CN110370272B - A Robot TCP Calibration System Based on Vertical Reflection - Google Patents
A Robot TCP Calibration System Based on Vertical Reflection Download PDFInfo
- Publication number
- CN110370272B CN110370272B CN201910539099.5A CN201910539099A CN110370272B CN 110370272 B CN110370272 B CN 110370272B CN 201910539099 A CN201910539099 A CN 201910539099A CN 110370272 B CN110370272 B CN 110370272B
- Authority
- CN
- China
- Prior art keywords
- robot
- coordinate
- binocular vision
- coordinate system
- target point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000009466 transformation Effects 0.000 claims abstract description 37
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 17
- 238000013519 translation Methods 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 238000000844 transformation Methods 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 abstract description 3
- 238000003466 welding Methods 0.000 description 5
- 238000013480 data collection Methods 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/0095—Means or methods for testing manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1692—Calibration of manipulator
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Numerical Control (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种基于垂直反射的机器人TCP标定系统,以双目视觉系统、机器人和作业工具结合作业,以平面镜作为辅助工具,利用机器人运动学和空间坐标变换的关系,对空间固定点进行多次测量,确立出手眼关系,在对作业工具的末端圆形靶点进行检测,通过坐标变换关系以及平面镜成像对称性的特点,以完成TCP的标定。本发明的TCP标定系统,本系统区别于接触式标定系统,无碰撞风险,安全系数高。
The invention discloses a robot TCP calibration system based on vertical reflection, which combines a binocular vision system, a robot and a working tool, uses a plane mirror as an auxiliary tool, and uses the relationship between robot kinematics and spatial coordinate transformation to perform a fixed point in space. After multiple measurements, the hand-eye relationship is established, and the circular target at the end of the work tool is detected. Through the coordinate transformation relationship and the characteristics of plane mirror imaging symmetry, the TCP calibration is completed. The TCP calibration system of the present invention is different from the contact calibration system, has no collision risk, and has a high safety factor.
Description
技术领域technical field
本发明涉及智能制造领域,特别是涉及一种基于垂直反射的机器人TCP标定系统。The invention relates to the field of intelligent manufacturing, in particular to a robot TCP calibration system based on vertical reflection.
背景技术Background technique
在工业4.0的背景下,双目视觉系统辅助机器人自主作业已成常态。以焊接为例,双目视觉系统可以对焊缝进行实时追踪识别,有助于提高焊接质量和焊接效率。作业工具的作业点(TCP)的标定精度直接影响实际的作业质量。而传统的示教接触式TCP标定方法存在低效、碰撞等问题,已不能满足当前作业需求,低成本、高效、安全的标定方法对工业生产具有重要意义。In the context of Industry 4.0, it has become the norm for binocular vision systems to assist robots in autonomous operation. Taking welding as an example, the binocular vision system can track and identify the welding seam in real time, which helps to improve the welding quality and welding efficiency. The calibration accuracy of the working point (TCP) of the working tool directly affects the actual working quality. However, the traditional teaching and contact TCP calibration method has problems such as inefficiency and collision, and can no longer meet the current operation needs. The low-cost, efficient and safe calibration method is of great significance to industrial production.
因此本领域技术人员致力于开发一种安全系数高的基于垂直反射的机器人 TCP标定系统。Therefore, those skilled in the art are devoted to developing a vertical reflection-based robot TCP calibration system with high safety factor.
发明内容SUMMARY OF THE INVENTION
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种安全系数高的基于垂直反射的机器人TCP系统。In view of the above-mentioned defects of the prior art, the technical problem to be solved by the present invention is to provide a vertical reflection-based robot TCP system with a high safety factor.
为实现上述目的,本发明提供了一种基于垂直反射的机器人TCP标定系统,包括机器人、平面镜和双目视觉系统,所述双目视觉系统包括两台摄像机,两台所述摄像机分别设置在所述机器人的末端两侧,所述平面镜设置在所述双目视觉系统的摄像范围内。In order to achieve the above object, the present invention provides a robot TCP calibration system based on vertical reflection, including a robot, a plane mirror and a binocular vision system, the binocular vision system includes two cameras, and the two cameras are respectively arranged in the On both sides of the end of the robot, the plane mirror is arranged within the imaging range of the binocular vision system.
较佳的,两台所述摄像机通过连接支架固定在作业工具上,两台所述摄像机分别固定设置在所述连接支架的两端。Preferably, the two cameras are fixed on the working tool through a connecting bracket, and the two cameras are respectively fixed on both ends of the connecting bracket.
较佳的,还包括逻辑运算模块和数据采集模块,所述数据采集模块设置在所述逻辑运算模块和双目视觉系统之间,所述数据采集模块用于采集双目视觉系统测量的测量值,所述数据采集模块将采集到的数据传送给所述逻辑运算模块。Preferably, it also includes a logic operation module and a data collection module, the data collection module is arranged between the logic operation module and the binocular vision system, and the data collection module is used to collect the measurement values measured by the binocular vision system. , the data collection module transmits the collected data to the logic operation module.
较佳的,所述逻辑运算模块包括人眼关系逻辑运算模块和TCP标定逻辑运算模块,所述人眼关系逻辑运算模块通过机器人运动学和空间坐标变换来确定双目视觉系统坐标系{C}相对于机器人末端坐标系{E}的变换矩阵 为机器人手眼关系;所述TCP标定逻辑运算模块通过求得的机器人手眼关系来完成作业工具末端TCP的标定。Preferably, the logic operation module includes a human-eye relationship logic operation module and a TCP calibration logic operation module, and the human-eye relationship logic operation module determines the binocular vision system coordinate system {C} through robot kinematics and spatial coordinate transformation. Transformation matrix relative to the robot end coordinate system {E} is the robot hand-eye relationship; the robot hand-eye relationship obtained by the TCP calibration logic operation module To complete the calibration of the TCP at the end of the work tool.
较佳的,确定所述机器人手眼关系流程如下:Preferably, determine the hand-eye relationship of the robot The process is as follows:
(S101)建立机器人手眼关系为其中,RC为机器人末端坐标系{E}和双目视觉系统坐标系{C}转换的旋转矩阵且为定值;TC为机器人末端坐标系{E}和双目视觉系统坐标系{C}转换的平移向量且为定值;(S101) The robot hand-eye relationship is established as Among them, RC is the rotation matrix of the transformation between the robot end coordinate system {E} and the binocular vision system coordinate system { C } and is a fixed value; T C is the robot end coordinate system {E} and the binocular vision system coordinate system {C } Converted translation vector and is a fixed value;
(S102)在工作平台上设置第一圆形靶点,第一圆形靶点为固定点,所述机器人末端姿态保持不变,所述机器人做线性运动,所述机器人末端依次运动到多个位置并对所述第一圆形靶点进行测量;(S102) A first circular target point is set on the working platform, the first circular target point is a fixed point, the posture of the end of the robot remains unchanged, the robot performs linear motion, and the end of the robot moves to multiple position and measure the first circular target;
(S103)依次控制所述机器人做变位姿运动到多个位置并在双目视觉系统坐标系{C}下对所述第一圆形靶点进行测量;(S103) Controlling the robot to move to multiple positions in sequence and to measure the first circular target point in the binocular vision system coordinate system {C};
(S104)将步骤(S102)和步骤(S103)对所述第一圆形靶点的测量值通过机器人运动学和空间坐标变换的关系计算得出RC和TC,即标定出机器人手眼关系 (S104) Calculate the measured value of the first circular target point in steps (S102) and (S103) through the relationship between robot kinematics and spatial coordinate transformation to obtain R C and T C , that is, the robot hand-eye relationship is calibrated
较佳的,所述人眼关系逻辑运算模块中的机器人运动学和空间坐标变换逻辑运算包括:Preferably, the robot kinematics and spatial coordinate transformation logic operations in the human-eye relationship logic operation module include:
(B1)建立机器人末端坐标系{E}相对于机器人基坐标{B}的变换矩阵其中,R为机器人基坐标{B}和机器人末端坐标系{E}转换的旋转矩阵,由于所述机器人做线性运动过程中,机器人末端姿态是保持不变的,即R 不变,R为定值;T为机器人基坐标{B}和机器人末端坐标系{E}转换的平移向量;(B1) Establish the transformation matrix of the robot end coordinate system {E} relative to the robot base coordinate {B} Among them, R is the rotation matrix of the transformation between the robot base coordinate {B} and the robot end coordinate system {E}. Since the robot does a linear motion, the robot end posture remains unchanged, that is, R is unchanged, and R is a fixed value; T is the translation vector transformed between the robot base coordinate {B} and the robot end coordinate system {E};
由坐标转换公式可得:It can be obtained from the coordinate conversion formula:
展开得到:Expand to get:
Pc的坐标值可由双目视觉系统测量得到;The coordinate value of P c can be measured by the binocular vision system;
其中,Pc为所述第一圆形靶点在双目视觉系统坐标系{C}下的坐标;Wherein, P c is the coordinate of the first circular target point in the binocular vision system coordinate system {C};
Pb为所述第一圆形靶点在机器人基坐标{B}下的坐标,Pb为定值;P b is the coordinate of the first circular target point under the robot base coordinate {B}, and P b is a fixed value;
和分别为Pc和Pb转换的转置矩阵; and are the transposed matrices of P c and P b transformations, respectively;
(B2)由于在步骤(S102)中,所述机器人末端姿态保持不变,所述机器人末端依次运动到多个位置,选取两个位置,在双目视觉系统坐标系{C}下得到第一圆形靶点的测量值和分别代入公式(a1),可以建立以下方程:(B2) Since in step (S102), the posture of the end of the robot remains unchanged, the end of the robot moves to multiple positions in turn, selects two positions, and obtains the first position in the binocular vision system coordinate system {C} Measured values for circular targets and Substituting into formula (a1) respectively, the following equations can be established:
两式相减可得:Subtract the two formulas to get:
因为R为正交矩阵,上式可变为:Because R is an orthogonal matrix, the above formula can be changed to:
依次进行四次测量所述第一圆形靶点在双目视觉系统坐标系{C}下不同的位置参数,得到第一圆形靶点的测量值和并代公式(a2)中,可得:Measure the different position parameters of the first circular target point in the binocular vision system coordinate system {C} four times in turn to obtain the measurement value of the first circular target point and Substituting into formula (a2), we can get:
即RcA=b;That is, R c A = b;
可得出, It can be concluded that,
b=RT[T1-T2 T2-T3 T3-T4];b=RT [ T 1 -T 2 T 2 -T 3 T 3 -T 4 ];
利用矩阵奇异值分解求解可得RC;R C can be obtained by solving the matrix singular value decomposition;
其中,和分别为第一圆形靶点在双目视觉系统坐标系{C} 下的坐标;和分别为和的转置矩阵;in, and are the coordinates of the first circular target point in the binocular vision system coordinate system {C}; and respectively and The transposed matrix of ;
T1、T2、T3和T4分别为所述机器人运动时不同位置下机器人基坐标{B}和机器人末端坐标系{E}转换的平移向量;T 1 , T 2 , T 3 and T 4 are respectively translation vectors converted from the robot base coordinate {B} and the robot end coordinate system {E} at different positions when the robot moves;
(B3)由于在步骤(S103)中,所述第一圆形靶点在双目视觉系统坐标系 {C}下的坐标值随着机器人做变位姿运动变化而变化,选取两个移动位置,得到第一圆形靶点的测量值和建立以下方程:(B3) Since in step (S103), the coordinate value of the first circular target point in the binocular vision system coordinate system {C} changes as the robot moves to change the pose, select two moving positions , get the measured value of the first circular target and Build the following equations:
两式相减,可得:Subtracting the two equations, we get:
的值可以由双目视觉系统测得,将上述已经求得的RC代入式中,求得TC,标定出手眼关系 The value of can be measured by the binocular vision system. Substitute the obtained RC into the formula to obtain TC, and calibrate the hand - eye relationship.
其中,R11和R22分别为所述机器人变位姿运动时不同位置下机器人基坐标{B}和机器人末端坐标系{E}转换的旋转矩阵;Wherein, R 11 and R 22 are respectively the rotation matrices converted from the robot base coordinate {B} and the robot end coordinate system {E} at different positions when the robot moves in a variable pose;
T11和T22分别为所述机器人变位姿运动时不同位置下机器人基坐标{B}和机器人末端坐标系{E}转换的平移向量; T11 and T22 are respectively the translation vectors converted from the robot base coordinate {B} and the robot end coordinate system {E} under different positions when the robot moves in a variable pose;
和分别为第一圆形靶点在双目视觉系统坐标系{C}下的坐标;和分别为和的转置矩阵。 and are the coordinates of the first circular target point in the binocular vision system coordinate system {C}; and respectively and The transposed matrix of .
较佳的,作业工具末端的TCP标定的流程包括:Preferably, the TCP calibration process at the end of the work tool includes:
将平面镜放置在工作平台上,将第二圆形靶点粘贴于所述机器人末端的作业工具末端处,控制所述机器人将所述第二圆形靶点设置于所述平面镜上方,保持机器人末端垂直于所述平面镜。Place the plane mirror on the working platform, paste the second circular target point on the end of the working tool at the end of the robot, control the robot to set the second circular target point above the plane mirror, and keep the end of the robot perpendicular to the plane mirror.
较佳的,所述TCP标定逻辑运算模块的逻辑运算包括:Preferably, the logic operation of the TCP calibration logic operation module includes:
所述作业工具末端上的第二圆形靶点在所述平面镜里的点为投影点,通过双目视觉系统测得投影点在双目视觉系统坐标系{C}中的值,通过可求得投影点在机器人末端坐标系{E}的值(x',y',z');假设第二圆形靶点在机器人末端坐标系{E}的值为(x,y,z);由垂直关系可得x=x',y=y';在所述工作平台上选取对称点,先求得对称点在机器人末端坐标系{E}下的Z轴坐标值zm,根据对称性可得z=z'-2×(z'-zm),最后求得第二圆形靶点在机器人末端坐标系{E}下的值,完成TCP的标定。The point of the second circular target point on the end of the working tool in the plane mirror is the projection point, and the value of the projection point in the coordinate system {C} of the binocular vision system is measured by the binocular vision system. The value (x', y', z') of the projection point in the coordinate system {E} of the robot end can be obtained; assuming that the value of the second circular target point in the coordinate system {E} of the robot end is (x, y, z ); can obtain x=x', y=y' from the vertical relationship; Select the symmetrical point on the working platform, first obtain the Z-axis coordinate value zm of the symmetrical point under the robot end coordinate system { E}, according to The symmetry can be obtained as z=z'-2×(z'-z m ), and finally the value of the second circular target point in the robot end coordinate system {E} is obtained to complete the calibration of the TCP.
较佳的,还包括控制装置,所述机器人、所述逻辑运算模块、所述数据采集模块、所述机器人和所述双目视觉系统均与所述控制装置连接。Preferably, it also includes a control device, and the robot, the logic operation module, the data acquisition module, the robot and the binocular vision system are all connected to the control device.
本发明的有益效果是:本发明的基于垂直反射的机器人TCP标定系统,无需额外的辅助标定设备,仅需要一面镜子,成本低廉,操作方便;本系统区别于接触式标定系统,无碰撞风险,安全系数高;仅需要控制机器人做四次运动即可完成TCP标定,实现了对TCP的快速精确标定,可满足实际工业生产中机器人末端工具参数的标定需求。The beneficial effects of the present invention are as follows: the robot TCP calibration system based on vertical reflection of the present invention does not require additional auxiliary calibration equipment, but only needs a mirror, with low cost and convenient operation; The safety factor is high; it only needs to control the robot to do four movements to complete the TCP calibration, which realizes the rapid and accurate calibration of the TCP, and can meet the calibration requirements of the robot end tool parameters in actual industrial production.
附图说明Description of drawings
图1是本发明一具体实施方式基于垂直反射的机器人TCP标定系统的结构示意图。FIG. 1 is a schematic structural diagram of a robot TCP calibration system based on vertical reflection according to a specific embodiment of the present invention.
图2是图1的模块图。FIG. 2 is a block diagram of FIG. 1 .
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步说明:Below in conjunction with accompanying drawing and embodiment, the present invention will be further described:
如图1所示,本发明实施例公开了一种基于垂直反射的机器人TCP标定方法,包括以下步骤:As shown in FIG. 1 , an embodiment of the present invention discloses a method for calibrating a robot TCP based on vertical reflection, which includes the following steps:
(S1)在双目视觉系统上建立双目视觉系统坐标系{C};在机器人末端6建立机器人末端坐标系{E},确定双目视觉系统坐标系{C}相对于机器人末端坐标系{E}的变换矩阵 为机器人手眼关系。(S1) Establish the binocular vision system coordinate system {C} on the binocular vision system; establish the robot end coordinate system {E} at the
在本实施例中,在步骤(S1)中,具体步骤为:In this embodiment, in step (S1), the specific steps are:
(S101)确立机器人手眼关系为其中,RC为机器人末端坐标系{E}和双目视觉系统坐标系{C}转换的旋转矩阵且为定值;TC为机器人末端坐标系{E}和双目视觉系统坐标系{C}转换的平移向量且为定值;在其他实施例中,双目视觉系统坐标系{C}是以双目视觉系统中的一个摄像机2建立的。(S101) Establish the robot hand-eye relationship as Among them, RC is the rotation matrix of the transformation between the robot end coordinate system {E} and the binocular vision system coordinate system { C } and is a fixed value; T C is the robot end coordinate system {E} and the binocular vision system coordinate system {C } The transformed translation vector is a fixed value; in other embodiments, the binocular vision system coordinate system {C} is established with a
(S102)在工作平台上设置第一圆形靶点P,第一圆形靶点P为固定点,机器人末端6姿态保持不变,机器人1做线性运动,机器人末端6依次运动到多个位置并在双目视觉系统坐标系{C}下对第一圆形靶点P进行测量;在本实施例中,第一圆形靶点P在工作平台上是固定不动的,控制机器人进行变位姿运动,双目视觉系统坐标系{C}也是变化的,不同位置上的双目视觉系统坐标系{C}是不同的,进而第一圆形靶点P的坐标值也是不同的。(S102) A first circular target point P is set on the working platform, the first circular target point P is a fixed point, the posture of the
(S103)依次控制机器人1做变位姿运动到多个位置并在双目视觉系统坐标系{C}下对第一圆形靶点P进行测量。在本实施例中,机器人1的姿态和位置都会发生变化。(S103) Controlling the
(S104)将步骤(S102)和步骤(S103)对第一圆形靶点P的测量值通过机器人运动学和空间坐标变换的关系计算得出RC和TC,标定出手眼关系 (S104) Calculate the measured value of the first circular target point P in steps (S102) and (S103) through the relationship between robot kinematics and spatial coordinate transformation to obtain RC and TC, and calibrate the hand - eye relationship
在本实施例中,在步骤(S104)中,具体包括以下步骤:In this embodiment, in step (S104), the following steps are specifically included:
(B1)由坐标转换公式可得:(B1) can be obtained from the coordinate conversion formula:
展开得到:Expand to get:
Pc的坐标值可由双目视觉系统测量得到;The coordinate value of P c can be measured by the binocular vision system;
其中,Pc为第一圆形靶点P在双目视觉系统坐标系{C}下的坐标;Wherein, P c is the coordinate of the first circular target point P in the binocular vision system coordinate system {C};
Pb为第一圆形靶点P在机器人基坐标{B}下的坐标,Pb为定值;P b is the coordinate of the first circular target point P under the robot base coordinate {B}, and P b is a fixed value;
和分别为Pc和Pb转换的转置矩阵。 and are the transposed matrices of the P c and P b transformations, respectively.
建立机器人末端坐标系{E}相对于机器人基坐标{B}的变换矩阵其中,R为机器人基坐标{B}和机器人末端坐标系{E}转换的旋转矩阵,由于机器人1做线性运动过程中,机器人末端6姿态是保持不变的,即R不变,R为定值; T为机器人基坐标{B}和机器人末端坐标系{E}转换的平移向量。Establish the transformation matrix of the robot end coordinate system {E} relative to the robot base coordinate {B} Among them, R is the rotation matrix of the transformation between the robot base coordinate {B} and the robot end coordinate system {E}. Since the
(B2)由于在步骤(S102)中,所述机器人末端6姿态保持不变,所述机器人末端6依次运动到多个位置,选取两个位置,在双目视觉系统坐标系{C}下得到第一圆形靶点(P)的测量值和分别代入公式(a1),可以建立以下方程:(B2) Since in step (S102), the posture of the
两式相减可得:Subtract the two formulas to get:
因为R为正交矩阵,上式可变为:Because R is an orthogonal matrix, the above formula can be changed to:
依次进行四次测量所述第一圆形靶点P在双目视觉系统坐标系{C}下不同的位置参数,得到第一圆形靶点P的测量值和并代公式(a2) 中,可得:Measure the different position parameters of the first circular target point P in the binocular vision system coordinate system {C} four times in turn to obtain the measured value of the first circular target point P and Substituting into formula (a2), we can get:
即RcA=b;That is, R c A = b;
可得出, It can be concluded that,
b=RT[T1-T2 T2-T3 T3-T4];b=RT [ T 1 -T 2 T 2 -T 3 T 3 -T 4 ];
利用矩阵奇异值分解求解可得RC;R C can be obtained by solving the matrix singular value decomposition;
其中,和分别为第一圆形靶点P在双目视觉系统坐标系 {C}下的坐标;和分别为和的转置矩阵;in, and are the coordinates of the first circular target point P in the binocular vision system coordinate system {C}; and respectively and The transposed matrix of ;
T1、T2、T3和T4分别为所述机器人1运动时不同位置下机器人基坐标{B} 和机器人末端坐标系{E}转换的平移向量。T1、T2、T3和T4分别为在测量 和坐标值时机器人所处运动状态下机器人基坐标{B}和机器人末端坐标系{E}转换的平移向量。T 1 , T 2 , T 3 and T 4 are respectively translation vectors converted from the robot base coordinate {B} and the robot end coordinate system {E} at different positions when the
(B3)由于在步骤(S103)中,第一圆形靶点P在双目视觉系统坐标系{C} 下的坐标值随着机器人做变位姿运动变化而变化,选取两个移动位置,得到第一圆形靶点(P)的测量值和建立以下方程:(B3) Since in step (S103), the coordinate value of the first circular target point P in the binocular vision system coordinate system {C} changes with the change of the robot's pose-changing motion, select two moving positions, Obtain the measurement of the first circular target point (P) and Build the following equations:
两式相减,可得:Subtracting the two equations, we get:
的值可以由双目视觉系统测得,将上述已经求得的RC代入式中,求得TC,标定出手眼关系: The value of can be measured by the binocular vision system. Substitute the obtained RC into the formula to obtain TC, and calibrate the hand - eye relationship:
其中,R11和R22分别为所述机器人变位姿运动时不同位置下机器人基坐标 {B}和机器人末端坐标系{E}转换的旋转矩阵;R11和R22分别为在测量和坐标值时机器人所处运动状态下机器人基坐标{B}和机器人末端坐标系{E} 转换的旋转矩阵;Wherein, R 11 and R 22 are the rotation matrices converted from the robot base coordinate {B} and the robot end coordinate system {E} at different positions when the robot moves with changing poses; R 11 and R 22 are the rotation matrices during the measurement and The coordinate value is the rotation matrix of the transformation between the robot base coordinate {B} and the robot end coordinate system {E} in the motion state of the robot;
T11和T22分别为所述机器人变位姿运动时不同位置下机器人基坐标{B}和机器人末端坐标系{E}转换的平移向量;T11和T22分别为在测量和坐标值时机器人所处运动状态下机器人基坐标{B}和机器人末端坐标系{E}转换的平移向量; T11 and T22 are respectively the translation vectors converted from the robot base coordinate {B} and the robot end coordinate system {E} at different positions when the robot moves with variable poses; T11 and T22 are respectively in the measurement and The coordinate value is the translation vector of the transformation between the robot base coordinate {B} and the robot end coordinate system {E} in the motion state of the robot;
和分别为第一圆形靶点P在双目视觉系统坐标系{C}下的坐标;和分别为和的转置矩阵。 and are the coordinates of the first circular target point P in the binocular vision system coordinate system {C}; and respectively and The transposed matrix of .
在本实施例中,由于双目视觉系统坐标系{C}随着机器人做变位姿运动变化而变化,因此两次选取并测量第一圆形靶点P的双目视觉系统坐标系{C}不同,由于第一圆形靶点P是固定不动的,因此第一圆形靶点P在不同的双目视觉系统坐标系{C}下坐标值也不同。In this embodiment, since the coordinate system {C} of the binocular vision system changes as the robot performs the pose-changing motion, the coordinate system {C of the binocular vision system of the first circular target point P is selected and measured twice. } Different, since the first circular target point P is fixed, the coordinate values of the first circular target point P under different binocular vision system coordinate systems {C} are also different.
(S2)将平面镜3放置在工作平台上,将第二圆形靶点Pa粘贴于机器人末端6的作业工具5末端处,控制机器人1将第二圆形靶点Pa设置于平面镜3上方,保持机器人末端6垂直于平面镜3,作业工具5末端上的第二圆形靶点Pa在平面镜3里的点为投影点P'a,通过双目视觉系统测得投影点P'a在双目视觉系统坐标系{C}中的值,通过可求得投影点P'a在机器人末端坐标系{E}的值 (x',y',z');然后根据平面镜3的镜面对称计算出第二圆形靶点Pa在机器人末端坐标系{E}下的值,完成TCP的标定。(S2) Place the
在本实施例中,在步骤(S2)中,然后根据所述平面镜3的镜面对称计算出第二圆形靶点Pa在机器人末端坐标系{E}下的值,具体步骤包括:In this embodiment, in step (S2), the value of the second circular target point Pa in the robot end coordinate system {E} is then calculated according to the mirror symmetry of the
假设第二圆形靶点Pa在机器人末端坐标系{E}的值为(x,y,z);由垂直关系可得x=x',y=y';在所述工作平台上选取对称点Pm,先求得对称点Pm在机器人末端坐标系{E}下的Z轴坐标值zm,根据对称性可得z=z'-2×(z'-zm),最后求得点Pa在机器人末端坐标系{E}下的值。在某些实施例中,对称点Pm设置在第一圆形靶点P处,对称点Pm即为第一圆形靶点P,在其他实施例中,对称点 Pm也可以是在工作平台上第一圆形靶点P之外的点。Assume that the value of the second circular target point P a in the robot end coordinate system {E} is (x, y, z); from the vertical relationship, x=x', y=y'; Symmetric point P m , first obtain the Z-axis coordinate value z m of the symmetrical point P m in the robot end coordinate system {E}, according to the symmetry, z=z'-2×(z'-z m ) can be obtained, and finally Find the value of point P a in the robot end coordinate system {E}. In some embodiments, the symmetric point P m is set at the first circular target point P, and the symmetric point P m is the first circular target point P. In other embodiments, the symmetric point P m can also be at Points other than the first circular target point P on the working platform.
在某些实施例中,作业工具5例如为焊枪或其他工具,在此不作限定。In some embodiments, the working tool 5 is, for example, a welding gun or other tools, which is not limited herein.
如图1和图2所示,本发明实施例还公开了本发明实施例公开了一种基于垂直反射的机器人TCP标定系统,包括机器人1、平面镜3和双目视觉系统,双目视觉系统包括两台摄像机2,两台摄像机2分别设置在机器人1的末端两侧,平面镜3设置在双目视觉系统的摄像范围内。As shown in FIG. 1 and FIG. 2 , an embodiment of the present invention also discloses a robot TCP calibration system based on vertical reflection, including a
在本实施例中,两台摄像机2通过连接支架4固定在作业工具5上,两台摄像机2分别固定设置在连接支架4的两端。在本实施例中,作业工具5安装在机器人末端6上。在本实施例中,连接支架4为圆盘状,摄像机2嵌入连接支架4上的安装槽中,以使得摄像机2能被固定在连接支架4上。在某些实施例中,连接支架4与作业工具5一体制成。在其他实施例中,两台摄像机2通过连接支架4固定在机器人1上,两台摄像机2分别固定设置在连接支架4的两端。In this embodiment, the two
在本实施例中,还包括逻辑运算模块和数据采集模块,数据采集模块设置在逻辑运算模块和双目视觉系统之间,数据采集模块用于采集双目视觉系统测量的测量值,数据采集模块将采集到的数据传送给逻辑运算模块。数据采集模块用于采集双目视觉系统的测量值信号,并将测量值信号传送到逻辑运算模块进行计算。In this embodiment, it also includes a logic operation module and a data acquisition module. The data acquisition module is arranged between the logic operation module and the binocular vision system. The data acquisition module is used to collect the measured values measured by the binocular vision system. The data acquisition module Send the collected data to the logic operation module. The data acquisition module is used to collect the measured value signal of the binocular vision system, and transmit the measured value signal to the logic operation module for calculation.
在本实施例中,逻辑运算模块包括人眼关系逻辑运算模块和TCP标定逻辑运算模块,人眼关系逻辑运算模块通过机器人运动学和空间坐标变换来确定双目视觉系统坐标系{C}相对于机器人末端坐标系{E}的变换矩阵 为机器人手眼关系;TCP标定逻辑运算模块通过求得的机器人手眼关系来完成作业工具5末端TCP的标定。In this embodiment, the logic operation module includes a human-eye relationship logic operation module and a TCP calibration logic operation module, and the human-eye relationship logic operation module determines, through robot kinematics and spatial coordinate transformation, relative to the binocular vision system coordinate system {C} relative to Transformation matrix of robot end coordinate system {E} is the robot hand-eye relationship; the robot hand-eye relationship obtained by the TCP calibration logic operation module To complete the calibration of the TCP at the end of the work tool 5.
在本实施例中,还包括控制装置,机器人1、逻辑运算模块、数据采集模块、机器人1和双目视觉系统均与控制装置连接。控制模块用于驱动各个操作步骤中机器人的运动、数据采集模块的启动,双目视觉系统测量以及逻辑运算模块的运算等装置的操作。In this embodiment, a control device is also included, and the
在本实施例中,确定机器人手眼关系流程如下:In this embodiment, the robot hand-eye relationship is determined The process is as follows:
(S1)在双目视觉系统上建立双目视觉系统坐标系{C};在机器人末端6建立机器人末端坐标系{E},确定双目视觉系统坐标系{C}相对于机器人末端坐标系{E}的变换矩阵 为机器人手眼关系。(S1) Establish the binocular vision system coordinate system {C} on the binocular vision system; establish the robot end coordinate system {E} at the
在步骤(S1)中,具体包括如下步骤:In step (S1), it specifically includes the following steps:
(S101)建立机器人手眼关系为其中,RC为机器人末端坐标系{E}和双目视觉系统坐标系{C}转换的旋转矩阵且为定值;TC为机器人末端坐标系{E}和双目视觉系统坐标系{C}转换的平移向量且为定值;在其他实施例中,双目视觉系统坐标系{C}是以双目视觉系统中的一个摄像机2建立的。(S101) The robot hand-eye relationship is established as Among them, RC is the rotation matrix of the transformation between the robot end coordinate system {E} and the binocular vision system coordinate system { C } and is a fixed value; T C is the robot end coordinate system {E} and the binocular vision system coordinate system {C } The transformed translation vector is a fixed value; in other embodiments, the binocular vision system coordinate system {C} is established with a
(S102)在工作平台上设置第一圆形靶点P,第一圆形靶点为固定点,机器人末端6姿态保持不变,机器人1做线性运动,机器人末端6依次运动到多个位置并对第一圆形靶点P进行测量;在本实施例中,第一圆形靶点P在工作平台上是固定不动的,控制机器人进行变位姿运动,双目视觉系统坐标系{C}也是变化的,不同位置上的双目视觉系统坐标系{C}是不同的,进而第一圆形靶点P 的坐标值也是不同的。(S102) A first circular target point P is set on the working platform, the first circular target point is a fixed point, the posture of the
(S103)依次控制机器人1做变位姿运动到多个位置并在双目视觉系统坐标系{C}下对第一圆形靶点P进行测量;在本实施例中,机器人1的姿态和位置都会发生变化。(S103) Controlling the
(S104)将步骤(S102)和步骤(S103)对第一圆形靶点P的测量值通过机器人运动学和空间坐标变换的关系计算得出RC和TC,即标定出机器人手眼关系 (S104) Calculate the measured value of the first circular target point P in steps (S102) and (S103) through the relationship between robot kinematics and spatial coordinate transformation to obtain R C and T C , that is, the robot hand-eye relationship is calibrated
在本实施例中,人眼关系逻辑运算模块中的机器人运动学和空间坐标变换逻辑运算包括:In this embodiment, the robot kinematics and spatial coordinate transformation logic operations in the human-eye relationship logic operation module include:
(B1)建立机器人末端坐标系{E}相对于机器人基坐标{B}的变换矩阵其中,R为机器人基坐标{B}和机器人末端坐标系{E}转换的旋转矩阵,由于机器人1做线性运动过程中,机器人末端6姿态是保持不变的,即R 不变,R为定值;T为机器人基坐标{B}和机器人末端坐标系{E}转换的平移向量;(B1) Establish the transformation matrix of the robot end coordinate system {E} relative to the robot base coordinate {B} Among them, R is the rotation matrix of the transformation between the robot base coordinate {B} and the robot end coordinate system {E}. Since the
由坐标转换公式可得:It can be obtained from the coordinate conversion formula:
展开得到:Expand to get:
Pc的坐标值可由双目视觉系统测量得到;The coordinate value of P c can be measured by the binocular vision system;
其中,Pc为第一圆形靶点P在双目视觉系统坐标系{C}下的坐标;Wherein, P c is the coordinate of the first circular target point P in the binocular vision system coordinate system {C};
Pb为第一圆形靶点P在机器人基坐标{B}下的坐标,Pb为定值;P b is the coordinate of the first circular target point P under the robot base coordinate {B}, and P b is a fixed value;
和分别为Pc和Pb转换的转置矩阵; and are the transposed matrices of P c and P b transformations, respectively;
(B2)由于在步骤(S102)中,机器人末端6姿态保持不变,机器人末端6 依次运动到多个位置,选取两个位置,在双目视觉系统坐标系{C}下得到第一圆形靶点P的测量值和分别代入公式(a1),可以建立以下方程:(B2) Since the posture of the
两式相减可得:Subtract the two formulas to get:
因为R为正交矩阵,上式可变为:Because R is an orthogonal matrix, the above formula can be changed to:
依次进行四次测量第一圆形靶点P在双目视觉系统坐标系{C}下不同的位置参数,得到第一圆形靶点P的测量值和并代公式(a2)中,可得:Measure the different position parameters of the first circular target point P in the binocular vision system coordinate system {C} four times in turn, and obtain the measured value of the first circular target point P and Substituting into formula (a2), we can get:
即RcA=b;That is, R c A = b;
可得出, It can be concluded that,
b=RT[T1-T2 T2-T3 T3-T4];b=RT [ T 1 -T 2 T 2 -T 3 T 3 -T 4 ];
利用矩阵奇异值分解求解可得RC。R C can be obtained by solving the matrix singular value decomposition.
(B3)由于在步骤(S103)中,第一圆形靶点(P)在双目视觉系统坐标系 {C}下的坐标值随着机器人做变位姿运动变化而变化,选取两个移动位置,得到第一圆形靶点P的测量值和建立以下方程:(B3) Since in step (S103), the coordinate value of the first circular target point (P) in the binocular vision system coordinate system {C} changes with the change of the robot's pose-changing motion, select two moving position to obtain the measured value of the first circular target point P and Build the following equations:
两式相减,可得:Subtracting the two equations, we get:
的值可以由双目视觉系统测得,将上述已经求得的RC代入式中,求得TC,标定出手眼关系 The value of can be measured by the binocular vision system. Substitute the obtained RC into the formula to obtain TC, and calibrate the hand - eye relationship.
在本实施例中,作业工具5末端的TCP标定的流程包括:In this embodiment, the TCP calibration process at the end of the working tool 5 includes:
将平面镜3放置在工作平台上,将第二圆形靶点Pa粘贴于机器人末端6的作业工具5末端处,控制机器人1将第二圆形靶点Pa设置于平面镜3上方,保持机器人末端6垂直于平面镜3。Place the
在本实施例中,TCP标定逻辑运算模块的逻辑运算包括:In this embodiment, the logic operation of the TCP calibration logic operation module includes:
作业工具5末端上的第二圆形靶点Pa在平面镜3里的点为投影点P'a,通过双目视觉系统测得投影点P'a在双目视觉系统坐标系{C}中的值,通过可求得投影点P'a在机器人末端坐标系{E}的值(x',y',z');然后根据平面镜3的镜面对称计算出第二圆形靶点Pa在机器人末端坐标系{E}下的值,完成TCP的标定。The point of the second circular target point P a on the end of the working tool 5 in the
在本实施例中,在TCP标定逻辑运算模块的逻辑运算的过程中,然后根据所述平面镜3的镜面对称计算出第二圆形靶点Pa在机器人末端坐标系{E}下的值,具体步骤包括:In this embodiment, in the process of the logical operation of the TCP calibration logic operation module, the value of the second circular target point Pa in the robot end coordinate system {E} is then calculated according to the mirror plane symmetry of the
假设第二圆形靶点Pa在机器人末端坐标系{E}的值为(x,y,z);由垂直关系可得x=x',y=y';在工作平台上选取对称点Pm,先求得对称点Pm在机器人末端坐标系{E}下的Z轴坐标值zm,根据对称性可得z=z'-2×(z'-zm),最后求得第二圆形靶点Pa在机器人末端坐标系{E}下的值,完成TCP的标定。在某些实施例中,对称点Pm设置在第一圆形靶点P处,对称点Pm即为第一圆形靶点P,在其他实施例中,对称点Pm也可以是在工作平台上第一圆形靶点P之外的点。Assume that the value of the second circular target point P a in the coordinate system {E} of the robot end is (x, y, z); from the vertical relationship, x=x', y=y'; select a symmetrical point on the working platform P m , first obtain the Z-axis coordinate value z m of the symmetrical point P m in the robot end coordinate system {E}, according to the symmetry, z=z'-2×(z'-z m ) can be obtained, and finally obtain The value of the second circular target point Pa in the robot end coordinate system {E} completes the calibration of the TCP. In some embodiments, the symmetric point P m is set at the first circular target point P, and the symmetric point P m is the first circular target point P. In other embodiments, the symmetric point P m can also be at Points other than the first circular target point P on the working platform.
本发明的基于垂直反射的机器人TCP标定方法及系统,是一种以手眼关系为基础,基于垂直反射的TCP标定方法及系统。通过求得机器人末端坐标系{E} 和摄像机坐标系{C}之间的坐标转换关系实现TCP的快速准确标定。如图1 所示,设机器人基坐标系为{B},机器人末端坐标系为{E},双目视觉系统坐标系为{C},摄像机视觉范围内水平平台上固定第一圆形靶点P,其在坐标系{C} 下的坐标为Pc,在基坐标系{B}下的坐标为Pb,且Pb为定值。为机器人末端坐标系{E}和基坐标系{B}之间的转换关系;为双目视觉系统坐标系{C}和机器人末端坐标系{E}之间的转换关系,即手眼关系。控制机器人携带摄像机对点P进行多次变化测量,利用固定点约束,即可确定出将平面镜放置于平台之上,并将圆形靶点粘贴于作业工具5末端,然后控制机器人作线性运动至镜面上方 (保持机器人末端6垂直于镜面),由双目视觉系统可测得投影点Pa'在双目视觉系统坐标系{C}的值,由可求得点Pa'在机器人末端坐标系{E}的值(x',y',z')。根据对称性关系可计算出Pa在机器人末端坐标系{E}下的值,完成TCP标定。The vertical reflection-based robot TCP calibration method and system of the present invention is a vertical reflection-based TCP calibration method and system based on the hand-eye relationship. By obtaining the coordinate transformation relationship between the robot end coordinate system {E} and the camera coordinate system {C} Realize fast and accurate calibration of TCP. As shown in Figure 1, the robot base coordinate system is {B}, the robot end coordinate system is {E}, the binocular vision system coordinate system is {C}, and the first circular target is fixed on the horizontal platform within the visual range of the camera. P, its coordinate under the coordinate system {C} is P c , the coordinate under the base coordinate system {B} is P b , and P b is a fixed value. is the transformation relationship between the robot end coordinate system {E} and the base coordinate system {B}; is the conversion relationship between the binocular vision system coordinate system {C} and the robot end coordinate system {E}, that is, the hand-eye relationship. Control the robot to carry the camera to measure the point P multiple times, and use the fixed point constraint to determine the Place the plane mirror on the platform, paste the circular target on the end of the working tool 5, and then control the robot to move linearly above the mirror surface (keep the
本发明的基于垂直反射的机器人TCP标定方法及系统,无需额外的辅助标定设备,仅需要一面镜子,成本低廉,操作方便;仅需要控制机器人做四次运动即可完成TCP标定,实现了快速精确标定,可满足实际工业生产中机器人末端工具参数的标定需求;本方法区别于接触式标定方法,无碰撞风险,安全系数高。The robot TCP calibration method and system based on vertical reflection of the present invention does not require additional auxiliary calibration equipment, only needs a mirror, has low cost, and is convenient to operate; it only needs to control the robot to perform four movements to complete the TCP calibration, and realizes fast and accurate. Calibration can meet the calibration requirements of robot end tool parameters in actual industrial production; this method is different from the contact calibration method, has no collision risk, and has a high safety factor.
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred embodiments of the present invention have been described above in detail. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative efforts. Therefore, all technical solutions that can be obtained by those skilled in the art through logical analysis, reasoning or limited experiments on the basis of the prior art according to the concept of the present invention shall fall within the protection scope determined by the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910539099.5A CN110370272B (en) | 2019-06-20 | 2019-06-20 | A Robot TCP Calibration System Based on Vertical Reflection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910539099.5A CN110370272B (en) | 2019-06-20 | 2019-06-20 | A Robot TCP Calibration System Based on Vertical Reflection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110370272A CN110370272A (en) | 2019-10-25 |
CN110370272B true CN110370272B (en) | 2021-08-31 |
Family
ID=68249059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910539099.5A Active CN110370272B (en) | 2019-06-20 | 2019-06-20 | A Robot TCP Calibration System Based on Vertical Reflection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110370272B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111890354B (en) * | 2020-06-29 | 2022-01-11 | 北京大学 | Robot hand-eye calibration method, device and system |
DK181486B1 (en) * | 2022-07-28 | 2024-03-01 | 4Tech Ip Aps | Robot calibration system and method for calibrating the position of a robot relative to a workplace |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1512135A (en) * | 2002-12-30 | 2004-07-14 | 中国科学院沈阳自动化研究所 | Method for Measuring Linear Trajectory Characteristics of Robot and Measuring Device Used |
CN101096101A (en) * | 2006-06-26 | 2008-01-02 | 北京航空航天大学 | Robot Foot Targeting Method and Calibration Device |
CN204725502U (en) * | 2015-07-01 | 2015-10-28 | 江南大学 | Door of elevator feeding device under a kind of vision guide |
CN108122257A (en) * | 2016-11-28 | 2018-06-05 | 沈阳新松机器人自动化股份有限公司 | A kind of Robotic Hand-Eye Calibration method and device |
CN108817613A (en) * | 2018-06-11 | 2018-11-16 | 华南理工大学 | A kind of arc welding robot weld seam deviation-rectifying system and method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100468857B1 (en) * | 2002-11-21 | 2005-01-29 | 삼성전자주식회사 | Method for calibrating hand/eye using projective invariant shape descriptor for 2-dimensional shape |
-
2019
- 2019-06-20 CN CN201910539099.5A patent/CN110370272B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1512135A (en) * | 2002-12-30 | 2004-07-14 | 中国科学院沈阳自动化研究所 | Method for Measuring Linear Trajectory Characteristics of Robot and Measuring Device Used |
CN101096101A (en) * | 2006-06-26 | 2008-01-02 | 北京航空航天大学 | Robot Foot Targeting Method and Calibration Device |
CN204725502U (en) * | 2015-07-01 | 2015-10-28 | 江南大学 | Door of elevator feeding device under a kind of vision guide |
CN108122257A (en) * | 2016-11-28 | 2018-06-05 | 沈阳新松机器人自动化股份有限公司 | A kind of Robotic Hand-Eye Calibration method and device |
CN108817613A (en) * | 2018-06-11 | 2018-11-16 | 华南理工大学 | A kind of arc welding robot weld seam deviation-rectifying system and method |
Non-Patent Citations (1)
Title |
---|
The Narcissistic Robot: Robot Calibration Using a Mirror;Matthias Rüther等;《11th International Conference on Control, Automation, Robotics and Vision》;20101231;169-174 * |
Also Published As
Publication number | Publication date |
---|---|
CN110370272A (en) | 2019-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110370316B (en) | Robot TCP calibration method based on vertical reflection | |
KR102280663B1 (en) | Calibration method for robot using vision technology | |
CN111331367B (en) | Intelligent Assembly Control System | |
JP4021413B2 (en) | Measuring device | |
CN109859275B (en) | Monocular vision hand-eye calibration method of rehabilitation mechanical arm based on S-R-S structure | |
CN109153125B (en) | Method for orienting an industrial robot and the industrial robot | |
CN103895023B (en) | A kind of tracking measurement method of the mechanical arm tail end tracing measurement system based on coding azimuth device | |
CN113146620B (en) | Dual-arm collaborative robot system and control method based on binocular vision | |
JP4191080B2 (en) | Measuring device | |
CN110253574B (en) | Multi-task mechanical arm pose detection and error compensation method | |
CN107738254A (en) | The conversion scaling method and system of a kind of mechanical arm coordinate system | |
CN114474056B (en) | A monocular vision high-precision target positioning method for grasping operation | |
CN104786226A (en) | Posture and moving track positioning system and method of robot grabbing online workpiece | |
CN108789404A (en) | A kind of serial manipulator kinematic calibration method of view-based access control model | |
CN111452048B (en) | Calibration method and device for relative spatial position relation of multiple robots | |
CN107639635A (en) | A kind of mechanical arm position and attitude error scaling method and system | |
WO2018043524A1 (en) | Robot system, robot system control device, and robot system control method | |
CN102654387A (en) | Online industrial robot calibration device based on spatial curved surface restraint | |
CN110962127B (en) | Auxiliary calibration device for tail end pose of mechanical arm and calibration method thereof | |
CN110370272B (en) | A Robot TCP Calibration System Based on Vertical Reflection | |
CN112958960A (en) | Robot hand-eye calibration device based on optical target | |
JPH0445841B2 (en) | ||
Li et al. | Research on hand-eye calibration technology of visual service robot grasping based on ROS | |
CN115682934A (en) | Microscopic vision detection device and calibration method for assembling cross-scale micro-nano device | |
CN115446836A (en) | Visual servo method based on mixing of multiple image characteristic information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |