[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110415091A - Shop and Method of Commodity Recommendation, device, equipment and readable storage medium storing program for executing - Google Patents

Shop and Method of Commodity Recommendation, device, equipment and readable storage medium storing program for executing Download PDF

Info

Publication number
CN110415091A
CN110415091A CN201910722846.9A CN201910722846A CN110415091A CN 110415091 A CN110415091 A CN 110415091A CN 201910722846 A CN201910722846 A CN 201910722846A CN 110415091 A CN110415091 A CN 110415091A
Authority
CN
China
Prior art keywords
data
user
shop
vector
commodity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910722846.9A
Other languages
Chinese (zh)
Inventor
周羽
徐斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Xiantao Frontier Consumer Behavior Big Data Co Ltd
Original Assignee
Chongqing Xiantao Frontier Consumer Behavior Big Data Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Xiantao Frontier Consumer Behavior Big Data Co Ltd filed Critical Chongqing Xiantao Frontier Consumer Behavior Big Data Co Ltd
Priority to CN201910722846.9A priority Critical patent/CN110415091A/en
Publication of CN110415091A publication Critical patent/CN110415091A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0255Targeted advertisements based on user history
    • G06Q30/0256User search
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0269Targeted advertisements based on user profile or attribute
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0631Item recommendations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a kind of shop and Method of Commodity Recommendation, device, equipment and readable storage medium storing program for executing.The shop and Method of Commodity Recommendation, comprising the following steps: S1 obtains data to be predicted, and the data to be predicted include user data and store merchandise data;S2 obtains the user characteristics vector of characterization user data according to the user data of step S1 and store merchandise data and characterizes the store merchandise feature vector of store merchandise data;S3 inputs user characteristics vector sum store merchandise feature vector in neural network model, output probability vector;S4 predicts the shopping need of user, and corresponding shop and commodity within the scope of recommended user's certain distance according to the probability vector.

Description

Shop and Method of Commodity Recommendation, device, equipment and readable storage medium storing program for executing
Technical field
The present invention relates to big data fields, and in particular to a kind of shop and Method of Commodity Recommendation, device, equipment and readable deposits Storage media.
Background technique
With the continuous development of society, future city will carry more populations, thus the sustainable development in city seems It is particularly important.The starting point of smart city is the networking and digitlization under modern information technologies development, and final purpose is will thereon It is raised to the height of integration, cluster, coordinated management, is combined with Green Sustainable, livable urban environment is constructed.Wisdom city City based on the generation information technologies such as Internet of Things, cloud computing, big data, spatial geographic information be integrated, by perceiving, point The every key message for analysing, integrating city operations core system, it is living to urban service, public safety, environmental protection, the people's livelihood, industry and commerce Various demands including dynamic make intelligent response, realize information-based urban planning administration, infrastructure intelligence, public service just Victoryization.
Existing Precision Marketing Method mostly according to history purchase data and search history come Recommendations, shop etc., The personal information of user is not analyzed comprehensively, so that being obtained to the purchase and consumption requirement forecasting of user not accurate enough.
Summary of the invention
It is an object of the invention to overcome the above-mentioned deficiency in the presence of the prior art, a kind of shop and commercial product recommending are provided Method, apparatus, equipment and readable storage medium storing program for executing, the shop and Method of Commodity Recommendation are tied by analyzing user data Internet of Things, big data and neural network are closed, is precisely drawn a portrait to user, predicts the shopping needs of user, it is corresponding to recommend Shop or commodity.
In order to achieve the above-mentioned object of the invention, the present invention provides following technical schemes:
A kind of shop and Method of Commodity Recommendation, comprising the following steps:
S1, obtains data to be predicted, and the data to be predicted include user data and store merchandise data;
S2, according to the user data of step S1 and store merchandise data obtain the user characteristics vector of characterization user data with And the store merchandise feature vector of characterization store merchandise data;
S3 inputs user characteristics vector sum store merchandise feature vector in neural network model, output probability vector;
S4, the shopping need of user is predicted according to the probability vector, and recommends corresponding shop and commodity.
Preferably, the user characteristics vector includes history shopping information, search information, the level of consumption, shopping style, year Age, identity, gender information.
Preferably, the user characteristics vector further includes location information.
Preferably, the neural network model that the step S3 is used also is needed using training sample training, to update nerve net The parameter of each layer of network model, and then improve the prediction accuracy of neural network model;Training process the following steps are included:
T1 inputs the sample data building sample database marked, and the sample data includes user data and store merchandise Data;
Data in sample database are stated in the form of feature vector, obtain sample of users feature vector and sample by T2 Store merchandise feature vector;
T3, using sample of users feature vector and sample store merchandise feature vector to the parameter value in neural network model It is trained, undated parameter value.
Preferably, the user characteristics vector is drawn a portrait to analyze by user and be obtained, and specific acquisition modes are as follows:
Step A1 inputs user data to be measured, obtains the static of user by SQL query and data cleansing and draws a portrait, described Static state portrait includes age, occupation, gender, marital status, children's status data;
Step A2, the user data input multi-tag study prediction model after SQL query and data cleansing, obtain The dynamic image of user, the dynamic image include the purchase and consumption demand of user.
Preferably, the data cleansing in the step A1 refers to the unchartered data information of removal, the off-specification Data information include repeat record information, illegal value, noise data, null value and missing values and privacy information.
Preferably, the prediction process of the multi-tag study prediction model is as follows:
The data of A21, input multi-tag study prediction model are classified according to tag class, obtain the data for every The feature vector of one label;
A22, the prediction that the feature vector of each label obtains each label by the corresponding classifier of the label are general Rate vector;
The prediction probability vector of A23, each label obtain prediction result by multi-tag classifier.
A kind of shop and the device for recommending the commodity, comprising: data acquisition module, data processing module, model module and mould Type training module;
Wherein, data acquisition module, for obtaining user data and store merchandise data;
Data processing module, user data and store merchandise data conversion for that will be used to obtain are feature vector, and By feature vector input model module;
Model module, for the purchase and consumption demand using Neural Network model predictive future;
Model training module updates model parameter for the sample data training neural network model using sample database.
A kind of shop and commercial product recommending equipment, comprising:
Memory, for storing computer program;
Processor when for executing the computer program, realizes shop and the step of Method of Commodity Recommendation.
A kind of readable storage medium storing program for executing is stored with computer program, the computer program quilt on the readable storage medium storing program for executing When processor executes, shop is realized and the step of Method of Commodity Recommendation.
Compared with prior art, beneficial effects of the present invention:.
User can be analyzed in conjunction with big data, make accurate portrait, to predict the shopping needs of user, to recommend Corresponding shop and commodity etc. information.
Detailed description of the invention:
Fig. 1 is the flow chart in the shop and Method of Commodity Recommendation of exemplary embodiment of the present 1;
Fig. 2 is the shop of exemplary embodiment of the present 1 and the training process flow chart of Method of Commodity Recommendation;
Fig. 3 is the flow chart in the shop of exemplary embodiment of the present 1 and the training process step T3 of Method of Commodity Recommendation;
Fig. 4 is the acquisition flow chart in the shop of exemplary embodiment of the present 1 and the user characteristics of Method of Commodity Recommendation;
Fig. 5 is that the shop of exemplary embodiment of the present 1 and the multi-tag of Method of Commodity Recommendation learn the pre- of prediction model Survey process flow diagram flow chart;
Fig. 6 is the structural schematic diagram of shop and the device for recommending the commodity in exemplary embodiment of the present 2;
Fig. 7 is the structural schematic diagram of shop and commercial product recommending equipment in exemplary embodiment of the present 3;
Fig. 8 is the concrete structure schematic diagram of shop and commercial product recommending equipment in exemplary embodiment of the present 3.
Specific embodiment
Below with reference to test example and specific embodiment, the present invention is described in further detail.But this should not be understood It is all that this is belonged to based on the technology that the content of present invention is realized for the scope of the above subject matter of the present invention is limited to the following embodiments The range of invention.
Embodiment 1
As shown in Figure 1, the present embodiment provides a kind of shop and Method of Commodity Recommendation, comprising the following steps:
Step S1, obtains data to be predicted, and the data to be predicted include user data and store merchandise data;
Wherein, user data includes age, occupation, gender, location information, marital status, children's situation, history shopping letter The data such as breath and search history;Store merchandise data include the number such as store-type, firm name, store locations, product name According to.
Step S2, according to the user data of step S1 and store merchandise data obtain the user characteristics of characterization user data to The store merchandise feature vector of amount and characterization store merchandise data;
Step S3, by user characteristics vector sum store merchandise feature vector input neural network model in, output probability to Amount;
Step S4 recommends corresponding shop and commodity according to the probability vector.
It is made a phone call with mobile phone, when sending and receiving short message, the behaviors of browsing webpage etc. occur, a large amount of data will be generated, these The data generated are denoted as user data, by analyzing these user data, user characteristics vector are obtained, in conjunction with quotient Shop merchandise news predicts the purchase and consumption demand of user, recommends corresponding businessman or commodity.Above-mentioned user's purchase and consumption demand is pre- Survey method obtains cell phone apparatus by modules such as WiFi probe device, GPS device, bluetooth module, RFID module, communication modules MAC Address (network interface card MAC) and IMEI code (mobile phone string code) and other information, the data of acquisition pass through data fusion, data Statistics, data analysis etc., realize intelligent decision.Above-mentioned shop and commercial product recommending pass through the technologies such as Internet of Things, cloud computing, big data It combines, preferably user data is arranged, counted and is analyzed, comprehensively consider the information of user's various aspects, predict its purchase Object consumption demand reduces user and obtains the time for collecting merchandise news, faster more accurately provides the letter of purchase commodity needed for it Breath;It is directed to businessman simultaneously, can quickly find its potential customers, realizes precision marketing.
Existing shop and Method of Commodity Recommendation mostly according to history purchase data and search history come Recommendations with And shop etc., this implementation the method based on a large amount of user data that has generated obtain the user characteristics of characterization user data to Amount, the user characteristics vector include history shopping information, search information, the level of consumption, shopping style, age, identity, gender Information.In the user characteristics vector and store merchandise feature vector input neural network model, probability vector is obtained, according to general Rate vector recommends corresponding shop and commodity.
Such as user characteristics vector shows that the nearest search history of user is job hunting, identity is graduating student, gender male, The types commodity associated with job hunting such as Western-style clothes, certificate photo shooting can then be recommended;After confirming the type of merchandise, pass through neural network mould Pattern synthesis considers the level of consumption of user, shopping style, the information such as evaluation of commodity, obtains probability vector, i.e., to Western-style clothes and card Part is ranked up according to commodity such as shootings, to recommend the commodity of corresponding businessman.
Wherein user characteristics vector further includes location information.
Such as user characteristics vector shows that the nearest shopping history of user is fitness equipment, the note that there is gymnasium in track occurs Record can then recommend the commodity such as body-building meal;If the level of consumption of user be medium and seafood allergy, can recommend non-seafood with The body-building meal commodity that its level of consumption matches, and comprehensively consider dispatching distance, recommend the body-building of corresponding businessman to eat.
Comprehensively consider the information such as shopping history, the level of consumption, shopping tendency, age, occupation and the position of user, recommends Corresponding shop and commodity within the scope of user's certain distance;Such as the user in position A, shopping history before show the use The nigh shop B in family bought commodity C, and needed to buy commodity C according to consumption frequency prediction user, i.e. recommendation shop B's Commodity C is to user;If user bought commodity C, but frequent search same type commodity commodity D recently, then recommended distance is nearest Shop where commodity D is to user;Specific prediction process is controlled by neural network model, and above-mentioned recommendation results are only that may go out Existing example.
Above-mentioned shop and Method of Commodity Recommendation are combined by technologies such as Internet of Things, cloud computing, big datas, preferably to User data is arranged, counted and is analyzed, and the information of user's various aspects is comprehensively considered, its purchase and consumption demand is predicted, in conjunction with it Position information recommends shop and commodity, faster more accurately provides the information of purchase commodity needed for it;It is directed to quotient simultaneously Family can quickly find its potential customers, realize precision marketing.
The neural network model that step S3 is used also is needed using training sample training, to update each layer of neural network model Parameter, and then improve the prediction accuracy of neural network model;As shown in Fig. 2, training process the following steps are included:
Step T1 inputs the sample data building sample database marked, and the sample data includes user data and shop Commodity data;
Step T2 states the data in sample database in the form of feature vector, obtain sample of users feature vector and Sample store merchandise feature vector;
Step T3, using sample of users feature vector and sample store merchandise feature vector to the ginseng in neural network model Numerical value is trained, undated parameter value.
As shown in figure 3, the detailed step of step T3 undated parameter value is as described below:
The user characteristics vector sum sample store merchandise feature vector of one sample is input to neural network mould by step T31 In type, output probability is obtained by the operation of neural network model;
Step T32 compares output probability with the true value for having marked sample, obtains deviation;
Step T33 thens follow the steps T34 if deviation is greater than preset threshold;If deviation is less than preset threshold, instruct White silk terminates;
Step T34 corrects each layer of neural network model of parameter value, undated parameter value according to deviation, and more varies This, executes step T31 to T33.
The sample is labelled with true purchase merchandise news, is trained by using the sample marked, with adjustment The parameter of model, the shop and merchandise news for recommending it are more accurate.By training neural network, neural network model is improved Prediction precision.
It is obtained as shown in figure 4, user characteristics vector draws a portrait to analyze by user, specific acquisition modes are as follows:
Step A1 inputs user data to be measured, obtains the static of user by SQL query and data cleansing and draws a portrait, described Static state portrait includes the data such as age, occupation, gender, marital status, children's situation;
Step A2, the user data input multi-tag study prediction model after SQL query and data cleansing, obtain The dynamic image of user, the dynamic image include user's purchase and consumption demand;Purchase and consumption demand information includes the purchase of user Object commodity, shopping preferences, do shopping dynamics, shopping interval time etc..
As shown in figure 5, the data cleansing in step A1 refers to the unchartered data information of removal, such as repetition is recorded, no Legitimate value, noise data, null value and missing values and privacy information.
Wherein, the prediction process of multi-tag study prediction model is as follows:
The data of A21, input multi-tag study prediction model are classified according to tag class, obtain the data for every The feature vector of one label;
A22, the prediction that the feature vector of each label obtains each label by the corresponding classifier of the label are general Rate vector;
The prediction probability vector of A23, each label obtain prediction result by multi-tag classifier.
The classification method used in the present embodiment step A21 is k-means clustering method.It is adopted in the present embodiment step A22 Classifier is XGBOOST classifier or GBDT classifier;The multi-tag classifier then used is the classification of XGBOOST multi-tag Device or GBDT multi-tag classifier.
Multi-tag study prediction model need to be trained using the sample marked, to adjust the parameter of model, obtain it The user characteristics vector arrived is related to shopping, for example, history shopping information, search information, the level of consumption, shopping style etc., with More accurately recommend shop and merchandise news.
The present embodiment is combined by big data with neural network, and data mining, data analysis and data application are carried out, with The shop to match with purchase and consumption demand and merchandise news are provided, help user to be best understood from shop and commodity, more rapidly Buy the commodity for meeting user's shopping need.
Embodiment 2
Corresponding to above method embodiment, the present embodiment additionally provides a kind of shop and the device for recommending the commodity, hereafter retouches The shop stated and the device for recommending the commodity can correspond to each other reference with above-described shop and Method of Commodity Recommendation.
Shown in Figure 6, which comprises the following modules: data acquisition module 101, data processing module 102, pattern die Block 103 and model training module 104;
Wherein, data acquisition module 101, for obtaining user data and store merchandise data;The present embodiment can pass through Mobile phone or mobile terminal etc. acquire user data;The user data of acquisition include the WIFI such as mobile phone or mobile terminal MAC Address, It according to the MAC Address and IMEI of cell phone apparatus, is compared by cloud big data, positions the identity of user, get corresponding hand The information such as machine number, APP used in everyday.
Data processing module 102, user data and store merchandise data conversion for will acquire are feature vector, and will Feature vector input model module 103;
Model module 103, for the purchase and consumption demand using Neural Network model predictive future;The present embodiment uses MapReduce Computational frame calculates the mass data of distributed storage, realizes that data sharing, data are melted on this basis It closes, statistical analysis, intelligent decision.
Model training module 104, for the sample data training neural network model using sample database, more new model ginseng Number.
Data processing module 102 further includes that user draws a portrait analysis module, draws a portrait analysis module for user data by user Be converted to user characteristics vector;
The user draws a portrait analysis module including inquiring cleaning module and multi-tag study prediction module;The inquiry is clear Mold cleaning block obtains the static portrait of user for rejecting unchartered data information;The multi-tag learns prediction module User tag is obtained using XGBOOST classifier, user data is converted into user characteristics vector, to predict that the shopping of user disappears Take demand.
Using device provided by the embodiment of the present invention, user data and store merchandise data are obtained;Data pass through data Processing module 102 is converted to corresponding feature vector, purchase and consumption demand is predicted by model module, with offer and purchase and consumption The shop and merchandise news that demand matches help user to be best understood from shop and commodity, faster buy and meet use The commodity of family shopping need.
Embodiment 3
Corresponding to above method embodiment, the present embodiment additionally provides a kind of shop and commercial product recommending equipment, hereafter retouches A kind of shop stated and commercial product recommending equipment can correspond to each other reference with a kind of above-described shop and Method of Commodity Recommendation.
Shown in Figure 7, the shop and commercial product recommending equipment include:
Memory D l, for storing computer program;
Processor D2 realizes shop and the Method of Commodity Recommendation of above method embodiment when for executing computer program Step.
Specifically, referring to FIG. 8, for shop provided in this embodiment and commercial product recommending equipment concrete structure schematic diagram, The shop and commercial product recommending equipment can generate bigger difference because configuration or performance are different, may include one or one with Upper processor (central processing units, CPU;Or GPU, NPU, FPGA etc.) 322 (for example, one or one with Upper processor) and memory 332, one or more storage application programs 342 or data 344 storage medium 330 (such as One or more mass memory units).Wherein, memory 332 and storage medium 330 can be of short duration storage or persistently deposit Storage.The program for being stored in storage medium 330 may include one or more modules (diagram does not mark), and each module can be with Including being operated to the series of instructions in data processing equipment.Further, central processing unit 322 can be set to and store Medium 330 communicates, and the series of instructions operation in storage medium 330 is executed on the pre- measurement equipment 301 of user's administration business demand.
Shop and commercial product recommending equipment 301 can also include one or more power supplys 326, one or more have Line or radio network interface 350, one or more input/output interfaces 358, and/or, one or more operation systems System 341.For example, Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM etc..
Step in shop as described above and Method of Commodity Recommendation can be by shop and the structure of commercial product recommending equipment It realizes.
Embodiment 4
Corresponding to above method embodiment, the present embodiment additionally provides a kind of readable storage medium storing program for executing, and described below one Kind of readable storage medium storing program for executing can correspond to each other reference with a kind of above-described shop and Method of Commodity Recommendation.
A kind of readable storage medium storing program for executing is stored with computer program on readable storage medium storing program for executing, and computer program is held by processor The step of shop and the Method of Commodity Recommendation of above method embodiment are realized when row.
The readable storage medium storing program for executing be specifically as follows USB flash disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), the various program storage generations such as random access memory (Random Access Memory, RAM), magnetic or disk The readable storage medium storing program for executing of code.
The above, the only detailed description of the specific embodiment of the invention, rather than limitation of the present invention.The relevant technologies The technical staff in field is not in the case where departing from principle and range of the invention, various replacements, modification and the improvement made It should all be included in the protection scope of the present invention.

Claims (10)

1. a kind of shop and Method of Commodity Recommendation, which comprises the following steps:
S1, obtains data to be predicted, and the data to be predicted include user data and store merchandise data;
S2 obtains the user characteristics vector and table of characterization user data according to the user data of step S1 and store merchandise data Levy the store merchandise feature vector of store merchandise data;
S3 inputs user characteristics vector sum store merchandise feature vector in neural network model, output probability vector;
S4, the shopping need of user is predicted according to the probability vector, and recommends corresponding shop and commodity.
2. shop according to claim 1 and Method of Commodity Recommendation, which is characterized in that the user characteristics vector includes going through History shopping information, search information, the level of consumption, shopping style, age, identity, gender information.
3. shop according to claim 2 and Method of Commodity Recommendation, which is characterized in that the user characteristics vector further includes Location information.
4. shop according to claim 1 and Method of Commodity Recommendation, which is characterized in that the nerve net that the step S3 is used Network model also needs to update the parameter of each layer of neural network model, and then to improve neural network model using training sample training Prediction accuracy;Training process the following steps are included:
T1 inputs the sample data building sample database marked, and the sample data includes user data and store merchandise data;
Data in sample database are stated in the form of feature vector, obtain sample of users feature vector and sample shop by T2 Product features vector;
T3 carries out the parameter value in neural network model using sample of users feature vector and sample store merchandise feature vector Training, undated parameter value.
5. shop according to claim 1 and Method of Commodity Recommendation, which is characterized in that the user characteristics vector passes through use Family portrait analysis obtains, and specific acquisition modes are as follows:
Step A1 inputs user data to be measured, obtains the static of user by SQL query and data cleansing and draws a portrait, the static state Portrait includes age, occupation, gender, marital status, children's status data;
Step A2, the user data input multi-tag study prediction model after SQL query and data cleansing, obtain user Dynamic image, the dynamic image includes the purchase and consumption demand of user.
6. shop according to claim 5 and Method of Commodity Recommendation, which is characterized in that the data cleansing in the step A1 Refer to the unchartered data information of removal, the unchartered data information include the information for repeating record, illegal value, Noise data, null value and missing values and privacy information.
7. shop according to claim 5 and Method of Commodity Recommendation, which is characterized in that the multi-tag learns prediction model Prediction process it is as follows:
The data of A21, input multi-tag study prediction model are classified according to tag class, obtain the data for each The feature vector of label;
A22, the feature vector of each label by the corresponding classifier of the label obtain the prediction probability of each label to Amount;
The prediction probability vector of A23, each label obtain prediction result by multi-tag classifier.
8. a kind of for implementing shop and the commercial product recommending in the described in any item shops of claim 1 to 7 and Method of Commodity Recommendation Device characterized by comprising data acquisition module, data processing module, model module and model training module;
Wherein, data acquisition module, for obtaining user data and store merchandise data;
Data processing module, user data and store merchandise data conversion for that will be used to obtain are feature vector, and will be special Levy vector input model module;
Model module, for the purchase and consumption demand using Neural Network model predictive future;
Model training module updates model parameter for the sample data training neural network model using sample database.
9. a kind of shop and commercial product recommending equipment characterized by comprising
Memory, for storing computer program;
Processor when for executing the computer program, realizes that shop and commodity as described in claim l to 7 any one push away The step of recommending method.
10. a kind of readable storage medium storing program for executing, which is characterized in that be stored with computer program, the meter on the readable storage medium storing program for executing When calculation machine program is executed by processor, shop is realized as described in any one of claim 1 to 7 and the step of Method of Commodity Recommendation.
CN201910722846.9A 2019-08-06 2019-08-06 Shop and Method of Commodity Recommendation, device, equipment and readable storage medium storing program for executing Pending CN110415091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910722846.9A CN110415091A (en) 2019-08-06 2019-08-06 Shop and Method of Commodity Recommendation, device, equipment and readable storage medium storing program for executing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910722846.9A CN110415091A (en) 2019-08-06 2019-08-06 Shop and Method of Commodity Recommendation, device, equipment and readable storage medium storing program for executing

Publications (1)

Publication Number Publication Date
CN110415091A true CN110415091A (en) 2019-11-05

Family

ID=68366215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910722846.9A Pending CN110415091A (en) 2019-08-06 2019-08-06 Shop and Method of Commodity Recommendation, device, equipment and readable storage medium storing program for executing

Country Status (1)

Country Link
CN (1) CN110415091A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830586A (en) * 2019-11-13 2020-02-21 秒针信息技术有限公司 Method and device for reducing influence of multi-user sharing equipment on target audience concentration
CN110889748A (en) * 2019-12-02 2020-03-17 广州伊的家网络科技有限公司 Store-merchant platform product recommendation method and device, computer equipment and storage medium
CN110910221A (en) * 2019-11-27 2020-03-24 山东浪潮人工智能研究院有限公司 Market intelligent shopping guide method and system based on artificial intelligence
CN110969516A (en) * 2019-12-25 2020-04-07 清华大学 Commodity recommendation method and device
CN111242723A (en) * 2020-01-02 2020-06-05 平安科技(深圳)有限公司 User child and child condition judgment method, server and computer readable storage medium
CN111311332A (en) * 2020-02-28 2020-06-19 北京互金新融科技有限公司 User data processing method and device
CN111340565A (en) * 2020-03-20 2020-06-26 北京爱笔科技有限公司 Information recommendation method, device, equipment and storage medium
CN111353815A (en) * 2020-02-24 2020-06-30 苏宁云计算有限公司 Potential user prediction method and system
CN111353688A (en) * 2020-02-05 2020-06-30 口碑(上海)信息技术有限公司 User resource allocation method and device
CN111368205A (en) * 2020-03-09 2020-07-03 腾讯科技(深圳)有限公司 Data recommendation method and device, computer equipment and storage medium
CN111415216A (en) * 2020-02-11 2020-07-14 广州探途网络技术有限公司 Commodity recommendation method and device, server and storage medium
CN111429161A (en) * 2020-04-10 2020-07-17 杭州网易再顾科技有限公司 Feature extraction method, feature extraction device, storage medium, and electronic apparatus
CN111639989A (en) * 2020-04-28 2020-09-08 上海风秩科技有限公司 Commodity recommendation method and readable storage medium
CN112200601A (en) * 2020-09-11 2021-01-08 深圳市法本信息技术股份有限公司 Item recommendation method and device and readable storage medium
CN112488799A (en) * 2020-12-14 2021-03-12 北京易兴元石化科技有限公司 Oil data processing method and device based on refueling station end and storage medium
CN111507366B (en) * 2019-11-07 2021-06-08 马上消费金融股份有限公司 Training method of recommendation probability model, intelligent completion method and related device
CN113761347A (en) * 2021-02-25 2021-12-07 北京沃东天骏信息技术有限公司 Commodity recommendation method, commodity recommendation device, storage medium and commodity recommendation system
CN115205011A (en) * 2022-06-15 2022-10-18 海南大学 Bank user portrait model generation method based on LSF-FC algorithm
CN118229332A (en) * 2024-05-23 2024-06-21 翼果(深圳)科技有限公司 AI intelligent red person marketing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106485562A (en) * 2015-09-01 2017-03-08 苏宁云商集团股份有限公司 A kind of commodity information recommendation method based on user's history behavior and system
EP3433818A1 (en) * 2016-03-21 2019-01-30 The Procter and Gamble Company Systems and methods for providing customized product recommendations
CN109359244A (en) * 2018-10-30 2019-02-19 中国科学院计算技术研究所 A kind of recommendation method for personalized information and device
CN109509054A (en) * 2018-09-30 2019-03-22 平安科技(深圳)有限公司 Method of Commodity Recommendation, electronic device and storage medium under mass data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106485562A (en) * 2015-09-01 2017-03-08 苏宁云商集团股份有限公司 A kind of commodity information recommendation method based on user's history behavior and system
EP3433818A1 (en) * 2016-03-21 2019-01-30 The Procter and Gamble Company Systems and methods for providing customized product recommendations
CN109509054A (en) * 2018-09-30 2019-03-22 平安科技(深圳)有限公司 Method of Commodity Recommendation, electronic device and storage medium under mass data
CN109359244A (en) * 2018-10-30 2019-02-19 中国科学院计算技术研究所 A kind of recommendation method for personalized information and device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111507366B (en) * 2019-11-07 2021-06-08 马上消费金融股份有限公司 Training method of recommendation probability model, intelligent completion method and related device
CN110830586A (en) * 2019-11-13 2020-02-21 秒针信息技术有限公司 Method and device for reducing influence of multi-user sharing equipment on target audience concentration
CN110910221A (en) * 2019-11-27 2020-03-24 山东浪潮人工智能研究院有限公司 Market intelligent shopping guide method and system based on artificial intelligence
CN110889748A (en) * 2019-12-02 2020-03-17 广州伊的家网络科技有限公司 Store-merchant platform product recommendation method and device, computer equipment and storage medium
CN110889748B (en) * 2019-12-02 2023-08-15 广州伊的家网络科技有限公司 Store platform product recommendation method, store platform product recommendation device, computer equipment and storage medium
CN110969516A (en) * 2019-12-25 2020-04-07 清华大学 Commodity recommendation method and device
CN110969516B (en) * 2019-12-25 2024-04-26 清华大学 Commodity recommendation method and device
CN111242723A (en) * 2020-01-02 2020-06-05 平安科技(深圳)有限公司 User child and child condition judgment method, server and computer readable storage medium
CN111353688B (en) * 2020-02-05 2024-02-27 口碑(上海)信息技术有限公司 User resource allocation method and device
CN111353688A (en) * 2020-02-05 2020-06-30 口碑(上海)信息技术有限公司 User resource allocation method and device
CN111415216B (en) * 2020-02-11 2023-11-07 广州探途网络技术有限公司 Commodity recommendation method, commodity recommendation device, server and storage medium
CN111415216A (en) * 2020-02-11 2020-07-14 广州探途网络技术有限公司 Commodity recommendation method and device, server and storage medium
CN111353815A (en) * 2020-02-24 2020-06-30 苏宁云计算有限公司 Potential user prediction method and system
CN111353815B (en) * 2020-02-24 2024-03-01 苏宁云计算有限公司 Potential user prediction method and system
CN111311332A (en) * 2020-02-28 2020-06-19 北京互金新融科技有限公司 User data processing method and device
CN111368205A (en) * 2020-03-09 2020-07-03 腾讯科技(深圳)有限公司 Data recommendation method and device, computer equipment and storage medium
CN111340565A (en) * 2020-03-20 2020-06-26 北京爱笔科技有限公司 Information recommendation method, device, equipment and storage medium
CN111429161A (en) * 2020-04-10 2020-07-17 杭州网易再顾科技有限公司 Feature extraction method, feature extraction device, storage medium, and electronic apparatus
CN111429161B (en) * 2020-04-10 2023-10-10 杭州网易再顾科技有限公司 Feature extraction method, feature extraction device, storage medium and electronic equipment
CN111639989A (en) * 2020-04-28 2020-09-08 上海风秩科技有限公司 Commodity recommendation method and readable storage medium
CN111639989B (en) * 2020-04-28 2024-02-02 上海秒针网络科技有限公司 Commodity recommendation method and readable storage medium
CN112200601B (en) * 2020-09-11 2024-05-14 深圳市法本信息技术股份有限公司 Item recommendation method, device and readable storage medium
CN112200601A (en) * 2020-09-11 2021-01-08 深圳市法本信息技术股份有限公司 Item recommendation method and device and readable storage medium
CN112488799B (en) * 2020-12-14 2024-04-09 北京易兴元石化科技有限公司 Petroleum data processing method and device based on gas station end and storage medium
CN112488799A (en) * 2020-12-14 2021-03-12 北京易兴元石化科技有限公司 Oil data processing method and device based on refueling station end and storage medium
CN113761347A (en) * 2021-02-25 2021-12-07 北京沃东天骏信息技术有限公司 Commodity recommendation method, commodity recommendation device, storage medium and commodity recommendation system
CN115205011B (en) * 2022-06-15 2023-08-08 海南大学 Bank user portrait model generation method based on LSF-FC algorithm
CN115205011A (en) * 2022-06-15 2022-10-18 海南大学 Bank user portrait model generation method based on LSF-FC algorithm
CN118229332A (en) * 2024-05-23 2024-06-21 翼果(深圳)科技有限公司 AI intelligent red person marketing method
CN118229332B (en) * 2024-05-23 2024-07-16 翼果(深圳)科技有限公司 AI intelligent red person marketing method

Similar Documents

Publication Publication Date Title
CN110415091A (en) Shop and Method of Commodity Recommendation, device, equipment and readable storage medium storing program for executing
Bachir et al. Inferring dynamic origin-destination flows by transport mode using mobile phone data
CN106778876B (en) User classification method and system based on mobile user track similarity
CN105532030B (en) For analyzing the devices, systems, and methods of the movement of target entity
CN110428231A (en) Administrative information recommended method, device, equipment and readable storage medium storing program for executing
CN109902708A (en) A kind of recommended models training method and relevant apparatus
CN108022152A (en) The automatic commending system of user's commodity and recommendation method based on image recognition
CN108256590B (en) A kind of similar traveler recognition methods based on compound first path
CN106844407B (en) Tag network generation method and system based on data set correlation
CN110444297A (en) Medical information recommended method, device, equipment and readable storage medium storing program for executing
JP2016167149A (en) Program, equipment, and method that estimate number of persons with which contract is expected to be made at shop according to market area
Wind et al. Inferring stop-locations from wifi
Zhao et al. MDLF: A multi-view-based deep learning framework for individual trip destination prediction in public transportation systems
CN109447103A (en) A kind of big data classification method, device and equipment based on hard clustering algorithm
Alhazzani et al. Urban Attractors: Discovering patterns in regions of attraction in cities
Mao et al. Utilizing multi-source data in popularity prediction for shop-type recommendation
CN110263250A (en) A kind of generation method and device of recommended models
CN106600053B (en) User attribute prediction system based on space-time trajectory and social network
Bendimerad et al. Contextual subgraph discovery with mobility models
Liu et al. Identification of multi-attribute functional urban areas under a perspective of community detection: A case study
CN111222923A (en) Method and device for judging potential customer, electronic equipment and storage medium
CN111611469A (en) Identification information determination method and device, electronic equipment and storage medium
Al-Molegi et al. Regions-of-interest discovering and predicting in smartphone environments
CN109828995A (en) A kind of diagram data detection method, the system of view-based access control model feature
CN111523614B (en) Cell similarity judging method and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191105