[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110272856B - A kind of recombinant bacteria expressing D-threonine aldolase and its construction method and application - Google Patents

A kind of recombinant bacteria expressing D-threonine aldolase and its construction method and application Download PDF

Info

Publication number
CN110272856B
CN110272856B CN201910380625.8A CN201910380625A CN110272856B CN 110272856 B CN110272856 B CN 110272856B CN 201910380625 A CN201910380625 A CN 201910380625A CN 110272856 B CN110272856 B CN 110272856B
Authority
CN
China
Prior art keywords
threonine aldolase
recombinant
application
pet28a
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910380625.8A
Other languages
Chinese (zh)
Other versions
CN110272856A (en
Inventor
倪晔
龚磊
许国超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201910380625.8A priority Critical patent/CN110272856B/en
Publication of CN110272856A publication Critical patent/CN110272856A/en
Application granted granted Critical
Publication of CN110272856B publication Critical patent/CN110272856B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/02Aldehyde-lyases (4.1.2)
    • C12Y401/02042D-Threonine aldolase (4.1.2.42)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a recombinant bacterium for expressing D-threonine aldolase and a construction method and application thereof, belonging to the technical field of enzyme engineering. The recombinant strain expresses D-threonine aldolase with an amino acid sequence shown as SEQ ID NO. 2. The invention provides a D-threonine aldolase which can be used as a catalyst for synthesizing chiral beta-hydroxy-alpha-amino acid, has high catalytic efficiency (the conversion rate is more than 65%), strong stereoselectivity (e.e. > 99%, d.e. > 95%), mild reaction conditions and environmental friendliness. The D-threonine aldolase has good catalytic effect, wide substrate applicability and good application and development prospects.

Description

一种表达D-苏氨酸醛缩酶的重组菌及其构建方法与应用A kind of recombinant bacteria expressing D-threonine aldolase and its construction method and application

技术领域technical field

本发明涉及一种表达D-苏氨酸醛缩酶的重组菌及其构建方法与应用,属于酶工程技术领域。The invention relates to a recombinant bacterium expressing D-threonine aldolase, a construction method and application thereof, and belongs to the technical field of enzyme engineering.

背景技术Background technique

手性β-羟基-α-氨基酸是一类非常重要的化合物,因其具有手性羟基和氨基酸两个官能团,在医药、材料等精细化学品的制造中具有非常广泛的应用。化学法合成手性β-羟基-α-氨基酸具有催化剂昂贵、重金属污染、合成路线较长以及在较为苛刻的条件下才能提高产物的立体选择性等缺点,不利于工业生产的放大。与化学法相比,酶法不需要任何保护基,具有更好的立体选择性,反应可以一步完成等优点。因此,酶法合成β-羟基-α-氨基酸更具有应用开发的潜力。Chiral β-hydroxy-α-amino acids are a very important class of compounds, which are widely used in the manufacture of fine chemicals such as medicines and materials because of their two functional groups, chiral hydroxyl and amino acids. The chemical synthesis of chiral β-hydroxy-α-amino acids has the disadvantages of expensive catalysts, heavy metal pollution, long synthetic routes, and the stereoselectivity of products can only be improved under harsher conditions, which is not conducive to the scale-up of industrial production. Compared with chemical methods, enzymatic methods do not require any protective groups, have better stereoselectivity, and the reaction can be completed in one step. Therefore, the enzymatic synthesis of β-hydroxy-α-amino acids has more potential for application development.

苏氨酸醛缩酶是一类磷酸吡哆醛依赖型的醛缩酶,是有机合成中碳-碳键形成的强有力工具,它可以催化带有不同取代基的醛和甘氨酸发生特异的羟醛缩合反应生产出高附价值的β-羟基-α-氨基酸,在形成的两个手性中心的α-碳具有高度的选择性,而β-碳的立体选择性较差。因此,开发高效、高立体选择性的苏氨酸醛缩酶,对于合成甲砜霉素、氟苯尼考等药物的手性中间体(l-syn-对甲砜基苯丝氨酸)的技术转型升级具有重要意义。Threonine aldolase is a kind of pyridoxal phosphate-dependent aldolase, which is a powerful tool for carbon-carbon bond formation in organic synthesis. It can catalyze the specific hydroxylation of aldehydes and glycines with different substituents. Aldehyde condensation produces highly valuable β-hydroxy-α-amino acids with high selectivity at the α-carbon of the two chiral centers formed, while the β-carbon is less stereoselective. Therefore, the development of high-efficiency, high-stereoselective threonine aldolase, for the technical transformation of chiral intermediates (l-syn-p-methylsulfonylphenylserine) for the synthesis of thiamphenicol, florfenicol and other drugs Upgrading is important.

目前,对于l-syn-对甲砜基苯丝氨酸的酶法生产,大多是通过酶法拆分dl-syn-对甲砜基苯丝氨酸获得。其中,在两相体系下(二氯甲烷、二氯乙烷、环已酮),来源于Delftiasp.RIT313的D-苏氨酸醛缩酶能够完全拆分300mmol·L-1 dl-syn-对甲砜基苯丝氨酸,是目前最高底物浓度(Catalysis Science&Technology,2017,7,5964-5973)。然而,酶法合成l-syn-对甲砜基苯丝氨酸的研究报道较少。来源于P.putida的l-苏氨酸醛缩酶催化对甲砜基苯甲醛和甘氨酸合成l-syn-对甲砜基苯丝氨酸产率为68%,d.e.值仅为53%(Tetrahedron,2007,63,918-926)。较低的酶活和立体选择性一直以来都是制约苏氨酸醛缩酶应用的瓶颈,急需开发新型的具备高活性和高立体选择性的苏氨酸醛缩酶来满足工业化应用的要求。At present, most of the enzymatic production of l-syn-p-methylsulfonylphenylserine is obtained by enzymatic separation of dl-syn-p-methylsulfonylphenylserine. Among them, in a two-phase system (dichloromethane, dichloroethane, cyclohexanone), D-threonine aldolase derived from Delftiasp.RIT313 can completely resolve 300 mmol·L -1 dl-syn-pair Methylsulfonylphenylserine, the highest substrate concentration at present (Catalysis Science & Technology, 2017, 7, 5964-5973). However, there are few reports on the enzymatic synthesis of l-syn-p-methylsulfonylphenylserine. The l-threonine aldolase from P. putida catalyzes the synthesis of p-methylsulfonylbenzaldehyde and glycine to l-syn-p-methylsulfonylphenylserine with a yield of 68% and a de value of only 53% (Tetrahedron, 2007 , 63, 918-926). Low enzymatic activity and stereoselectivity have always been the bottleneck restricting the application of threonine aldolase. It is urgent to develop a new type of threonine aldolase with high activity and high stereoselectivity to meet the requirements of industrial application.

发明内容SUMMARY OF THE INVENTION

为解决上述技术问题,本发明提供一种表达D-苏氨酸醛缩酶的重组菌,生产的D-苏氨酸醛缩酶可高效催化对甲砜基苯甲醛和甘氨酸合成l-syn-对甲砜基苯丝氨酸,产率为65%以上,d.e.值为95%以上。该过程具有条件温和、操作简单等优点。In order to solve the above-mentioned technical problems, the present invention provides a recombinant bacterium expressing D-threonine aldolase, and the produced D-threonine aldolase can efficiently catalyze the synthesis of l-syn- For p-methylsulfonyl phenylserine, the yield is over 65%, and the d.e. value is over 95%. This process has the advantages of mild conditions and simple operation.

本发明的第一个目的是提供一种表达D-苏氨酸醛缩酶的重组菌,所述重组菌表达了氨基酸序列如SEQ ID NO.2所示的D-苏氨酸醛缩酶。The first object of the present invention is to provide a recombinant bacterium expressing D-threonine aldolase, the recombinant bacterium expressing D-threonine aldolase whose amino acid sequence is shown in SEQ ID NO.2.

进一步地,所述的重组菌是以是细菌、真菌、植物、昆虫或动物细胞为宿主细胞。Further, the recombinant bacteria use bacteria, fungi, plants, insects or animal cells as host cells.

进一步地,所述的重组菌是以大肠杆菌为宿主菌。优选大肠杆菌BL21(DE3)。Further, the recombinant bacteria take Escherichia coli as the host bacteria. E. coli BL21(DE3) is preferred.

进一步地,所述的重组菌的表达载体为细菌质粒、噬菌体、酵母质粒、植物细胞病毒或哺乳动物细胞病毒。Further, the expression vector of the recombinant bacteria is bacterial plasmid, bacteriophage, yeast plasmid, plant cell virus or mammalian cell virus.

进一步地,所述的重组菌的表达载体为pET系列表达载体。优选pET28a。Further, the expression vectors of the recombinant bacteria are pET series expression vectors. PET28a is preferred.

本发明的第二个目的是提供所述重组菌的构建方法,包括如下步骤:The second object of the present invention is to provide the construction method of described recombinant bacteria, comprises the steps:

(1)构建重组质粒pET28a-ApDTA:将D-苏氨酸醛缩酶基因ApDTA与酶切过的质粒pET28a进行连接,得到重组表达载体pET28a-ApDTA;(1) Construction of recombinant plasmid pET28a-ApDTA: The D-threonine aldolase gene ApDTA is connected with the digested plasmid pET28a to obtain a recombinant expression vector pET28a-ApDTA;

(2)构建重组菌E.coli BL21(DE3)/pET28a-ApDTA:将构建好的重组表达载体pET28a-ApDTA热转入大肠杆菌BL21(DE3)感受态中,培养筛选得到重组菌E.coli BL21(DE3)/pET28a-ApDTA。(2) Construction of recombinant strain E.coli BL21(DE3)/pET28a-ApDTA: The constructed recombinant expression vector pET28a-ApDTA was thermally transferred into E. coli BL21(DE3) competent, and the recombinant strain E.coli BL21 was obtained by culture and screening. (DE3)/pET28a-ApDTA.

本发明的第三个目的是提供所述重组菌在手性β-羟基-α-氨基酸的合成中的应用。The third object of the present invention is to provide the application of the recombinant bacteria in the synthesis of chiral β-hydroxy-α-amino acids.

进一步地,所述应用是利用所述的重组菌发酵生产的D-苏氨酸醛缩酶作为催化剂,合成手性β-羟基-α-氨基酸。Further, the application is to use the D-threonine aldolase produced by fermentation of the recombinant bacteria as a catalyst to synthesize chiral β-hydroxy-α-amino acids.

进一步地,所述应用具体是催化醛和甘氨酸合成手性β-羟基-α-芳基氨基酸。Further, the application is specifically to catalyze the synthesis of chiral β-hydroxy-α-aryl amino acids from aldehyde and glycine.

进一步地,所述的催化在反应温度为5~15℃,pH为5.5~6.5的条件下反应10~20h。Further, the catalysis reacts for 10 to 20 hours under the conditions that the reaction temperature is 5-15° C. and the pH is 5.5-6.5.

本发明的有益效果是:The beneficial effects of the present invention are:

本发明提供了一种D-苏氨酸醛缩酶可作为催化剂应用于手性β-羟基-α-氨基酸的合成,其催化效率高(转化率>65%)、立体选择性强(e.e.>99%,d.e.>95%)、适用的反应条件温和、环境友好。本发明的D-苏氨酸醛缩酶催化效果佳,底物适用性广,具有很好的应用开发前景。The invention provides a D-threonine aldolase which can be used as a catalyst for the synthesis of chiral β-hydroxy-α-amino acids, and has high catalytic efficiency (conversion rate>65%) and strong stereoselectivity (e.e.> 99%, d.e.>95%), the applicable reaction conditions are mild and environmentally friendly. The D-threonine aldolase of the invention has good catalytic effect, wide substrate applicability and good application and development prospect.

附图说明Description of drawings

图1为基因ApDTA的PCR扩增电泳图谱;M,Marker;1,基因ApDTA;Fig. 1 is the electrophoresis map of PCR amplification of gene ApDTA; M, Marker; 1, gene ApDTA;

图2为pET28a-ApDTA重组质粒物理图谱;Fig. 2 is the physical map of pET28a-ApDTA recombinant plasmid;

图3为重组d-苏氨酸醛缩酶的蛋白电泳图;M,Marker;泳道1、2、3分别为重组菌E.coli BL21(DE3)/pET28a-ApDTA诱导后上清、沉淀及纯化后的酶;Figure 3 is the protein electrophoresis image of recombinant d-threonine aldolase; M, Marker; lanes 1, 2, and 3 are the supernatant, precipitation and purification of recombinant bacteria E.coli BL21(DE3)/pET28a-ApDTA after induction, respectively post-enzyme;

图4为d-苏氨酸醛缩酶催化对甲砜基苯甲醛和甘氨酸缩合为对甲砜基苯丝氨酸的反应式;Fig. 4 is the reaction formula that d-threonine aldolase catalyzes the condensation of p-methylsulfonylbenzaldehyde and glycine into p-methylsulfonylphenylserine;

图5反应液产物l-syn-对甲砜基苯丝氨酸的HPLC图谱。Fig. 5 HPLC spectrum of reaction liquid product l-syn-p-methylsulfonyl phenylserine.

具体实施方式Detailed ways

下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below with reference to specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the embodiments are not intended to limit the present invention.

D-苏氨酸醛缩酶催化反应产物HPLC分析条件为:色谱柱Diamonsil Plus C18(25cm×4.6mm,5μm),流动相为V(CH3CN):V(50mmol·L-1磷酸二氢钾溶液)=15:85,流速为0.2~1mL·min-1,检测波长为338nm,柱温为40℃,OPA-NAC柱前衍生化液相测定。同时以l-syn-对甲砜基苯丝氨酸标准品做对照,确定产物出峰时间和次序,并以此为依据进行酶活力测定。D-苏氨酸醛缩酶活力测定:D-苏氨酸醛缩酶对底物对甲砜基苯甲醛的酶活力测定体系为:适量酶液、5mmol·L-1对甲砜基苯甲醛,50mmol·L-1甘氨酸,50μmol·L-1磷酸吡哆醛(PLP),50μmol·L-1Mn2+于30℃振荡反应10min。反应结束后,取样进行液相检测。一个酶活力单位(Unit)的定义:每分钟催化对甲砜基苯甲醛产生1μmol l-syn-对甲砜基苯丝氨酸所需要的生物催化剂的量。用牛血清蛋白作为标准,用Bradford法测定蛋白浓度。The HPLC analysis conditions of the reaction products catalyzed by D-threonine aldolase are: chromatographic column Diamonsil Plus C18 (25cm×4.6mm, 5μm), mobile phase is V(CH 3 CN):V(50mmol·L -1 dihydrogen phosphate Potassium solution) = 15:85, the flow rate is 0.2-1 mL·min -1 , the detection wavelength is 338 nm, the column temperature is 40 °C, and the OPA-NAC pre-column derivatization liquid phase measurement is performed. At the same time, the l-syn-p-methylsulfonyl phenylserine standard was used as a control to determine the peak time and sequence of the product, and based on this, the enzyme activity was measured. Determination of D-threonine aldolase activity: The enzyme activity assay system of D-threonine aldolase to substrate p-methylsulfonylbenzaldehyde is: an appropriate amount of enzyme solution, 5mmol·L -1 p-methylsulfonylbenzaldehyde , 50mmol·L -1 glycine, 50μmol·L -1 pyridoxal phosphate (PLP), 50μmol·L -1 Mn 2+ were shaken at 30℃ for 10min. After the reaction, samples were taken for liquid phase detection. One unit of enzyme activity (Unit) is defined as the amount of biocatalyst required to catalyze the production of 1 μmol of l-syn-p-methylsulfonylphenylserine from p-methylsulfonylbenzaldehyde per minute. Using bovine serum albumin as a standard, the protein concentration was determined by the Bradford method.

实施例1:基于探针酶序列的基因挖掘技术筛选D-苏氨酸醛缩酶Example 1: Screening of D-threonine aldolase by gene mining technology based on probe enzyme sequence

根据已报道的具有醛缩合成对甲砜基苯丝氨酸的D-苏氨酸醛缩酶(Alcaligenesxylosoxydans)的基因序列,利用此序列作为探针在NCBI数据库中进行检索并BLAST比对分析,找到与探针序列具有40%~70%同源性的候选酶基因,选取序列一致性较高的酶基因,并保证这些酶基因的来源菌株与探针不同种,进而根据检索到的基因序列设计引物,利用PCR扩增获得编码这些酶的DNA,并将它们进行克隆和表达,最后通过对目标底物(对甲砜基苯甲醛)进行活性和立体选择性的筛选,即获得高活性、高选择性的D-苏氨酸醛缩酶。According to the reported gene sequence of D-threonine aldolase (Alcaligenes xylosoxydans) with aldehyde condensation to p-methylsulfonyl phenylserine, this sequence was used as a probe to search in the NCBI database and BLAST comparison analysis, to find the same Candidate enzyme genes whose probe sequences have 40% to 70% homology, select enzyme genes with higher sequence consistency, and ensure that the source strains of these enzyme genes are different from the probes, and then design primers according to the retrieved gene sequences , using PCR amplification to obtain DNA encoding these enzymes, clone and express them, and finally screen the target substrate (p-methylsulfonylbenzaldehyde) for activity and stereoselectivity, that is, to obtain high activity and high selection Sexual D-threonine aldolase.

实施例2:D-苏氨酸醛缩酶基因的克隆Example 2: Cloning of D-threonine aldolase gene

采用“一步克隆法”(同源重组)构建重组质粒pET28a-ApDTA。The recombinant plasmid pET28a-ApDTA was constructed by "one-step cloning method" (homologous recombination).

(1)首先使用营养肉汁琼脂培养基(蛋白胨10.0g,牛肉浸出物3.0g,NaCl5.0g,琼脂15.0g,蒸馏水1.0L,pH 7.0),于25℃下活化复壮上述皮式无色小杆菌。然后待长出菌落后,将单菌落接入液体培养基中培养。离心获得菌体后,使用细菌基因组DNA试剂盒提取皮式无色小杆菌基因组DNA。(1) First, use a nutrient gravy agar medium (10.0 g of peptone, 3.0 g of beef extract, 5.0 g of NaCl, 15.0 g of agar, 1.0 L of distilled water, pH 7.0) to activate and rejuvenate the above-mentioned Microbacillus depigmentosa at 25°C . Then, after the colony has grown, the single colony is inserted into the liquid medium for cultivation. After the cells were obtained by centrifugation, the genomic DNA of Achromobacter pectoralis was extracted using a bacterial genomic DNA kit.

(2)根据已报道的D-苏氨酸醛缩酶基因设计引物(上游引物:CAGCAAATGGGTCGCGG ATCCATGTCCCAGGAAGTCATACGCG,下游引物:TGCGGCCGCAAGCTTGTCGACTCAGCGCGAGAAGCCGCG,其中GGATCC为BamHⅠ酶切位点,GTCGAC为SalⅠ酶切位点),以皮式无色小杆菌基因组DNA为模板进行PCR,体系如下(μL):MgSO4 0.6,dNTP 1.0,上游引物0.4,下游引物0.4,KOD Buffer1.0,KOD酶0.2,模板0.4,ddH2O 6.0。PCR反应条件为:预变性95℃10min,变性98℃20s,65℃退火20s,68℃延伸50s,重复30个循环,68℃延伸10min。PCR产物经琼脂糖凝胶电泳鉴定,并利用琼脂糖胶DNA回收试剂盒回收800~1200bp区间的条带(图1),即D-苏氨酸醛缩酶基因。所得D-苏氨酸醛缩酶基因命名为ApDTA,核苷酸序列如SEQ ID No.1所示:全长1140bp,其起始密码子为ATG,终止密码子为TGA。序列中无内含子,编码序列从第1个核苷酸起至1140个核苷酸止,所编码的蛋白质序列如SEQ ID No.2所示。序列已提交至NCBI数据库,GenBank登录号为KNY11228.1。(2) Design primers according to the reported D-threonine aldolase gene (upstream primer: CAGCAAATGGGTCGC GG ATCC ATGTCCCAGGAAGTCATACGCG, downstream primer: TGCGGCCGCAAGCTT GTCGAC TCAGCGCGAGAAGCCGCG, where GGATCC is the BamHI restriction site and GTCGAC is the Sal I restriction site ), using Achromobacter pyogenes genomic DNA as template to carry out PCR, the system is as follows (μL): MgSO 4 0.6, dNTP 1.0, upstream primer 0.4, downstream primer 0.4, KOD Buffer 1.0, KOD enzyme 0.2, template 0.4, ddH 2 O 6.0. The PCR reaction conditions were as follows: pre-denaturation at 95°C for 10 min, denaturation at 98°C for 20s, annealing at 65°C for 20s, extension at 68°C for 50s, repeated 30 cycles, and extension at 68°C for 10 min. The PCR product was identified by agarose gel electrophoresis, and a band in the range of 800-1200 bp was recovered by agarose gel DNA recovery kit (Fig. 1), namely the D-threonine aldolase gene. The obtained D-threonine aldolase gene was named ApDTA, the nucleotide sequence is shown in SEQ ID No. 1: the full length is 1140 bp, the start codon is ATG, and the stop codon is TGA. There is no intron in the sequence, the coding sequence starts from the first nucleotide to 1140 nucleotides, and the encoded protein sequence is shown in SEQ ID No.2. The sequence has been submitted to the NCBI database with the GenBank accession number KNY11228.1.

实施例3:重组大肠杆菌BL21(DE3)/pET28a-ApDTA的构建及培养Example 3: Construction and culture of recombinant Escherichia coli BL21(DE3)/pET28a-ApDTA

用限制性内切酶BamH I和Sal I将质粒pET28a于37℃水浴中双酶切4h,经琼脂糖凝胶电泳鉴定,并利用琼脂糖DNA回收试剂盒纯化回收目标片段。37℃下,利用重组试剂盒中的重组酶将基因ApDTA与酶切过的质粒pET28a进行连接,即得重组表达载体pET28a-ApDTA(图2)。将构建好的重组表达载体pET28a-ApDTA热转入大肠杆菌BL21(DE3)感受态中,涂布含有卡那霉素抗性LB固体平板,过夜培养后进行菌落PCR验证,阳性克隆子即为基因重组工程菌E.coli BL21(DE3)/pET28a-ApDTA。挑取阳性克隆子于LB培养基中过夜培养,次日按2%接种量转接入新鲜LB培养基中,培养至OD600达到0.6~0.8时,加入0.2mmol·L-1IPTG,25℃诱导培养10h后,4℃、8000r·min-1离心5min收集菌体。将收集好的菌体悬浮于HEPES缓冲液(100mmol·L-1,pH 8.0)中,超声破碎,并通过SDS-PAGE分析蛋白的表达情况(图3)。由图3可知,目的蛋白全部在上清液中(泳道1),沉淀中基本无条带(泳道2),说明重组酶在大肠杆菌中高效可溶性表达。The plasmid pET28a was double digested with restriction enzymes BamH I and Sal I in a water bath at 37°C for 4 hours, identified by agarose gel electrophoresis, and purified and recovered by agarose DNA recovery kit. At 37°C, the gene ApDTA was ligated with the digested plasmid pET28a using the recombinase in the recombination kit to obtain the recombinant expression vector pET28a-ApDTA (Fig. 2). The constructed recombinant expression vector pET28a-ApDTA was thermally transferred into E. coli BL21(DE3) competent, coated with LB solid plate containing kanamycin resistance, and the colony PCR was carried out after overnight culture, and the positive clone was the gene Recombinant engineering bacteria E.coli BL21(DE3)/pET28a-ApDTA. Pick positive clones and culture them in LB medium overnight, transfer to fresh LB medium at 2% inoculum the next day, and culture until the OD 600 reaches 0.6-0.8, add 0.2 mmol·L -1 IPTG, 25°C After induction and culture for 10 h, the cells were collected by centrifugation at 4°C, 8000 r·min -1 for 5 min. The collected bacterial cells were suspended in HEPES buffer (100 mmol·L -1 , pH 8.0), sonicated, and the protein expression was analyzed by SDS-PAGE ( FIG. 3 ). It can be seen from Figure 3 that the target protein is all in the supernatant (lane 1), and there is basically no band in the precipitate (lane 2), indicating that the recombinase is highly soluble and expressed in E. coli.

实施例4:D-苏氨酸醛缩酶ApDTA的分离纯化Example 4: Separation and purification of D-threonine aldolase ApDTA

收获诱导的重组细胞并悬浮于缓冲液A(20mmol·L-1磷酸钠,500mmol·L-1NaCl,20mmol·L-1咪唑,pH 7.4)中,超声破碎处理(300W,工作1秒,暂停3秒)10min,4℃、8000r·min-1离心20min除去细胞碎片后获得上清液。纯化使用的柱子为亲和柱HisTrap FF crude,用于制备纯化组氨酸标记的重组蛋白。首先使用缓冲液A平衡镍柱,并将上述上清液过镍柱,继续使用缓冲液A洗脱未与镍柱结合的蛋白,待穿透峰流尽后,从缓冲液A到缓冲液B(20mmol·L-1磷酸钠,500mmol·L-1NaCl,1000mmol·L-1咪唑,pH 7.4)进行梯度洗脱,将结合到镍柱上的重组蛋白洗脱下来,获得重组D-苏氨酸醛缩酶。对纯化后的蛋白进行酶活力测定(对甲砜基苯甲醛为底物)及SDS-PAGE分析(图3)。由图3可知,镍柱纯化后,在40kDa左右显示单条带,且杂蛋白较少,说明镍柱纯化效果较好(泳道3)。之后利用HiTrapDesalting脱盐柱将纯化后的d-苏氨酸醛缩酶置换至HEPES(100mmol·L-1,pH 8.0)缓冲液中,进行酶学性质分析。The induced recombinant cells were harvested and suspended in buffer A (20mmol·L -1 sodium phosphate, 500mmol·L -1 NaCl, 20mmol·L -1 imidazole, pH 7.4), sonicated (300W, working for 1 second, paused) 3 seconds) for 10 min, and centrifuged at 4°C for 20 min at 8000 r·min -1 to remove cell debris to obtain the supernatant. The column used for purification is HisTrap FF crude, an affinity column for preparing and purifying histidine-tagged recombinant proteins. First, use buffer A to equilibrate the nickel column, pass the above supernatant through the nickel column, and continue to use buffer A to elute the proteins that are not bound to the nickel column. (20mmol·L -1 sodium phosphate, 500mmol·L -1 NaCl, 1000mmol·L -1 imidazole, pH 7.4) carry out gradient elution, and the recombinant protein bound to the nickel column is eluted to obtain recombinant D-threonine acid aldolase. The purified protein was assayed for enzyme activity (with p-methylsulfonylbenzaldehyde as the substrate) and analyzed by SDS-PAGE (Fig. 3). It can be seen from Figure 3 that after purification by the nickel column, a single band is displayed at about 40 kDa, and there are fewer impurity proteins, indicating that the purification effect of the nickel column is better (lane 3). Afterwards, the purified d-threonine aldolase was substituted into HEPES (100 mmol·L -1 , pH 8.0) buffer using a HiTrapDesalting column, and the enzymatic properties were analyzed.

实施例5:重组ApDTA的底物谱分析Example 5: Substrate profiling of recombinant ApDTA

测定D-苏氨酸醛缩酶ApDTA催化不同醛底物的酶活力,测定方法均按照D-苏氨酸醛缩酶活力测定方法,区别在于底物不同。以对甲砜基苯甲醛为底物测得的酶活力为100%对照,其他底物测得的酶活力以二者的百分比计算。测定结果如表1所示。The enzymatic activity of D-threonine aldolase ApDTA catalyzing different aldehyde substrates was determined. The enzyme activity measured with p-methylsulfonylbenzaldehyde as the substrate is the 100% control, and the enzyme activity measured with other substrates is calculated as the percentage of the two. The measurement results are shown in Table 1.

表1 ApDTA的底物谱Table 1 Substrate spectrum of ApDTA

Figure BDA0002053258320000071
Figure BDA0002053258320000071

由表1可知,ApDTA表现出较广的底物谱,对脂肪族、芳香族和杂环族醛底物表现出了良好的活性,具有很好的应用前景。It can be seen from Table 1 that ApDTA exhibits a broad substrate spectrum, exhibits good activity on aliphatic, aromatic and heterocyclic aldehyde substrates, and has good application prospects.

实施例6:重组ApDTA的最适pHExample 6: Optimum pH for recombinant ApDTA

配制100mmol·L-1不同pH的缓冲液:MES缓冲液(pH 5.0~6.5);HEPES缓冲液(pH7.0~8.5);CHES缓冲液(pH 9.0~10.0)。以对甲砜苯甲醛为底物,测定ApDTA在不同pH缓冲液的缩合反应活力。ApDTA的最适酶活力pH为8.0,比活力为10.0~12.0U·mg-1。在pH为9.0~10.0的CHES-NaOH缓冲液中,酶活力下降较快。以d-苏氨酸为底物,测定ApDTA在不同pH缓冲液的相对裂解活力。在酸性缓冲液(pH 5.0~6.5)条件下,ApDTA的裂解活力较低,随着pH升高至8.0时,达到最大裂解活力。同样,随着缓冲液碱性的增加,活力逐渐下降。Prepare 100 mmol·L -1 buffers with different pH: MES buffer (pH 5.0-6.5); HEPES buffer (pH 7.0-8.5); CHES buffer (pH 9.0-10.0). Using p-methylsulfone benzaldehyde as the substrate, the condensation reaction activity of ApDTA in different pH buffers was determined. The optimum enzyme activity pH of ApDTA was 8.0, and the specific activity was 10.0-12.0 U·mg -1 . In the CHES-NaOH buffer with pH 9.0~10.0, the enzyme activity decreased rapidly. Using d-threonine as the substrate, the relative cleavage activity of ApDTA in different pH buffers was determined. Under the condition of acidic buffer (pH 5.0-6.5), the cleavage activity of ApDTA was low, and when the pH increased to 8.0, the cleavage activity reached the maximum. Likewise, viability decreases gradually with increasing buffer alkalinity.

实施例7:重组ApDTA的最适温度Example 7: Optimum temperature for recombinant ApDTA

分别以对甲砜基苯甲醛为底物,测定ApDTA在不同温度(20~45℃)下的酶活力,测得的最高酶活力定为100%,其他温度下测得的酶活力以相对于最高活力的百分比计算。结果显示不同的温度对ApDTA的缩合活力产生一定的影响,随反应温度变化呈偏正态分布。最适温度为30℃,低于或高于30℃酶活力相对偏低。Using p-methylsulfonylbenzaldehyde as the substrate, the enzyme activity of ApDTA at different temperatures (20-45°C) was determined. The highest enzyme activity measured was set as 100%. The enzyme activity measured at other temperatures was relative to Percentage calculation of maximum vitality. The results showed that different temperatures had a certain effect on the condensation activity of ApDTA, and the reaction temperature showed a skewed normal distribution. The optimum temperature is 30℃, and the enzyme activity is relatively low below or above 30℃.

实施例8:动力学参数测定Example 8: Kinetic parameter determination

测定ApDTA在不同对甲砜基苯甲醛浓度情况下的比活力,并根据比活力和底物浓度的倒数作双倒数曲线,计算动力学参数。测定的ApDTA对对甲砜基苯甲醛的动力学参数分别为Km为30.0mmol·L-1,Vmax为40.3μmol·min-1·mg-1The specific activity of ApDTA at different concentrations of p-methylsulfonylbenzaldehyde was determined, and the kinetic parameters were calculated according to the double-reciprocal curve of the specific activity and the reciprocal of the substrate concentration. The determined kinetic parameters of ApDTA for p-methylsulfonylbenzaldehyde were K m of 30.0 mmol·L -1 and V max of 40.3 μmol·min -1 ·mg -1 , respectively.

实施例9:金属离子对酶活力的影响Example 9: Effect of metal ions on enzyme activity

测定Mn2+,Fe2+,Mg2+,Ca2+,Al3+,Cu2+,Co2+,Ni2+和EDTA等金属离子和金属离子螯合剂对缩合反应酶活力的影响。将终浓度为0.1mmol·L-1的氯化盐或者硫酸盐形式的金属离子加入到测活体系中,30℃条件下,在HEPES缓冲液(100mmol·L-1,pH 8.0)中以对甲砜基苯甲醛为底物测定其酶活力。同等条件下,不加任何金属离子测得的酶活力定为100%对照,加入金属离子测得的酶活力以对照的百分比计算。结果显示,金属离子对酶活力有一定程度地激活作用。加入Mn2+时所表现出的酶活力最高,表明Mn2+对于酶的催化活性中心或正确构象有促进作用。与已报道的来源于A.xylosoxidans,X.oryzae,S.pomeroyi的D-苏氨酸醛缩酶表现出类似的激活作用;然而,也有报道称来源于S.variicoloris和Pseudomonas sp.的D-苏氨酸醛缩酶属于非金属离子依赖型。The effects of metal ions and metal ion chelators such as Mn 2+ , Fe 2+ , Mg 2+ , Ca 2+ , Al 3+ , Cu 2+ , Co 2+ , Ni 2+ and EDTA on the enzymatic activity of condensation reaction were determined. The metal ions in the form of chloride salts or sulfate salts with a final concentration of 0.1mmol·L -1 were added to the activity measurement system. Methylsulfonylbenzaldehyde was used as the substrate to determine its enzymatic activity. Under the same conditions, the enzyme activity measured without adding any metal ions was set as 100% control, and the enzyme activity measured by adding metal ions was calculated as the percentage of control. The results showed that metal ions could activate the enzyme activity to a certain extent. The enzyme activity was the highest when Mn 2+ was added, indicating that Mn 2+ could promote the catalytic active center or correct conformation of the enzyme. D-threonine aldolase from A. xylosoxidans, X. oryzae, S. pomeroyi has been reported to exhibit similar activation; however, D-threonine aldolase from S. variicoloris and Pseudomonas sp. has also been reported Threonine aldolase is a non-metal ion dependent type.

实施例10:反应温度对重组苏氨酸醛缩酶ApDTA催化对甲砜基苯甲醛醛缩反应的影响Example 10: Influence of reaction temperature on the aldol reaction of p-methylsulfonylbenzaldehyde catalyzed by recombinant threonine aldolase ApDTA

分别在10℃和30℃下,在MES缓冲液(100mmol·L-1,pH 6.0)中,加入终浓度为50mmol·L-1甘氨酸,5mmol·L-1对甲砜基苯甲醛,50μmol·L-1PLP,50μmol·L-1Mn2+,反应液总体积为10mL,200rpm反应12h。液相色谱分析转化率和d.e.值。如表2所示。At 10℃ and 30℃, respectively, in MES buffer (100mmol·L -1 , pH 6.0), add the final concentration of 50mmol·L -1 glycine, 5mmol·L -1 p-methylsulfonylbenzaldehyde, 50μmol· L -1 PLP, 50 μmol·L -1 Mn 2+ , the total volume of the reaction solution was 10 mL, and the reaction was carried out at 200 rpm for 12 h. Conversion and de values were analyzed by liquid chromatography. As shown in table 2.

表2 不同反应温度对醛缩催化对甲砜基苯甲醛的影响Table 2 Effects of different reaction temperatures on aldehyde condensation catalysis for p-methylsulfonylbenzaldehyde

Figure BDA0002053258320000091
Figure BDA0002053258320000091

从表2可以看出,反应温度对醛缩催化对甲砜基苯甲醛有一定的影响。在10℃条件下比30℃得到更高的转化率和d.e.值,且低温有利于产物d.e.值的稳定与提高,转化率的提高说明了醛缩反应方向是放热反应。在不同温度下对反应方向有不同的偏好性。在低温下,反应朝着活化能低、速度快的方向进行,反应受动力学控制。因此,选择反应温度为10℃。As can be seen from Table 2, the reaction temperature has a certain influence on the aldehyde condensation catalysis p-methylsulfonylbenzaldehyde. The higher conversion and d.e. value were obtained at 10°C than at 30°C, and the low temperature was beneficial to the stability and improvement of the d.e. value of the product. The improvement of the conversion rate indicated that the direction of the aldehyde condensation reaction was an exothermic reaction. There are different preferences for the reaction direction at different temperatures. At low temperature, the reaction proceeds toward the direction of low activation energy and high speed, and the reaction is controlled by kinetics. Therefore, the reaction temperature was chosen to be 10°C.

实施例11:pH对重组苏氨酸醛缩酶ApDTA催化对甲砜基苯甲醛醛缩催化的影响Example 11: The effect of pH on the catalysis of recombinant threonine aldolase ApDTA on the aldol catalysis of methylsulfonylbenzaldehyde

在实施例6中不同pH缓冲液(100mmol·L-1,pH 6.0、7.0、8.0)中,加入终浓度为50mmol·L-1甘氨酸,5mmol·L-1对甲砜基苯甲醛,50μmol·L-1PLP,50μmol·L-1Mn2+,反应液总体积为10mL,在10℃,200rpm反应12h。液相色谱分析转化率和d.e.值。结果如表3所示。In Example 6, different pH buffers (100mmol·L -1 , pH 6.0, 7.0, 8.0) were added with final concentrations of 50mmol·L -1 glycine, 5mmol·L -1 p-methylsulfonylbenzaldehyde, 50μmol· L -1 PLP, 50 μmol·L -1 Mn 2+ , the total volume of the reaction solution was 10 mL, and the reaction was carried out at 10° C. and 200 rpm for 12 h. Conversion and de values were analyzed by liquid chromatography. The results are shown in Table 3.

表3 缓冲液pH对醛缩催化对甲砜基苯甲醛的影响Table 3 The effect of buffer pH on aldehyde condensation catalysis for p-methylsulfonylbenzaldehyde

缓冲液pHbuffer pH 转化率%Conversion rate% d.e.值d.e. value 5.05.0 4%4% 83%83% 6.06.0 65%65% 95%95% 7.07.0 50%50% 75%75% 8.08.0 50%50% 80%80% 9.09.0 50%50% 94%94% 10.010.0 29%29% 90%90%

从表3可以看出,反应体系的pH对ApDTA醛缩催化对甲砜基苯甲醛有一定的影响,在pH 6.0的缓冲液中,转化率和d.e.值达到最大,且d.e.值在整个反应进程中较为稳定。在pH 6.0时,ApDTA的裂解酶活力较低,逆反应裂解方向受到抑制。It can be seen from Table 3 that the pH of the reaction system has a certain influence on the catalysis of ApDTA aldehyde condensation on methylsulfonylbenzaldehyde. In the buffer solution of pH 6.0, the conversion rate and d.e. value reach the maximum, and the d.e. value in the whole reaction process. relatively stable. At pH 6.0, the lyase activity of ApDTA was low, and the reverse cleavage direction was inhibited.

实施例12:重组苏氨酸醛缩酶ApDTA用于制备l-syn-对甲砜基苯丝氨酸Example 12: Recombinant threonine aldolase ApDTA for the preparation of l-syn-p-methylsulfonylphenylserine

将反应体系放大至500mL,包括MES缓冲液(100mmol·L-1,pH 6.0)、1mol·L-1甘氨酸、100mmol·L-1对甲砜基苯甲醛、50μmol·L-1PLP、50μmol·L-1Mn2+、25kU·L-1ApDTA,在10℃,200rpm反应12h。反应过程如图4,反应产物的液相分析图谱如图5。待反应结束后,直接将反应后的混合物加入4倍体积的甲醇,4℃过夜保存,过滤收集沉淀物,并用甲醇进行洗涤回收甘氨酸。滤液真空浓缩后通过碱处理过的Dowex-1阴离子交换树脂,用水进行洗涤。产物(含甘氨酸)用20%乙酸进行洗脱,收集并真空浓缩残余物,并在ODS柱上纯化,得到目的产物。产品纯度99%以上,收率75%以上。The reaction system was enlarged to 500mL, including MES buffer (100mmol·L -1 , pH 6.0), 1mol·L -1 glycine, 100mmol·L -1 p-methylsulfonylbenzaldehyde, 50μmol·L -1 PLP, 50μmol· L -1 Mn 2+ and 25kU·L -1 ApDTA were reacted at 10°C and 200rpm for 12h. The reaction process is shown in Figure 4, and the liquid phase analysis chromatogram of the reaction product is shown in Figure 5. After the reaction, 4 times the volume of methanol was directly added to the reacted mixture, stored at 4° C. overnight, the precipitate was collected by filtration, and washed with methanol to recover glycine. The filtrate was concentrated in vacuo and passed through alkali treated Dowex-1 anion exchange resin and washed with water. The product (containing glycine) was eluted with 20% acetic acid and the residue was collected and concentrated in vacuo and purified on an ODS column to give the desired product. The purity of the product is over 99%, and the yield is over 75%.

以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。The above-mentioned embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention is subject to the claims.

序列表sequence listing

<110> 江南大学<110> Jiangnan University

<120> 一种表达D-苏氨酸醛缩酶的重组菌及其构建方法与应用<120> A recombinant bacterium expressing D-threonine aldolase and its construction method and application

<160> 2<160> 2

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 1140<211> 1140

<212> DNA<212> DNA

<213> (人工序列)<213> (artificial sequence)

<400> 1<400> 1

atgtcccagg aagtcatacg cggcatagcg ctgcccccgc cagcgcagcc gggtgatccg 60atgtcccagg aagtcatacg cggcatagcg ctgcccccgc cagcgcagcc gggtgatccg 60

ttggcccaag tcgacacgcc cagcctcgtg ctggacctga cgcccttcga agccaatctg 120ttggcccaag tcgacacgcc cagcctcgtg ctggacctga cgcccttcga agccaatctg 120

cgcgccatgc aggcttgggc ggaccgccac gaggtggcct tgcggccgca cgccaaggcg 180cgcgccatgc aggcttgggc ggaccgccac gaggtggcct tgcggccgca cgccaaggcg 180

cacaaatgcc ccgagatcgc gcggcgccaa ctcgcgctgg gcgcgcgtgg catctgttgc 240cacaaatgcc ccgagatcgc gcggcgccaa ctcgcgctgg gcgcgcgtgg catctgttgc 240

cagaaggtca gcgaggcgct gcctttcgtg gccgcgggca tccacgacat ccacatcagc 300cagaaggtca gcgaggcgct gcctttcgtg gccgcgggca tccacgacat ccacatcagc 300

aacgaagtcg tcgggcctgc caagcttgcc ttgctgggcc agctggcgcg cgtggccaag 360aacgaagtcg tcgggcctgc caagcttgcc ttgctgggcc agctggcgcg cgtggccaag 360

atgagcgtct gtgtggataa cgcccacaac ctggcgcagc tctcgcaagc catgacgcag 420atgagcgtct gtgtggataa cgcccacaac ctggcgcagc tctcgcaagc catgacgcag 420

gcgggcgcgc agatcgacgt gctggtcgaa gtggacgtcg gccaaggccg ctgcggcgtg 480gcgggcgcgc agatcgacgt gctggtcgaa gtggacgtcg gccaaggccg ctgcggcgtg 480

tcggacgatg cgctggtgct ggcgctggcg caacaggcgc gtgacctgcc cggcgtgcag 540tcggacgatg cgctggtgct ggcgctggcg caacaggcgc gtgacctgcc cggcgtgcag 540

ttcgtgggct tgcaggccta tcacggctcg gtgcagcacg cccgtacgcg tgaggagcgc 600ttcgtgggct tgcaggccta tcacggctcg gtgcagcacg cccgtacgcg tgaggagcgc 600

gcgcagatct gcaagcaggc cgcgcgtatc gcggcctcgt acgcccagct gctgcgtgaa 660gcgcagatct gcaagcaggc cgcgcgtatc gcggcctcgt acgcccagct gctgcgtgaa 660

agcggcatcg cttgcgacat cattaccggg ggcggcacgg gcagcgcaga attcgacgcg 720agcggcatcg cttgcgacat cattaccggg ggcggcacgg gcagcgcaga attcgacgcg 720

gcaagcggcg tctataccga actgcaagcg ggctcttacg cgttcatgga cggcgactac 780gcaagcggcg tctataccga actgcaagcg ggctcttacg cgttcatgga cggcgactac 780

ggcgcgaacg aatgggacgg tccgctgaaa ttccagaaca gcctgttcct gttgtccacc 840ggcgcgaacg aatgggacgg tccgctgaaa ttccagaaca gcctgttcct gttgtccacc 840

gtcatgagcg tgccggcgcc cgaccgcgtg atcctggacg caggcctgaa gtccaccacc 900gtcatgagcg tgccggcgcc cgaccgcgtg atcctggacg caggcctgaa gtccaccacc 900

gccgaatgcg gcccgcccgc cgtcttcgat acggcgggcc tgacctatgc ggcgattaac 960gccgaatgcg gcccgcccgc cgtcttcgat acggcgggcc tgacctatgc ggcgattaac 960

gacgaacacg gcgtcgtgcg cgttgcgccc gatgccaccg cgcccgcgct gggcgacgtg 1020gacgaacacg gcgtcgtgcg cgttgcgccc gatgccaccg cgcccgcgct gggcgacgtg 1020

ctgcgtctgg tgccctcgca cgtggacccg acgttcaacc tgcacgacgg cctggtcgtg 1080ctgcgtctgg tgccctcgca cgtggacccg acgttcaacc tgcacgacgg cctggtcgtg 1080

gtgcgcaatg acgtcgtaga agacgtctgg gaaatcgccg cgcgcggctt ctcgcgctga 1140gtgcgcaatg acgtcgtaga agacgtctgg gaaatcgccg cgcgcggctt ctcgcgctga 1140

<210> 2<210> 2

<211> 379<211> 379

<212> PRT<212> PRT

<213> (人工序列)<213> (artificial sequence)

<400> 2<400> 2

Met Ser Gln Glu Val Ile Arg Gly Ile Ala Leu Pro Pro Pro Ala GlnMet Ser Gln Glu Val Ile Arg Gly Ile Ala Leu Pro Pro Pro Ala Gln

1 5 10 151 5 10 15

Pro Gly Asp Pro Leu Ala Gln Val Asp Thr Pro Ser Leu Val Leu AspPro Gly Asp Pro Leu Ala Gln Val Asp Thr Pro Ser Leu Val Leu Asp

20 25 30 20 25 30

Leu Thr Pro Phe Glu Ala Asn Leu Arg Ala Met Gln Ala Trp Ala AspLeu Thr Pro Phe Glu Ala Asn Leu Arg Ala Met Gln Ala Trp Ala Asp

35 40 45 35 40 45

Arg His Glu Val Ala Leu Arg Pro His Ala Lys Ala His Lys Cys ProArg His Glu Val Ala Leu Arg Pro His Ala Lys Ala His Lys Cys Pro

50 55 60 50 55 60

Glu Ile Ala Arg Arg Gln Leu Ala Leu Gly Ala Arg Gly Ile Cys CysGlu Ile Ala Arg Arg Gln Leu Ala Leu Gly Ala Arg Gly Ile Cys Cys

65 70 75 8065 70 75 80

Gln Lys Val Ser Glu Ala Leu Pro Phe Val Ala Ala Gly Ile His AspGln Lys Val Ser Glu Ala Leu Pro Phe Val Ala Ala Gly Ile His Asp

85 90 95 85 90 95

Ile His Ile Ser Asn Glu Val Val Gly Pro Ala Lys Leu Ala Leu LeuIle His Ile Ser Asn Glu Val Val Gly Pro Ala Lys Leu Ala Leu Leu

100 105 110 100 105 110

Gly Gln Leu Ala Arg Val Ala Lys Met Ser Val Cys Val Asp Asn AlaGly Gln Leu Ala Arg Val Ala Lys Met Ser Val Cys Val Asp Asn Ala

115 120 125 115 120 125

His Asn Leu Ala Gln Leu Ser Gln Ala Met Thr Gln Ala Gly Ala GlnHis Asn Leu Ala Gln Leu Ser Gln Ala Met Thr Gln Ala Gly Ala Gln

130 135 140 130 135 140

Ile Asp Val Leu Val Glu Val Asp Val Gly Gln Gly Arg Cys Gly ValIle Asp Val Leu Val Glu Val Asp Val Gly Gln Gly Arg Cys Gly Val

145 150 155 160145 150 155 160

Ser Asp Asp Ala Leu Val Leu Ala Leu Ala Gln Gln Ala Arg Asp LeuSer Asp Asp Ala Leu Val Leu Ala Leu Ala Gln Gln Ala Arg Asp Leu

165 170 175 165 170 175

Pro Gly Val Gln Phe Val Gly Leu Gln Ala Tyr His Gly Ser Val GlnPro Gly Val Gln Phe Val Gly Leu Gln Ala Tyr His Gly Ser Val Gln

180 185 190 180 185 190

His Ala Arg Thr Arg Glu Glu Arg Ala Gln Ile Cys Lys Gln Ala AlaHis Ala Arg Thr Arg Glu Glu Arg Ala Gln Ile Cys Lys Gln Ala Ala

195 200 205 195 200 205

Arg Ile Ala Ala Ser Tyr Ala Gln Leu Leu Arg Glu Ser Gly Ile AlaArg Ile Ala Ala Ser Tyr Ala Gln Leu Leu Arg Glu Ser Gly Ile Ala

210 215 220 210 215 220

Cys Asp Ile Ile Thr Gly Gly Gly Thr Gly Ser Ala Glu Phe Asp AlaCys Asp Ile Ile Thr Gly Gly Gly Thr Gly Ser Ala Glu Phe Asp Ala

225 230 235 240225 230 235 240

Ala Ser Gly Val Tyr Thr Glu Leu Gln Ala Gly Ser Tyr Ala Phe MetAla Ser Gly Val Tyr Thr Glu Leu Gln Ala Gly Ser Tyr Ala Phe Met

245 250 255 245 250 255

Asp Gly Asp Tyr Gly Ala Asn Glu Trp Asp Gly Pro Leu Lys Phe GlnAsp Gly Asp Tyr Gly Ala Asn Glu Trp Asp Gly Pro Leu Lys Phe Gln

260 265 270 260 265 270

Asn Ser Leu Phe Leu Leu Ser Thr Val Met Ser Val Pro Ala Pro AspAsn Ser Leu Phe Leu Leu Ser Thr Val Met Ser Val Pro Ala Pro Asp

275 280 285 275 280 285

Arg Val Ile Leu Asp Ala Gly Leu Lys Ser Thr Thr Ala Glu Cys GlyArg Val Ile Leu Asp Ala Gly Leu Lys Ser Thr Thr Ala Glu Cys Gly

290 295 300 290 295 300

Pro Pro Ala Val Phe Asp Thr Ala Gly Leu Thr Tyr Ala Ala Ile AsnPro Pro Ala Val Phe Asp Thr Ala Gly Leu Thr Tyr Ala Ala Ile Asn

305 310 315 320305 310 315 320

Asp Glu His Gly Val Val Arg Val Ala Pro Asp Ala Thr Ala Pro AlaAsp Glu His Gly Val Val Arg Val Ala Pro Asp Ala Thr Ala Pro Ala

325 330 335 325 330 335

Leu Gly Asp Val Leu Arg Leu Val Pro Ser His Val Asp Pro Thr PheLeu Gly Asp Val Leu Arg Leu Val Pro Ser His Val Asp Pro Thr Phe

340 345 350 340 345 350

Asn Leu His Asp Gly Leu Val Val Val Arg Asn Asp Val Val Glu AspAsn Leu His Asp Gly Leu Val Val Val Arg Asn Asp Val Val Glu Asp

355 360 365 355 360 365

Val Trp Glu Ile Ala Ala Arg Gly Phe Ser ArgVal Trp Glu Ile Ala Ala Arg Gly Phe Ser Arg

370 375 370 375

Claims (5)

1. The application of a recombinant bacterium for expressing D-threonine aldolase in the synthesis of l-syn-p-methylsulfonylphenylserine is characterized in that the recombinant bacterium is prepared fromE. coli BL21(DE3) is used as a host, pET28a is used as an expression vector, and D-threonine aldolase with an amino acid sequence shown as SEQ ID NO.2 is expressed.
2. The application of claim 1, wherein the construction method of the recombinant bacterium comprises the following steps:
(1) construction of the recombinant plasmid pET28a-ApDTA: the D-threonine aldolase geneApThe DTA is connected with the digested plasmid pET28a to obtain a recombinant expression vector pET28a-ApDTA;
(2) Construction of recombinant bacteriaE. coli BL21(DE3)/pET28a-ApDTA: the constructed recombinant expression vector pET28a-ApDTA heat transfer into escherichia coli BL21(DE3) competence, and recombinant bacteria are obtained by culture and screeningE. coli BL21(DE3)/pET28a-ApDTA。
3. Use according to claim 1, characterized in that: the application is to synthesize l-syn-p-methylsulfonylphenylserine by using the D-threonine aldolase produced by fermentation of the recombinant bacteria as a catalyst.
4. Use according to claim 3, characterized in that: the application is particularly to catalyzing aldehyde and glycine to synthesize l-syn-p-methylsulfonyl phenyl serine.
5. Use according to claim 3, characterized in that: the application is that the reaction temperature is 5-15 DEG CoC, reacting for 10-20 hours under the condition that the pH value is 5.5-6.5.
CN201910380625.8A 2019-05-08 2019-05-08 A kind of recombinant bacteria expressing D-threonine aldolase and its construction method and application Active CN110272856B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910380625.8A CN110272856B (en) 2019-05-08 2019-05-08 A kind of recombinant bacteria expressing D-threonine aldolase and its construction method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910380625.8A CN110272856B (en) 2019-05-08 2019-05-08 A kind of recombinant bacteria expressing D-threonine aldolase and its construction method and application

Publications (2)

Publication Number Publication Date
CN110272856A CN110272856A (en) 2019-09-24
CN110272856B true CN110272856B (en) 2022-05-03

Family

ID=67959851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910380625.8A Active CN110272856B (en) 2019-05-08 2019-05-08 A kind of recombinant bacteria expressing D-threonine aldolase and its construction method and application

Country Status (1)

Country Link
CN (1) CN110272856B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686500B (en) * 2020-12-30 2023-07-14 华东师范大学 A kind of 1,4-α-glucan branching enzyme, coding gene, engineering strain and application
CN113322248B (en) * 2021-05-12 2022-10-28 浙江工业大学 High-temperature-resistant L-threonine aldolase and application thereof in synthesis of p-methylsulfonylphenylserine
CN114703169B (en) * 2022-04-29 2023-10-31 重庆大学 L-threonine aldolase mutant R318L/H128N and application thereof
WO2024077428A1 (en) * 2022-10-10 2024-04-18 武汉远大弘元股份有限公司 Enzyme with d-amino acid synthesis activity and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663361A (en) * 1996-08-19 1997-09-02 Schering Corporation Process for preparing intermediates to florfenicol
CN102442930A (en) * 2011-11-02 2012-05-09 江苏宇翔化工有限公司 Preparation method of DL-p-methylsulfonyl phenyl serine ethyl ester
WO2020043077A1 (en) * 2018-08-29 2020-03-05 北京科技大学 Method for preparing l-threo/erythro-p-methylsulfonylphenyl serine and enzyme for method
CN110872605A (en) * 2018-08-29 2020-03-10 北京科技大学 Method for preparing L-erythro-p-methylsulfonyl phenylserine by enzyme catalysis
CN111139230A (en) * 2020-01-17 2020-05-12 浙江大学 A kind of L-threonine aldolase mutant, gene and method for preparing L-syn-p-methylsulfonyl phenylserine
CN112175892A (en) * 2020-09-03 2021-01-05 浙江大学 Engineering bacterium for co-expressing L-threonine aldolase and PLP synthase and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2923654B2 (en) * 1989-10-25 1999-07-26 電気化学工業株式会社 DTA gene and its use
CN102226207B (en) * 2004-10-13 2016-07-06 三井化学株式会社 D-Ser preparation method
JP5028850B2 (en) * 2005-08-26 2012-09-19 公益財団法人地球環境産業技術研究機構 High stereoselectivity L-threonine aldolase and gene encoding the same
CN104673814B (en) * 2015-02-27 2018-02-02 台州职业技术学院 A kind of L threonine aldolases for coming from enterobacter cloacae and its application
CN113481188B (en) * 2018-11-06 2023-03-24 王喆明 Threonine aldolase mutant and application thereof in preparation of substituted phenylserine derivative
CN111849951B (en) * 2020-04-22 2022-09-20 重庆大学 L-threonine aldolase mutant R318M and its application
CN112387299B (en) * 2020-11-30 2022-02-01 江南大学 Method for preparing L-furan serine by biomass chemical-enzymatic method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663361A (en) * 1996-08-19 1997-09-02 Schering Corporation Process for preparing intermediates to florfenicol
CN102442930A (en) * 2011-11-02 2012-05-09 江苏宇翔化工有限公司 Preparation method of DL-p-methylsulfonyl phenyl serine ethyl ester
WO2020043077A1 (en) * 2018-08-29 2020-03-05 北京科技大学 Method for preparing l-threo/erythro-p-methylsulfonylphenyl serine and enzyme for method
CN110872605A (en) * 2018-08-29 2020-03-10 北京科技大学 Method for preparing L-erythro-p-methylsulfonyl phenylserine by enzyme catalysis
CN111139230A (en) * 2020-01-17 2020-05-12 浙江大学 A kind of L-threonine aldolase mutant, gene and method for preparing L-syn-p-methylsulfonyl phenylserine
CN112175892A (en) * 2020-09-03 2021-01-05 浙江大学 Engineering bacterium for co-expressing L-threonine aldolase and PLP synthase and application thereof

Also Published As

Publication number Publication date
CN110272856A (en) 2019-09-24

Similar Documents

Publication Publication Date Title
CN110272856B (en) A kind of recombinant bacteria expressing D-threonine aldolase and its construction method and application
WO2022228505A1 (en) D-amino acid oxidase mutant and application thereof in preparing l-glufosinate
CN107164342A (en) A kind of epoxide hydrolase in Kidney bean source and its application
CN103614349B (en) Enol dehydrogenase, encoding gene, carrier, engineering bacteria and application of enol dehydrogenase
CN107937377A (en) A kind of D N carbamyl hydrolysis enzymes and application
CN112410312A (en) A kind of cyclohexanone monooxygenase and its application
WO2022228506A1 (en) Glu/leu/phe/val dehydrogenase mutant and application thereof in preparation of l-phosphinothricin
CN102994470A (en) Pronucleus expression of epoxide hydrolase gene (EH-B) and preparation of chiral epichlorohydrin
CN114134134B (en) L-threonine aldolase mutant and application thereof in synthesis of L-syn-p-methylsulfonyl phenylserine
CN112522228B (en) R-aminotransferase from pseudomonas ammoxidation and synthesis method thereof
JP2017108740A (en) Modified meso-diaminopimelic acid dehydrogenase
CN110819601B (en) Reductase, encoding gene, recombinant vector, recombinant cell and application thereof
CN109456986B (en) Dioxygenase Snpd with chirality selectivity for intermediates of aryloxyphenoxypropionic acid herbicides and its encoding gene and application
CN109337879B (en) A kind of malate dehydrogenase PbMDH and its coding sequence and application
CN111454918A (en) An alkenol reductase mutant and its application in the preparation of (R)-citronellal
CN113322248B (en) High-temperature-resistant L-threonine aldolase and application thereof in synthesis of p-methylsulfonylphenylserine
AU2011332131B2 (en) Compositions and methods of producing enterokinase in yeast
CN116949024A (en) Phenylalanine ammonia lyase mutant and application thereof in synthesis of (S) -2-chloro-phenylalanine
CN106086089A (en) A kind of method that enzyme process asymmetric reduction citral improves (R) citronellal optical purity
CN112481320B (en) A kind of method for preparing (-)γ-lactam with high catalytic efficiency
CN110923223B (en) A novel nitrilase and its application
CN116200361A (en) A Novel R-Type ω-Transaminase TA-R1
CN114934061A (en) Engineering bacteria and their application in whole-cell catalyzed production of D-pantolactone from ketopantolactone
CN114686547A (en) A kind of method for the enzymatic synthesis of acetyl-CoA with diacerein as donor
CN112143725A (en) A kind of recombinant esterase, coding gene, engineering bacteria and application in splitting metalaxyl

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant