[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110277211B - 一种钐铁氮磁纳米管的制备方法 - Google Patents

一种钐铁氮磁纳米管的制备方法 Download PDF

Info

Publication number
CN110277211B
CN110277211B CN201910643628.6A CN201910643628A CN110277211B CN 110277211 B CN110277211 B CN 110277211B CN 201910643628 A CN201910643628 A CN 201910643628A CN 110277211 B CN110277211 B CN 110277211B
Authority
CN
China
Prior art keywords
samarium
iron
magnetic
alumina template
nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910643628.6A
Other languages
English (en)
Other versions
CN110277211A (zh
Inventor
徐靖才
洪波
王新庆
彭晓领
金红晓
金顶峰
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201910643628.6A priority Critical patent/CN110277211B/zh
Publication of CN110277211A publication Critical patent/CN110277211A/zh
Application granted granted Critical
Publication of CN110277211B publication Critical patent/CN110277211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/009Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity bidimensional, e.g. nanoscale period nanomagnet arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种钐铁氮磁纳米管的制备方法,该发明以多孔氧化铝为模板,在垂直磁场下采用脉冲电沉积法制备钐铁纳米管阵列,然后将钐铁纳米管阵列置于热处理炉中,经过渗氮取向、退火氢化和氮化得到钐铁氮磁纳米管阵列。该方法获得的钐铁氮磁纳米管阵列为高度有序纳米管阵列,纳米管的外径与多孔氧化铝模板的孔径一致;钐铁氮磁纳米阵列具有优异的磁性能和磁各向异性。

Description

一种钐铁氮磁纳米管的制备方法
技术领域
本发明涉及一种钐铁氮磁纳米管的制备方法,属于材料制备领域。
背景技术
永磁材料是具有较大剩磁、矫顽力、磁能积和一经磁化即能保持恒定磁性的材料。永磁材料经历了碳钢-铝镍钴-铁氧体-SmCo5-Sm2Co17-Nd2Fe14B 几个主要的发展阶段。其中稀土永磁材料是 20 世纪 60 年代发展起来的新型永磁材料,包括第一代稀土永磁 1:5型 SmCo 合金,第二代稀土永磁 2:17 型 SmCo 合金;第一代和第二代稀土永磁材料都含有稀土元素 Co,而 Co 是战略物资、价格昂贵,这在很大程度上限制了它们的广泛使用,于是人们开发了第三代Nd-Fe-B稀土永磁材料。与第一、二代稀土永磁材料相比,Nd-Fe-B的磁性能优异,迅速稀土永磁体市场,有着“磁王”的美誉。但Nd-Fe-B本身并不完美,缺点同样明显,如稀土含量高、耐腐蚀性差和高温时居里温度低等。因此人们积极探寻新一代稀土永磁材料。Sm-Fe-N 不管从磁性能方面来说,还是从生产成本上来说,都很有可能取代 Nd-Fe-B,成为人们期待的第四代稀土永磁材料。
目前,Sm-Fe-N的制备方法主要有熔体快淬法(RQ)、机械合金化法(MA)、粉末冶金法(PM)、氢化-歧化-脱氢-再化合法(HDDR)。但随着现代人类社会高科技的发展,电子器件微型化、功能兼容一体化的要求越来越高。当前工艺制备得到的Sm-Fe-N磁体难以满足高端需要,所以急需开发具有高磁能积和优异的磁各向异性的Sm-Fe-N磁性纳米材料。
发明内容
本发明的目的在于提供一种钐铁氮磁纳米管的制备方法,该制备方法得到的钐铁氮磁纳米管为高度有序纳米管阵列,纳米管的外径与多孔氧化铝模板的孔径一致;钐铁氮磁纳米管具有高磁能积和优异的磁各向异性。
为了实现上述发明目的,本发明的具体步骤为:
1)、多孔氧化铝模板准备:选取孔径为200nm双通的氧化铝模板,在其背面磁控溅射一层厚度为1 μm的金膜,依次经过甲基二甲氧基硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米管的制备:在磁场下采用脉冲电沉积法制备钐铁纳米管:以第一步准备好氧化铝模板作为工作电极,水银电极为对电极,Ag/AgCl电极为辅助电极,加入沉积液后在30~50℃搅拌下进行脉冲电沉积,沉积完成用2 mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
所述的磁场的方向与纳米管的生长方向垂直,磁场的大小为1~5 T;
所述的沉积液的溶质为:SmCl3•6H2O、FeCl2•4H2O、Na3C6H5O7•2H2O、NaCl、H3BO3和抗坏血酸,溶剂为2:1的水和乙二醇溶液;
所述的脉冲电沉积的条件为:电流密度为10~20 mA/cm2,脉冲频率为1~10 Hz,脉冲占空比为0.1~0.5;
3)、渗氮取向:将钐铁纳米管列置于热处理炉中,在100~150℃保温1~5h,然后以恒定的速率通入氨气,同时施加0.5~1T的磁场,在100~150℃初步渗氮5~10h;
4)、退火氢化:以恒定的速率通入高纯氩气,在400~600℃下退火1~5h,然后以恒定的速率通入含50%氢气的氩氢混合气,在300~400℃下氢化10~24h;
5)、氮化:以恒定的速率通入高纯氮气,在300~400℃下氮化2~20h,降至室温,取出样品即得到钐铁氮磁纳米管。
技术效果:本发明利用垂直磁场、水和乙二醇混合溶剂和脉冲电沉积的工艺条件,使Sm3+、Fe2+能够共沉积在多孔氧化铝孔道中形成钐铁磁纳米管;本发明纳米尺寸的钐铁纳米管,通过初步渗氮取向、退火氢化,为氮化提供有利条件,得到含氮量较高的钐铁氮磁纳米管,使钐铁氮磁纳米管具有优异的磁各向异性。
具体实施方式
下面是结合实施例对本发明进行详细描述,以便更好地理解本发明的目的、特点和优点。虽然本发明是结合该具体实施例进行描述,但并不意味着本发明局限于所描述具体实施例。相反,对可以包括在本发明权利要求内所限定的保护范围内的实施方式进行替代、改进和等同的实施方式,都属于本发明的保护范围。对于未特别标注的工艺参数可按常规技术进行。
本发明的具体步骤为:
1)、多孔氧化铝模板准备:选取孔径为200nm双通的氧化铝模板,在其背面磁控溅射一层厚度为1 μm的金膜,依次经过甲基二甲氧基硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米管的制备:在磁场下采用脉冲电沉积法制备钐铁纳米管:以第一步准备好氧化铝模板作为工作电极,水银电极为对电极,Ag/AgCl电极为辅助电极,加入沉积液后在30~50℃搅拌下进行脉冲电沉积,沉积完成用2 mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
所述的磁场的方向与纳米管的生长方向垂直,磁场的大小为1~5 T;
所述的沉积液的溶质为:SmCl3•6H2O、FeCl2•4H2O、Na3C6H5O7•2H2O、 NaCl、H3BO3和抗坏血酸,溶剂为2:1的水和乙二醇溶液;
所述的脉冲电沉积的条件为:电流密度为10~20 mA/cm2,脉冲频率为1~10 Hz,脉冲占空比为0.1~0.5;
3)、渗氮取向:将钐铁纳米管列置于热处理炉中,在100~150℃保温1~5h,然后以恒定的速率通入氨气,同时施加0.5~1T的磁场,在100~150℃初步渗氮5~10h;
4)、退火氢化:以恒定的速率通入高纯氩气,在400~600℃下退火1~5h,然后以恒定的速率通入含50%氢气的氩氢混合气,在300~400℃下氢化10~24h;
5)、氮化:以恒定的速率通入高纯氮气,在300~400℃下氮化2~20h,降至室温,取出样品即得到钐铁氮磁纳米管。
实施例1:
步骤为:
1)、多孔氧化铝模板准备:选取孔径为200nm双通的氧化铝模板,在其背面磁控溅射一层厚度为1 μm的金膜,依次经过甲基二甲氧基硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米管的制备:在磁场下采用脉冲电沉积法制备钐铁纳米管:以第一步准备好氧化铝模板作为工作电极,水银电极为对电极,Ag/AgCl电极为辅助电极,加入沉积液后在50℃搅拌下进行脉冲电沉积,沉积完成用2 mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
所述的磁场的方向与纳米管的生长方向垂直,磁场的大小为5 T;
所述的沉积液的溶质为:0.6 mol/L SmCl3•6H2O、0.1 mol/L FeCl2•4H2O、0.1mol/L Na3C6H5O7•2H2O、0.06 mol/L NaCl、0.6 mol/L H3BO3和抗坏血酸,溶剂为2:1的水和乙二醇溶液;
所述的脉冲电沉积的条件为:电流密度为10 mA/cm2,脉冲频率为10 Hz,脉冲占空比为0.5;
3)、渗氮取向:将钐铁纳米管列置于热处理炉中,在150℃保温4h,然后以恒定的速率通入氨气,同时施加1T的磁场,在150℃初步渗氮5h;
4)、退火氢化:以恒定的速率通入高纯氩气,在400℃下退火4h,然后以恒定的速率通入含50%氢气的氩氢混合气,在400℃下氢化20h;
5)、氮化:以恒定的速率通入高纯氮气,在400℃下氮化10h,降至室温,取出样品即得到钐铁氮磁纳米管。
对实施例1所制备的样品进行XRD和TEM表征,检测到了钐铁氮物相,钐铁氮的形貌为有序纳米管阵列结构;对钐铁氮磁纳米管阵列进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。
实施例2:
步骤为:
1)、多孔氧化铝模板准备:选取孔径为200nm双通的氧化铝模板,在其背面磁控溅射一层厚度为1 μm的金膜,依次经过甲基二甲氧基硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米管的制备:在磁场下采用脉冲电沉积法制备钐铁纳米管:以第一步准备好氧化铝模板作为工作电极,水银电极为对电极,Ag/AgCl电极为辅助电极,加入沉积液后在30℃搅拌下进行脉冲电沉积,沉积完成用2 mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
所述的磁场的方向与纳米管的生长方向垂直,磁场的大小为1 T;
所述的沉积液的溶质为:0.6 mol/L SmCl3•6H2O、0.1 mol/L FeCl2•4H2O、0.1mol/L Na3C6H5O7•2H2O、0.06 mol/L NaCl、0.6 mol/L H3BO3和抗坏血酸,溶剂为2:1的水和乙二醇溶液;
所述的脉冲电沉积的条件为:电流密度为20 mA/cm2,脉冲频率为1Hz,脉冲占空比为0.1;
3)、渗氮取向:将钐铁纳米管列置于热处理炉中,在100℃保温5h,然后以恒定的速率通入氨气,同时施加0.5T的磁场,在100℃初步渗氮5~10h;
4)、退火氢化:以恒定的速率通入高纯氩气,在500℃下退火5h,然后以恒定的速率通入含50%氢气的氩氢混合气,在300℃下氢化24h;
5)、氮化:以恒定的速率通入高纯氮气,在300℃下氮化20h,降至室温,取出样品即得到钐铁氮磁纳米管。
对实施例2所制备的样品进行XRD和TEM表征,检测到了钐铁氮物相,钐铁氮的形貌为有序纳米管阵列结构;对钐铁氮磁纳米管阵列进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。
实施例3:
步骤为:
1)、多孔氧化铝模板准备:选取孔径为200nm双通的氧化铝模板,在其背面磁控溅射一层厚度为1 μm的金膜,依次经过甲基二甲氧基硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米管的制备:在磁场下采用脉冲电沉积法制备钐铁纳米管:以第一步准备好氧化铝模板作为工作电极,水银电极为对电极,Ag/AgCl电极为辅助电极,加入沉积液后在40℃搅拌下进行脉冲电沉积,沉积完成用2 mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
所述的磁场的方向与纳米管的生长方向垂直,磁场的大小为2 T;
所述的沉积液的溶质为:0.6 mol/L SmCl3•6H2O、0.1 mol/L FeCl2•4H2O、0.1mol/L Na3C6H5O7•2H2O、0.06 mol/L NaCl、0.6 mol/L H3BO3和抗坏血酸,溶剂为2:1的水和乙二醇溶液;
所述的脉冲电沉积的条件为:电流密度为15 mA/cm2,脉冲频率为8 Hz,脉冲占空比为0.3;
3)、渗氮取向:将钐铁纳米管列置于热处理炉中,在120℃保温3h,然后以恒定的速率通入氨气,同时施加0.8T的磁场,在120℃初步渗氮8h;
4)、退火氢化:以恒定的速率通入高纯氩气,在600℃下退火1h,然后以恒定的速率通入含50%氢气的氩氢混合气,在400℃下氢化10h;
5)、氮化:以恒定的速率通入高纯氮气,在400℃下氮化10h,降至室温,取出样品即得到钐铁氮磁纳米管。
对实施例3所制备的样品进行XRD和TEM表征,检测到了钐铁氮物相,钐铁氮的形貌为有序纳米管阵列结构;对钐铁氮磁纳米管阵列进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。
实施例4:
步骤为:
1)、多孔氧化铝模板准备:选取孔径为200nm双通的氧化铝模板,在其背面磁控溅射一层厚度为1 μm的金膜,依次经过甲基二甲氧基硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米管的制备:在磁场下采用脉冲电沉积法制备钐铁纳米管:以第一步准备好氧化铝模板作为工作电极,水银电极为对电极,Ag/AgCl电极为辅助电极,加入沉积液后在50℃搅拌下进行脉冲电沉积,沉积完成用2 mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
所述的磁场的方向与纳米管的生长方向垂直,磁场的大小为4 T;
所述的沉积液的溶质为:0.6 mol/L SmCl3•6H2O、0.1 mol/L FeCl2•4H2O、0.1mol/L Na3C6H5O7•2H2O、0.06 mol/L NaCl、0.6 mol/L H3BO3和抗坏血酸,溶剂为2:1的水和乙二醇溶液;
所述的脉冲电沉积的条件为:电流密度为12 mA/cm2,脉冲频率为3 Hz,脉冲占空比为0.5;
3)、渗氮取向:将钐铁纳米管列置于热处理炉中,在100℃保温5h,然后以恒定的速率通入氨气,同时施加1T的磁场,在100℃初步渗氮10h;
4)、退火氢化:以恒定的速率通入高纯氩气,在500℃下退火5h,然后以恒定的速率通入含50%氢气的氩氢混合气,在400℃下氢化15h;
5)、氮化:以恒定的速率通入高纯氮气,在400℃下氮化15h,降至室温,取出样品即得到钐铁氮磁纳米管。
对实施例4所制备的样品进行XRD和TEM表征,检测到了钐铁氮物相,钐铁氮的形貌为有序纳米管阵列结构;对钐铁氮磁纳米管阵列进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。

Claims (1)

1.一种钐铁氮磁纳米管的制备方法,其特征在于,由以下步骤组成:
1)、多孔氧化铝模板准备:选取孔径为200nm双通的氧化铝模板,在其背面磁控溅射一层厚度为1 μm的金膜,依次经过甲基二甲氧基硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米管的制备:在磁场下采用脉冲电沉积法制备钐铁纳米管:以第一步准备好氧化铝模板作为工作电极,水银电极为对电极,Ag/AgCl电极为辅助电极,加入沉积液后在30~50℃搅拌下进行脉冲电沉积,沉积完成用2 mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
所述的磁场的方向与纳米管的生长方向垂直,磁场的大小为1~5 T;
所述的沉积液的溶质为:SmCl3•6H2O、FeCl2•4H2O、Na3C6H5O7•2H2O、NaCl、H3BO3和抗坏血酸,溶剂为2:1的水和乙二醇溶液;
所述的脉冲电沉积的条件为:电流密度为10~20 mA/cm2,脉冲频率为1~10 Hz,脉冲占空比为0.1~0.5;
3)、渗氮取向:将钐铁纳米管列置于热处理炉中,在100~150℃保温1~5h,然后以恒定的速率通入氨气,同时施加0.5~1T的磁场,在100~150℃初步渗氮5~10h;
4)、退火氢化:以恒定的速率通入高纯氩气,在400~600℃下退火1~5h,然后以恒定的速率通入含50%氢气的氩氢混合气,在300~400℃下氢化10~24h;
5)、氮化:以恒定的速率通入高纯氮气,在300~400℃下氮化2~20h,降至室温,取出样品即得到钐铁氮磁纳米管。
CN201910643628.6A 2019-07-17 2019-07-17 一种钐铁氮磁纳米管的制备方法 Active CN110277211B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910643628.6A CN110277211B (zh) 2019-07-17 2019-07-17 一种钐铁氮磁纳米管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910643628.6A CN110277211B (zh) 2019-07-17 2019-07-17 一种钐铁氮磁纳米管的制备方法

Publications (2)

Publication Number Publication Date
CN110277211A CN110277211A (zh) 2019-09-24
CN110277211B true CN110277211B (zh) 2020-09-15

Family

ID=67964670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910643628.6A Active CN110277211B (zh) 2019-07-17 2019-07-17 一种钐铁氮磁纳米管的制备方法

Country Status (1)

Country Link
CN (1) CN110277211B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144048A (ja) * 2004-11-17 2006-06-08 Sumitomo Metal Mining Co Ltd 希土類−遷移金属−窒素系磁石粉末の製造方法、これを用いたボンド磁石用組成物、およびボンド磁石
JP2015172223A (ja) * 2014-03-11 2015-10-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN106960712A (zh) * 2017-04-10 2017-07-18 华北理工大学 一种亚稳态钐铁合金氮化晶化的方法
CN108597710A (zh) * 2018-04-13 2018-09-28 徐靖才 一种钐铁氮磁纳米阵列的制备方法
CN108914174A (zh) * 2018-08-07 2018-11-30 河北工业大学 Tb-Dy-Fe-Co合金磁性纳米管阵列的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131636A2 (en) * 2008-04-14 2009-10-29 Rolls-Royce Corporation Manufacture of field activated components by stereolithography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144048A (ja) * 2004-11-17 2006-06-08 Sumitomo Metal Mining Co Ltd 希土類−遷移金属−窒素系磁石粉末の製造方法、これを用いたボンド磁石用組成物、およびボンド磁石
JP2015172223A (ja) * 2014-03-11 2015-10-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN106960712A (zh) * 2017-04-10 2017-07-18 华北理工大学 一种亚稳态钐铁合金氮化晶化的方法
CN108597710A (zh) * 2018-04-13 2018-09-28 徐靖才 一种钐铁氮磁纳米阵列的制备方法
CN108914174A (zh) * 2018-08-07 2018-11-30 河北工业大学 Tb-Dy-Fe-Co合金磁性纳米管阵列的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mesoporous-structure enhanced gas-sensing properties of nickel oxides nanowires;Xiaoqing Li;《Materials Research Bulletin》;20170207;全文 *

Also Published As

Publication number Publication date
CN110277211A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
CN104946921B (zh) 一种强永磁性纳米多孔Fe-Pt合金及其制备方法
CN104078175B (zh) 一种钐钴基纳米晶永磁体材料的制备方法
CN101692364B (zh) 硬磁管包覆软磁线型一维纳米永磁材料及其制备方法
JP6470816B2 (ja) 高保磁力Nd−Fe−B希土類永久磁石及びその製造プロセス
KR101649653B1 (ko) 무전해 또는 전해 증착법을 이용한 나노복합 자석의 제조방법
JP2015212416A (ja) コア−シェル−コアナノ粒子系、コア−シェル−コアFeCo/SiO2/MnBiナノ粒子系を調製する方法、およびMnBiナノ粒子とのFeCo/SiO2ナノ粒子のコア−シェル−コアナノ凝集体
CN108597710B (zh) 一种钐铁氮磁纳米阵列的制备方法
JP6427061B2 (ja) コア−シェル−シェルFeCo/SiO2/MnBiナノ粒子を調製する方法、およびコア−シェル−シェルFeCo/SiO2/MnBiナノ粒子
CN103317145B (zh) 化学法制备钐钴磁粉的方法
CN110246685A (zh) 一种钐铁氮薄膜的制备方法
CN110277211B (zh) 一种钐铁氮磁纳米管的制备方法
Song et al. Growth of single-crystalline Co7Fe3 nanowires via electrochemical deposition and their magnetic properties
JP3647995B2 (ja) 永久磁石用粉末並びにその製造方法および該粉末を用いた異方性永久磁石
CN112017835B (zh) 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法
CN104103415A (zh) 一种氢化镝纳米粉末掺杂制备各向异性NdFeB稀土永磁体的方法
CN109550973B (zh) 一种AlNiCo/SmCo复合磁粉的制备方法、磁粉及磁体
JPH05217744A (ja) めっき磁性薄膜およびその製造方法
CN105858625B (zh) 一种氮化铁纳米线及其制备方法
Ji et al. Synthesis of crystalline CoFex nanowire arrays through high voltage pulsed electrochemical deposition
CN108660487A (zh) Nd-Fe-B磁性纳米线阵列的制备方法
Kang et al. Fabrication and magnetic properties of Sm-Co/Fe-Co and Sm-Co/Fe-Co-Dy magnetic nanowires
Navarro-Senent et al. Lightweight macroporous Co-Pt electrodeposited films with semi-hard-magnetic properties
CN108977684B (zh) 一种软磁CoCuC复合材料及其制备方法
CN112962122B (zh) 一种高矫顽力B掺杂FePt薄膜的制备方法
Xu et al. The fabrication and characteristic properties of amorphous Co1− xZnx alloy nanowire arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200821

Address after: 310018 China University of metrology, no.258 Xueyuan street, Qiantang New District, Hangzhou, Zhejiang Province

Applicant after: China Jiliang University

Address before: 310018 Xueyuan Street 258, Qiantang New District, Hangzhou City, Zhejiang Province

Applicant before: Xu Jingcai

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant