proposed by the present invention.
步骤7:根据提取位置信息,将心脏结构初始分割结果恢复到原图尺寸,得到最终的分割结果。在实际应用中,不恢复到原图的情况下,也可以看到分割结果,只是尺寸与原图不一致,但并不影响看分割结果。Step 7: According to the extracted position information, restore the initial segmentation result of the heart structure to the original image size to obtain the final segmentation result. In practical applications, the segmentation result can also be seen without restoring to the original image, but the size is inconsistent with the original image, but it does not affect the viewing of the segmentation result.
例如,原图是400*400大小,其中提取出来的心脏是20*20的大小且位于原图的中心位置,这里默认了20*20外的区域都是背景,即默认分割为非心脏结构;心脏结构初始分割得到的是对这20*20的图像的分割结果,而最终要的应该是400*400图像对应的分割结果。因此,在分割时,需要记录心脏提取位置,从而才知道将心脏分割结果对应回原图尺寸的哪个位置。比如中间、左下角、右下角。For example, the original image is 400*400 in size, and the extracted heart is 20*20 in size and located in the center of the original image. By default, the area outside 20*20 is the background, that is, the default segmentation is non-heart structure; The initial segmentation of the heart structure is the segmentation result of the 20*20 image, and the final result should be the segmentation result corresponding to the 400*400 image. Therefore, during segmentation, it is necessary to record the extraction position of the heart, so as to know where the heart segmentation result corresponds to the original image size. For example, middle, lower left, and lower right.
需要注意的是,上述具体实施是示例性的,本领域技术人员可以在本发明公开内容的启发下想出各种解决方案,而这些解决方案也都属于本发明的公开范围并落入本发明的保护范围之内。本领域技术人员应该明白,本发明说明书及其附图均为说明性而并非构成对权利要求的限制。本发明的保护范围由权利要求及其等同物限定。It should be noted that the above-mentioned specific implementation is exemplary, and those skilled in the art can come up with various solutions inspired by the disclosure of the present invention, and these solutions also belong to the disclosure scope of the present invention and fall into the present invention within the scope of protection. It should be understood by those skilled in the art that the description of the present invention and the accompanying drawings are illustrative rather than limiting to the claims. The protection scope of the present invention is defined by the claims and their equivalents.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910780248.7A CN110599499B (en) | 2019-08-22 | 2019-08-22 | MRI image heart structure segmentation method based on multipath convolutional neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910780248.7A CN110599499B (en) | 2019-08-22 | 2019-08-22 | MRI image heart structure segmentation method based on multipath convolutional neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110599499A CN110599499A (en) | 2019-12-20 |
CN110599499B true CN110599499B (en) | 2022-04-19 |
Family
ID=68855269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910780248.7A Expired - Fee Related CN110599499B (en) | 2019-08-22 | 2019-08-22 | MRI image heart structure segmentation method based on multipath convolutional neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110599499B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111598838B (en) * | 2020-04-22 | 2023-04-07 | 中南民族大学 | Automatic heart MR image segmentation method and device, electronic equipment and storage medium |
CN112116625B (en) * | 2020-08-25 | 2024-10-15 | 澳门科技大学 | Automatic cardiac CT image segmentation method, device and medium based on contradiction labeling method |
WO2022050902A1 (en) * | 2020-09-02 | 2022-03-10 | Singapore Health Services Pte Ltd | Image segmentation system and method |
CN112561921B (en) * | 2020-11-10 | 2024-07-26 | 联想(北京)有限公司 | Image segmentation method and device |
CN112949470B (en) * | 2021-02-26 | 2024-12-03 | 上海商汤智能科技有限公司 | Vehicle lane change turn signal recognition method, device, equipment and storage medium |
CN113222996A (en) * | 2021-03-03 | 2021-08-06 | 中南民族大学 | Heart segmentation quality evaluation method, device, equipment and storage medium |
CN113362345B (en) * | 2021-06-30 | 2023-05-30 | 武汉中科医疗科技工业技术研究院有限公司 | Image segmentation method, device, computer equipment and storage medium |
CN113781343A (en) * | 2021-09-13 | 2021-12-10 | 叠境数字科技(上海)有限公司 | Super-resolution image quality improvement method |
CN114066863B (en) * | 2021-11-22 | 2024-09-13 | 沈阳东软智能医疗科技研究院有限公司 | Method and device for training ventricle area segmentation model and determining template image |
CN116228802B (en) * | 2023-05-05 | 2023-07-04 | 济南科汛智能科技有限公司 | Cardiac MRI auxiliary imaging control method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106600621A (en) * | 2016-12-08 | 2017-04-26 | 温州医科大学 | Space-time cooperation segmentation method based on infant brain tumor multi-modal MRI graph |
CN106683104A (en) * | 2017-01-06 | 2017-05-17 | 西北工业大学 | Prostate magnetic resonance image segmentation method based on integrated depth convolution neural network |
CN109377520A (en) * | 2018-08-27 | 2019-02-22 | 西安电子科技大学 | Cardiac image registration system and method based on semi-supervised recurrent GAN |
CN109584254A (en) * | 2019-01-07 | 2019-04-05 | 浙江大学 | A kind of heart left ventricle's dividing method based on the full convolutional neural networks of deep layer |
CN110120051A (en) * | 2019-05-10 | 2019-08-13 | 上海理工大学 | A kind of right ventricle automatic division method based on deep learning |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106096632A (en) * | 2016-06-02 | 2016-11-09 | 哈尔滨工业大学 | Based on degree of depth study and the ventricular function index prediction method of MRI image |
US10902598B2 (en) * | 2017-01-27 | 2021-01-26 | Arterys Inc. | Automated segmentation utilizing fully convolutional networks |
US10595727B2 (en) * | 2018-01-25 | 2020-03-24 | Siemens Healthcare Gmbh | Machine learning-based segmentation for cardiac medical imaging |
-
2019
- 2019-08-22 CN CN201910780248.7A patent/CN110599499B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106600621A (en) * | 2016-12-08 | 2017-04-26 | 温州医科大学 | Space-time cooperation segmentation method based on infant brain tumor multi-modal MRI graph |
CN106683104A (en) * | 2017-01-06 | 2017-05-17 | 西北工业大学 | Prostate magnetic resonance image segmentation method based on integrated depth convolution neural network |
CN109377520A (en) * | 2018-08-27 | 2019-02-22 | 西安电子科技大学 | Cardiac image registration system and method based on semi-supervised recurrent GAN |
CN109584254A (en) * | 2019-01-07 | 2019-04-05 | 浙江大学 | A kind of heart left ventricle's dividing method based on the full convolutional neural networks of deep layer |
CN110120051A (en) * | 2019-05-10 | 2019-08-13 | 上海理工大学 | A kind of right ventricle automatic division method based on deep learning |
Non-Patent Citations (3)
Title |
---|
A deep learning network for right ventricle segmentation in short-axis MRI;Gongning Luo et al.;《2016 Computing in Cardiology Conference》;20170302;1-5 * |
基于深度学习的心脏图像分割方法的研究;陈军;《中国优秀硕士学位论文全文数据库 (信息科技辑)》;20190715(第7期);I138-1137 * |
基于自组织神经网络的超声心脏图象分割;汪天富 等;《中国生物医学工程学报》;20000929;第19卷(第3期);356-360 * |
Also Published As
Publication number | Publication date |
---|---|
CN110599499A (en) | 2019-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110599499B (en) | MRI image heart structure segmentation method based on multipath convolutional neural network | |
CN110310281B (en) | Mask-RCNN deep learning-based pulmonary nodule detection and segmentation method in virtual medical treatment | |
CN110934606B (en) | Cerebral apoplexy early-stage flat-scan CT image evaluation system and method and readable storage medium | |
CN111429474B (en) | Mammary gland DCE-MRI image focus segmentation model establishment and segmentation method based on mixed convolution | |
CN102411795B (en) | Combined display method of multimode image of coronary artery | |
CN108603922A (en) | Automatic cardiac volume is divided | |
CN112086197B (en) | Breast nodule detection method and system based on ultrasonic medicine | |
CN109192305B (en) | An automatic analysis method of cardiac function based on deep recurrent neural network | |
CN113420826B (en) | Liver focus image processing system and image processing method | |
CN110164550B (en) | A method for auxiliary diagnosis of congenital heart disease based on multi-view synergistic relationship | |
CN115546605A (en) | Training method and device based on image labeling and segmentation model | |
Xia et al. | Recent advances of transformers in medical image analysis: a comprehensive review | |
KR20190087681A (en) | A method for determining whether a subject has an onset of cervical cancer | |
CN109003280A (en) | Inner membrance dividing method in a kind of blood vessel of binary channels intravascular ultrasound image | |
CN110363772A (en) | Cardiac MRI Segmentation Method and System Based on Adversarial Network | |
CN116580819B (en) | Method and system for automatically determining inspection results in an image sequence | |
CN116152560A (en) | A method and system for glioma image classification based on multi-task learning | |
CN116433586A (en) | Mammary gland ultrasonic tomography image segmentation model establishment method and segmentation method | |
CN117218419A (en) | Evaluation system and evaluation method for pancreatic and biliary tumor parting and grading stage | |
Huang et al. | POST-IVUS: A perceptual organisation-aware selective transformer framework for intravascular ultrasound segmentation | |
Li et al. | FHUSP-NET: a multi-task model for fetal heart ultrasound standard plane recognition and key anatomical structures detection | |
CN115471512A (en) | Medical image segmentation method based on self-supervision contrast learning | |
CN115439650A (en) | Kidney ultrasound image segmentation method based on cross-modal transfer learning of CT images | |
CN112651976B (en) | Method and system for determination of brain network in lesion area based on low-resolution MRI data | |
CN114663445A (en) | A 3D Cardiac Image Segmentation Method Based on Multiscale Edge Perception |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220419 |
|
CF01 | Termination of patent right due to non-payment of annual fee |