CN110598589A - Image pyramid-based palm print identification method, system, device and medium - Google Patents
Image pyramid-based palm print identification method, system, device and medium Download PDFInfo
- Publication number
- CN110598589A CN110598589A CN201910798336.XA CN201910798336A CN110598589A CN 110598589 A CN110598589 A CN 110598589A CN 201910798336 A CN201910798336 A CN 201910798336A CN 110598589 A CN110598589 A CN 110598589A
- Authority
- CN
- China
- Prior art keywords
- image
- palm print
- template
- target
- palmprint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 119
- 238000011426 transformation method Methods 0.000 claims abstract description 23
- 238000007781 pre-processing Methods 0.000 claims abstract description 21
- 238000001914 filtration Methods 0.000 claims description 79
- 230000006870 function Effects 0.000 claims description 25
- 230000004044 response Effects 0.000 claims description 25
- 238000000605 extraction Methods 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 18
- 238000004364 calculation method Methods 0.000 claims description 16
- 238000004590 computer program Methods 0.000 claims description 9
- 238000010606 normalization Methods 0.000 claims description 8
- 241000347389 Serranus cabrilla Species 0.000 claims 1
- 238000013519 translation Methods 0.000 abstract description 11
- 230000001186 cumulative effect Effects 0.000 description 20
- 239000000284 extract Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 230000009286 beneficial effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000005070 sampling Methods 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000005021 gait Effects 0.000 description 2
- 229910052704 radon Inorganic materials 0.000 description 2
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/30—Noise filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/751—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/757—Matching configurations of points or features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1347—Preprocessing; Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1365—Matching; Classification
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
- Collating Specific Patterns (AREA)
Abstract
本发明涉及一种基于影像金字塔的掌纹识别方法、系统、装置和介质,方法包括获取待匹配掌纹的原始掌纹图像;对每个原始模板掌纹图像和原始掌纹图像分别进行预处理,分别得到目标模板掌纹图像集和目标掌纹图像;采用尺度不变特征变换方法分别提取目标SIFT特征点集和每个目标模板掌纹图像的模板特征点集;基于影像金字塔方法,根据每个目标模板掌纹图像和每个模板特征点集以及目标掌纹图像和目标SIFT特征点集,计算得到目标掌纹图像与每个目标模板掌纹图像之间的偏移量;在目标模板掌纹图像集中,根据所有偏移量对待匹配掌纹进行识别匹配,得到识别结果并输出。本发明克服了掌纹形变、平移以及噪声对掌纹识别的影响,明显提高了掌纹的识别精度。
The present invention relates to a palmprint recognition method, system, device and medium based on an image pyramid. The method includes acquiring an original palmprint image of a palmprint to be matched; performing preprocessing on each original template palmprint image and the original palmprint image respectively , to obtain the target template palmprint image set and the target palmprint image respectively; use the scale invariant feature transformation method to extract the target SIFT feature point set and the template feature point set of each target template palmprint image respectively; based on the image pyramid method, according to each target template palmprint image and each template feature point set and target palmprint image and target SIFT feature point set, calculate the offset between the target palmprint image and each target template palmprint image; In the fingerprint image set, the palmprint to be matched is identified and matched according to all offsets, and the identification result is obtained and output. The invention overcomes the influence of palmprint deformation, translation and noise on palmprint recognition, and obviously improves the palmprint recognition precision.
Description
技术领域technical field
本发明涉及生物特征识别技术领域,尤其涉及一种基于影像金字塔的掌纹识别方法、系统、装置和介质。The present invention relates to the technical field of biological feature identification, in particular to a palmprint identification method, system, device and medium based on an image pyramid.
背景技术Background technique
掌纹识别技术作为生物特征识别技术的一个重要方面,有着巨大的发展潜力和应用前景。掌纹识别技术从1997年研究以来,已经经过了二十多年的发展,由于其自身的优势,例如:与虹膜识别相比较,较易采集、对人体无伤害及采集设备较低廉;与人脸识别相比较,能较容易地识别双胞胎;与指纹识别相比较,具有较高的识别精度、且采集方式可以是无接触式采集;与笔迹和步态识别相比较,笔迹和步态容易被模仿并且生物特征容易改变,而掌纹识别的稳定性很高。因此,掌纹识别逐渐成为生物特征识别领域的热点研究方向之一,与此相关的产品也在逐步推进中。As an important aspect of biometric identification technology, palmprint recognition technology has great development potential and application prospects. Palmprint recognition technology has been developed for more than 20 years since it was researched in 1997. Due to its own advantages, such as: compared with iris recognition, it is easier to collect, has no harm to the human body, and the collection equipment is relatively cheap; Compared with face recognition, twins can be identified more easily; compared with fingerprint recognition, it has higher recognition accuracy, and the collection method can be non-contact collection; compared with handwriting and gait recognition, handwriting and gait are easy to be detected Imitation and biometric features are easy to change, while the stability of palmprint recognition is high. Therefore, palmprint recognition has gradually become one of the hot research directions in the field of biometric recognition, and related products are also gradually advancing.
掌纹稳定而可靠的信息,如掌纹主线、掌纹褶皱、掌纹纹线等纹理特征,可以实现可靠的身份识别。掌纹的纹理特征结构较为独特,这种结构也使得算法处理过程中的抗噪能力较为突出,即便是直接输入质量较差或者是分辨率较低的图像,也可以相对稳定地提取到掌纹的主要特征。Stable and reliable palmprint information, such as palmprint main line, palmprint folds, palmprint lines and other texture features, can achieve reliable identification. The texture feature structure of the palmprint is relatively unique, and this structure also makes the anti-noise ability of the algorithm processing process more prominent. Even if the image with poor quality or low resolution is directly input, the palmprint can be extracted relatively stably. main features of .
相比较于传统的生物特征识别,掌纹识别在普遍性、区分性、不变性、易采集性、可接受性以及硬件成本等方面具有许多天然的优势,这些优势也是掌纹识别未来发展的一个有利条件。Compared with traditional biometric identification, palmprint recognition has many natural advantages in terms of universality, differentiation, invariance, easy collection, acceptability and hardware cost. These advantages are also a key point for the future development of palmprint recognition. Favorable conditions.
然而,在掌纹识别技术上,对于低分辨率的掌纹进行识别过程中,掌纹形变、噪声以及掌纹模糊是影响掌纹识别效果的几个关键难点。现有的解决掌纹形变的方法之一是通过提取两幅掌纹对应局部区域的特征描述子,再结合基于编码掌纹匹配方法来匹配识别,但是该方案忽略了掌纹平移及噪声对掌纹识别方法的影响,导致掌纹的匹配和识别仍旧不够准确,识别精度不高,识别效果不佳。However, in the palmprint recognition technology, palmprint deformation, noise and palmprint blur are several key difficulties affecting the palmprint recognition effect in the process of recognizing low-resolution palmprints. One of the existing methods to solve the palmprint deformation is to extract the feature descriptors of the corresponding local areas of the two palmprints, and then combine the palmprint matching method based on coding to match and recognize, but this scheme ignores the palmprint translation and noise on the palmprint. Due to the influence of the fingerprint recognition method, the matching and recognition of the palmprint are still not accurate enough, the recognition accuracy is not high, and the recognition effect is not good.
发明内容Contents of the invention
本发明所要解决的技术问题是针对上述现有技术的不足,提供一种基于影像金字塔的掌纹识别方法、系统、装置和介质,克服了掌纹平移及噪声对掌纹识别的影响,明显提高了掌纹的识别精度。The technical problem to be solved by the present invention is to provide a kind of palmprint recognition method, system, device and medium based on the image pyramid, which overcomes the impact of palmprint translation and noise on palmprint recognition, and significantly improves the deficiencies in the prior art. palmprint recognition accuracy.
本发明解决上述技术问题的技术方案如下:The technical scheme that the present invention solves the problems of the technologies described above is as follows:
一种基于影像金字塔的掌纹识别方法,包括以下步骤:A kind of palmprint recognition method based on image pyramid, comprises the following steps:
步骤1:获取待匹配掌纹的原始掌纹图像;Step 1: Obtain the original palmprint image of the palmprint to be matched;
步骤2:对预设的原始模板掌纹图像集中的每个原始模板掌纹图像分别进行预处理,得到目标模板掌纹图像集,对所述原始掌纹图像进行预处理,得到目标掌纹图像;Step 2: Preprocess each original template palmprint image in the preset original template palmprint image set to obtain the target template palmprint image set, and preprocess the original palmprint image to obtain the target palmprint image ;
步骤3:采用尺度不变特征变换方法分别提取所述目标掌纹图像的目标SIFT特征点集和所述目标模板掌纹图像集中每个目标模板掌纹图像一一对应的模板特征点集;Step 3: adopt the scale-invariant feature transformation method to extract respectively the target SIFT feature point set of the target palmprint image and the template feature point set corresponding to each target template palmprint image in the target template palmprint image set;
步骤4:基于影像金字塔方法,根据每个目标模板掌纹图像和与每个目标模板掌纹图像一一对应的所述模板特征点集,以及所述目标掌纹图像和与所述目标掌纹图像对应的所述目标SIFT特征点集,计算得到所述目标掌纹图像与每个目标模板掌纹图像之间的偏移量;Step 4: Based on the image pyramid method, according to each target template palmprint image and the template feature point set corresponding to each target template palmprint image, and the target palmprint image and the target palmprint image The target SIFT feature point set corresponding to the image is calculated to obtain the offset between the target palmprint image and each target template palmprint image;
步骤5:在所述目标模板掌纹图像集中,根据所有偏移量对所述待匹配掌纹进行识别匹配,得到识别结果并输出。Step 5: In the palmprint image set of the target template, identify and match the palmprint to be matched according to all offsets, obtain and output the recognition result.
本发明的有益效果是:由于掌纹图像容易受噪声影响,因此在提取目标掌纹图像的目标SIFT特征点集以及每个目标模板掌纹图像一一对应的模板特征点集之前,先对每个原始模板掌纹图像分别进行预处理,得到一一对应的目标模板掌纹图像,这些目标模板掌纹图像构成了目标模板掌纹图像集,并对原始掌纹图像同样进行预处理,得到目标掌纹图像,通过预处理,可以滤除掉受噪声影响的掌纹线特征,提高了后续尺度不变特征变换方法的抗噪性,有效克服了噪声对掌纹识别的影响,同时还加强了每个目标模板掌纹图像和目标掌纹图像的纹理特征的对比度,有利于后续的掌纹识别和匹配;The beneficial effects of the present invention are: because the palmprint image is easily affected by noise, before extracting the target SIFT feature point set of the target palmprint image and the one-to-one corresponding template feature point set of each target template palmprint image, each The original template palmprint images are preprocessed respectively to obtain one-to-one corresponding target template palmprint images. These target template palmprint images constitute the target template palmprint image set, and the original palmprint images are also preprocessed to obtain the target Palmprint image, through preprocessing, can filter out the palmprint line features affected by noise, improve the noise resistance of the subsequent scale-invariant feature transformation method, effectively overcome the influence of noise on palmprint recognition, and at the same time strengthen the The contrast of each target template palmprint image and the texture feature of the target palmprint image is conducive to subsequent palmprint recognition and matching;
尺度不变特征变换方法(Scale-invariant Feature Transform,SIFT方法)是一种检测局部特征的算法,该方法通过在尺度空间中寻找极值点,并提取出其位置、尺度和旋转不变量,提取出的SIFT特征对旋转、尺度缩放、亮度变化保持不变,对视角变化、仿射变换、噪声也保持一定程度的稳定性,因此本发明通过SIFT方法提取出的目标SIFT特征点集和每个目标模板掌纹图像一一对应的模板特征点集,进一步有利于后续的掌纹识别和匹配,克服了掌纹平移对掌纹识别的影响,明显提高了掌纹的识别精度;The scale-invariant feature transform method (Scale-invariant Feature Transform, SIFT method) is an algorithm for detecting local features. This method finds extreme points in the scale space, and extracts its position, scale and rotation invariants, extracts The extracted SIFT features remain unchanged to rotation, scaling, and brightness changes, and also maintain a certain degree of stability to viewing angle changes, affine transformations, and noise. Therefore, the target SIFT feature point set extracted by the present invention through the SIFT method and each The one-to-one corresponding template feature point set of the target template palmprint image further facilitates subsequent palmprint recognition and matching, overcomes the influence of palmprint translation on palmprint recognition, and significantly improves the recognition accuracy of palmprint;
影像金字塔是以多分辨率来解释图像的一种有效但概念简单的结构,一副图像的金字塔就是一系列以金字塔形状排列的分辨率逐渐降低的图像集合;本发明在提取目标SIFT特征点集和每个目标模板掌纹图像一一对应的模板特征点集之后,采用影像金字塔方法,可以对掌纹形变在局部区域内进行有效校正,尤其是对于低分辨率的掌纹识别过程,有效克服了掌纹形变对掌纹识别的影响,方法灵活简单,有利于后续计算目标掌纹图像与每个目标模板掌纹图像之间的偏移量,进一步提高掌纹的识别精度;The image pyramid is an effective but conceptually simple structure for explaining images with multiple resolutions. The pyramid of an image is exactly a series of image collections with pyramid-shaped arrangements that gradually reduce the resolution; the present invention extracts the target SIFT feature point set After the template feature point set corresponding to each target template palmprint image, the image pyramid method can be used to effectively correct the palmprint deformation in a local area, especially for the low-resolution palmprint recognition process. The influence of palmprint deformation on palmprint recognition is understood, and the method is flexible and simple, which is conducive to the subsequent calculation of the offset between the target palmprint image and each target template palmprint image, and further improves the palmprint recognition accuracy;
由于相同掌纹的特征点之间的偏移量均较小,而不同掌纹的特征点之间的偏移量均较大,因此通过偏移量可以判断目标掌纹图像与目标模板掌纹图像集中的哪一幅目标模板掌纹图像最为匹配,从而识别出待匹配的掌纹,识别匹配方法较为简单有效,明显提高了掌纹的识别精度。Since the offsets between the feature points of the same palmprint are small, and the offsets between the feature points of different palmprints are large, the target palmprint image and the target template palmprint can be judged by the offset. Which target template palmprint image in the image set is the best match, so as to identify the palmprint to be matched. The identification and matching method is relatively simple and effective, and the recognition accuracy of the palmprint is obviously improved.
在上述技术方案的基础上,本发明还可以做如下改进:On the basis of above-mentioned technical scheme, the present invention can also be improved as follows:
进一步:在所述步骤2中,得到所述目标模板掌纹图像集的具体步骤包括:Further: in described step 2, the specific steps that obtain described target template palmprint image set include:
步骤2a.1:分别提取所述原始模板掌纹图像集中的每个原始模板掌纹图像的感兴趣区域,得到模板掌纹ROI图像集;Step 2a.1: extract the region of interest of each original template palmprint image in the original template palmprint image set respectively, obtain the template palmprint ROI image set;
步骤2a.2:采用MFRAT滤波方法,对所述模板掌纹ROI图像集中的每个模板掌纹ROI图像分别进行滤波处理,得到模板掌纹滤波图像集;Step 2a.2: using the MFRAT filter method, filter each template palmprint ROI image in the template palmprint ROI image set respectively to obtain a template palmprint filter image set;
步骤2a.3:在所述模板掌纹滤波图像集的每个模板掌纹滤波图像中,将每个像素点分别进行编码,得到所述目标模板掌纹图像集;Step 2a.3: In each template palmprint filtering image of the template palmprint filtering image set, each pixel is encoded respectively to obtain the target template palmprint image set;
在所述步骤2中,得到所述目标掌纹图像的具体步骤包括:In said step 2, the specific steps of obtaining said target palmprint image include:
步骤2b.1:提取所述原始掌纹图像的感兴趣区域,得到掌纹ROI图像;Step 2b.1: Extract the region of interest of the original palmprint image to obtain the palmprint ROI image;
步骤2b.2:采用MFRAT滤波方法,对所述掌纹ROI图像进行滤波处理,得到掌纹滤波图像;Step 2b.2: using the MFRAT filtering method to filter the palmprint ROI image to obtain a palmprint filtered image;
步骤2b.3:在所述掌纹滤波图像中,将每个像素点分别进行编码,得到所述目标掌纹图像。Step 2b.3: Encoding each pixel in the palmprint filtered image to obtain the target palmprint image.
进一步:所述步骤2a.2具体包括:Further: the step 2a.2 specifically includes:
步骤2a.2.1:对所述模板掌纹ROI图像集中的每个模板掌纹ROI图像分别进行直方图均衡化处理,得到第一中间模板掌纹图像集;Step 2a.2.1: performing histogram equalization processing on each template palmprint ROI image in the template palmprint ROI image set respectively to obtain the first intermediate template palmprint image set;
步骤2a.2.2:对所述第一中间模板掌纹图像集中的每个第一中间模板掌纹图像分别进行归一化处理,得到第二中间模板掌纹图像集;Step 2a.2.2: performing normalization processing on each of the first intermediate template palmprint images in the first intermediate template palmprint image set to obtain a second intermediate template palmprint image set;
步骤2a.2.3:在所述第二中间模板掌纹图像集的每个第二中间模板掌纹图像中,构建第一MFRAT滤波函数,以任一个像素点为第一中心点,建立p×p的第一滤波网格,并在所述第一滤波网格内,根据第一MFRAT滤波函数,计算得到所述第一中心点分别在每个方向上的多个第一响应值,并根据每个方向上的所有第一响应值得到所述第一中心点在每个方向上的第一像素累加值;Step 2a.2.3: In each second intermediate template palmprint image of the second intermediate template palmprint image set, construct the first MFRAT filter function, with any pixel point as the first center point, establish p×p The first filter grid, and in the first filter grid, according to the first MFRAT filter function, calculate the first response value of the first center point in each direction, and according to each All the first response values in each direction obtain the first pixel cumulative value of the first central point in each direction;
第一中心点(x,y)在θk方向上的第一MFRAT滤波函数为:The first MFRAT filter function of the first center point (x, y) in the θ k direction is:
其中,(x,y)为第二中间模板掌纹图像中第一中心点的坐标,r(x,y)为第一中心点(x,y)对应的像素值,θk(k=1,2,…,6)为选取的六个方向,分别为0、π/6、2π/6、3π/6、4π/6和5π/6,为所述第一滤波网格在θk方向上的一条直线方程,为第一中心点(x,y)在θk方向上、直线方程的第一响应值;Wherein, (x, y) is the coordinate of the first central point in the second intermediate template palmprint image, and r (x, y) is the pixel value corresponding to the first central point (x, y), θ k (k=1 ,2,…,6) are the selected six directions, which are 0, π/6, 2π/6, 3π/6, 4π/6 and 5π/6, is a straight line equation of the first filtering grid in the θ k direction, is the first center point (x, y) in the direction of θ k , the first response value of the line equation;
步骤2a.2.4:遍历每个第二中间模板掌纹图像的每个像素点,按照所述步骤2a.2.3的方法,得到每个像素点分别在每个方向上的第一像素累加值,并根据所有像素点的所有第一像素累加值得到对应的一个第二中间模板掌纹图像对应的模板掌纹滤波图像;Step 2a.2.4: Traversing each pixel of the palmprint image of each second intermediate template, according to the method of step 2a.2.3, obtaining the first pixel cumulative value of each pixel in each direction respectively, and Obtain a corresponding template palmprint filter image corresponding to a second intermediate template palmprint image according to all first pixel cumulative values of all pixels;
步骤2a.2.5:根据所有模板掌纹滤波图像得到所述模板掌纹滤波图像集;Step 2a.2.5: Obtain the template palmprint filter image set according to all template palmprint filter images;
所述步骤2b.2具体包括:The step 2b.2 specifically includes:
步骤2b.2.1:对所述掌纹ROI图像进行直方图均衡化处理,得到第一中间掌纹图像;Step 2b.2.1: performing histogram equalization processing on the palmprint ROI image to obtain the first intermediate palmprint image;
步骤2b.2.2:对所述第一中间掌纹图像进行归一化处理,得到第二中间掌纹图像;Step 2b.2.2: performing normalization processing on the first intermediate palmprint image to obtain a second intermediate palmprint image;
步骤2b.2.3:在所述第二中间掌纹图像中,构建第二MFRAT滤波函数,以任一个像素点为,建立p×p的第二滤波网格,并在所述第二滤波网格内,根据第二MFRAT滤波函数,计算得到所述第二中心点分别在每个个方向上的多个第二响应值,并根据每个方向上的所有第二响应值得到所述第二中心点在每个方向上的第二像素累加值;Step 2b.2.3: In the second intermediate palmprint image, construct the second MFRAT filter function, take any pixel as the second filter grid of p×p, and set up the second filter grid in the second filter grid Inside, according to the second MFRAT filter function, calculate and obtain the multiple second response values of the second central point in each direction respectively, and obtain the second center according to all the second response values in each direction The accumulated value of the second pixel of the point in each direction;
第二中心点(x′,y′)在θk方向上的第二MFRAT滤波函数为:The second MFRAT filter function of the second central point (x′, y′) in the direction of θ k is:
其中,(x′,y′)为第二中间掌纹图像中第二中心点的坐标,r′(x′,y′)为第二中心点(x′,y′)对应的像素值,为所述第二滤波网格在θk方向上的一条直线方程,为第二中心点(x′,y′)在θk方向上、直线方程的第二响应值;Wherein, (x', y') is the coordinate of the second center point in the second middle palmprint image, and r'(x', y') is the pixel value corresponding to the second center point (x', y'), is a straight line equation of the second filtering grid in the θ k direction, is the second center point (x′,y′) in the direction of θ k , the second response value of the line equation;
步骤2b.2.4:遍历所述第二中间掌纹图像的每个像素点,按照所述步骤2b.2.3的方法,得到每个像素点分别在每个方向上的第二像素累加值;Step 2b.2.4: traverse each pixel of the second intermediate palmprint image, and obtain the second pixel cumulative value of each pixel in each direction according to the method of step 2b.2.3;
步骤2b.2.5:根据所有像素点的所有第二像素累加值得到所述掌纹滤波图像。Step 2b.2.5: Obtain the palmprint filtered image according to the accumulated values of all second pixels of all pixels.
进一步:所述步骤2a.3具体包括:Further: the step 2a.3 specifically includes:
步骤2a.3.1:在所述模板掌纹滤波图像集中的每个模板掌纹滤波图像中,将每个像素点的所有第一像素累加值中的最大值对应的方向作为对应像素点的第一特征编码值;Step 2a.3.1: In each template palmprint filtering image in the template palmprint filtering image set, the direction corresponding to the maximum value of all the first pixel cumulative values of each pixel is taken as the first pixel of the corresponding pixel. feature code value;
步骤2a.3.2:根据每个模板掌纹滤波图像中所有像素点对应的所有第一特征编码值,得到每个模板掌纹滤波图像一一对应的第一特征编码值子集;Step 2a.3.2: According to all the first feature coding values corresponding to all pixels in each template palmprint filtering image, obtain the first feature coding value subset corresponding to each template palmprint filtering image;
步骤2a.3.3:根据所有模板掌纹滤波图像对应的所有第一特征编码值子集得到所述目标模板掌纹图像集;Step 2a.3.3: Obtain the target template palmprint image set according to all first feature code value subsets corresponding to all template palmprint filtered images;
所述步骤2b.3具体包括:The step 2b.3 specifically includes:
步骤2b.3.1:在所述掌纹滤波图像中,将每个像素点的所有第二像素累加值中的最大值对应的方向作为对应像素点的第二特征编码值;Step 2b.3.1: In the palmprint filtered image, use the direction corresponding to the maximum value of all the second pixel cumulative values of each pixel as the second feature encoding value of the corresponding pixel;
步骤2b.3.2:根据所述掌纹滤波图像中所有像素点对应的所有第二特征编码值,得到所述掌纹滤波图像对应的第二特征编码值子集;Step 2b.3.2: According to all the second characteristic coding values corresponding to all pixels in the palmprint filtering image, obtain the second characteristic coding value subset corresponding to the palmprint filtering image;
步骤2b.3.3:根据所述第二特征编码值子集得到所述目标掌纹图像。Step 2b.3.3: Obtain the target palmprint image according to the second feature code value subset.
进一步:在所述步骤3中,提取所述目标模板掌纹图像集中每个目标模板掌纹图像一一对应的模板特征点集的具体步骤包括:Further: in said step 3, the specific steps of extracting the set of template feature points corresponding to each target template palmprint image in said target template palmprint image set include:
步骤3a.1:采用双线性插值法,对每个目标模板掌纹图像分别进行扩大,得到扩大目标模板掌纹图像集;Step 3a.1: Using bilinear interpolation method, expand the palmprint image of each target template respectively to obtain the expanded target template palmprint image set;
步骤3a.2:在所述扩大目标模板掌纹图像集的每个扩大目标模板掌纹图像中,采用尺度不变特征变换方法,构建第一尺度空间,并根据预设的第一像素阈值检测出每个扩大目标模板掌纹图像在所述第一尺度空间中一一对应的第一极值点集合;Step 3a.2: In each enlarged target template palmprint image in the expanded target template palmprint image set, use the scale-invariant feature transformation method to construct the first scale space, and detect Obtain the first extremum point set corresponding to each enlarged target template palmprint image in the first scale space;
步骤3a.3:采用Harris Comer检测器,对每个扩大目标模板掌纹图像在所述第一尺度空间中的第一极值点集合进行过滤,得到每个目标模板掌纹图像一一对应的模板特征点集;Step 3a.3: Use Harris Comer detector to filter the first extremum point set of each enlarged target template palmprint image in the first scale space to obtain one-to-one correspondence of each target template palmprint image Template feature point set;
在所述步骤3中,提取所述目标掌纹图像的目标SIFT特征点集的具体步骤包括:In said step 3, the specific steps of extracting the target SIFT feature point set of said target palmprint image include:
步骤3b.1:采用双线性插值法,对所述目标掌纹图像进行扩大,得到扩大目标掌纹图像;Step 3b.1: using bilinear interpolation method to expand the target palmprint image to obtain the enlarged target palmprint image;
步骤3b.2:在所述扩大目标掌纹图像集中,采用尺度不变特征变换方法,构建第二尺度空间,并根据预设的第二像素阈值检测出所述扩大目标掌纹图像在所述第二尺度空间中对应的第二极值点集合;Step 3b.2: In the enlarged target palmprint image set, a scale-invariant feature transformation method is used to construct a second scale space, and the enlarged target palmprint image is detected according to the preset second pixel threshold. The corresponding second set of extremum points in the second scale space;
步骤3b.3:采用Harris Comer检测器,对所述第二极值点集合中所有的第二极值点进行过滤,得到所述目标掌纹图像对应的所述目标SIFT特征点集。Step 3b.3: Using a Harris Comer detector to filter all the second extreme points in the second extreme point set to obtain the target SIFT feature point set corresponding to the target palmprint image.
进一步:所述步骤4的具体步骤包括:Further: the concrete steps of described step 4 include:
步骤4.1:基于影像金字塔方法,根据每个目标模板掌纹图像和对应的模板特征点集,获取每个目标模板掌纹图像一一对应的模板角点坐标集合,根据所述目标掌纹图像和所述目标SIFT特征点集,获取所述目标掌纹图像对应的目标角点坐标集合;Step 4.1: based on the image pyramid method, according to each target template palmprint image and the corresponding template feature point set, obtain the one-to-one corresponding template corner point coordinate set of each target template palmprint image, according to the target palmprint image and The target SIFT feature point set obtains a set of target corner coordinates corresponding to the target palmprint image;
步骤4.2:采用BLPOC方法,根据每个模板角点坐标集合和所述目标角点坐标集合,分别计算得到所述目标掌纹图像与每个目标模板掌纹图像之间的偏移量。Step 4.2: Using the BLPOC method, according to each template corner point coordinate set and the target corner point coordinate set, respectively calculate the offset between the target palmprint image and each target template palmprint image.
进一步:所述步骤5的具体实现为:Further: the concrete realization of described step 5 is:
将所有偏移量中的最小值对应的目标模板掌纹图像作为所述待匹配掌纹的识别结果并输出。Taking the target template palmprint image corresponding to the minimum value of all offsets as the recognition result of the palmprint to be matched and outputting it.
依据本发明的另一方面,提供了一种基于影像金字塔的掌纹识别系统,包括获取模块、预处理模块、提取模块、计算模块和识别模块:According to another aspect of the present invention, a kind of palmprint recognition system based on image pyramid is provided, including acquisition module, preprocessing module, extraction module, calculation module and identification module:
所述获取模块用于获取待匹配掌纹的原始掌纹图像;The acquisition module is used to acquire the original palmprint image of the palmprint to be matched;
所述预处理模块用于对预设的原始模板掌纹图像集中的每个原始模板掌纹图像分别进行预处理,得到目标模板掌纹图像集,还用于对所述原始掌纹图像进行预处理,得到目标掌纹图像;The preprocessing module is used to preprocess each original template palmprint image in the preset original template palmprint image set to obtain the target template palmprint image set, and is also used to preprocess the original palmprint image. Process to obtain the target palmprint image;
所述提取模块用于采用尺度不变特征变换方法分别提取所述目标掌纹图像的目标SIFT特征点集和所述目标模板掌纹图像集中每个目标模板掌纹图像一一对应的模板特征点集;The extraction module is used to extract the target SIFT feature point set of the target palmprint image and the one-to-one corresponding template feature points of each target template palmprint image in the target template palmprint image set by adopting the scale-invariant feature transformation method set;
所述计算模块用于基于影像金字塔方法,计算得到所述目标SIFT特征点集与每个目标模板掌纹图像一一对应的模板特征点集之间的偏移量信息;The calculation module is used to calculate the offset information between the target SIFT feature point set and the one-to-one corresponding template feature point set of each target template palmprint image based on the image pyramid method;
所述识别模块,用于在所述目标模板掌纹图像集中,根据所有偏移量信息对所述待匹配掌纹进行识别匹配,得到识别结果并输出。The identification module is configured to identify and match the palmprint to be matched according to all offset information in the palmprint image set of the target template, obtain and output the identification result.
本发明的有益效果是:通过获取模块获取待匹配掌纹的原始掌纹图像,再通过预处理模块对每个原始模板掌纹图像分别进行预处理,得到一一对应的目标模板掌纹图像,这些目标模板掌纹图像构成了目标模板掌纹图像集,并对原始掌纹图像同样进行预处理,得到目标掌纹图像,通过预处理,可以滤除掉受噪声影响的掌纹线特征,提高了后续尺度不变特征变换方法的抗噪性,有效克服了噪声对掌纹识别的影响,同时还加强了每个目标模板掌纹图像和目标掌纹图像的纹理特征的对比度,有利于后续的掌纹识别和匹配;再通过提取模块通过SIFT方法提取出的目标SIFT特征点集和每个目标模板掌纹图像一一对应的模板特征点集,进一步有利于后续的掌纹识别和匹配,克服了掌纹平移对掌纹识别的影响,明显提高了掌纹的识别精度;在提取目标SIFT特征点集和每个目标模板掌纹图像一一对应的模板特征点集之后,通过计算模块采用影像金字塔方法,可以对掌纹形变在局部区域内进行有效校正,尤其是对于低分辨率的掌纹识别过程,有效克服了掌纹形变对掌纹识别的影响,方法灵活简单,有利于后续计算目标掌纹图像与每个目标模板掌纹图像之间的偏移量,进一步提高掌纹的识别精度;最后通过识别模块通过偏移量可以判断目标掌纹图像与目标模板掌纹图像集中的哪一幅目标模板掌纹图像最为匹配,从而识别出待匹配的掌纹,识别匹配方法较为简单有效,明显提高了掌纹的识别精度。The beneficial effects of the present invention are: obtain the original palmprint image of the palmprint to be matched by the acquisition module, and then preprocess each original template palmprint image by the preprocessing module to obtain a one-to-one corresponding target template palmprint image, These target template palmprint images constitute the target template palmprint image set, and the original palmprint images are also preprocessed to obtain the target palmprint image. Through preprocessing, the palmprint line features affected by noise can be filtered out to improve The noise resistance of the subsequent scale-invariant feature transformation method is improved, and the influence of noise on palmprint recognition is effectively overcome. At the same time, the contrast between the texture features of each target template palmprint image and the target palmprint image is enhanced, which is beneficial to subsequent Palmprint recognition and matching; the target SIFT feature point set extracted by the SIFT method through the extraction module and the template feature point set corresponding to each target template palmprint image are further conducive to subsequent palmprint recognition and matching, and overcome The impact of palmprint translation on palmprint recognition is clearly improved, and the recognition accuracy of palmprint is significantly improved; after extracting the target SIFT feature point set and the template feature point set corresponding to each target template palmprint image, the calculation module adopts the image The pyramid method can effectively correct the palmprint deformation in a local area, especially for the low-resolution palmprint recognition process, which effectively overcomes the influence of palmprint deformation on palmprint recognition. The method is flexible and simple, which is conducive to subsequent calculation goals The offset between the palmprint image and each target template palmprint image further improves the recognition accuracy of the palmprint; finally, the recognition module can judge which one of the target palmprint image and the target template palmprint image set The target template palmprint image is the most matched, so as to identify the palmprint to be matched. The recognition and matching method is relatively simple and effective, and the recognition accuracy of the palmprint is obviously improved.
在上述技术方案的基础上,本发明还可以做如下改进:On the basis of above-mentioned technical scheme, the present invention can also be improved as follows:
进一步:所述预处理模块包括感兴趣区域提取单元、滤波单元和编码单元;Further: the preprocessing module includes a region of interest extracting unit, a filtering unit and a coding unit;
所述感兴趣区域提取单元用于分别提取所述原始模板掌纹图像集中的每个原始模板掌纹图像的感兴趣区域,得到模板掌纹ROI图像集;还用于提取所述原始掌纹图像的感兴趣区域,得到掌纹ROI图像;The region of interest extraction unit is used to extract the region of interest of each original template palmprint image in the original template palmprint image set respectively to obtain the template palmprint ROI image set; it is also used to extract the original palmprint image The region of interest of the palmprint ROI image is obtained;
所述滤波单元用于采用MFRAT滤波方法,对所述模板掌纹ROI图像集中的每个模板掌纹ROI图像分别进行滤波处理,得到模板掌纹滤波图像集;还用于采用MFRAT滤波方法,对所述掌纹ROI图像进行滤波处理,得到掌纹滤波图像;Described filtering unit is used for adopting MFRAT filter method, each template palmprint ROI image of described template palmprint ROI image set is carried out filter processing respectively, obtains template palmprint filter image set; Also for adopting MFRAT filter method, for The palmprint ROI image is filtered to obtain a palmprint filtered image;
所述编码单元用于在所述模板掌纹滤波图像集的每个模板掌纹滤波图像中,将每个像素点分别进行编码,得到所述目标模板掌纹图像集;还用于在所述掌纹滤波图像中,将每个像素点分别进行编码,得到所述目标掌纹图像。The encoding unit is used to encode each pixel in each template palmprint filter image of the template palmprint filter image set to obtain the target template palmprint image set; In the palmprint filtered image, each pixel is coded separately to obtain the target palmprint image.
进一步:所述滤波单元具体用于:Further: the filtering unit is specifically used for:
对所述模板掌纹ROI图像集中的每个模板掌纹ROI图像分别进行直方图均衡化处理,得到第一中间模板掌纹图像集;Carry out histogram equalization processing to each template palmprint ROI image in the template palmprint ROI image set respectively, obtain the first intermediate template palmprint image set;
对所述第一中间模板掌纹图像集中的每个第一中间模板掌纹图像分别进行归一化处理,得到第二中间模板掌纹图像集;Each of the first intermediate template palmprint images in the first intermediate template palmprint image set is respectively normalized to obtain the second intermediate template palmprint image set;
在所述第二中间模板掌纹图像集的每个第二中间模板掌纹图像中,构建第一MFRAT滤波函数,以任一个像素点为第一中心点,建立p×p的第一滤波网格,并在第一滤波网格内,根据第一MFRAT滤波函数,计算得到第一中心点分别在每个方向上的多个第一响应值,并根据每个方向上的所有第一响应值得到第一中心点在每个方向上的第一像素累加值;In each second intermediate template palmprint image of the second intermediate template palmprint image set, build the first MFRAT filter function, take any pixel point as the first center point, and set up the first filter net of p*p Grid, and in the first filter grid, according to the first MFRAT filter function, calculate the first response values of the first central point in each direction, and according to all the first response values in each direction The cumulative value of the first pixel in each direction to the first center point;
第一中心点(x,y)在θk方向上的第一MFRAT滤波函数为:The first MFRAT filter function of the first center point (x, y) in the θ k direction is:
其中,(x,y)为第二中间模板掌纹图像中第一中心点的坐标,r(x,y)为第一中心点(x,y)对应的像素值,θk(k=1,2,…,6)为选取的六个方向,分别为0、π/6、2π/6、3π/6、4π/6和5π/6,为第一滤波网格在θk方向上的一条直线方程,为第一中心点(x,y)在θk方向上的直线方程上的第一响应值;Wherein, (x, y) is the coordinate of the first central point in the second intermediate template palmprint image, and r (x, y) is the pixel value corresponding to the first central point (x, y), θ k (k=1 ,2,…,6) are the selected six directions, which are 0, π/6, 2π/6, 3π/6, 4π/6 and 5π/6, is a straight line equation of the first filtering grid in the θ k direction, is the straight line equation of the first center point (x, y) in the direction of θ k The first response value on ;
遍历每个第二中间模板掌纹图像的每个像素点,按照所述步骤2a.2.3的方法,得到每个像素点分别在每个方向上的第一像素累加值,并根据所有像素点的所有第一像素累加值得到对应的一个第二中间模板掌纹图像对应的模板掌纹滤波图像;Traverse each pixel of each second intermediate template palmprint image, according to the method of step 2a.2.3, obtain the first pixel cumulative value of each pixel in each direction respectively, and according to all pixels All the first pixel cumulative values obtain a corresponding template palmprint filter image corresponding to a second intermediate template palmprint image;
根据所有模板掌纹滤波图像得到所述模板掌纹滤波图像集;Obtain the template palmprint filtering image set according to all template palmprint filtering images;
所述滤波单元还具体用于:The filtering unit is also specifically used for:
对所述掌纹ROI图像进行直方图均衡化处理,得到第一中间掌纹图像;Carry out histogram equalization processing to described palmprint ROI image, obtain the first intermediate palmprint image;
对所述第一中间掌纹图像进行归一化处理,得到第二中间掌纹图像;Carry out normalization processing to described first intermediate palmprint image, obtain the second intermediate palmprint image;
在所述第二中间掌纹图像中,构建第二MFRAT滤波函数,以任一个像素点为第二中心点,建立p×p的第二滤波网格,并在第二滤波网格内,根据第二MFRAT滤波函数,计算得到第二中心点分别在每个方向上的多个第二响应值,并根据每个方向上的所有第二响应值得到第二中心点在每个方向上的第二像素累加值;In the second intermediate palmprint image, construct the second MFRAT filter function, take any pixel point as the second center point, set up the second filtering grid of p×p, and in the second filtering grid, according to The second MFRAT filter function calculates multiple second response values of the second central point in each direction, and obtains the second central point in each direction according to all the second response values in each direction. Accumulated value of two pixels;
第二中心点(x′,y′)在θk方向上的第二MFRAT滤波函数为:The second MFRAT filter function of the second center point (x', y') in the direction of θ k is:
其中,(x′,y′)为第二中间掌纹图像中第二中心点像素点的坐标,r′(x′,y′)为第二中心点(x′,y′)对应的像素值,为第二滤波网格在θk方向上的一条直线方程,为第二中心点(x′,y′)在θk方向上的直线方程上的第二响应值;Wherein, (x', y') is the coordinates of the second central point pixel in the second middle palmprint image, and r'(x',y') is the pixel corresponding to the second central point (x', y') value, is a straight line equation of the second filtering grid in the θ k direction, is the straight line equation of the second center point (x′,y′) in the direction of θ k The second response value on ;
遍历所述第二中间掌纹图像的每个像素点,按照所述步骤2b.2.3的方法,得到每个像素点分别在每个方向上的第二像素累加值;Traversing through each pixel of the second intermediate palmprint image, according to the method of step 2b.2.3, obtain the second pixel cumulative value of each pixel in each direction respectively;
根据所有像素点的所有第二像素累加值得到所述掌纹滤波图像。The palmprint filtered image is obtained according to the accumulated values of all second pixels of all pixels.
进一步:所述编码单元具体用于:Further: the encoding unit is specifically used for:
在所述模板掌纹滤波图像集中的每个模板掌纹滤波图像中,将每个像素点的所有第一像素累加值中的最大值对应的方向作为对应像素点的第一特征编码值;In each template palmprint filtering image in the template palmprint filtering image set, the direction corresponding to the maximum value in all the first pixel cumulative values of each pixel point is used as the first feature encoding value of the corresponding pixel point;
根据每个模板掌纹滤波图像中所有像素点对应的所有第一特征编码值,得到每个模板掌纹滤波图像一一对应的第一特征编码值子集;According to all first feature coding values corresponding to all pixels in each template palmprint filtering image, obtain the first feature coding value subset corresponding to each template palmprint filtering image one-to-one;
根据所有模板掌纹滤波图像对应的所有第一特征编码值子集得到所述目标模板掌纹图像集;Obtain the target template palmprint image set according to all first feature code value subsets corresponding to all template palmprint filtered images;
所述编码单元还具体用于:The coding unit is also specifically used for:
在所述掌纹滤波图像中,将每个像素点的所有第二像素累加值中的最大值对应的方向作为对应像素点的第二特征编码值;In the palmprint filtered image, the direction corresponding to the maximum value in all the second pixel cumulative values of each pixel is used as the second feature encoding value of the corresponding pixel;
根据所述掌纹滤波图像中所有像素点对应的所有第二特征编码值,得到所述掌纹滤波图像对应的第二特征编码值子集;According to all the second feature coding values corresponding to all pixels in the palmprint filtering image, obtain the second feature coding value subset corresponding to the palmprint filtering image;
根据所述第二特征编码值子集得到所述目标掌纹图像。The target palmprint image is obtained according to the second feature code value subset.
进一步:所述提取模块具体用于:Further: the extraction module is specifically used for:
采用双线性插值法,对每个目标模板掌纹图像分别进行扩大,得到扩大目标模板掌纹图像集;Using a bilinear interpolation method, the palmprint image of each target template is expanded separately to obtain an enlarged target template palmprint image set;
在所述扩大目标模板掌纹图像集的每个扩大目标模板掌纹图像中,采用尺度不变特征变换方法,构建第一尺度空间,并根据预设的第一像素阈值检测出每个扩大目标模板掌纹图像在所述第一尺度空间中一一对应的第一极值点集合;In each enlarged target template palmprint image in the expanded target template palmprint image set, a scale-invariant feature transformation method is used to construct a first scale space, and each enlarged target is detected according to a preset first pixel threshold A set of first extremum points corresponding one-to-one to the template palmprint image in the first scale space;
采用Harris Comer检测器,对每个扩大目标模板掌纹图像在所述第一尺度空间中的第一极值点集合进行过滤,得到每个目标模板掌纹图像一一对应的模板特征点集;Adopt Harris Comer detector, filter the first extremum point collection of each enlarged target template palmprint image in the first scale space, obtain the template feature point set corresponding to each target template palmprint image one-to-one;
所述提取模块还具体用于:The extraction module is also specifically used for:
采用双线性插值法,对所述目标掌纹图像进行扩大,得到扩大目标掌纹图像;Expanding the target palmprint image by using a bilinear interpolation method to obtain the enlarged target palmprint image;
在所述扩大目标掌纹图像集中,采用尺度不变特征变换方法,构建第二尺度空间,并根据预设的第二像素阈值检测出所述扩大目标掌纹图像在所述第二尺度空间中对应的第二极值点集合;In the enlarged target palmprint image set, a scale-invariant feature transformation method is used to construct a second scale space, and according to a preset second pixel threshold, it is detected that the enlarged target palmprint image is in the second scale space The corresponding second set of extremum points;
采用Harris Comer检测器,对所述第二极值点集合中所有的第二极值点进行过滤,得到所述目标掌纹图像对应的所述目标SIFT特征点集。A Harris Comer detector is used to filter all the second extreme points in the second extreme point set to obtain the target SIFT feature point set corresponding to the target palmprint image.
进一步:所述计算模块具体用于:Further: the calculation module is specifically used for:
基于影像金字塔方法,根据每个目标模板掌纹图像和对应的模板特征点集,获取每个目标模板掌纹图像一一对应的模板角点坐标集合,根据所述目标掌纹图像和所述目标SIFT特征点集,获取所述目标掌纹图像对应的目标角点坐标集合;Based on the image pyramid method, according to each target template palmprint image and the corresponding template feature point set, obtain the one-to-one corresponding template corner point coordinate set of each target template palmprint image, according to the target palmprint image and the target SIFT feature point set, obtains the set of target corner coordinates corresponding to the target palmprint image;
采用BLPOC方法,根据每个模板角点坐标集合和所述目标角点坐标集合,分别计算得到所述目标掌纹图像与每个目标模板掌纹图像之间的偏移量。Using the BLPOC method, according to each template corner point coordinate set and the target corner point coordinate set, the offset between the target palmprint image and each target template palmprint image is calculated respectively.
进一步:所述识别模块具体用于:Further: the identification module is specifically used for:
将所有偏移量中的最小值对应的目标模板掌纹图像作为所述待匹配掌纹的识别结果并输出。The palmprint image of the target template corresponding to the minimum value of all offsets is used as the recognition result of the palmprint to be matched and output.
依据本发明的另一方面,提供了一种基于影像金字塔的掌纹识别装置,包括处理器、存储器和存储在所述存储器中且可运行在所述处理器上的计算机程序,所述计算机程序运行时实现本发明的一种基于影像金字塔的掌纹识别方法中的步骤。According to another aspect of the present invention, a palmprint recognition device based on an image pyramid is provided, including a processor, a memory, and a computer program stored in the memory and operable on the processor, the computer program The steps in the image pyramid-based palmprint recognition method of the present invention are implemented during operation.
本发明的有益效果是:通过存储在存储器上的计算机程序,并运行在处理器上,实现本发明的掌纹识别,基于尺度不变特征变换方法和影像金字塔,对掌纹形变进行有效校正,克服了掌纹形变、掌纹平移以及噪声对掌纹识别的影响,明显提高了掌纹的识别精度,识别效果好。The beneficial effects of the present invention are: through the computer program stored in the memory, and run on the processor, realize the palmprint recognition of the present invention, based on the scale-invariant feature transformation method and the image pyramid, effectively correct the deformation of the palmprint, It overcomes the influence of palmprint deformation, palmprint translation and noise on palmprint recognition, significantly improves the recognition accuracy of palmprint, and the recognition effect is good.
依据本发明的另一方面,提供了一种计算机存储介质,所述计算机存储介质包括:至少一个指令,在所述指令被执行时实现本发明的一种基于影像金字塔的掌纹识别方法中的步骤。According to another aspect of the present invention, a kind of computer storage medium is provided, and described computer storage medium comprises: At least one instruction, when described instruction is carried out, realize the method in a kind of palmprint recognition method based on image pyramid of the present invention step.
本发明的有益效果是:通过执行包含至少一个指令的计算机存储介质,实现本发明的掌纹识别,基于尺度不变特征变换方法和影像金字塔,对掌纹形变进行有效校正,克服了掌纹形变、掌纹平移以及噪声对掌纹识别的影响,明显提高了掌纹的识别精度,识别效果好。The beneficial effects of the present invention are: by executing the computer storage medium containing at least one instruction, the palmprint recognition of the present invention is realized, based on the scale-invariant feature transformation method and the image pyramid, the palmprint deformation is effectively corrected, and the palmprint deformation is overcome , Palmprint translation and the impact of noise on palmprint recognition, significantly improve the recognition accuracy of palmprint, and the recognition effect is good.
附图说明Description of drawings
图1为本发明实施例一中基于影像金字塔的掌纹识别方法的流程示意图;Fig. 1 is the schematic flow sheet of the palmprint recognition method based on image pyramid in the embodiment of the present invention one;
图2为本发明实施例一中得到目标模板掌纹图像集的流程示意图;Fig. 2 is the schematic flow chart that obtains target template palmprint image set in the embodiment of the present invention one;
图3为本发明实施例一中得到目标掌纹图像的流程示意图;Fig. 3 is the schematic flow chart that obtains target palmprint image in the embodiment of the present invention;
图4为本发明实施例一中得到模板特征点集的流程示意图;4 is a schematic flow diagram of obtaining a template feature point set in Embodiment 1 of the present invention;
图5为本发明实施例一中得到目标SIFT特征点集的流程示意图;5 is a schematic flow diagram of obtaining a target SIFT feature point set in Embodiment 1 of the present invention;
图6为本发明实施例一中计算得到偏移量的流程示意图;FIG. 6 is a schematic flow chart of calculating an offset in Embodiment 1 of the present invention;
图7为本发明实施例二中基于影像金字塔的掌纹识别系统的结构示意图一;Fig. 7 is the structural representation one of the palmprint recognition system based on image pyramid in the embodiment of the present invention two;
图8为本发明实施例二中基于影像金字塔的掌纹识别系统的结构示意图二。FIG. 8 is a second structural schematic diagram of a palmprint recognition system based on an image pyramid in Embodiment 2 of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。The principles and features of the present invention are described below in conjunction with the accompanying drawings, and the examples given are only used to explain the present invention, and are not intended to limit the scope of the present invention.
下面结合附图,对本发明进行说明。The present invention will be described below in conjunction with the accompanying drawings.
实施例一、如图1所示,一种基于影像金字塔的掌纹识别方法,包括以下步骤:Embodiment one, as shown in Figure 1, a kind of palmprint recognition method based on image pyramid comprises the following steps:
S1:获取待匹配掌纹的原始掌纹图像;S1: Obtain the original palmprint image of the palmprint to be matched;
S2:对预设的原始模板掌纹图像集中的每个原始模板掌纹图像分别进行预处理,得到目标模板掌纹图像集,对所述原始掌纹图像进行预处理,得到目标掌纹图像;S2: Preprocessing each original template palmprint image in the preset original template palmprint image set to obtain a target template palmprint image set, and performing preprocessing on the original palmprint image to obtain a target palmprint image;
S3:采用尺度不变特征变换方法分别提取所述目标掌纹图像的目标SIFT特征点集和所述目标模板掌纹图像集中每个目标模板掌纹图像一一对应的模板特征点集;S3: Using a scale-invariant feature transformation method to extract the target SIFT feature point set of the target palmprint image and the template feature point set corresponding to each target template palmprint image in the target template palmprint image set;
S4:基于影像金字塔方法,根据每个目标模板掌纹图像和与每个目标模板掌纹图像一一对应的所述模板特征点集,以及所述目标掌纹图像和与所述目标掌纹图像对应的所述目标SIFT特征点集,计算得到所述目标掌纹图像与每个目标模板掌纹图像之间的偏移量;S4: Based on the image pyramid method, according to each target template palmprint image and the template feature point set corresponding to each target template palmprint image, and the target palmprint image and the target palmprint image The corresponding target SIFT feature point set is calculated to obtain the offset between the target palmprint image and each target template palmprint image;
S5:在所述目标模板掌纹图像集中,根据所有偏移量对所述待匹配掌纹进行识别匹配,得到识别结果并输出。S5: In the palmprint image set of the target template, perform recognition and matching on the palmprint to be matched according to all offsets, obtain and output a recognition result.
先对每个原始模板掌纹图像分别进行预处理,得到一一对应的目标模板掌纹图像,这些目标模板掌纹图像构成了目标模板掌纹图像集,并对原始掌纹图像同样进行预处理,得到目标掌纹图像,通过预处理,可以滤除掉受噪声影响的掌纹线特征,提高了后续尺度不变特征变换方法的抗噪性,有效克服了噪声对掌纹识别的影响,同时还加强了每个目标模板掌纹图像和目标掌纹图像的纹理特征的对比度,有利于后续的掌纹识别和匹配;通过SIFT方法提取出的目标SIFT特征点集和每个目标模板掌纹图像一一对应的模板特征点集,进一步有利于后续的掌纹识别和匹配,克服了掌纹平移对掌纹识别的影响,明显提高了掌纹的识别精度;在提取目标SIFT特征点集和每个目标模板掌纹图像一一对应的模板特征点集之后,采用影像金字塔方法,可以对掌纹形变在局部区域内进行有效校正,方法灵活简单,有利于后续计算目标掌纹图像与每个目标模板掌纹图像之间的偏移量,有效克服了掌纹形变对掌纹识别的影响,进一步提高掌纹的识别精度;由于相同掌纹的特征点之间的偏移量均较小,而不同掌纹的特征点之间的偏移量均较大,因此通过偏移量可以判断目标掌纹图像与目标模板掌纹图像集中的哪一幅目标模板掌纹图像最为匹配,从而识别出待匹配的掌纹,识别匹配方法较为简单有效,明显提高了掌纹的识别精度。First, each original template palmprint image is preprocessed separately to obtain a one-to-one corresponding target template palmprint image. These target template palmprint images constitute the target template palmprint image set, and the original palmprint image is also preprocessed , to obtain the target palmprint image, through preprocessing, the palmprint line features affected by noise can be filtered out, the noise resistance of the subsequent scale-invariant feature transformation method is improved, and the influence of noise on palmprint recognition is effectively overcome. It also strengthens the contrast between the texture features of each target template palmprint image and the target palmprint image, which is conducive to subsequent palmprint recognition and matching; the target SIFT feature point set extracted by the SIFT method and the palmprint image of each target template The one-to-one corresponding template feature point set is further beneficial to the subsequent palmprint recognition and matching, overcomes the influence of palmprint translation on palmprint recognition, and significantly improves the recognition accuracy of palmprint; when extracting the target SIFT feature point set and each After one-to-one corresponding template feature point sets of target template palmprint images, the image pyramid method can be used to effectively correct the palmprint deformation in the local area. The method is flexible and simple, which is conducive to the subsequent calculation of target palmprint images and each The offset between the template palmprint images effectively overcomes the influence of palmprint deformation on palmprint recognition and further improves the recognition accuracy of palmprints; since the offsets between feature points of the same palmprint are small, and The offset between the feature points of different palmprints is relatively large, so it can be judged which target template palmprint image matches the target palmprint image and the target template palmprint image set by the offset, so as to identify the Matching palmprints, the recognition and matching method is relatively simple and effective, which obviously improves the recognition accuracy of palmprints.
应理解,本发明中原始模板掌纹图像集中包含多个原始模板掌纹图像,为预先采集的,例如通过网络爬虫或人工收集的方式采集的;因此,目标模板掌纹图像集中包含多个目标模板掌纹图像。It should be understood that among the present invention, the original template palmprint image set contains a plurality of original template palmprint images, which are collected in advance, such as collected by a web crawler or manually collected; therefore, the target template palmprint image set contains a plurality of target Template palm print image.
优选地,如图2所示,在S2中,得到所述目标模板掌纹图像集的具体步骤包括:Preferably, as shown in Figure 2, in S2, the specific steps of obtaining the target template palmprint image set include:
S2a.1:分别提取所述原始模板掌纹图像集中的每个原始模板掌纹图像的感兴趣区域,得到模板掌纹ROI图像集;S2a.1: respectively extracting the region of interest of each original template palmprint image in the original template palmprint image set to obtain a template palmprint ROI image set;
S2a.2:采用MFRAT滤波方法,对所述模板掌纹ROI图像集中的每个模板掌纹ROI图像分别进行滤波处理,得到模板掌纹滤波图像集;S2a.2: Using the MFRAT filtering method, each template palmprint ROI image in the template palmprint ROI image set is filtered separately to obtain a template palmprint filtered image set;
S2a.3:在所述模板掌纹滤波图像集的每个模板掌纹滤波图像中,将每个像素点分别进行编码,得到所述目标模板掌纹图像集;S2a.3: In each template palmprint filtering image of the template palmprint filtering image set, encode each pixel point respectively to obtain the target template palmprint image set;
如图3所示,在S2中,得到所述目标掌纹图像的具体步骤包括:As shown in Figure 3, in S2, the concrete steps that obtain described target palmprint image include:
S2b.1:提取所述原始掌纹图像的感兴趣区域,得到掌纹ROI图像;S2b.1: Extract the region of interest of the original palmprint image to obtain a palmprint ROI image;
S2b.2:采用MFRAT滤波方法,对所述掌纹ROI图像进行滤波处理,得到掌纹滤波图像;S2b.2: Using the MFRAT filtering method, filter the palmprint ROI image to obtain a palmprint filtered image;
S2b.3:在所述掌纹滤波图像中,将每个像素点分别进行编码,得到所述目标掌纹图像。S2b.3: In the palmprint filtered image, encode each pixel point separately to obtain the target palmprint image.
由于感兴趣区域(Regions of Interest,ROI)包含更多有效的掌纹特征,因此首先提取原始模板掌纹图像集中每个原始模板掌纹图像的感兴趣区域和原始掌纹图像的感兴趣区域,既可以提取到各个掌纹图像中的有效掌纹特征,便于后续的特征提取和掌纹识别匹配,还可以大大减小运算量;MFRAT(Modified Finite Radon Transform)滤波方法是一种改进的有限Radon变换,可以准确定位出掌纹特征,因此通过MFRAT滤波方法的滤波处理,可以有效避免噪声对掌纹识别的影响,通过对每个模板掌纹滤波图像中的每个像素点和掌纹滤波图像中的每个像素点分别进行编码,便于后续的特征提取以及影像金字塔方法的执行,从而便于掌纹的识别和匹配。Because the region of interest (Regions of Interest, ROI) contains more effective palmprint features, so first extract the region of interest of each original template palmprint image in the original template palmprint image set and the region of interest of the original palmprint image, It can not only extract effective palmprint features in each palmprint image, but also facilitate subsequent feature extraction and palmprint recognition matching, and can also greatly reduce the amount of calculation; MFRAT (Modified Finite Radon Transform) filtering method is an improved finite Radon Transformation can accurately locate the palmprint features. Therefore, the filtering process of the MFRAT filtering method can effectively avoid the influence of noise on palmprint recognition. Each pixel in the palmprint filtering image of each template and the palmprint filtering image Each pixel in the palmprint is encoded separately, which is convenient for the subsequent feature extraction and the execution of the image pyramid method, so as to facilitate the recognition and matching of palmprints.
优选地,S2a.2具体包括:Preferably, S2a.2 specifically includes:
S2a.2.1:对所述模板掌纹ROI图像集中的每个模板掌纹ROI图像分别进行直方图均衡化处理,得到第一中间模板掌纹图像集;S2a.2.1: Perform histogram equalization processing on each template palmprint ROI image in the template palmprint ROI image set to obtain a first intermediate template palmprint image set;
S2a.2.2:对所述第一中间模板掌纹图像集中的每个第一中间模板掌纹图像分别进行归一化处理,得到第二中间模板掌纹图像集;S2a.2.2: Perform normalization processing on each of the first intermediate template palmprint images in the first intermediate template palmprint image set to obtain a second intermediate template palmprint image set;
S2a.2.3:在所述第二中间模板掌纹图像集的每个第二中间模板掌纹图像中,构建第一MFRAT滤波函数,以任一个像素点为第一中心点,建立p×p的第一滤波网格,并在第一滤波网格内,根据第一MFRAT滤波函数,计算得到第一中心点分别在每个方向上的多个第一响应值,并根据每个方向上的所有第一响应值得到第一中心点在每个方向上的第一像素累加值;S2a.2.3: In each of the second intermediate template palmprint images in the second intermediate template palmprint image set, construct the first MFRAT filter function, take any pixel point as the first center point, and establish p×p The first filter grid, and in the first filter grid, according to the first MFRAT filter function, calculate and obtain the first center point in each direction of a plurality of first response values, and according to all the first response values in each direction The first response value obtains the first pixel cumulative value of the first central point in each direction;
第一中心点(x,y)在θk方向上的第一MFRAT滤波函数为:The first MFRAT filter function of the first center point (x, y) in the θ k direction is:
其中,(x,y)为第二中间模板掌纹图像中第一中心点的坐标,r(x,y)为第一中心点(x,y)对应的像素值,θk(k=1,2,…,6)为选取的六个方向,分别为0、π/6、2π/6、3π/6、4π/6和5π/6,为第一滤波网格在θk方向上的一条直线方程,为第一中心点(x,y)在θk方向上的直线方程上的第一响应值;Wherein, (x, y) is the coordinate of the first central point in the second intermediate template palmprint image, and r (x, y) is the pixel value corresponding to the first central point (x, y), θ k (k=1 ,2,…,6) are the selected six directions, which are 0, π/6, 2π/6, 3π/6, 4π/6 and 5π/6, is a straight line equation of the first filtering grid in the direction of θ k , is the straight line equation of the first center point (x, y) in the direction of θ k The first response value on ;
S2a.2.4:遍历每个第二中间模板掌纹图像的每个像素点,按照所述步骤2a.2.3的方法,得到每个像素点分别在每个方向上的第一像素累加值,并根据所有像素点的所有第一像素累加值得到对应的一个第二中间模板掌纹图像对应的模板掌纹滤波图像;S2a.2.4: traverse each pixel of the second intermediate template palmprint image, according to the method of step 2a.2.3, obtain the first pixel cumulative value of each pixel in each direction, and according to All the first pixel cumulative values of all pixels are obtained corresponding to a template palmprint filter image corresponding to the second intermediate template palmprint image;
S2a.2.5:根据所有模板掌纹滤波图像得到所述模板掌纹滤波图像集;S2a.2.5: Obtain the template palmprint filtered image set according to all template palmprint filtered images;
S2b.2具体包括:S2b.2 specifically includes:
S2b.2.1:对所述掌纹ROI图像进行直方图均衡化处理,得到第一中间掌纹图像;S2b.2.1: Perform histogram equalization processing on the palmprint ROI image to obtain a first intermediate palmprint image;
S2b.2.2:对所述第一中间掌纹图像进行归一化处理,得到第二中间掌纹图像;S2b.2.2: Perform normalization processing on the first intermediate palmprint image to obtain a second intermediate palmprint image;
S2b.2.3:在所述第二中间掌纹图像中,构建第二MFRAT滤波函数,以任一个像素点为第二中心点,建立p×p的第二滤波网格,并在第二滤波网格内,根据所述MFRAT滤波函数,计算得到第二中心点分别在每个方向上的多个第二响应值,并根据每个方向上的所有第二响应值得到第二中心点在每个方向上的第二像素累加值;S2b.2.3: In the second intermediate palmprint image, construct a second MFRAT filter function, take any pixel point as the second center point, establish a p×p second filter grid, and In the grid, according to the MFRAT filter function, a plurality of second response values of the second center point in each direction are calculated, and according to all second response values in each direction, the second center point is obtained in each direction. The accumulated value of the second pixel in the direction;
第二中心点(x′,y′)在θk方向上的第二MFRAT滤波函数为:The second MFRAT filter function of the second central point (x′, y′) in the direction of θ k is:
其中,(x′,y′)为第二中间掌纹图像中第二中心点的坐标,r′(x′,y′)为第二中心点(x′,y′)对应的像素值,为第二滤波网格在θk方向上的一条直线方程,为第二中心点(x′,y′)在θk方向上的直线方程上的第二响应值;Wherein, (x', y') is the coordinate of the second center point in the second middle palmprint image, and r'(x', y') is the pixel value corresponding to the second center point (x', y'), is a straight line equation of the second filtering grid in the θ k direction, is the straight line equation of the second center point (x′,y′) in the direction of θ k The second response value on ;
S2b.2.4:遍历所述第二中间掌纹图像的每个像素点,按照所述步骤2b.2.3的方法,得到每个像素点分别在每个方向上的第二像素累加值;S2b.2.4: traverse each pixel of the second intermediate palmprint image, and obtain the second pixel accumulation value of each pixel in each direction according to the method of step 2b.2.3;
S2b.2.5:根据所有像素点的所有第二像素累加值得到所述掌纹滤波图像。S2b.2.5: Obtain the palmprint filtered image according to the accumulated values of all second pixels of all pixels.
通过上述步骤的滤波处理,一方面能有效克服噪声对掌纹识别的影响,另一方面还能增强各个图像中的掌纹特征的对比度,从而便于后续SIFT方法和影像金字塔方法的执行,即便于提取出准确的目标SIFT特征点集和模板特征点集,并便于计算目标掌纹图像与每个目标模板掌纹图像之间的准确的偏移量。Through the filtering process of the above steps, on the one hand, the influence of noise on palmprint recognition can be effectively overcome, and on the other hand, the contrast of the palmprint features in each image can be enhanced, so as to facilitate the execution of the subsequent SIFT method and image pyramid method, even in The accurate target SIFT feature point set and the template feature point set are extracted, and the accurate offset between the target palmprint image and each target template palmprint image is conveniently calculated.
具体地,本实施例模板掌纹ROI图像集的其中一个模板掌纹ROI图像I(x,y),其大小为M×N(M和N分别为模板掌纹ROI图像的行像素点总数和列像素点总数);对该模板掌纹ROI图像I(x,y)进行直方图均衡化处理,得到对应的第一中间模板掌纹ROI图像为IH(x,y),再对第一中间模板掌纹ROI图像为IH(x,y)进行归一化处理,得到归一化后的第二中间模板掌纹ROI图像为IN(x,y);最后再以像素点(x,y)为第一中心点,构建11×11的第一滤波网格,在该第一滤波网格内,根据第一MFRAT滤波函数进行滤波,计算得到该第一中心点分别在六个方向上的第一像素累加值为Mi,其中i=1,2,…,6;遍历该第二中间模板掌纹ROI图像为IN(x,y)中的每个像素点,按照同样的方法计算每个像素点一一对应的第一像素累加值,根据所有的第一像素累加值得到该第二中间模板掌纹ROI图像为IN(x,y)对应的在六个方向上的模板掌纹滤波图像为IMi(x,y),其中i=1,2,…,6;按照上述同样的方法,可以得到模板掌纹ROI图像集每个模板掌纹ROI图像对应的在六个方向上的模板掌纹滤波图像,以及掌纹ROI图像对应的掌纹滤波图像JMi(x′,y′),其中i=1,2,…,6。Specifically, one of the template palmprint ROI images I (x, y) of the template palmprint ROI image set in the present embodiment has a size of M × N (M and N are respectively the total number of row pixels of the template palmprint ROI image and Column total number of pixels); This template palmprint ROI image I (x, y) is carried out histogram equalization processing, obtains the corresponding first intermediate template palmprint ROI image as I H (x, y), then the first Middle template palmprint ROI image is I H (x, y) carries out normalization process, obtains the second middle template palmprint ROI image after normalization is I N (x, y); , y) is the first center point, construct the first filter grid of 11×11, in the first filter grid, filter according to the first MFRAT filter function, and calculate the first center point in six directions The cumulative value of the first pixel on M i , where i=1,2,...,6; traverse the second intermediate template palmprint ROI image as each pixel in I N (x,y), according to the same The method calculates the one-to-one corresponding first pixel cumulative value of each pixel, and obtains the second intermediate template palmprint ROI image corresponding to I N (x, y) in six directions according to all the first pixel cumulative values. Template palmprint filter image is I Mi (x, y), and wherein i=1,2,...,6; According to above-mentioned same method, can obtain template palmprint ROI image set each template palmprint ROI image corresponding in six Template palmprint filtering images in three directions, and palmprint filtering images J Mi (x′, y′) corresponding to the palmprint ROI image, where i=1, 2, . . . , 6.
优选地,S2a.3具体包括:Preferably, S2a.3 specifically includes:
S2a.3.1:在所述模板掌纹滤波图像集中的每个模板掌纹滤波图像中,将每个像素点的所有第一像素累加值中的最大值对应的方向作为对应像素点的第一特征编码值;S2a.3.1: In each template palmprint filtering image in the template palmprint filtering image set, use the direction corresponding to the maximum value of all first pixel cumulative values of each pixel as the first feature of the corresponding pixel coded value;
S2a.3.2:根据每个模板掌纹滤波图像中所有像素点对应的所有第一特征编码值,得到每个模板掌纹滤波图像一一对应的第一特征编码值子集;S2a.3.2: According to all the first feature coding values corresponding to all pixels in each template palmprint filtering image, obtain a one-to-one corresponding first feature coding value subset of each template palmprint filtering image;
S2a.3.3:根据所有模板掌纹滤波图像对应的所有第一特征编码值子集得到所述目标模板掌纹图像集;S2a.3.3: Obtain the target template palmprint image set according to all first feature coding value subsets corresponding to all template palmprint filtered images;
S2b.3具体包括:S2b.3 specifically includes:
S2b.3.1:在所述掌纹滤波图像中,将每个像素点的所有第二像素累加值中的最大值对应的方向作为对应像素点的第二特征编码值;S2b.3.1: In the palmprint filtered image, use the direction corresponding to the maximum value of all the second pixel cumulative values of each pixel as the second feature encoding value of the corresponding pixel;
S2b.3.2:根据所述掌纹滤波图像中所有像素点对应的所有第二特征编码值,得到所述掌纹滤波图像对应的第二特征编码值子集;S2b.3.2: Obtain a subset of second feature code values corresponding to the palmprint filter image according to all second feature code values corresponding to all pixels in the palmprint filter image;
S2b.3.3:根据所述第二特征编码值子集得到所述目标掌纹图像。S2b.3.3: Obtain the target palmprint image according to the second feature code value subset.
通过上述步骤的编码方法,便于根据编码后得到的目标模板掌纹图像集和目标掌纹图像设计相应的特征匹配策略,从而便于后续根据特征匹配策略在目标模板掌纹图像集和目标掌纹图像进行特征提取,并按照特征匹配策略进行特征匹配,有效提高掌纹识别与匹配的准确率和精度,识别与匹配的效果好。Through the encoding method of the above steps, it is convenient to design corresponding feature matching strategies according to the target template palmprint image set and target palmprint image obtained after encoding, so as to facilitate follow-up in the target template palmprint image set and target palmprint image according to the feature matching strategy Feature extraction is carried out, and feature matching is carried out according to the feature matching strategy, which effectively improves the accuracy and precision of palmprint recognition and matching, and the effect of recognition and matching is good.
具体地,本实施例中对于第二中间模板掌纹ROI图像为IN(x,y)对应的在六个方向上的模板掌纹滤波图像为IMi(x,y),在任一个像素点上,选取6个方向的第一像素累加值中的最大值,其所对应的方向为该像素点的第一特征编码值,遍历每一个像素点,得到该第二中间模板掌纹ROI图像为IN(x,y)对应的第一特征编码值子集,再根据该第一特征编码值子集得到目标模板掌纹图像IM(x,y);采用上述同样的方法,得到每个第二中间模板掌纹ROI图像对应的目标模板掌纹图像,以及第二中间掌纹ROI图像对应的目标掌纹图像JM(x′,y′),所有的目标模板掌纹图像构成了目标模板掌纹图像集。Specifically, in the present embodiment, for the second intermediate template palmprint ROI image, the template palmprint filter image corresponding to I N (x, y) in six directions is I Mi (x, y), and at any pixel point Above, select the maximum value among the accumulated values of the first pixels in the 6 directions, and the corresponding direction is the first feature code value of the pixel, traverse each pixel, and obtain the palmprint ROI image of the second intermediate template as I N (x, y) corresponds to the first feature encoding value subset, and then obtains the target template palmprint image I M (x, y) according to the first feature encoding value subset; adopt the above-mentioned same method to obtain each The target template palmprint image corresponding to the second intermediate template palmprint ROI image, and the target palmprint image J M (x′, y′) corresponding to the second intermediate palmprint ROI image, all target template palmprint images constitute the target Set of template palm print images.
优选地,如图4所示,在S3中,提取所述目标模板掌纹图像集中每个目标模板掌纹图像一一对应的模板特征点集的具体步骤包括:Preferably, as shown in Figure 4, in S3, the specific steps of extracting the one-to-one template feature point set of each target template palmprint image in the target template palmprint image set include:
S3a.1:采用双线性插值法,对每个目标模板掌纹图像分别进行扩大,得到扩大目标模板掌纹图像集;S3a.1: Using the bilinear interpolation method, expand the palmprint image of each target template respectively to obtain the enlarged target template palmprint image set;
S3a.2:在所述扩大目标模板掌纹图像集的每个扩大目标模板掌纹图像中,采用尺度不变特征变换方法,构建第一尺度空间,并根据预设的第一像素阈值检测出每个扩大目标模板掌纹图像在所述第一尺度空间中一一对应的第一极值点集合;S3a.2: In each enlarged target template palmprint image in the expanded target template palmprint image set, use the scale-invariant feature transformation method to construct the first scale space, and detect the A set of first extremum points corresponding to each expanded target template palmprint image in the first scale space;
S3a.3:采用Harris Comer检测器,对每个扩大目标模板掌纹图像在所述第一尺度空间中的第一极值点集合进行过滤,得到每个目标模板掌纹图像一一对应的模板特征点集;S3a.3: Use the Harris Comer detector to filter the first extreme point set of each expanded target template palmprint image in the first scale space to obtain a one-to-one corresponding template for each target template palmprint image feature point set;
如图5所示,在S3中,提取所述目标掌纹图像的目标SIFT特征点集的具体步骤包括:As shown in Figure 5, in S3, the specific steps of extracting the target SIFT feature point set of the target palmprint image include:
S3b.1:采用双线性插值法,对所述目标掌纹图像进行扩大,得到扩大目标掌纹图像;S3b.1: Enlarging the target palmprint image by using a bilinear interpolation method to obtain the enlarged target palmprint image;
S3b.2:在所述扩大目标掌纹图像集中,采用尺度不变特征变换方法,构建第二尺度空间,并根据预设的第二像素阈值检测出所述扩大目标掌纹图像在所述第二尺度空间中对应的第二极值点集合;S3b.2: In the expanded target palmprint image set, use a scale-invariant feature transformation method to construct a second scale space, and detect that the expanded target palmprint image is in the second scale space according to the preset second pixel threshold The corresponding second extreme point set in the two-scale space;
S3b.3:采用Harris Comer检测器,对所述第二极值点集合中所有的第二极值点进行过滤,得到所述目标掌纹图像对应的所述目标SIFT特征点集。S3b.3: Using a Harris Comer detector to filter all the second extreme points in the second extreme point set to obtain the target SIFT feature point set corresponding to the target palmprint image.
通过双线性插值法对每个目标模板掌纹图像和目标掌纹图像进行扩大,便于后续采用尺度不变特征变化方法(SIFT方法)检测出对应的第一极值点集合和第二极值点集合;Harris Comer检测(哈里斯角点检测)方法是基于信号的点特征提取方法,因此再通过Harris Comer检测器对第一极值点集合和第二极值点集合分别进行过滤,可以滤除掉一些不稳定的特征点,得到稳定性较高的模板特征点集和目标SIFT特征点集;其中,预设的像素阈值可以根据实际情况确定和调整,采用Harris Comer检测器进行过滤的具体操作步骤,为现有比较成熟的技术,此处不再赘述。Expand each target template palmprint image and target palmprint image by bilinear interpolation method, so as to facilitate subsequent detection of the corresponding first extreme point set and second extreme value using the scale invariant feature change method (SIFT method) point set; the Harris Comer detection (Harris corner point detection) method is a point feature extraction method based on the signal, so the first extreme point set and the second extreme point set are filtered respectively by the Harris Comer detector, which can be filtered Get rid of some unstable feature points to get template feature point set and target SIFT feature point set with high stability; among them, the preset pixel threshold can be determined and adjusted according to the actual situation, and the Harris Comer detector is used for filtering. The operation steps are relatively mature technologies at present, and will not be repeated here.
需要说明的是,通过Harris Comer检测器的过滤,首先得到是每个扩大目标模板掌纹图像一一对应的模板特征点集,但由于每个扩大目标模板掌纹图像是由对应的目标模板掌纹图像经过扩大而得来的,因此每个扩大目标模板掌纹图像一一对应的模板特征点集也即为每个目标模板掌纹图像一一对应的模板特征点集;同理,扩大目标掌纹图像对应的目标SIFT特征点集也即为目标掌纹图像对应的目标SIFT特征点集。It should be noted that, through the filtering of the Harris Comer detector, the set of template feature points corresponding to each enlarged target template palmprint image is firstly obtained, but since each expanded target template palmprint image is composed of the corresponding target template palmprint image The palmprint image is obtained by expanding, so the template feature point set corresponding to each expanded target template palmprint image is also the template feature point set corresponding to each target template palmprint image; The target SIFT feature point set corresponding to the palmprint image is also the target SIFT feature point set corresponding to the target palmprint image.
具体地,本实施例中对于目标模板掌纹图像IM(x,y),其大小为M×N,采用双线性插值法,得到的扩大目标模板掌纹图像为IMD(x,y),其大小为2M×2N,同理,对每个目标模板掌纹图像和目标掌纹图像分别进行扩大,得到与每个目标模板掌纹图像一一对应的扩大目标模板掌纹图像,以及与目标掌纹图像对应的扩大目标掌纹图像为JMD(x′,y′),其中,所有的扩大目标模板掌纹图像构成了扩大目标模板掌纹图像集。Specifically, in this embodiment, for the target template palmprint image I M (x, y), its size is M × N, and the bilinear interpolation method is adopted, and the enlarged target template palmprint image obtained is I MD (x, y ), its size is 2M * 2N, in like manner, each target template palmprint image and target palmprint image are enlarged respectively, obtain the expanded target template palmprint image corresponding to each target template palmprint image one by one, and The enlarged target palmprint image corresponding to the target palmprint image is J MD (x′,y′), wherein all the enlarged target template palmprint images constitute the enlarged target template palmprint image set.
具体地,本实施例中在扩大目标模板掌纹图像IMD(x,y)中,采用尺度不变特征变换方法,构建第一尺度空间,第一尺度空间包括S个尺度,且满足其中,k为尺度因子系数,S取3,即构建3层的塔状图像,在每一层的DOG尺度空间中,根据预设的第一像素阈值,检测每一个像素点的像素灰度值是否在局部空间范围内是第一极值点,检测出所有的第一极值点;并采用Harris Comer检测器过滤不稳定的第一极值点,得到扩大目标模板掌纹图像对应的较为稳定的模板特征点集为PIj1,其中j1=1,2,…,a1(a1为扩大目标模板掌纹图像对应的模板特征点集的特征点总数);同理,得到每个扩大目标模板掌纹图像一一对应的较为稳定的模板特征点集(也即每个目标模板掌纹图像一一对应的较为稳定的模板特征点集),以及扩大目标掌纹图像对应的较为稳定的目标SIFT特征点集PJj(也即目标掌纹图像对应的较为稳定的目标SIFT特征点集),其中j=1,2,…,b(b为扩大目标掌纹图像对应的目标SIFT特征点集的特征点总数)。Specifically, in this embodiment, in the enlarged target template palmprint image I MD (x, y), a scale-invariant feature transformation method is used to construct a first scale space, which includes S scales and satisfies Among them, k is the scale factor coefficient, S is set to 3, that is, a three-layer tower image is constructed, and in the DOG scale space of each layer, the pixel gray value of each pixel is detected according to the preset first pixel threshold Whether it is the first extremum point in the local space range, detect all the first extremum points; and use the Harris Comer detector to filter the unstable first extremum point, and obtain the relatively stable one corresponding to the expanded target template palmprint image The template feature point set is P Ij1 , where j 1 =1,2,...,a 1 (a 1 is the total number of feature points in the template feature point set corresponding to the expanded target template palmprint image); similarly, each enlarged The relatively stable template feature point set corresponding to the target template palmprint image one-to-one (that is, the relatively stable template feature point set corresponding to each target template palmprint image), and the relatively stable template feature point set corresponding to the expanded target palmprint image. Target SIFT feature point set P Jj (that is, the relatively stable target SIFT feature point set corresponding to the target palmprint image), where j=1, 2,..., b (b is the target SIFT feature point corresponding to the enlarged target palmprint image The total number of feature points in the set).
具体地,本实施例在得到上述较为稳定的模板特征点集和较为稳定的目标SIFT特征点集之后,还可以分别进行第二次过滤操作,针对每一个特征点,滤除掉周围4像素以内的其他特征点,分别得到最为稳定的模板特征点集和最为稳定的目标SIFT特征点集。Specifically, in this embodiment, after obtaining the above-mentioned relatively stable template feature point set and relatively stable target SIFT feature point set, the second filtering operation can be performed respectively, and for each feature point, the surrounding 4 pixels are filtered out The other feature points of the model are obtained respectively to obtain the most stable template feature point set and the most stable target SIFT feature point set.
优选地,如图6所示,S4的具体步骤包括:Preferably, as shown in Figure 6, the specific steps of S4 include:
S4.1:基于影像金字塔方法,根据每个目标模板掌纹图像和对应的模板特征点集,获取每个目标模板掌纹图像一一对应的模板角点坐标集合,根据所述目标掌纹图像和所述目标SIFT特征点集,获取所述目标掌纹图像对应的目标角点坐标集合;S4.1: Based on the image pyramid method, according to each target template palmprint image and the corresponding template feature point set, obtain the one-to-one corresponding template corner point coordinate set of each target template palmprint image, according to the target palmprint image With the target SIFT feature point set, obtain the target corner point coordinate set corresponding to the target palmprint image;
S4.2:采用BLPOC方法,根据每个模板角点坐标集合和所述目标角点坐标集合,分别计算得到所述目标掌纹图像与每个目标模板掌纹图像之间的偏移量。S4.2: Using the BLPOC method, according to each template corner point coordinate set and the target corner point coordinate set, respectively calculate the offset between the target palmprint image and each target template palmprint image.
基于影像金字塔方法,构建影像金字塔,并在影像金字塔内,分别获取每个目标模板掌纹图像一一对应的模板角点坐标集合,以及目标掌纹图像对应的目标角点坐标集合,可以有效对掌纹形变在局部区域内进行校正,从而便于后续计算目标掌纹图像与每个目标模板掌纹图像之间的偏移量,尤其是对于低分辨率的掌纹识别过程,有效克服了掌纹形变对掌纹识别的影响,进一步提高掌纹的识别精度;BLPOC方法(Band-limited Phase-onlyCorrelation,带限相位相关方法)能有效提取指关节图像的相位特征,通过指关节图像的互功率谱峰值进行指关节纹的识别与匹配,因此,通过BLPOC方法能较准确地计算出每个模板角点坐标集合与目标角点坐标集合之间的偏移量,即获得较为准确的目标掌纹图像与每个目标模板掌纹图像之间的偏移量,从而便于后续根据偏移量来进行掌纹的识别与匹配。Based on the image pyramid method, the image pyramid is constructed, and in the image pyramid, the set of template corner coordinates corresponding to each target template palmprint image and the set of target corner coordinates corresponding to the target palmprint image are respectively obtained. The palmprint deformation is corrected in a local area, which facilitates the subsequent calculation of the offset between the target palmprint image and each target template palmprint image, especially for the low-resolution palmprint recognition process, which effectively overcomes the problem of palmprint deformation. The influence of deformation on palmprint recognition can further improve the recognition accuracy of palmprint; the BLPOC method (Band-limited Phase-only Correlation, band-limited phase correlation method) can effectively extract the phase features of the knuckle image, through the cross-power spectrum of the knuckle image Therefore, the offset between each template corner point coordinate set and the target corner point coordinate set can be calculated more accurately through the BLPOC method, that is, a more accurate target palmprint image can be obtained The offset between the palmprint image and each target template, so as to facilitate subsequent recognition and matching of the palmprint according to the offset.
具体地,本实施例中基于影像金字塔方法,根据影像金字塔计算原理,构建双层影像金字塔,针对目标模板掌纹图像,首先对该目标模板掌纹图像进行采样,获得1/2尺度的目标模板掌纹图像,采用掌纹ROI(Region of Interest)分割方法(例如Otsu阈值分割算法)对该1/2尺度的目标模板掌纹图像进行分割,并根据异变度确定每个分割块的采样点,这是因为在一般情况下,都是假设掌纹图像中的采样点是均匀分布的,然而在这一假设中没有充分考虑掌纹纹线的实际分布,掌纹纹理是一个较为复杂的随机结构,均匀分布的采样点既不能精确采集掌纹的信息,又会导致冗余采集点的形成;因此通过异变度选取每个分割块的采样点,根据异变度的大小决定采样点的具体位置,能提高掌纹识别精度;再在每个分割块内确定角点坐标,得到对应的角点坐标为TIt1,t1=1,2,…,c1,其中c1表示角点数量,以角点TI1为参考点,按照双层影像金字塔算法可以计算其与待匹配掌纹对应的目标掌纹图像对应的特征点之间的偏移量为O1;遍历每一个角点,计算其对应的偏移量,记为Of,t1=1,2,…,c1;同理,计算每个目标模板掌纹图像与待匹配掌纹对应的目标掌纹图像对应的特征点之间的偏移量,也即为每个原始模板掌纹图像与原始掌纹图像之间的偏移量;其中,构建影像金字塔、图像分割、根据异变度选取采样点、获取模板角点坐标集合和获取目标角点坐标集合的具体操作步骤均为现有技术,BLPOC方法的具体操作步骤也为现有技术,具体细节此处不再赘述。Specifically, in this embodiment, based on the image pyramid method and the principle of image pyramid calculation, a two-layer image pyramid is constructed. For the palmprint image of the target template, the palmprint image of the target template is first sampled to obtain a target template with a scale of 1/2 For the palmprint image, use the palmprint ROI (Region of Interest) segmentation method (such as the Otsu threshold segmentation algorithm) to segment the 1/2-scale target template palmprint image, and determine the sampling points for each segmented block according to the degree of variation , this is because in general, it is assumed that the sampling points in the palmprint image are evenly distributed, but the actual distribution of the palmprint lines is not fully considered in this assumption, and the palmprint texture is a relatively complex random structure, evenly distributed sampling points can neither accurately collect palmprint information, but also lead to the formation of redundant collection points; therefore, the sampling points of each segment are selected according to the degree of variation, and the number of sampling points is determined according to the degree of variation. The specific position can improve the accuracy of palmprint recognition; then determine the corner coordinates in each segment, and obtain the corresponding corner coordinates as T It1 , t 1 =1,2,...,c 1 , where c 1 represents the corner Quantity, with the corner point T I1 as a reference point, according to the double-layer image pyramid algorithm, the offset between the feature points corresponding to the target palmprint image corresponding to the palmprint to be matched is O 1 ; each corner point is traversed , calculate its corresponding offset, denoted as O f , t 1 =1,2,...,c 1 ; similarly, calculate the corresponding target palmprint image corresponding to each target template palmprint image and the palmprint to be matched The offset between the feature points, that is, the offset between each original template palmprint image and the original palmprint image; among them, constructing an image pyramid, image segmentation, selecting sampling points according to the degree of variation, and obtaining the template The specific operation steps of the corner point coordinate set and the target corner point coordinate set acquisition are all in the prior art, and the specific operation steps of the BLPOC method are also in the prior art, and the specific details will not be repeated here.
优选地,S5的具体实现为:Preferably, the specific implementation of S5 is:
将所有偏移量中的最小值对应的目标模板掌纹图像作为所述待匹配掌纹的识别结果并输出。Taking the target template palmprint image corresponding to the minimum value of all offsets as the recognition result of the palmprint to be matched and outputting it.
当偏移量最小时,说明该偏移量的最小值对应的目标模板掌纹图像与待匹配掌纹对应的目标掌纹图像最为接近,即该目标模板掌纹图像为待匹配掌纹对应的目标掌纹图像最为匹配的掌纹图像,将该目标模板掌纹图像进行输出,即可得到识别精度最高的识别结果,识别效果好。When the offset is the smallest, it means that the target template palmprint image corresponding to the minimum value of the offset is the closest to the target palmprint image corresponding to the palmprint to be matched, that is, the palmprint image of the target template is the palmprint image corresponding to the palmprint to be matched. Output the palmprint image that matches the target palmprint image the most, and then output the palmprint image of the target template to obtain the recognition result with the highest recognition accuracy, and the recognition effect is good.
具体地,由于本实施例中每个目标模板图像与待匹配掌纹对应的目标掌纹图像对应的特征点的偏移量包含多个,因此可将任一个目标模板掌纹图像与待匹配掌纹对应的目标掌纹图像对应的所有偏移量进行平均运算(例如求平均值或加权平均),得到的平均值结果作为对应的目标模板掌纹图像与目标掌纹图像之间的均值偏移量,再根据该均值偏移量来进行匹配,具体地,将均值偏移量最小的所对应的目标模板掌纹图像作为目标掌纹图像的识别结果(也即待匹配掌纹的原始掌纹图像的识别结果)并输出;其中,平均运算和输出识别结果的具体操作方法为现有的成熟技术,此处不再赘述。Specifically, since in this embodiment, each target template image has a plurality of offsets corresponding to the target palmprint image corresponding to the palmprint to be matched, any target template palmprint image and the palmprint to be matched can be All the offsets corresponding to the target palmprint image corresponding to the pattern are averaged (such as averaging or weighted average), and the average value obtained is used as the mean shift between the corresponding target template palmprint image and the target palmprint image amount, and then match according to the mean offset, specifically, the target template palmprint image corresponding to the smallest mean offset is used as the recognition result of the target palmprint image (that is, the original palmprint of the palmprint to be matched The recognition result of the image) and output; wherein, the specific operation method of averaging and outputting the recognition result is an existing mature technology, and will not be repeated here.
实施例二、如图7所示,一种基于影像金字塔的掌纹识别系统,包括获取模块、预处理模块、提取模块、计算模块和识别模块:Embodiment two, as shown in Figure 7, a kind of palmprint recognition system based on image pyramid, comprises acquisition module, preprocessing module, extraction module, calculation module and identification module:
所述获取模块用于获取待匹配掌纹的原始掌纹图像;The acquisition module is used to acquire the original palmprint image of the palmprint to be matched;
所述预处理模块用于对预设的原始模板掌纹图像集中的每个原始模板掌纹图像分别进行预处理,得到目标模板掌纹图像集,还用于对所述原始掌纹图像进行预处理,得到目标掌纹图像;The preprocessing module is used to preprocess each original template palmprint image in the preset original template palmprint image set to obtain the target template palmprint image set, and is also used to preprocess the original palmprint image. Process to obtain the target palmprint image;
所述提取模块用于采用尺度不变特征变换方法分别提取所述目标掌纹图像的目标SIFT特征点集和所述目标模板掌纹图像集中每个目标模板掌纹图像一一对应的模板特征点集;The extraction module is used to extract the target SIFT feature point set of the target palmprint image and the one-to-one corresponding template feature points of each target template palmprint image in the target template palmprint image set by adopting the scale-invariant feature transformation method set;
所述计算模块用于基于影像金字塔方法,计算得到所述目标SIFT特征点集与每个目标模板掌纹图像一一对应的模板特征点集之间的偏移量信息;The calculation module is used to calculate the offset information between the target SIFT feature point set and the one-to-one corresponding template feature point set of each target template palmprint image based on the image pyramid method;
所述识别模块,用于在所述目标模板掌纹图像集中,根据所有偏移量信息对所述待匹配掌纹进行识别匹配,得到识别结果并输出。The identification module is configured to identify and match the palmprint to be matched according to all offset information in the palmprint image set of the target template, obtain and output the identification result.
通过获取模块获取待匹配掌纹的原始掌纹图像,再通过预处理模块对每个原始模板掌纹图像分别进行预处理,得到一一对应的目标模板掌纹图像,这些目标模板掌纹图像构成了目标模板掌纹图像集,并对原始掌纹图像同样进行预处理,得到目标掌纹图像,通过预处理,可以滤除掉受噪声影响的掌纹线特征,提高了后续尺度不变特征变换方法的抗噪性,有效克服了噪声对掌纹识别的影响,同时还加强了每个目标模板掌纹图像和目标掌纹图像的纹理特征的对比度,有利于后续的掌纹识别和匹配;再通过提取模块通过SIFT方法提取出的目标SIFT特征点集和每个目标模板掌纹图像一一对应的模板特征点集,进一步有利于后续的掌纹识别和匹配,克服了掌纹平移对掌纹识别的影响,明显提高了掌纹的识别精度;在提取目标SIFT特征点集和每个目标模板掌纹图像一一对应的模板特征点集之后,通过计算模块采用影像金字塔方法,可以对掌纹形变在局部区域内进行有效校正,尤其是对于低分辨率的掌纹识别过程,有效克服了掌纹形变对掌纹识别的影响,方法灵活简单,有利于后续计算目标掌纹图像与每个目标模板掌纹图像之间的偏移量,进一步提高掌纹的识别精度;最后通过识别模块通过偏移量可以判断目标掌纹图像与目标模板掌纹图像集中的哪一幅目标模板掌纹图像最为匹配,从而识别出待匹配的掌纹,识别匹配方法较为简单有效,明显提高了掌纹的识别精度。Obtain the original palmprint image of the palmprint to be matched through the acquisition module, and then preprocess each original template palmprint image through the preprocessing module to obtain one-to-one corresponding target template palmprint images. These target template palmprint images constitute The target template palmprint image set is obtained, and the original palmprint image is also preprocessed to obtain the target palmprint image. Through preprocessing, the palmprint line features affected by noise can be filtered out, and the subsequent scale-invariant feature transformation is improved. The noise resistance of the method effectively overcomes the influence of noise on palmprint recognition, and also strengthens the contrast between each target template palmprint image and the texture feature of the target palmprint image, which is beneficial to subsequent palmprint recognition and matching; The target SIFT feature point set extracted by the extraction module through the SIFT method corresponds to the template feature point set of each target template palmprint image, which is further beneficial to the subsequent palmprint recognition and matching, and overcomes the impact of palmprint translation on the palmprint. The impact of recognition has significantly improved the recognition accuracy of palmprint; after extracting the template feature point set corresponding to the target SIFT feature point set and each target template palmprint image, the image pyramid method can be used through the calculation module, and the palmprint The deformation is effectively corrected in the local area, especially for the low-resolution palmprint recognition process, which effectively overcomes the influence of palmprint deformation on palmprint recognition. The method is flexible and simple, which is conducive to the subsequent calculation of the target palmprint image and each target The offset between the template palmprint images further improves the recognition accuracy of the palmprint; finally, the identification module can judge which target template palmprint image in the target palmprint image and the target template palmprint image set is the most Matching, thereby identifying the palmprint to be matched, the recognition and matching method is relatively simple and effective, and the recognition accuracy of the palmprint is obviously improved.
优选地,如图8所示,所述预处理模块包括感兴趣区域提取单元、滤波单元和编码单元;Preferably, as shown in FIG. 8, the preprocessing module includes a region of interest extraction unit, a filtering unit and a coding unit;
所述感兴趣区域提取单元用于分别提取所述原始模板掌纹图像集中的每个原始模板掌纹图像的感兴趣区域,得到模板掌纹ROI图像集;还用于提取所述原始掌纹图像的感兴趣区域,得到掌纹ROI图像;The region of interest extraction unit is used to extract the region of interest of each original template palmprint image in the original template palmprint image set respectively to obtain the template palmprint ROI image set; it is also used to extract the original palmprint image The region of interest of the palmprint ROI image is obtained;
所述滤波单元用于采用MFRAT滤波方法,对所述模板掌纹ROI图像集中的每个模板掌纹ROI图像分别进行滤波处理,得到模板掌纹滤波图像集;还用于采用MFRAT滤波方法,对所述掌纹ROI图像进行滤波处理,得到掌纹滤波图像;Described filtering unit is used for adopting MFRAT filter method, each template palmprint ROI image of described template palmprint ROI image set is carried out filter processing respectively, obtains template palmprint filter image set; Also for adopting MFRAT filter method, for The palmprint ROI image is filtered to obtain a palmprint filtered image;
所述编码单元用于在所述模板掌纹滤波图像集的每个模板掌纹滤波图像中,将每个像素点分别进行编码,得到所述目标模板掌纹图像集;还用于在所述掌纹滤波图像中,将每个像素点分别进行编码,得到所述目标掌纹图像。The encoding unit is used to encode each pixel in each template palmprint filter image of the template palmprint filter image set to obtain the target template palmprint image set; In the palmprint filtered image, each pixel is coded separately to obtain the target palmprint image.
通过感兴趣提取单元首先提取原始模板掌纹图像集中每个原始模板掌纹图像的感兴趣区域和原始掌纹图像的感兴趣区域,既可以提取到各个掌纹图像中的有效掌纹特征,便于后续的特征提取和掌纹识别匹配,还可以大大减小运算量;通过滤波单元,可以有效避免噪声对掌纹识别的影响,通过编码单元对每个模板掌纹滤波图像中的每个像素点和掌纹滤波图像中的每个像素点分别进行编码,便于后续的特征提取以及影像金字塔方法的执行,从而便于掌纹的识别和匹配。First extract the region of interest of each original template palmprint image and the region of interest of the original palmprint image in the original template palmprint image set by the interest extraction unit, both can extract the effective palmprint feature in each palmprint image, facilitate Subsequent feature extraction and palmprint recognition matching can also greatly reduce the amount of computation; through the filtering unit, the influence of noise on palmprint recognition can be effectively avoided, and each pixel in the palmprint filtering image of each template is filtered through the encoding unit Each pixel in the palmprint filtered image is coded separately, which is convenient for the subsequent feature extraction and the execution of the image pyramid method, so as to facilitate the recognition and matching of the palmprint.
实施例三、基于实施例一和实施例二,本实施例还公开了一种基于影像金字塔的掌纹识别装置,包括处理器、存储器和存储在所述存储器中且可运行在所述处理器上的计算机程序,所述计算机程序运行时实现如图1所示的S1至S5的具体步骤。Embodiment three, based on embodiment one and embodiment two, present embodiment also discloses a kind of palmprint recognition device based on image pyramid, comprises processor, memory and is stored in described memory and can run on described processor The computer program on the computer program, when the computer program runs, realizes the specific steps of S1 to S5 as shown in FIG. 1 .
通过存储在存储器上的计算机程序,并运行在处理器上,实现本发明的掌纹识别,基于尺度不变特征变换方法和影像金字塔,对掌纹形变进行有效校正,克服了掌纹形变、掌纹平移以及噪声对掌纹识别的影响,明显提高了掌纹的识别精度,识别效果好。The palmprint recognition of the present invention is realized by the computer program stored in the memory and running on the processor. Based on the scale-invariant feature transformation method and the image pyramid, the palmprint deformation is effectively corrected, and the palmprint deformation and palmprint deformation are overcome. The impact of pattern translation and noise on palmprint recognition has significantly improved the recognition accuracy of palmprint, and the recognition effect is good.
本实施例还提供一种计算机存储介质,所述计算机存储介质上存储有至少一个指令,所述指令被执行时实现所述S1至S5的具体步骤。This embodiment also provides a computer storage medium, where at least one instruction is stored on the computer storage medium, and the specific steps of S1 to S5 are implemented when the instruction is executed.
通过执行包含至少一个指令的计算机存储介质,实现本发明的掌纹识别,基于尺度不变特征变换方法和影像金字塔,对掌纹形变进行有效校正,克服了掌纹形变、掌纹平移以及噪声对掌纹识别的影响,明显提高了掌纹的识别精度,识别效果好。By executing the computer storage medium containing at least one instruction, the palmprint recognition of the present invention is realized, based on the scale-invariant feature transformation method and the image pyramid, the palmprint deformation is effectively corrected, and the palmprint deformation, palmprint translation and noise are overcome. The impact of palmprint recognition has significantly improved the recognition accuracy of palmprint, and the recognition effect is good.
本实施例中S1至S5的未尽细节,详见实施例一及图1至图6的内容,具体不再赘述。For the details of S1 to S5 in this embodiment, please refer to the content of Embodiment 1 and FIG. 1 to FIG. 6 for details, and details are not repeated here.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910798336.XA CN110598589A (en) | 2019-08-27 | 2019-08-27 | Image pyramid-based palm print identification method, system, device and medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910798336.XA CN110598589A (en) | 2019-08-27 | 2019-08-27 | Image pyramid-based palm print identification method, system, device and medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110598589A true CN110598589A (en) | 2019-12-20 |
Family
ID=68855919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910798336.XA Pending CN110598589A (en) | 2019-08-27 | 2019-08-27 | Image pyramid-based palm print identification method, system, device and medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110598589A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117218685A (en) * | 2023-10-18 | 2023-12-12 | 湖南工商大学 | Biological feature recognition method considering feature template protection |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102567708A (en) * | 2010-12-27 | 2012-07-11 | 北京北科慧识科技股份有限公司 | Method and device for extracting biological feature, biological identification method and system |
CN104778449A (en) * | 2015-03-25 | 2015-07-15 | 广东瑞德智能科技股份有限公司 | Palm print feature extracting and matching method applied to identity authentication in Internet of Things |
CN107506688A (en) * | 2017-07-18 | 2017-12-22 | 西安电子科技大学 | Harris Corner Detection image pyramid palmmprint ROI recognition methods |
-
2019
- 2019-08-27 CN CN201910798336.XA patent/CN110598589A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102567708A (en) * | 2010-12-27 | 2012-07-11 | 北京北科慧识科技股份有限公司 | Method and device for extracting biological feature, biological identification method and system |
CN104778449A (en) * | 2015-03-25 | 2015-07-15 | 广东瑞德智能科技股份有限公司 | Palm print feature extracting and matching method applied to identity authentication in Internet of Things |
CN107506688A (en) * | 2017-07-18 | 2017-12-22 | 西安电子科技大学 | Harris Corner Detection image pyramid palmmprint ROI recognition methods |
Non-Patent Citations (1)
Title |
---|
王华: "基于局部特征描述子的掌纹识别算法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117218685A (en) * | 2023-10-18 | 2023-12-12 | 湖南工商大学 | Biological feature recognition method considering feature template protection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105447441B (en) | Face authentication method and device | |
CN110543822A (en) | A Finger Vein Recognition Method Based on Convolutional Neural Network and Supervised Discrete Hash Algorithm | |
CN109118473B (en) | Angular point detection method based on neural network, storage medium and image processing system | |
CN110555382A (en) | Finger vein identification method based on deep learning and Wasserstein distance measurement | |
CN112085772B (en) | A remote sensing image registration method and device | |
CN107301661A (en) | High-resolution remote sensing image method for registering based on edge point feature | |
CN107748877A (en) | A kind of Fingerprint recognition method based on minutiae point and textural characteristics | |
Su et al. | A deep learning approach towards pore extraction for high-resolution fingerprint recognition | |
CN110334762A (en) | A Feature Matching Method Based on Quadtree Combining ORB and SIFT | |
Weng et al. | Singular points detection based on multi-resolution in fingerprint images | |
CN102800099B (en) | Multi-feature multi-level visible light and high-spectrum image high-precision registering method | |
Hu | Research on data acquisition algorithms based on image processing and artificial intelligence | |
CN112418210B (en) | Intelligent classification method for tower inspection information | |
Sang et al. | Robust palmprint recognition base on touch-less color palmprint images acquired | |
Yang et al. | LPSO: Multi-source image matching considering the description of local phase sharpness orientation | |
CN114529950A (en) | Finger vein identification method, device, computer readable storage medium and equipment | |
Kang et al. | Image registration based on harris corner and mutual information | |
CN113763274B (en) | A Multi-source Image Matching Method Combined with Local Phase Sharpness Orientation Description | |
CN110598589A (en) | Image pyramid-based palm print identification method, system, device and medium | |
CN100385451C (en) | Deformation Fingerprint Recognition Method Based on Local Triangular Structure Feature Set | |
CN112395919B (en) | Off-line signature authentication method and system based on multi-feature metric learning | |
CN116310416B (en) | Deformable object similarity detection method and electronic device based on Radon transform | |
Qin et al. | Partial fingerprint matching via phase-only correlation and deep convolutional neural network | |
CN111768436B (en) | An Improved Image Feature Block Registration Method Based on Faster-RCNN | |
CN106446906B (en) | Image processing method of low-dimensional feature model based on scale-invariant feature transformation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191220 |