CN110306052B - 一种金属锂单质及其制备方法与应用 - Google Patents
一种金属锂单质及其制备方法与应用 Download PDFInfo
- Publication number
- CN110306052B CN110306052B CN201910552630.2A CN201910552630A CN110306052B CN 110306052 B CN110306052 B CN 110306052B CN 201910552630 A CN201910552630 A CN 201910552630A CN 110306052 B CN110306052 B CN 110306052B
- Authority
- CN
- China
- Prior art keywords
- lithium
- metal
- chloride
- electrolysis
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/10—Obtaining alkali metals
- C22B26/12—Obtaining lithium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/40—Mixtures
- C22B3/409—Mixtures at least one compound being an organo-metallic compound
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/02—Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Electrolytic Production Of Metals (AREA)
- Secondary Cells (AREA)
Abstract
本发明提供了一种金属锂单质及其制备方法与应用,制备方法包括:1)从锂矿石浸出液或净化后的盐湖卤水中提取锂盐固体;锂盐固体包括双三氟甲烷磺酰亚胺锂和/或高氯酸锂和/或氯化锂和/或碳酸锂和/或硫酸锂;2)将步骤1)所得的碳酸锂和/或硫酸锂经氯化转型、浓缩和干燥后得到氯化锂;3)将步骤1)所得双三氟甲烷磺酰亚胺锂、高氯酸锂或氯化锂或步骤2)所得氯化锂进行熔融电解,得到金属锂单质。本发明提供的金属锂负极可抑制电解液分解和锂枝晶生长,提高了电池的循环稳定性和安全性。金属锂电池在电流密度为1mA/cm2下进行充放电,可稳定循环300次以上,比容量稳定在110mAh/g以上,平均库伦效率达99%以上。
Description
技术领域
本发明涉及冶金物理化学领域,特别涉及一种金属锂单质及其制备方法与应用。
背景技术
随着传统电器小型化、超薄化的发展趋势,社会对高能量密度电池的需求日益加剧。目前使用最普遍的石墨负极的理论比容量仅为372mAh/g,很大程度上限制了电池能量密度的提升。金属锂作密度和电化学电势(-3.04V vs.标准氢电极)最低的金属元素,其理论容量高达3860mAh/g。因此用金属锂作为负极的锂二次电池能极大提高电池的能量密度,被视为是未来新一代电池最理想的负极材料。
然而,金属锂负极目前无法满足电池安全性和使用寿命的要求,主要原因在于:金属锂电池运行过程中不均匀的沉积/脱离,容易产生锂枝晶,进而刺穿隔膜,造成安全隐患。另外,单质锂活性较高,易与电解液发生副反应,金属锂表面的SEI膜(固体电解质界面膜)周而复始的破裂与再生,损耗电解液和造成“死锂”,降低电池的能量和使用寿命。为了克服上述金属的的问题,研究者提出了多种解决方案,最常用的就是实现金属锂的均匀沉积和稳定的SEI膜结构。Liu Shan等(Joule,2018,2(1),184-193)等将一种褶皱纸团状的石墨烯集流体作为金属锂的沉积载体,其较大的比表面积降低了负极的电流密度,抑制锂枝晶的生长。同时,石墨烯的缓冲效应和内部空间能缓解金属锂的体积膨胀,实现高负载锂的均匀沉积。Lu Yingying等(Angew Chem Int Ed Engl2014,53(2),488-492)将功能化纳米二氧化硅作为电解液添加剂,固定TFSI阴离子,稳定空间电荷分布,防止电荷集中,实现金属锂均匀沉积,避免枝晶生长。
上述思路提供了多种基于外部手段抑制锂枝晶方案,但同时也引发了其他问题,三维集流体在沉积锂后需要拆卸-重新组装电池,流程复杂,极高的比表面积会增大锂的活性,实施条件很苛刻,并且多余的3D骨架降低了电池的能量密度;而电解质添加剂会增加电解质的粘度,降低锂离子的传输能力,不利于电池的大电流工作。
另外,传统的金属锂制备工艺从含锂水相中提取金属锂的流程复杂,必须经过萃取、反萃、结晶转型、电解等多个复杂步骤,且电解制备的金属锂虽纯度较高,但直接作为金属锂存在上述金属锂负极所存在的问题。
发明内容
本发明提供了一种金属锂单质及其制备方法与应用,其目的是为了抑制锂离子电池中电解液的分解与锂枝晶生长,提高循环稳定性和安全性。
为了达到上述目的,本发明提供如下技术方案:
一种金属锂单质的制备方法,其特征在于,包括如下步骤:
1)从锂矿石浸出液或净化后的盐湖卤水中提取锂盐固体;
其中,所述锂盐固体包括双三氟甲烷磺酰亚胺锂和/或高氯酸锂和/或氯化锂和/或碳酸锂和/或硫酸锂;
2)将步骤1)所得的碳酸锂和/或硫酸锂经氯化转型、浓缩和干燥后得到氯化锂;
3)将步骤1)所得双三氟甲烷磺酰亚胺锂、高氯酸锂或氯化锂或步骤2)所得氯化锂进行熔融电解,得到金属锂单质。
优选地,步骤1)所述锂矿石浸出液或净化后的盐湖卤水中锂与镁的浓度比,以及锂与硼的浓度比均大于1。
优选地,步骤1)所述锂盐固体纯度大于99.5%。
优选地,步骤1)所述锂盐固体由以下方法制备得到:
用萃取剂对净化后锂矿石浸出液或净化后的盐湖卤水进行逆流萃取,再进行分液,得到含锂溶液;
将含锂溶液加热至溶剂全部蒸发,干燥后得到锂盐固体。
优选地,步骤1)所述锂盐固体还可由以下方法制备得到:
向锂矿石浸出液或净化后的盐湖卤水中加入碳酸钠,搅拌后得到含锂溶液;
上述含锂溶液经静置、过滤、洗涤和干燥,得到锂盐固体。
优选地,步骤3)所述熔融电解具体为:将双三氟甲烷磺酰亚胺锂、高氯酸锂或氯化锂熔融并作为电解质进行电解。
更优选地,所述电解温度为200-500℃,电解时间为0.5-10h,电解电流密度为5-100mA/cm2,电解槽阴极电位在-3.04V以下。
本发明还提供一种金属锂单质,所述金属锂单质由上述方法制备而成。
本发明还提供一种金属锂负极,所述金属锂负极直接由上述方法制得的金属锂单质或上述金属锂单质制备而成。
本发明还提供一种锂电池,包含上述金属锂负极。
传统方法都是提锂后转化为LiCl,然后电解LiCl,电解过程中阳极产生的氯气需要处理排除,本发明则可控的利用阳极的氯气与金属锂反应生成氯化锂保护层。另一方面LiCl熔点较高,需要加入其他物质(如氯化钾)来降低熔点才能用于熔盐电解。而本发明中得到的部分锂盐一般熔点很低,这类锂盐可以直接电解。所以本发明提取的锂盐只需部分转型成LiCl。
本发明的上述方案有如下的有益效果:
(1)本发明从锂资源中提取锂直接作为锂负极,实现了资源的综合利用和材料短流程制备,缩短了制备流程,该金属锂负极无需经过二次改性处理可直接用于锂二次电池中,技术优势明显;
(2)本发明综合利用电解氯化锂时阳极产生的氯气,通过氯气与金属锂的可控接触,在金属锂表面包覆氯化锂保护膜,所制的金属锂稳定性优异。
(3)锂盐中含N、S、F、Cl等元素的阴离子在电解过程中部分分解,分解产物在金属锂表面自发形成稳定的保护膜,
(4)拥有上述保护膜的金属锂负极可降低其与电解液的副反应,抑制电解液分解和锂枝晶生长,改善金属锂负极的结构稳定性;同时该类型的保护膜锂离子扩散能高,可降低锂离子的浓度梯度,避免了电荷集中效应,有利于锂离子的均匀沉积,提高电池的循环稳定性和安全性。
(5)实施例中金属锂电池在电流密度为1mA/cm2下进行充放电,可稳定循环300次以上,比容量稳定在110mAh/g以上,平均库伦效率达99%以上。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例进行详细描述。
本发明提供的金属锂单质的制备方法包括如下步骤:
1)从锂矿石浸出液或净化后的盐湖卤水中提取锂盐固体;
其中,所述锂盐固体包括双三氟甲烷磺酰亚胺锂和/或高氯酸锂和/或氯化锂和/或碳酸锂和/或硫酸锂;锂矿石浸出液或净化后的盐湖卤水中锂与镁的浓度比,以及锂与硼的浓度比均大于1,锂盐固体纯度大于99.5%。
2)将步骤1)所得的碳酸锂和/或硫酸锂溶解在盐酸中经浓缩和干燥后转型为氯化锂;
3)将步骤1)所得双三氟甲烷磺酰亚胺锂、高氯酸锂或氯化锂或步骤2)所得氯化锂熔融投入电解槽并作为电解质进行熔融电解,得到金属锂单质。
实施例1
配置500mL浓度为3mol/L的双三氟甲烷磺酰亚胺(HTFSI)溶液作为萃取剂,溶剂为碳酸乙烯酯(EC),并对500ml海西盐湖老卤进行7级逆流萃取,分液得到含锂的有机溶液,然后蒸发溶剂,干燥后得到有机锂盐(LiTFSI)固体。将有机锂盐固体投入电解槽,温度恒定为300℃,恒定直流电流100mA/cm2下进行电解0.5h,收集阴极锂,冷却得到锂单质,将得到的锂单质铸锭,裁剪成直径为14mm的锂片。将得到的单质锂组装成2032型对称电池,固定每次循环充放电时间为1h,电流密度为1mA/cm2进行充放电测试,极化电位低,可以稳定循环320小时。
实施例2
(配置500mL浓度为6mol/L的高氯酸(HClO4)溶液作为萃取剂,溶剂为乙二醇二甲醚(DME),并对500ml净化后海西盐湖老卤进行5级逆流萃取,分液后蒸发溶剂得到高氯酸锂固体。将高氯酸锂固体加入电解槽中,加热到300℃直至固体全部融化。在恒定直流电流50mA/cm2下进行电解1h。收集阴极锂,冷却得到锂单质,将得到的锂单质铸锭,裁剪成直径为14mm的锂片。与磷酸铁锂组装成全电池,以2C倍率进行恒流充放电测试,循环300次,容量稳定在120mAh/g以上,平均库伦效率达99.8%。
实施例3
取500ml净化后海西盐湖老卤,20g碳酸钠固体,搅拌0.5h,静置后过滤、洗涤、干燥,得到碳酸锂。将碳酸锂充分溶解在1mol/L的盐酸溶液中,浓缩干燥后得到氯化锂固体。将干燥后的氯化锂与氯化钾按质量比55:45加入电解槽。电解槽温度恒定为400℃,恒定直流电流5mA/cm2,电解10h阴极电位-3.5V下进行电解,收集阴极锂,冷却得到锂单质,铸锭成直径为14mm的锂片,组装成2032型对称电池,以电流密度为2mA/cm2进行充放电测试,固定每次循环充放电时间为1h,可以稳定循环200小时。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (8)
1.一种金属锂单质的制备方法,其特征在于,包括如下步骤:
1)从锂矿石浸出液或净化后的盐湖卤水中提取锂盐固体;
其中,所述锂盐固体包括双三氟甲烷磺酰亚胺锂和/或高氯酸锂和/或氯化锂和/或碳酸锂和/或硫酸锂;
2)将步骤1)所得的碳酸锂和/或硫酸锂经氯化转型、浓缩和干燥后得到氯化锂;
3)将步骤1)所得双三氟甲烷磺酰亚胺锂、高氯酸锂或氯化锂或步骤2)所得氯化锂进行熔融电解,得到金属锂单质;
所述熔融电解具体为:将双三氟甲烷磺酰亚胺锂、高氯酸锂或氯化锂熔融并作为电解质进行电解;
所述电解温度为200-500℃,电解时间为0.5-10h,电解电流密度为5-100mA/cm2,电解槽阴极电位在-3.04V以下。
2.如权利要求1所述金属锂单质的制备方法,其特征在于,步骤1)所述锂矿石浸出液或净化后的盐湖卤水中锂与镁的浓度比,以及锂与硼的浓度比均大于1。
3.如权利要求1所述金属锂单质的制备方法,其特征在于,步骤1)所述锂盐固体纯度大于99.5%。
4.如权利要求1所述金属锂单质的制备方法,其特征在于,步骤1)所述锂盐固体由以下方法制备得到:
用萃取剂对净化后锂矿石浸出液或净化后的盐湖卤水进行逆流萃取,再进行分液,得到含锂溶液;
将含锂溶液加热至溶剂全部蒸发,干燥后得到锂盐固体。
5.如权利要求1所述金属锂单质的制备方法,其特征在于,步骤1)所述锂盐固体还可由以下方法制备得到:
向锂矿石浸出液或净化后的盐湖卤水中加入碳酸钠,搅拌后得到含锂溶液;
上述含锂溶液经静置、过滤、洗涤和干燥,得到锂盐固体。
6.一种金属锂单质,其特征在于,所述金属锂单质由权利要求1~5任意一项所述制备方法制备而成。
7.一种金属锂负极,其特征在于,所述金属锂负极由权利要求6所述的金属锂单质制备而成。
8.一种锂电池,其特征在于,包含权利要求7所述金属锂负极。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910552630.2A CN110306052B (zh) | 2019-06-25 | 2019-06-25 | 一种金属锂单质及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910552630.2A CN110306052B (zh) | 2019-06-25 | 2019-06-25 | 一种金属锂单质及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110306052A CN110306052A (zh) | 2019-10-08 |
CN110306052B true CN110306052B (zh) | 2020-09-15 |
Family
ID=68077715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910552630.2A Active CN110306052B (zh) | 2019-06-25 | 2019-06-25 | 一种金属锂单质及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110306052B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112813288B (zh) * | 2020-12-29 | 2022-08-12 | 东方电气集团科学技术研究院有限公司 | 一种以工业铍制备高纯铍的方法 |
CN116837419A (zh) * | 2023-08-28 | 2023-10-03 | 上海阿波罗机械股份有限公司 | 用于盐湖提锂的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2591615B1 (fr) * | 1985-12-13 | 1988-02-19 | Rhone Poulenc Spec Chim | Procede et appareillage pour la preparation en continu de lithium par electrolyse du chlorure de lithium |
CN101573296B (zh) * | 2006-11-02 | 2011-07-27 | 株式会社三德 | 金属锂的制备方法 |
CN101760759B (zh) * | 2010-02-11 | 2011-08-31 | 中国科学院青海盐湖研究所 | 熔盐电解制备金属锂的方法 |
US9085813B2 (en) * | 2010-09-23 | 2015-07-21 | Semiconductor Energy Laboratory Co., Ltd. | Method for recovering metallic lithium |
CN103031568B (zh) * | 2011-10-08 | 2016-04-20 | 中国科学院青岛生物能源与过程研究所 | 一种电解制备金属锂的方法 |
-
2019
- 2019-06-25 CN CN201910552630.2A patent/CN110306052B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110306052A (zh) | 2019-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Silicon-loaded lithium-carbon composite microspheres as lithium secondary battery anodes | |
CN109267086B (zh) | 一种盐湖卤水中镁/锂分离及富集锂的装置及方法 | |
CN107123810B (zh) | 一种基于磷化镍骨架结构复合材料的制备方法及其应用 | |
CN103199263A (zh) | 一种铅酸蓄电池正极板栅合金及其制备方法 | |
WO2021228001A1 (zh) | 一种基于四电子转换反应的水系锌碘电池及其电解液 | |
CN110048104B (zh) | 一种基于氰化框架材料的水系电池及其制备方法 | |
CN103422123A (zh) | 一种离子液体电沉积镁镍合金的方法 | |
CN106784770A (zh) | 高镁含量的锂镁合金为负极的锂硫二次电池 | |
CN110289448B (zh) | 一种具有人工构建sei膜的金属锂负极及其制备方法 | |
CN114583280A (zh) | 一种锂金属电池电解液及其制备方法 | |
CN110306052B (zh) | 一种金属锂单质及其制备方法与应用 | |
CN110106526B (zh) | 基于固态电解质制备金属锂的方法 | |
CN110564965B (zh) | 一种金属锂合金及其制备方法与应用 | |
CN109326798B (zh) | 一种用于金属锂负极保护层的制备方法及应用 | |
CN110205491B (zh) | 一种金属锂单质及其制备方法与应用 | |
CN110311107B (zh) | 一种金属锂合金及其制备方法与应用 | |
CN111705337B (zh) | 一种熔盐原电池法制备铅钙母合金的方法 | |
CN110085864A (zh) | 钾或锂离子电池正极片的制备方法及应用 | |
CN114024024A (zh) | 一种电解液添加剂及其应用及其锂金属电池 | |
CN109830647B (zh) | 一种3d锂金属电池负极、锂金属电池及其制备与应用 | |
CN116130798A (zh) | 一种水系锌基电池功能性电解液及电池 | |
CN115133159A (zh) | 一种功能性水系锌离子电池电解液及其制备方法和应用 | |
CN110306051B (zh) | 一种金属锂单质及其制备方法与应用 | |
CN108666569B (zh) | 一种海绵状碳材料的制备方法 | |
CN110289391B (zh) | 一种金属锂合金及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |