用于2型糖尿病的生物标志物及其用途
背景技术
肠微生物群(gut microbiota)为人宿主提供很多有益功能.这些功能中一些对于我们而言是必需的,因为在我们自身的基因组中我们不对其进行编码.从生态学角度考虑,这样的功能可以被视为“生态系统服务” (1).在功能上,“健康的”肠微生物群是能够提供所需的所有生态系统服务的肠微生物群.短链脂肪酸(short-chain fatty acid,SCFA)产生是由肠细菌提供的此类服务的最显著实例.关于人如何可以直接受益于SCFA,已存在大量文献:例如,丁酸盐(butyrate)是结肠细胞的主要能量底物,并且很多种SCFA作为调节炎症和食欲调控的信号传导分子发挥功能(2).因此,向人供应SCFA的细菌是生态系统服务提供者 (ecosystem service provider,ESP)和用于使人宿主保持健康的肠微生物群的关键成员.
SCFA产生者的缺陷与生态失调相关性疾病(例如2型糖尿病(type 2 diabetesmellitus,T2DM))相关(3-6).已经表明,使用高膳食纤维饮食的临床试验减轻T2DM的疾病表型,但是在个体之间的治疗响应差异很大(7-9),这可能是由于肠微生物群中SCFA产生者的个体特异性谱导致的(10).
然而,鉴定用于SCFA产生以改善T2DM的ESP并不是容易.将有机化合物发酵成SCFA的能力是众多分类中的数百种肠细菌物种所共有的遗传性状(11).由于对肠腔中酸度的耐受性不同,一些SCFA产生者可以在竞争中胜过另一些SCFA产生者(12,13).这需要区分具有产生 SCFA的遗传能力的“产生者”与实际上在特殊肠环境中对碳水化合物进行发酵并供应SCFA的“提供者”.我们最近的研究进一步表明了丁酸和乙酸产生性物种针对高膳食纤维饮食的菌株特异性响应(14,15).这需要菌株水平的全微生物组关联方法以鉴定作为响应于高膳食纤维摄入的针对人宿主的实际SCFA供应者的ESP.
发明内容
本申请使用鸟枪宏基因组测序来揭示T2D患者中响应于高纤维干预的肠微生物组变化.结果,发现15个表示为CAG NO.:1至15的CAG (共丰度基因集((co-abundancegroup)))上调并鉴定为ESP,而49个表示为CAG NO.:16至64的CAG在T2D患者中下调.这些CAG可以用作对T2D进行高效、准确且患者友好表征的生物标志物.
在一方面,本发明提供了在对象中评估2型糖尿病的存在或发生风险的方法,其包括以下步骤:
a)从对象收集粪便样品;
b)分析从粪便样品提取的DNA以确定选自CAG No.:1至64的每个参考CAG的丰度:
Ai(CAG No:i的丰度)=与CAG No.:i匹配的读出(read)的数目 /(CAG No.:i的大小×总读出的数目);
c)使用所计算的丰度数据来计算每个样品的GMM指数:
以及
d)如果GMM指数接近或低于预定水平,则确定对象患有或有风险发生2型糖尿病,
其中CAG NO.:1至15分别包含SEQ ID NO.:1至191、192至326、 327至593、594至835、836至885、886至960、961至1097、1098至1264、1265至1433、1434至1684、1685至1833、1834至1979、1980 至2163、2164至2447和2448至2783所示的核酸序列,并且CAG NO.:16 至64分别包含SEQ ID NO.:2784至2961、2962至3130、3131至3525、 3526至3747、3748至3863、3864至4068、4069至4212、4213至4393、 4394至4532、4533至4891、4892至4979、4980至5116、5117至5320、 5321至5464、5465至5781、5782至6279、6280至6646、6647至6954、 6955至7178、7179至7613、7614至7758、7759至8046、8047至8491、 8492至8546、8547至9971、9972至10099、10100至10392、10393至 10502、10503至10694、10695至10986、10987至11089、11090至11262、 11263至11466、11467至11704、11705至12034、12035至12113、12114至12341、12342至12454、12455至12664、12665至12825、12826至 13042、13403至13500、13501至13726、13727至13949、13950至14014、 14015至14290、14291至14403、14404至14686和14687至14850所示的核酸序列.
在一些实施方案中,步骤b)中的DNA分析包括以下步骤:获得DNA 序列并将所获得的DNA序列与SEQ ID No.:1至14850所示的核酸序列进行比对.
在一些实施方案中,获得DNA序列包括以下步骤:在样品中获得原始序列读出并对原始序列读出进行处理以获得合格的序列读出.
在一些实施方案中,原始序列读出通过基于PCR的高通量测序技术来获得.在一些实施方案中,原始序列读出通过Illumina测序来获得.
在一些实施方案中,对原始序列读出进行处理包括:去除衔接子,在 3’端修剪序列直至到达质量阈值高于20的第一个核苷酸,去除短序列,以及去除与人基因组匹配的序列.在一些实施方案中,短序列的长度为 59bp或更小.
在一些实施方案中,DNA序列的比对使用种子延伸策略 (seed-and-extendstrategy).在一些实施方案中,使用在种子序列中无错配的序列来在步骤b)中确定每个参考CAG的丰度.在一些实施方案中,种子序列的长度为4bp或更大、5bp或更大、6bp或更大、7bp或更大、 8bp或更大、9bp或更大、10bp或更大、11bp或更大、12bp或更大、 13bp或更大、14bp或更大、15bp或更大、16bp或更大、17bp或更大、 18bp或更大、或者19bp或更大.在一些实施方案中,种子序列的长度为31bp或更小、30bp或更小、29bp或更小、28bp或更小、27bp或更小、26bp或更小、25bp或更小、24bp或更小、23bp或更小、22bp 或更小、或者21bp或更小.在一些实施方案中,种子序列的长度为20bp.
在一些实施方案中,预定水平为约-1.028883.
在第二方面,本发明提供了在患有2型糖尿病的对象中评价饮食干预或疾病治疗的效力的方法,其包括以下步骤:
a)在饮食干预或疾病治疗之前和期间从对象收集粪便样品;
b)分析从粪便样品提取的DNA以确定选自CAG No.:1至64的每个参考CAG的丰度:
Ai(CAG No:i的丰度)=与CAG No.:i匹配的读出的数目/(CAG No.:i 的大小×总读出的数目);
c)使用所计算的丰度数据来计算每个样品的GMM指数:
以及
e)如果在于饮食干预或疾病治疗期间收集的样品中GMM指数提高,则确定对象对饮食干预或疾病治疗作出积极响应,
其中CAG NO.:1至15分别包含SEQ ID NO.:1至191、192至326、 327至593、594至835、836至885、886至960、961至1097、1098至1264、1265至1433、1434至1684、1685至1833、1834至1979、1980 至2163、2164至2447和2448至2783所示的核酸序列,并且CAG NO.:16 至64分别包含SEQ ID NO.:2784至2961、2962至3130、3131至3525、 3526至3747、3748至3863、3864至4068、4069至4212、4213至4393、 4394至4532、4533至4891、4892至4979、4980至5116、5117至5320、 5321至5464、5465至5781、5782至6279、6280至6646、6647至6954、 6955至7178、7179至7613、7614至7758、7759至8046、8047至8491、 8492至8546、8547至9971、9972至10099、10100至10392、10393至 10502、10503至10694、10695至10986、10987至11089、11090至11262、 11263至11466、11467至11704、11705至12034、12035至12113、12114至12341、12342至12454、12455至12664、12665至12825、12826至 13042、13403至13500、13501至13726、13727至13949、13950至14014、 14015至14290、14291至14403、14404至14686和14687至14850所示的核酸序列.
在一些实施方案中,步骤b)中的DNA分析包括以下步骤:获得DNA 序列并将获得的DNA序列与SEQ ID No.:1至14850所示的核酸序列进行比对.
在一些实施方案中,获得DNA序列包括以下步骤:在样品中获得原始序列读出并对原始序列读出进行处理以获得合格的序列读出.
在一些实施方案中,原始序列读出通过基于PCR的高通量测序技术来获得.在一些实施方案中,原始序列读出通过Illumina测序来获得.
在一些实施方案中,对原始序列读出进行处理包括:去除衔接子,在 3’端修剪序列直至到达质量阈值高于20的第一个核苷酸,去除短序列,以及去除与人基因组匹配的序列.在一些实施方案中,短序列的长度为 59bp或更小.
在一些实施方案中,DNA序列的比对使用种子延伸策略.在一些实施方案中,使用在种子序列中无错配的序列来在步骤b)中确定每个参考 CAG的丰度.在一些实施方案中,种子序列的长度为4bp或更大、5bp 或更大、6bp或更大、7bp或更大、8bp或更大、9bp或更大、10bp 或更大、11bp或更大、12bp或更大、13bp或更大、14bp或更大、15bp 或更大、16bp或更大、17bp或更大、18bp或更大、或者19bp或更大. 在一些实施方案中,种子序列的长度为31bp或更小、30bp或更小、29bp 或更小、28bp或更小、27bp或更小、26bp或更小、25bp或更小、24bp 或更小、23bp或更小、22bp或更小、或者21bp或更小.在一些实施方案中,种子序列的长度为20bp.
在一个实施方案中,在饮食干预或疾病治疗期间,在饮食干预或疾病治疗开始后1周、2周、3周和/或4周收集粪便样品.
在一些实施方案中,当在饮食干预或疾病治疗期间GMM指数变得接近或高于预定水平时,确定对象对饮食干预或疾病治疗产生积极响应. 在一些实施方案中,预定水平为-1.028883.
在第三方面,本发明提供了在对象中评估2型糖尿病的存在或发生风险的方法,其包括以下步骤:
a)从对象收集粪便样品;
b)分析从粪便样品提取的DNA以确定选自CAG ID No.:1至15的每个参考CAG的丰度:
Ai(CAG No:i的丰度)=与CAG No.:i匹配的读出的数目/(CAG No.:i 的大小×总读出的数目);
c)使用所计算的丰度数据来计算每个样品的ESP指数:
其中Heip=(eH-1)/14,以及
d)如果ESP指数接近或低于预定水平,则确定对象患有或有风险发生2型糖尿病,
其中CAG NO.:1至15分别包含SEQ ID NO.:1至191、192至326、 327至593、594至835、836至885、886至960、961至1097、1098至 1264、1265至1433、1434至1684、1685至1833、1834至1979、1980 至2163、2164至2447和2448至2783所示的核酸序列.
在一些实施方案中,步骤b)中的DNA分析包括以下步骤:获得DNA 序列并将所获得的DNA序列与SEQ ID No.:1至2783所示的核酸序列进行比对。
在一些实施方案中,获得DNA序列包括以下步骤:在样品中获得原始序列读出并对原始序列读出进行处理以获得合格的序列读出.
在一些实施方案中,原始序列读出通过基于PCR的高通量测序技术来获得.在一些实施方案中,原始序列读出通过Illumina测序来获得.
在一些实施方案中,对原始序列读出进行处理包括:去除衔接子,在 3’端修剪序列直至到达质量阈值高于20的第一个核苷酸,去除短序列,并去除与人基因组匹配的序列.在一些实施方案中,短序列的长度为59bp 或更小.
在一些实施方案中,DNA序列的比对使用种子延伸策略.在一些实施方案中,使用在种子序列中无错配的序列来在步骤b)中确定每个参考 CAG的丰度.在一些实施方案中,种子序列的长度为4bp或更大、5bp 或更大、6bp或更大、7bp或更大、8bp或更大、9bp或更大、10bp 或更大、11bp或更大、12bp或更大、13bp或更大、14bp或更大、15bp 或更大、16bp或更大、17bp或更大、18bp或更大、或者19bp或更大. 在一些实施方案中,种子序列的长度为31bp或更小、30bp或更小、29bp 或更小、28bp或更小、27bp或更小、26bp或更小、25bp或更小、24 bp或更小、23bp或更小、22bp或更小、或者21bp或更小.在一些实施方案中,种子序列的长度为20bp.
在一些实施方案中,预定水平为约4.4.
在第四方面,本发明提供了在患有2型糖尿病的对象中评价饮食干预或疾病治疗之效力的方法,其包括以下步骤:
a)在饮食干预或疾病治疗之前和期间从对象收集粪便样品;
b)分析从粪便样品提取的DNA以确定选自CAG ID No.:1至15的每个参考CAG的丰度:
Ai(CAG No:i的丰度)=与CAG No.:i匹配的读出的数目/(CAG No.:i 的大小×总读出的数目);
c)使用所计算的丰度数据来计算每个样品的ESP指数:
其中Heip=(eH-1)/14,以及
e)如果在于饮食干预或疾病治疗期间收集的样品中ESP指数提高,则确定对象对饮食干预或疾病治疗产生积极响应,
其中CAG NO.:1至15分别包含SEQ ID NO.:1至191、192至326、 327至593、594至835、836至885、886至960、961至1097、1098至 1264、1265至1433、1434至1684、1685至1833、1834至1979、1980 至2163、2164至2447和2448至2783所示的核酸序列.
在一些实施方案中,步骤b)中的DNA分析包括以下步骤:获得DNA 序列并将所获得的DNA序列与SEQ ID No.:1至2783所示的核酸序列进行比对.
在一些实施方案中,获得DNA序列包括以下步骤:在样品中获得原始序列读出并对原始序列读出进行处理以获得合格的序列读出.
在一些实施方案中,原始序列读出通过基于PCR的高通量测序技术来获得.在一些实施方案中,原始序列读出通过Illumina测序来获得.
在一些实施方案中,对原始序列读出进行处理包括:去除衔接子,在 3’端修剪序列直至到达质量阈值高于20的第一个核苷酸,去除短序列,并去除与人基因组匹配的序列.在一些实施方案中,短序列的长度为59bp 或更小.
在一些实施方案中,DNA序列的比对使用种子延伸策略.在一些实施方案中,使用在种子序列中无错配的序列来在步骤b)中确定每个参考 CAG的丰度.在一些实施方案中,种子序列的长度为4bp或更大、5bp 或更大、6bp或更大、7bp或更大、8bp或更大、9bp或更大、10bp 或更大、11bp或更大、12bp或更大、13bp或更大、14bp或更大、15bp 或更大、16bp或更大、17bp或更大、18bp或更大、或者19bp或更大. 在一些实施方案中,种子序列的长度为31bp或更小、30bp或更小、29bp 或更小、28bp或更小、27bp或更小、26bp或更小、25bp或更小、24bp 或更小、23bp或更小、22bp或更小、或者21bp或更小.在一些实施方案中,种子序列的长度为20bp.
在一个实施方案中,在饮食干预或疾病治疗期间,在饮食干预或疾病治疗开始后1周、2周、3周和/或4周收集粪便样品.
在一些实施方案中,当在饮食干预或疾病治疗期间ESP指数变得接近或高于预定水平时,确定对象对饮食干预或疾病治疗产生积极响应.在一些实施方案中,预定水平为4.4.
根据以下不应被解释为限制性的详细描述和实例,本公开内容的其他特征和优点将是明显的.在本申请通篇引用的所有参考文献、Genbank 条目、专利和公开专利申请的内容均通过引用明确地并入本文.
附图说明
图1示出了一个实施例中临床试验的概况.
图2示出了高膳食纤维饮食在患有2型糖尿病的患者中改变肠微生物群并且改善葡萄糖体内平衡.(A)葡萄糖体内平衡的循环参数(HbAlc、空腹血糖、膳食耐量测试(mealtolerance test,MTT)中的葡萄糖和胰岛素曲线下面积(area-under-curve,AUC))的变化.数据表示为从第0 天起的百分比变化(±标准误差).使用具有Tukey事后检验的双向重复测量方差分析进行组内和组间比较.相对于同一组的第0天*P<0.05、**P <0.01和***P<0.001;相对于相同时间点的U组#P<0.05、##P<0.01和###P <0.001.对于所有分析,对于W组,N=27;并且对于U组,n=16,除在针对MTT的U组中n=15之外.(B)整体肠微生物结构的变化.基于 Bray-Curtis距离对422个细菌共丰度基因集进行主坐标分析.(C)肠微生物群多样性(基因丰富度)的变化.将基因计数的变化调整至每个样品 3100万个映射读出.数据示为平均值±S.E.M.箱(box)示出了中位数和四分位数间距,须(whisker)表示在与第一和第三四分位数的1.5倍 IQR内的最低值和最高值,并且异常值表示为单独点.使用Wilcoxon匹配对符号秩检验(双尾的)来在每个组内分析每个成对比较.使用 Mann-Whitney检验来分析在相同时间点W组与U组之间的差异.*P <0.05、**P<0.01和***P<0.001(根据Benjamini&Hochberg,1995调整). W=阿卡波糖加WTP饮食;U=阿卡波糖加常规护理(对照).
图3示出了以膳食纤维补充性的肠微生物群的移植在小鼠中改善葡萄糖耐量.接受粪便微生物群移植的无菌小鼠的(A)体重、(B)空腹血糖 (fasting blood glucose,FBG)、(C)口服葡萄糖耐量测试(在移植后2周) 和(D)空腹循环胰岛素.移植物材料从代表性供体获得,一个来自W组,一个来自U组,干预前(“Pre”;第0天)和干预后(“Post”;第84天)二者皆有.接受移植物的小鼠:对于W-Pre、W-Post、U-Pre,n=5;对于U-Post,n=4.*P<0.05、**P<0.01和***P<0.001,使用具有Tukey 事后检验的单向ANOVA进行组内和组间比较.W=阿卡波糖加WTP饮食;U=阿卡波糖加常规护理(对照).
图4示出了表示(A)W组或(B)U组中干预响应性细菌的丰度(经log 转换)的热图(使用Wilcoxon匹配对符号秩检验来比较第0天和第28 天的数据.P<0.05,根据Benjamini&Hochberg,1995调整).用Spearman 相关系数和ward连接对细菌进行聚类.对于W,n=27;对于U,n=16.
图5示出了潜在的生态系统服务提供者(ESP)和共排除的不利细菌. 针对W组中在干预之后丰度(A)降低或(B)提高,或者U组中在干预之后丰度(C)降低或(D)提高的基因组示出了154个高质量基因组草图中参与短链脂肪酸(SCFA)、H2S和吲哚产生的基因的分布网络.紧邻每个灰色圆圈(鉴定为细菌菌株的高质量基因组草图)的直方图表示第0天和第28天的平均丰度(经log转换).细菌丰度的变化根据图4中的那些来确定. 将灰色圆圈与其他形状连接的线表示参与特定活性的基因.褐色三角形表示参与H2S产生的基因;紫色平行四边形表示参与吲哚产生的基因;绿色和蓝色形状表示参与SCFA产生的基因.乙酸合成:甲酸四氢叶酸连接酶.丁酸合成:丁酰CoA:乙酸CoA转移酶(But);丁酰CoA:乙酰乙酸 CoA转移酶(Ato;由α(AtoA)和β(AtoD)亚基组成);丁酸激酶(Buk);丁酰CoA:4-羟基丁酸CoA转移酶(4Hbt).丙酸合成:丙酸CoA转移酶 /丙酰CoA:琥珀酸CoA转移酶(PCoAt).(E)生态系统服务提供者的丰度的变化.圆圈的大小和颜色分别表示菌株的平均丰度和丰度变异系数. W=阿卡波糖加WTP饮食;U=阿卡波糖加常规护理(对照).
图6显示,高纤维饮食降低内毒素载量和炎症.(A)脂多糖结合蛋白. (B)白细胞计数.(C)TNF-α.使用具有Tukey事后检验的双向重复测量方差分析进行组内和组间比较.相对于同一组的第0天*P<0.05、**P<0.01、***P<0.001;相对于相同时间点的U组#P<0.05、##P<0.01、###P<0.001. 对于W组,N=27;对于U组,n=16.W=阿卡波糖加WTP饮食;U=阿卡波糖加常规护理(对照).
图7示出了细菌CAG的丰度与2型糖尿病的表型减轻之间的关系. (A-B)W组(A)和U组(B)中由细菌CAG的丰度与临床变量的水平之间的 Spearman相关系数计算的热图:*=P<0.05、**=P<0.01(根据Beniamini &Hochberg,1995调整).用Spearman相关系数和ward连接基于细菌的量对其进行聚类.(C)在GUT2DM项目中,HbA1c的干预后水平与肠微生物群调节(Gut Microbiota Modulation,GMM)指数负相关(Spearman 相关系数(SCC)=-0.4901,P=1.0253e-11),所述指数为训练数据集(W 组中27位患者和U组中16位患者)中增加的15个ESP除以降低的49 个的丰度.(D)在测试性QIDONG临床试验中,HbA1c的干预后水平与74位患者的测试数据集中的15个ESP及其49种共排除细菌的肠微生物群调节(GMM)指数也负相关(SCC=-0.4006,P=4.53e-7),所述患者全部在无阿卡波糖下接受高纤维饮食3个月.
图8显示,生态系统服务提供者(ESP)的丰度和多样性与2型糖尿病患者中疾病表型的减轻相关.(A)单一ESP的丰度与临床变量之间的关系的热图.*P<0.05和**P<0.01.(B)ESP指数其中Ai是ESPi的丰度)的变化.(C)GUT2D研究中ESP指数(第0天和第84天)与HbA1c(第0天和第84天)之间的关系.N=43.(D)GUT2D 研究中ESP指数(第0天和第28天)与HbA1c(第0天和第84天)之间的关系.N=43.(E)QIDONG研究中ESP指数(第0天和第84天) 与HbA1c(第0天和第84天)之间的关系.N=71.所有相关系数均使用Bland和Altman(16)所述的方法来计算.W=阿卡波糖加WTP饮食; U=阿卡波糖加常规护理(对照).
具体实施方式
为了可以更容易地理解本公开内容,在此对某些术语进行限定.另外的限定在具体实施方式中阐述.
术语“共丰度基因集”或“CAG”指在丰度方面与随机挑选的种子基因相关的基因的集合.将宏基因组分离成具有类似丰度的基因集允许鉴定例如原核生物和噬菌体的生物实体,以及代表共遗传的克隆异质性的小遗传实体.
本文使用的术语“CAG No.:i的大小”指CAG No.:i的长度,即CAG No.:i的核苷酸的数目.
术语“生物标志物”指某种生物状态或状况的可测量指标.本文使用的生物标志物是CAG,其丰度数据可以指示T2D.
本文使用的术语“接受者操作特征曲线(Receiver operating characteristiccurve)”或“ROC曲线”指对二进制分类器系统随着其鉴别阈值变化的诊断能力进行展示的图形曲线.ROC曲线通过在不同阈值设置下将真阳性率相对于假阳性率绘图来产生.真阳性率也称为灵敏度、召回率或检出概率.假阳性率也称为误警率(fall-out)或虚警(falsealarm) 概率,并且可以作为(1-特异度)计算.因此,ROC曲线是作为误警率的函数的灵敏度.
术语“Youden指数”指真阳性率与假阳性率之间的差异.使该指数最大化允许从ROC曲线发现独立于流行率的最佳截止点.该指数图示为在机会线之上的高度.
本文使用的术语“ROC曲线下面积”或“AUC”用于表示将受试组群分离成患有所讨论疾病和未患所讨论疾病的那些的检验的准确度.
在本发明中,通过扫描整个肠微生物组,已发现数个CAG在来自响应于高纤维饮食干预的T2D患者的样品中普遍分布.在这些CAG中,15 个上调,而49个下调.基于这些CAG或这些CAG中一些在粪便样品中的丰度计算的GMM指数和ESP指数可用于在对象中评估T2D的存在或发生T2D的风险.或者,这些CAG或这些CAG中一些的丰度变化可用于在患有T2D的患者中监测针对疾病治疗或饮食干预的响应.两种方法都可以以高效、准确且患者友好的方式进行.
本发明提供了在对象中评估2型糖尿病之存在或发生风险的方法,其包括以下步骤:
a)从对象收集粪便样品;
b)分析从粪便样品提取的DNA以确定选自CAG ID No.:1至64的每个参考CAG的丰度:
Ai(CAG No:i的丰度)=与CAG No.:i匹配的读出的数目/(CAG No.:i 的大小×总读出的数目);
c)使用所计算的丰度数据来计算每个样品的GMM指数:
以及
d)如果GMM指数接近或低于预定水平,则确定对象患有或有风险发生2型糖尿病.
本发明提供了在患有2型糖尿病的对象中评价饮食干预或疾病治疗的效力的方法,其包括以下步骤:
a)在饮食干预或疾病治疗之前和期间从对象收集粪便样品;
b)分析从粪便样品提取的DNA以确定选自CAG ID No.:1至64的每个参考CAG的丰度:
Ai(CAG No:i的丰度)=与CAG No.:i匹配的读出的数目/(CAG No.:i 的大小×总读出的数目);
c)使用所计算的丰度数据来计算每个样品的GMM指数:
以及
e)如果在于饮食干预或疾病治疗期间收集的样品中GMM指数提高,则确定对象对饮食干预或疾病治疗产生积极响应.
对于ESP指数方面,本发明提供了在对象中评估2型糖尿病的存在或发生风险的方法,其包括以下步骤:
a)从对象收集粪便样品;
b)分析从粪便样品提取的DNA以确定选自CAG ID No.:1至15的每个参考CAG的丰度:
Ai(CAG No:i的丰度)=与CAG No.:i匹配的读出的数目/(CAG No.:i 的大小×总读出的数目);
c)使用所计算的丰度数据来计算每个样品的ESP指数:
其中Heip=(eH-1)/14,以及
d)如果ESP指数接近或低于预定水平,则确定对象患有或有风险发生2型糖尿病.
本发明还提供了在患有2型糖尿病的对象中评价饮食干预或疾病治疗之效力的方法,其包括以下步骤:
a)在饮食干预或疾病治疗之前和期间从对象收集粪便样品;
b)分析从粪便样品提取的DNA以确定选自CAG ID No.:1至15的每个参考CAG的丰度:
Ai(CAG No:i的丰度)=与CAG No.:i匹配的读出的数目/(CAG No.:i 的大小×总读出的数目);
c)使用所计算的丰度数据来计算每个样品的ESP指数:
其中Heip=(eH-1)/14,以及
e)如果在于饮食干预或疾病治疗期间收集的样品中ESP指数提高,则确定对象对饮食干预或疾病治疗产生积极响应.
在本发明中,CAG NO.:1至15分别包含SEQ ID NO.:1至191、192 至326、327至593、594至835、836至885、886至960、961至1097、 1098至1264、1265至1433、1434至1684、1685至1833、1834至1979、 1980至2163、2164至2447和2448至2783所示的核酸序列,并且CAG NO.:16至64分别包含SEQ ID NO.:2784至2961、2962至3130、3131 至3525、3526至3747、3748至3863、3864至4068、4069至4212、4213 至4393、4394至4532、4533至4891、4892至4979、4980至5116、5117 至5320、5321至5464、5465至5781、5782至6279、6280至6646、6647 至6954、6955至7178、7179至7613、7614至7758、7759至8046、8047 至8491、8492至8546、8547至9971、9972至10099、10100至10392、 10393至10502、10503至10694、10695至10986、10987至11089、11090 至11262、11263至11466、11467至11704、11705至12034、12035至12113、12114至12341、12342至12454、12455至12664、12665至12825、12826 至13042、13403至13500、13501至13726、13727至13949、13950至 14014、14015至14290、14291至14403、14404至14686和14687至14850 所示的核酸序列.
为了确定本发明的每个参考CAG的丰度,可以使用本领域中公知的任何方法.在一些实施方案中,从粪便样品获得DNA序列并随后将其与 CAG序列进行比对.在一些实施方案中,在DNA序列的比对中使用种子延伸策略,并使用在种子序列中无错配的序列来确定每个参考CAG的丰度.在一些实施方案中,种子序列的长度为20bp.
获得DNA序列包括在样品中获得原始序列读出并对原始序列读出进行处理以获得合格的序列读出.在一些实施方案中,原始序列读出通过基于PCR的高通量测序技术来获得.在一些实施方案中,原始序列读出通过Illumina测序来获得.对原始序列读出的处理可以如本领域中已知的进行.在一些情况下,处理包括去除衔接子,在3’端修剪序列直至到达质量阈值高于20的第一个核苷酸,去除短序列,并去除与人基因组匹配的序列.在一些实施方案中,短序列的长度为59bp或更小.
在用于在对象中评估T2D之存在或发生风险的方法中,如果GMM 指数或ESP指数接近或低于预定水平,则确定对象患有或有风险发生 T2D.
预定水平可以根据实验室数据或临床数据来设置.即使水平是预定的,医院或医生也可以根据对象的年龄、性别、身体状况等对其进行调整.
在本发明的一个优选实施方案中,对于GMM指数,预定水平为约-1.028883.在本发明的一个优选实施方案中,对于ESP指数,预定水平为约4.4.这些特定水平基于已使用在下文实施例中所述的数据产生的接受者操作特征曲线来确定.如上所述,接受者操作特征曲线是对二进制分类器系统随着其鉴别阈值变化的诊断能力进行展示的图形曲线.并且,Youden指数指真阳性率与假阳性率之间的差异.Youden指数通常与接受者操作特征(ROC)分析联合使用.该指数针对ROC曲线的所有点进行限定,并且该指数的最大值可用作用于在诊断测试提供数值结果而不是二分结果时选择最佳截止点的标准.在本发明中,当HbA1c>=6.5%时,二进制数设置为1.相应地,当Youden指数达到最大值时,GMM指数为 -1.028883;并且当Youden指数达到最大值时,ESP指数为4.4.即,如果对象被确定具有高于-1.028883的GMM指数,则其可能具有低于6.5%的HbA1c水平,其中准确度为90.48%;如果对象被确定具有低于或等于 -1.028883的GMM指数,则其可能具有高于6.5%的HbA1c水平,其中准确度为44.75%.对于ESP指数,如果对象被确定具有高于4.4的ESP 指数,则其可能具有低于6.5%的HbA1c水平,其中准确度为92.11%;如果对象被确定具有低于或等于4.4的ESP指数,则其可能具有高于6.5%的HbA1c水平,其中准确度为45.52%.
对于在患有T2D的对象中监测针对疾病治疗或饮食干预的响应的方法,当在疾病治疗或饮食干预期间GMM指数或ESP指数提高或者在一些实施方案中变得接近或高于预定水平时,确定对象对疾病治疗或饮食干预产生积极响应.如上所述,对于GMM指数,预定水平优选为约 -1.028883,或者对于ESP指数,预定水平优选为约4.4,其基于相应ROC 曲线和Younden指数来确定.
实施例
患者和方法
GUT2D研究
用于患有2型糖尿病(T2DM)的患者的随机化、开放标签、平行组临床试验由上海交通大学医学院上海总医院伦理委员会批准(No. 2014KY086),并且该研究根据赫尔辛基宣言(Declaration of Helsinki) 的原则进行.所有参与者均在试验开始时提供了书面知情同意书.该试验在中国临床试验注册中心登记(No.ChiCTR-TRC-14004959).临床试验的设计和进程示于图1中.
招募的参与者为35至70岁的中国汉族T2DM患者 (6.5%≤HbA1c<12.0%).主要排除标准包括:1型糖尿病;妊娠;哺乳期;打算在研究过程期间妊娠;严重糖尿病并发症(糖尿病性视网膜病、糖尿病性神经病、糖尿病性肾病和糖尿病足);严重肝病(包括慢性持续性肝炎、肝硬化、或阳性乙型肝炎病毒表面抗原和异常肝转氨酶(丙氨酸转氨酶或天冬氨酸转氨酶的血清浓度>2.5×正常值上限)的共现);在招募前3个月内连续使用抗生素>3天;连续使用减肥药物>1个月;胃肠外科手术(除阑尾炎或疝外科手术之外);在过去6个月内具有严重的精神疾病;接受药物治疗以治疗胆囊炎、消化性溃疡、尿路感染、急性肾盂肾炎、膀胱炎或甲状腺机能亢进;垂体功能障碍;严重的器质性疾病,包括癌症、冠心病、心肌梗死或脑卒中;感染性疾病,包括肺结核和AIDS;以及酒精中毒.
在2周的导入期期间,终止除胰岛素促分泌剂或甘精胰岛素之外的所有抗糖尿病药物以避免这些药物对肠微生物群的潜在作用.在干预之前 (第0天),所有参与者都接受有关T2DM的健康教育和基线评价.使用基于饮食的食物频率问卷和24小时饮食记录,基于中国食物成分表2009 (17)来计算基线营养物摄入量.将参与者随机分配为接受阿卡波糖加针对 T2DM的常规护理(U组),或阿卡波糖加基于全谷物、中药食品或益生元(prebiotics)的饮食配方(WTP饮食)(W组),进行84天.
常规护理由根据中国T2DM糖尿病防治指南(Chinese diabetes guidelines forT2DM)(2013年版)的标准饮食和运动建议组成.WTP 饮食包括三种即食型预制食物:配方No.1(2)、配方No.2(2)和配方No. 8(由完美(中国)有限公司(中国中山)制造).对于W组,根据营养学家的建议,将WTP饮食与适量的蔬菜、水果和坚果联合施用.根据由中国居民膳食营养素参考摄入量(Dietary Reference Intake,DRI)提供并由中国营养协会(ChineseNutrition Society)(CNS,2013)建议的根据年龄的标准营养要求平衡常量营养物的输入量.配方No.1是来自全谷物的12种组分材料和富含膳食纤维的中药(traditional Chinesemedicine, TCM)食用植物(包括薏苡(薏米(Coix lachrymal-jobi L.))、燕麦、荞麦、白豆(white bean)、黄玉米(yellow corn)、红豆、大豆、薯蓣、花生、莲子和枸杞)的预烹制混合物,其以罐装粥状物的形式制备(每罐 370g湿重).各自包含100g成分(59g碳水化合物、15g蛋白质、5g 脂肪和6g纤维)和336千卡(70%碳水化合物、17%蛋白质、13%脂肪). 配方No.2是包含苦瓜(苦瓜(Momordica charantia))和寡糖(包括果糖-寡糖和寡聚异麦芽糖)的输注用粉末制剂(每袋20g).配方No.8的详细组成示于下表1中.对于每份膳食,作为主食食用≥360g的配方No. 1,并分别以10g和15g食用配方No.2和No.8.使用每位对象的饮食记录基于中国食物成分表200939来计算营养物摄入量(表2).阿卡波糖使用100mg的口服剂量施用,一天三次.参与者针对饮食、体重、药物使用和不良事件记录其治疗方案.此外,记录自监测每日空腹血糖(FBG) 和餐后2小时血糖(2-hour postprandial blood glucose,2hPBG),并根据症状改善和每日两点血糖谱来调整背景治疗(胰岛素促分泌剂和甘精胰岛素)的剂量(表3).
表1.WTP饮食中使用的即食型配方No.8的组分
a即食型干粉.
表2.在饮食干预之前和期间的每日能量和常量营养物摄入量a
a数据为平均值±sem.相对于W第0天***P<0.001;相对于U第84天###P<0.001.使用具有 Bonferroni事后检验的双向重复测量方差分析来进行组内和组间比较.
表3.抗糖尿病药物使用a
a干预开始于上述定期用药的2周洗脱期之后.第-14天表示洗脱期的开始.
在基线和在干预期间每28天获得生物样品、人体测量数据和临床实验室分析.在过夜禁食10小时后收集静脉血样品,然后对参与者进行3 小时的口服葡萄糖耐量测试.所有参与者摄入75g葡萄糖,并在30、60、 120和180分钟时获得血液样品.将血液样品在室温下静置30分钟后以3,000×g离心20分钟以获得血清.在同一天收集粪便和晨尿.收集血清、尿和粪便样品,立即转移至干冰,并储存在-80℃,在5小时内用于另外的分析.
在上海交通大学医学院上海总医院(中国上海)确定生物临床参数.
QIDONG研究
在启东人民医院(Qidong People’s Hospital)(中国江苏)进行的这项临床试验检测高膳食纤维饮食在健康个体以及患有前驱糖尿病和临床上诊断为T2DM的那些的组群中在自由生活条件下的作用(QIDONG;中国临床试验注册中心:ChiCTR-IPC-14005346).T2DM亚组的基线表型特征与GUT2D中的那些大致类似.将患有T2DM的参与者随机分为接受WTP饮食(无阿卡波糖;n=71)或常规护理(n=33),进行84 天.在基线和在干预结束时收集血液和粪便样品,其中分别确定HbA1c 和肠微生物谱.
统计学分析
使用SPSS Statistics 17.0软件包(SPSS Inc.,Chicago,USA)进行统计学分析.使用具有Tukey事后检验(双尾)的双向重复测量方差分析分别进行生物临床参数和炎症相关标志物的组内和组间比较.使用 Pearson卡方检验(双尾的)来分析两组中HbA1c为低于7.0%或6.5%的参与者的性别和比例的变化.使用Mann-Whitney U检验(双尾的)来分析两组在基线时其他特征的变化.
肠微生物群移植
在第0天和第84天从两位女性参与者(来自W组的2W009和来自 U组的2U004)收集粪便样品.这两个供体是系统性选择的-在所有参与者中确定干预后肠微生物谱变化,排除无显著变化的那些,然后随机选择来自每个组的一位参与者作为代表性供体.将每个粪便样品(0.5g)在厌氧室(80%N2:10%CO2:10%H2)中在25mL无菌林格工作缓冲剂(9g/L 氯化钠、0.4g/L氯化钾、0.25g/L二水氯化钙和0.05%(w/v)L-半胱氨酸盐酸盐)中稀释.使粪便材料通过彻底涡旋(5分钟)悬浮,并通过重力沉降5分钟.将澄清的上清液转移到干净的管中,并添加等体积的20% (w/v)脱脂乳(LP0031,Oxoid,UK).接种物在实验当天新鲜制备,将剩余部分储存在-80℃直至第二次接种.
所有的动物实验操作均由中国科学院动物研究所动物管理和使用委员会机构(Institute of Zoology Institutional Animal Care and Use Committee of theChinese Academy of Sciences)批准,并根据委员会的指南进行.将断奶的无菌雌性C57BL/6J小鼠(n=30)在定期12小时光循环(在06:00开启光)下维持在柔性膜塑料隔离器中.在移植前收集粪便、食物、水和衬垫的样品.在充分混合下,将生理盐水添加到样品中.然后,使用平板涂布法在以下条件培养混合物:1)对于好氧细菌,在37℃下在好氧条件下在LB琼脂、脑心浸液琼脂和巯基乙酸盐琼脂上培养;2)对于厌氧细菌,在37℃下在厌氧条件下在岐阜厌氧培养基(Gifu anaerobic medium,GAM)上培养;以及3)对于真菌,在25℃至28℃下在好氧条件下在经改良的马丁氏琼脂和大豆胰蛋白胨琼脂上培养.在1、2、4、7 和14天后在光学显微镜下检查所有培养物.
向小鼠随意喂食无菌常规饲料(SLAC,中国上海).通过对粪便、食物和衬垫进行定期细菌学检查来对细菌污染进行监测.在6周龄时,将无菌小鼠圈养在单独的笼中,并随机分为4组(每组保持在单独的隔离器中).在适应2周后,向4组小鼠经口管饲100μL的以下粪便悬浮接种物之一:第0天的2W009(W-Pre;n=10);第84天的2W009(W-Post; n=10);第0天的2U004(U-Pre;n=5);和第84天的2U004(U-Post; n=5).次日重复接种以增强微生物群移植.在第14天,在过夜禁食8小时后,对所有小鼠进行2小时的口服葡萄糖耐量测试(OGTT).在口服管饲D-葡萄糖(2g/kg体重)后,在0、15、30、60、90和120分钟时从尾静脉收集血液样品,其中使用血糖仪确定葡萄糖水平.
肠微生物群分析
1.宏基因组测序:如先前所述(2)从粪便样品提取DNA,并使用 GENEWIZ Co.(中国北京)的Illumina HiSeq 3000进行测序.根据服务提供商指定的工作流程进行聚类生成、模板杂交、等温扩增、线性化、以及测序引物的封闭变性和杂交.构建插入物大小为约500bp的文库,之后进行高通量测序以获得在正向和反向方向具有150bp的双端读出.
2.数据质量控制:使用Prinseq(3)来进行:1)从3’端修剪读出直至到达质量阈值为20的第一个核苷酸;2)当读出为<60bp或含有“N”碱基时,去除读出对;和3)对读出去重复.去除可以与人基因组(智人(H. sapiens),UCSC hg19)匹配的读出(使用--reorder--no-hd--no-contain -dovetail以Bowtie2(4)进行比对(种子序列的长度设置为20bp)).
3.从头非冗余宏基因组基因目录构建和基因丰度谱计算:将来自每个样品的高质量双端读出用于用IDBA_UD(5)从头组装成至少500bp 的重叠群.使用MetaGeneMark(6)预测基因.使用参数“-c 0.95-aS 0.9”用CH-HIT构建4,893,833个微生物基因的非冗余基因目录.使用 SOAPaligner(7)将高质量读出映射到基因目录上.将匹配的结果进行取样并缩减到每个样品3100万.使用soap.coverage.script来在每个缩减步骤中计算基因长度归一化碱基计数.重复取样操作30次,并将丰度的平均值用于进一步的分析.
4.共丰度基因集(CAG):使用基于Canopy的聚类算法(8)用默认参数在所有样品中基于所有基因的丰度来对其进行分箱.在后续分析中去除原始CAG:1)与canopy谱的Spearman相关性<0.7的基因;2)总canopy谱的90%分布在不超过3个样品中;3)具有少于三个基因的CAG. 将具有>700个基因的大CAG当作用于进一步分析的细菌CAG.用 QIIME(9)基于Bray-Curtis距离和Procrustes对细菌CAG进行主成分分析.
5.细菌CAG的组装和分类学分配:如先前所述(2)对180个流行细菌CAG中每一个进行从头组装.简言之,如下实现CAG和样品特异性读出:将所有高质量读出与CAG特异性重叠群进行比对,然后用Velvet (10)进行从头组装.我们采用来自人类微生物组计划(HumanMicrobiome Project,HMP) (http://www.hmpdacc.org/reference_genomes/finishing.php)的用于高质量基因组草图组装的六个标准和checkM(11)来评估组装体的质量:1)基因组组装体的90%必须包括在重叠群(>500bp)中;2)90%的组装碱基必须处于>5x读出覆盖;3)重叠群N50必须为>5kb;4)支架N50必须为> 20kb;5)平均重叠群长度必须为>5kb;以及6)>90%的核心基因必须存在于组装体中.我们使用两种方法来鉴定CAG的系统发生分类学,其高质量基因组草图满足至少5个HMP标准.首先,使用CVtree3.0网络服务器(12)用具有高质量组装体的154个细菌CAG、来自HMP DACC 数据库的352个参考胃肠基因组和服务器内置数据库构建系统发生树,所述服务器应用组分矢量来进行系统发生分析.然后,我们还应用SpecI(13) 来对细菌CAG进行描绘,SpecI是基于40个通用的单拷贝系统发生标志物基因将生物分组为物种聚类的方法.在蛋白质(BLASTP)和核苷酸 (BLASTN)水平二者上,将低质量的CAG与来自NCBI数据库的7,991 个参考基因组进行比对.用查询覆盖率(>70%)和E值(在核苷酸水平,<1e-10;在蛋白质水平,<1e-5)将该比对结果过滤.基于先前描述的分类学分配阈值(14),将CAG分配到物种或属级(物种级:90%的基因可以映射到在DNA水平上具有>95%同一性的物种基因组;属级:80%的基因可以映射到在DNA和蛋白质水平二者上具有>85%同一性的属).
6.GMM指数和ESP指数计算
使用Bowtie2用参数--reorder--no-hd--no-contain-dovetail将来自 GUT2D和/或QIDONG数据集的每个样品的高质量读出与64个高质量基因组草图进行比对(种子序列的长度设置为20bp).过滤与YT:Z:DP (指示读出为一对的一部分并且该对不一致地比对)的比对结果. 其中Ai(CAG No:i的丰度)=与CAGNo.:i匹配的读出的数目/(CAG No.:i的大小×总读出的数目). 其中Heip=(eH-1)/14,(CAG No.: i的丰度)=与CAG No.:i匹配的读出的数目/(CAG No.:i的大小×总读出的数目).
7.统计学分析:根据Benjamini&Hochberg(18),使用Wilcoxon 匹配对符号秩检验(双尾的)并进行调整来鉴定干预响应性细菌CAG. 用“mafdr”指令在程序中进行P值调整.用R包“randomForest”进行随机森林分析,并用“rfcv”进行交叉验证.
8.数据可用性
所有样品的原始焦磷酸测序和Illumina读出数据都已经以登录号 PRJEB1455(GUT2D研究)和PRJEB15179(QIDONG研究)归入欧洲核苷酸档案库(European NucleotideArchive,ENA)中.
实施例1.高纤维干预在患有T2DM的患者中显著改善生物临床参数
在干预的第一个月期间,几乎所有的生物临床参数在W组和U组二者中都改善.糖化血红蛋白(HbA1c)水平(当前临床试验中的主要结果) 在两个组中都随时间从基线水平显著降低(图2A).截止第84天,HbA1c 的降低在W组中大于U组中.在干预结束时(第84天),充分血糖控制率(组群中HbA1c<7%的比例)在W组中显著高于U组中(88.9%相对于50.5%,P=0.005).更加严格的目标实现率(组群中HbA1c<6.5%的比例)显示类似(尽管不显著的)趋势(51.9%相对于25.0%,P=0.084). 与U组相比,W组中的患者还减轻显著更大百分比的体重,并且表明脂质谱和炎症水平显著改善.可以刺激胰岛素分泌并抑制胰高血糖素分泌的胰高血糖素样肽-1(GLP-1)和肽YY(PYY)的水平在W组中随时间显著提高,而在U组中则没有.
实施例2.高纤维干预在患有T2DM的患者中调节肠微生物群的整体结构
对在4个时间点(第0、28、56和84天)收集的172个粪便样品进行鸟枪宏基因组测序.从4,893,833个微生物基因的非冗余基因目录中,鉴定422个共丰度基因集(CAG;使用基于Canopy的算法(19)分箱) 为不同的细菌基因组.基于来自422个细菌CAG的Bray-Curtis距离,肠微生物群的整体结构(如主坐标分析所示的)在两个组中显示第0天至第28天显著改变,之后不再进一步改变(图2B).在干预结束时(第84 天),W组与U组之间在肠微生物结构方面的显著差异(P=0.0056)反映了WTP饮食对肠微生物群的独特调节作用.在两组中基因丰富度(每个样品鉴定的基因的数目)明显降低,在这之后是如整体微生物结构中的类似趋势,即:在第28天显著降低,并且在干预的剩余时间保持稳定(图 2C).基因丰富度的这一整体下降对以下目前观点提出挑战:较高的多样性意味着较佳的健康(20).然而,与U组相比,第28天的基因丰富度在W组中显著更高,并且在第56天和第84天观察到类似趋势(图2C),这与W组中的代谢结果更佳一致.此外,将所有生物临床变量组合并且具有422个细菌CAG的Procrustes分析显示,肠微生物群的结构变化与干预期间临床结果的改善相关(P<0.0001,来自999Monte-Carlo模拟). 总之,表明,WTP饮食在T2DM患者中诱导肠微生物群的整体结构显著变化并且这些与整体临床结果改善相关.
实施例3.移植表明肠微生物群对减轻T2DM的因果性贡献
为了建立饮食改变的肠微生物群与葡萄糖代谢改善之间的因果关系,将来自W组和U组中参与者的干预前和干预后(分别为第0天和第84 天)肠微生物群移植到无菌C57BL/6J小鼠中.在移植14天后,接受来自W组的干预后微生物群的小鼠具有显著更低的体重(图3A).当与移植有来自W组的干预前微生物群或者来自U组的任一时间点的微生物群的那些相比时,这些小鼠还具有最低的空腹血糖和餐后血糖,显示与空腹胰岛素水平相关的效应(图3B至3D).我们的干预通过微生物移植的转移效应确定,高膳食纤维引起的肠微生物群变化因果地有助于改善T2DM 患者中的葡萄糖体内平衡.
实施例4.特定菌株对纤维摄取作出响应
组装高质量基因组草图以鉴定驱动膳食纤维对减轻T2DM表型的肠特异性作用的细菌物种/菌株.由>20%样品所共有的CAG组装154个高质量基因组草图.映射到这些高质量基因组草图的每个样品的总读出百分比为57%(±11%),这代表整个组群中的流行和主导肠细菌二者.154 个高质量基因组草图中的141个具有至少一种用于SCFA产生的关键基因,并且可以视为SCFA产生者.在154个高质量基因组草图中,选择 64种细菌用于进一步分析,因为:1)其是通过Wilcoxon匹配对符号秩检验鉴定的干预响应性CAG,如W或U组中在第28天通过干预显著改变的(图4);以及2)其具有用于SCFA、H2S或吲哚生物合成的基因中的至少一种.W组中升高的所有15个基因组具有用于SCFA生物合成的基因和用于乙酸产生的基因中的至少一种(包括也在U组中富集的3个),并且其中5个还具有丁酸生物合成的能力(图5B和5D).这与在两组中粪便乙酸在较大程度上类似的提高以及乙酸合成途径的富集一致,但是 WTP饮食对诱导丁酸产生的作用不同.这15个基因组的富集大部分在第 28天达到峰值(图5E),这也符合我们在整体肠微生物群中观察到的模式,这进一步支持这些细菌菌株为生态系统中结构变化的关键驱动者.
这15种细菌(包括双歧杆菌属(Bifidobacterium spp.)、乳杆菌属(Lactobacillus spp.)、真杆菌属(Eubacterium spp.)和普氏粪杆菌 (Faecalibacteriumprausnitzii))在W组可以服务于补充乙酸和丁酸的重要目的,并且因此可以是该必需功能的生态系统服务提供者(ESP). 来自碳水化合物的高效能量产生和针对低pH的耐受性可以解释这些细菌为什么相对于其他SCFA产生者具有竞争优势.在此,一个良好实例是双歧杆菌属,与其他乙酸产生者相比,其利用其“双歧”途径(21)而能够产生更多的ATP分子和乙酸.有趣的是,尽管SCFA产生的总体遗传能力提高,但是我们的干预显著减少大多数SCFA产生者(图5A和5C),这清楚地表明,并不是所有具有功能基因的细菌都可以对底物补充产生响应并且变成宿主所需功能的提供者.我们设想,这至少部分地由肠腔pH 变化驱动,因为已知一些SCFA产生者是高度pH敏感的,例如多形拟杆菌(Bacteroides thetaiotaomicron)和普通拟杆菌(B.vulgatus)(12). 因此,我们的数据对微生物组领域的以下共识提出挑战,所述共识主要根据基于基因的功能预测来假定肠细菌与宿主的生理相关性.
在两组中任一组中显著下调的49种细菌是具有用于合成脂多糖、吲哚和H2S的基因的那些.而且,根据基因中心途径分析,这表明产生代谢不利化合物的能力降低可能有助于高膳食纤维饮食的有益作用.已显示内毒素产生降低减轻炎症并恢复胰岛素敏感性(22,23).脂多糖结合蛋白 (内毒素载量的替代标志物)和炎性标志物在W组中低于U组中,表明炎症的减轻可能是由于内毒素产生降低(图6).吲哚和H2S产生细菌的丰度减小改善了对GLP-1产生的抑制(24-26),这与在W组中观察到的较大餐后GLP-1响应一致.总之,显示减少产生不利代谢物的细菌实现宿主的临床显著改善.
上述15个ESP:CAG0023、CAG0033、CAG0037、CAG0045、 CAG0046、CAG0064、CAG0079、CAG0106、CAG0133、CAG0153、CAG0155、CAG0207、CAG0224、CAG0236和CAG0409在本发明中分别表示为CAG NO.:1至15.显著下调的49种细菌CAG0010、CAG0012、 CAG0015、CAG0017、CAG0018、CAG0021、CAG0022、CAG0028、 CAG0031、CAG0032、CAG0034、CAG0035、CAG0048、CAG0051、 CAG0057、CAG0058、CAG0063、CAG0067、CAG0075、CAG0076、 CAG0080、CAG0082、CAG0086、CAG0090、CAG0093、CAG0100、 CAG0111、CAG0116、CAG0122、CAG0128、CAG0131、CAG0134、 CAG0138、CAG0173、CAG0178、CAG0185、CAG0202、CAG0221、 CAG0246、CAG0248、CAG0255、CAG0264、CAG0281、CAG0292、 CAG0312、CAG0331、CAG0341、CAG0365和CAG0390在本发明中分别表示为CAG NO.:16至64.
每个样品的肠微生物群调节(GMM)指数基于15个ESP以及在干预后降低的49个ESP的丰度数据来计算. 其中Ai(CAG No:i的丰度)=与CAG No.:i匹配的读出的数目 /(CAG No.:i的大小×总读出的数目).该GMM指数在所所有患者中与干预后HbA1c水平显著负相关(Spearman相关系数(SCC)=-0.4901,P=1.0253e-11),表明由MAC提高促成的微生物群中有贡献细菌的组成改变与主要临床结果相关(图7C).
ESP(生态系统服务提供者)指数仅基于在干预后提高的15个ESP 的丰度数据来计算.其中Heip= (eH-1)/14,(CAG No.:i的丰度)=与CAG No.:i匹配的读出的数目/(CAG No.:i的大小×总读出的数目).ESP指数在W组和U 组二者中都遵循类似的轨迹,即从基线急剧增加至第28天并在干预的剩余时间保持在类似水平,但是该指数在每个干预后时间点在W组中显著更高(第28、56和84天,图8B).在基线时和在干预结束时HbA1c与 ESP指数之间的显著负相关(第0天和第84天;r=-0.6731;P=5.55e-07;图8C)确定这些ESP在调节宿主葡萄糖体内平衡中的作用.虽然临床结果(例如HbA1c)随着干预的持续时间持续降低(图2A),ESP指数从第28天开始达到平稳(图8B).我们的数据清楚地表明膳食纤维诱导的 ESP富集发生在临床结果的显著变化之前.当将第28天(代替第84天) 的ESP指数与第84天的HbA1c一起用于绘制干预后数据点同时保持与图8C中完全相同的基线数据点组,在HbA1c与ESP指数之间观察到类似的负相关性(r=-7434;P=7.48e-08;图8D).这表明,第28天的ESP 指数(指示15个ESP在该早期时间点的富集)可对更晚发生的最终治疗结果具有信息性.
实施例5.生态系统服务提供者为不同的T2DM患者组群所共有
最后,为了发现其他T2DM患者组群是否共有在GUT2D试验中鉴定到的生态系统服务提供者,进行了另一项独立临床试验(QIDONG),在该试验中,使74位T2DM患者在无阿卡波糖下接受WTP饮食3个月. 在干预后,HbA1c水平从基线显著改善.对于所有患者,在基线和每个月末时收集粪便样品.以14.1G的平均深度对148个样品进行宏基因组测序.超过一半的测序读出被映射到在GUT2DM项目中组装的154个高质量基因组草图,显示对应的流行肠细菌是中国T2DM患者的不同组群共有的.在QIDONG试验的患者中存在GUT2D中鉴定的15个ESP和由于这些ESP升高而共排除的49种细菌.值得注意的是,使用第二项试验(不具有阿卡波糖)来提供测试数据集,基于15个ESP及其共排除细菌的GMM指数与主要结果(HbA1c水平)具有类似的显著负相关性(图 7D).
此外,使用在GUT2D中被鉴定为对膳食纤维具有积极响应性的15 个SCFA提供者的相同组,在该QiDong干预组中在ESP指数与HbA1c 之间存在类似的负相关性(图8E).
根据来自在GUT2D研究中收集的172个粪便样品和在QIDONG研究中收集的148个样品的GMM指数建立接受者操作特征曲线(ROC),其留一交叉验证ROC下面积(AUC)达到0.7052,其中当HbA1c>=6.5%时,二进制数设置为1,并且特异度和灵敏度分别为90.48%和44.75%. 当Youden指数达到最大值时,GMM指数为-1.02888.
根据来自在GUT2D研究中收集的172个粪便样品的ESP指数建立接受者操作特征曲线(ROC),其留一交叉验证ROC下面积(AUC)达到0.70,其中当HbA1c>=0.65%时,二进制数设置为1,并且特异度和灵敏度分别为92.11%和45.52%.当Youden指数达到最大值时,ESP指数为4.4。
参考文献
1.E.K.Costello,K.Stagaman,L.Dethlefsen,B.J.Bohannan,D.A.Relman, Theapplication of ecological theory toward an understanding of the humanmicrobiome.Science 336,1255-1262(2012).
2.A.Koh,F.De Vadder,P.Kovatcheva-Datchary,F.Backhed,From DietaryFiber to Host Physiology:Short-Chain Fatty Acids as Key BacterialMetabolites.Cell 165,1332-1345(2016).
3.J.Qin et al.,A metagenome-wide association study of gut microbiotain type 2 diabetes.Nature 490,55-60(2012).
4.F.H.Karlsson et al.,Gut metagenome in European women with normal,impaired and diabetic glucose control.Nature 498,99-103(2013).
5.K.Forslund et al.,Disentangling type 2 diabetes and metformintreatment signatures in the human gut microbiota.Nature 528,262-266(2015).
6.N.Larsen et al.,Gut microbiota in human adults with type 2 diabetesdiffers from non-diabetic adults.PloS one 5,e9085(2010).
7.A.Soare et al.,The effect of the macrobiotic Ma-Pi 2 diet vs.therecommended diet in the management of type 2 diabetes:the randomizedcontrolled MADIAB trial.Nutrition&metabolism 11,39(2014).
8.M.Chandalia et al.,Beneficial effects of high dietary fiber intakein patients with type 2 diabetes mellitus.The New England journal of medicine342, 1392-1398(2000).
9.F.M.Silva,C.K.Kramer,D.Crispim,M.J.Azevedo,A high-glycemic index,low-fiber breakfast affects the postprandial plasma glucose,insulin,andghrelin responses of patients with type 2 diabetes in a randomized clinicaltrial. The Journal of nutrition 145,736-741(2015).
10.T.Chen et al.,Fiber-utilizing capacity varies in Prevotella-versusBacteroides-dominated gut microbiota.Sci Rep 7,2594(2017).
11.H.J.Flint,S.H.Duncan,K.P.Scott,P.Louis,Links between diet,gutmicrobiota composition and gut metabolism.Proc Nutr Soc 74,13-22(2015).
12.S.H.Duncan,P.Louis,J.M.Thomson,H.J.Flint,The role of pH indetermining the species composition of the human colonic microbiota.Environmental microbiology 11,2112-2122(2009).
13.H.J.Flint,K.P.Scott,P.Louis,S.H.Duncan,The role of the gutmicrobiota in nutrition and health.Nature reviews.Gastroenterology&hepatology 9,577-589(2012).
14.G.Wu et al.,Genomic Microdiversity of Bifidobacteriumpseudocatenulatum Underlying Differential Strain-Level Responses to DietaryCarbohydrate Intervention.mBio 8,(2017).
15.C.Zhang et al.,Dietary Modulation of Gut Microbiota Contributes toAlleviation of Both Genetic and Simple Obesity in Children.EBioMedicine 2,966-982(2015).
16.J.M.Bland,D.G.Altman,Calculating correlation coefficients withrepeated observations:Part 1--Correlation within subjects.BMJ 310,446 (1995).
17 Yuexin Yang,G.W.,Xingehang Pang.China Food Composition(Book 1.2ndEdition).(Beijing Medical University Press,2009).
18.P.D.Cani et al.,Gut microbiota fermentation of prebioticsincreases satietogenic and incretin gut peptide production with consequencesfor appetite sensation and glucose response after a meal.The American journalof clinical nutrition 90,1236-1243(2009).
19.H.B.Nielsen et al.,Identification and assembly of genomes andgenetic elements in complex metagenomic samples without using referencegenomes. Nature biotechnology 32,822-828(2014).
20.E.Le Chatelier et al.,Richness of human gut microbiome correlateswith metabolic markers.Nature 500,541-546(2013).
21.K.Pokusaeva,G.F.Fitzgerald,D.van Sinderen,Carbohydrate metabolismin Bifidobacteria.Genes Nutr 6,285-306(2011).
22.L.Sun et al.,A marker of endotoxemia is associated with obesityand related metabolic disorders in apparently healthy Chinese.Diabetes care33,1925-1932 (2010).
23.P.D.Cani et al.,Metabolic endotoxemia initiates obesity andinsulin resistance.Diabetes 56,1761-1772(2007).
24.M.T.Yokoyama,J.R.Carlson,Microbial metabolites of tryptophan inthe intestinal tract with special reference to skatole.The American journalof clinical nutrition 32,173-178(1979).
25.C.Chimerel et al.,Bacterial metabolite indole modulates incretinsecretion from intestinal enteroendocrine L cells.Cell reports 9,1202-1208(2014).
26.V.Bala et al.,Release of GLP-1 and PYY in response to theactivation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-epsilon pathway and modulated by endogenous H2S.Frontiers in physiology5,420 (2014).