CN110231587A - 分压电路参数的检测电路、方法及电能计量芯片 - Google Patents
分压电路参数的检测电路、方法及电能计量芯片 Download PDFInfo
- Publication number
- CN110231587A CN110231587A CN201910579837.9A CN201910579837A CN110231587A CN 110231587 A CN110231587 A CN 110231587A CN 201910579837 A CN201910579837 A CN 201910579837A CN 110231587 A CN110231587 A CN 110231587A
- Authority
- CN
- China
- Prior art keywords
- divider
- signal
- signal component
- circuit
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title description 5
- 238000005259 measurement Methods 0.000 claims abstract description 104
- 239000000872 buffer Substances 0.000 claims abstract description 39
- 230000002159 abnormal effect Effects 0.000 claims abstract description 18
- 230000005764 inhibitory process Effects 0.000 claims abstract description 11
- 238000012937 correction Methods 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 230000003139 buffering effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/04—Voltage dividers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
- G01R19/2503—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques for measuring voltage only, e.g. digital volt meters (DVM's)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/32—Compensating for temperature change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R22/00—Arrangements for measuring time integral of electric power or current, e.g. electricity meters
- G01R22/06—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
- G01R22/10—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods using digital techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
- G01R35/02—Testing or calibrating of apparatus covered by the other groups of this subclass of auxiliary devices, e.g. of instrument transformers according to prescribed transformation ratio, phase angle, or wattage rating
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
本申请属于电压检测技术领域,提供了一种分压电路参数的检测电路,包括与具有第一频率的第一信号源耦合的分压电路,所述分压电路包括串联的第一分压器、第二分压器和第三分压器,所述第二分压器上并联有电压测量模块,所述检测电路还包括第二信号源和直流信号源;直流信号源用于给所述电压测量模块提供一个直流偏置,电压测量模块输入端设置用于配置输入阻抗、共模抑制以及线性度的缓冲器,电压测量模块用于检测所述第二分压器上的所述第二频率的第一信号分量,根据所述第一信号分量确定所述分压电路的电路参数是否异常。
Description
技术领域
本申请属于电压检测技术领域,尤其涉及一种分压电路参数的检测电路、方法及电能计量芯片。
背景技术
电能计量系统智能化的发展要求建立智能电网,这样可有利于加强电网的自动化和信息化,增强电网自我防护能力,更好的维护电网的运营和安全。智能电能计量系统要求实现电能计量的数字化、标准化、网络化和智能化。其数字化是指采用新技术实现新型数字式电能计量装置,实现基础数据的精准性和可靠性;其智能化是指在准确的电能计量数据的基础上,能存储用户的用电信息、电能表的工作信息(比如计量精度是否发生改变)、电能表的异常情况(短路、开路、窃电等异常情况)。因此具有精准的自动故障检测的电能表是智能电能计量系统的重要构成部分。
目前,目前的带故障检测的电压测量装置中,一般都是经过采样网络后将专门的检测信号送给模数变换器(Analog to Digital Converter,ADC),经过ADC 转换后的数字输出进入数字处理单元进行电压幅度和相位的处理,通过观测检测信号的幅度和相位变化,可以知道片外采样网络中的片外组件故障,从而知道电压测量误差是多少;同时还使用这个ADC还要进行正常的电压测量(在电能表中,此电压计量结果最终用于电能计量)。但是,送给ADC的检测信号和电压测量信号均没有包含直流分量,在需要直流电位偏置的场景时,影响被测量电压的测量精度和故障检测信号的测量精度。
发明内容
本申请的目的在于提供一种分压电路参数的检测电路、方法及电能计量芯片,旨在解决现有电压测量电路在需要直流电位偏置的场景中,被测量电压的测量精度和故障检测信号的测量精度不高的问题。
本申请实施例的第一方面提供一种分压电路参数的检测电路,包括与具有第一频率的第一信号源耦合的分压电路,所述分压电路包括串联的第一分压器、第二分压器和第三分压器,所述第二分压器上并联有电压测量模块,所述检测电路还包括:
第二信号源,在所述第二分压器与所述第三分压器的连接端输入,所述第二信号源具有第二频率;
所述电压测量模块输入端设置一按需求配置阻抗、共模抑制以及线性度的缓冲器,所述电压测量模块用于检测所述第二分压器上的所述第二频率的第一信号分量,根据所述第一信号分量确定所述分压电路的电路参数是否异常。
本申请实施例的第二方面提供一种分压电路参数的检测方法,包括:
在分压电路的两端加载具有第一频率的第一信号源;其中,所述分压电路包括串联的第一分压器、第二分压器以及第三分压器;
在所述第二分压器的第一连接端接入具有第二频率的第二信号源,在所述第二分压器的第一连接端或第二连接端接入用于提供直流偏置的直流信号源;
检测所述第二分压器上的所述第二频率的第一信号分量,并根据所述第一信号分量确定所述分压电路的电路参数是否异常。
本申请实施例的第三方面提供一种电能计量芯片,所述电能计量芯片包括上述的检测电路;所述分压电路设置于所述电能计量芯片外部。
本申请实施例的第四方面提供一种电能计量芯片,包括分压电路,所述电能计量芯片还包括上述的检测电路。
上述分压电路参数的检测电路的电压测量模块具有故障检测功能,在此的基础上增加直流信号源,通过直流信号源的电流流过分压电阻串,给带故障的电压测量电路提供一个直流偏置,满足测量装置需要直流电位偏置的场景,提高电压测量的测量精度和故障检测信号的测量精度。
附图说明
图1为本申请第一实施例提供的分压电路参数的检测电路的模块示意图;
图2为本申请第二实施例提供的分压电路参数的检测电路的模块示意图;
图3为图1或图2示出的检测电路中电压测量模块的第一实施例的原理示意图;
图4为图1或图2示出的检测电路中电压测量模块的第二实施例的原理示意图;
图5为图1或图2示出的检测电路中电压测量模块的第三实施例的原理示意图;
图6为图5示出的检测电路中测量信号和检测信号的波形;
图7为本申请第三实施例提供的分压电路参数的检测电路的原理示意图;
图8为本申请第四实施例提供的分压电路参数的检测电路的原理示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请参阅图1和图2,本申请一实施例提供的分压电路参数的检测电路包括与具有第一频率的第一信号源10耦合的分压电路20,分压电路20包括串联的第一分压器21、第二分压器22以及第三分压器23,第二分压器22上并联有电压测量模块30,检测电路还包括第二信号源40和直流信号源50,第二信号源 40在第二分压器303与第三分压器的连接端输入,第二信号源40具有第二频率;直流信号源50在第二分压器22的第一连接端(请参阅图1,即第一分压器21和第二分压器22的连接端)或第二连接端(请参阅图2,即第二分压器22和第三分压器23的连接端)接入,直流信号源50用于给电压测量模块30 提供一个直流偏置,电压测量模块30用于检测第二分压器22上的第二频率的第一信号分量,根据第一信号分量确定分压电路20的电路参数是否异常。同时可以确定,第二信号源40的电路参数(信号源产生电路中使用的反馈电阻)是否异常。
可以理解的是,第二信号源40也可以通过第一开关(图未示)接入,电压测量模块30在仅第一开关接入的情况下检测第一信号分量。第二信号源40为交流电流源,直流信号源50为直流电流源。另外,被测量电压Vm的频率与第二信号源40的频率不同,第二频率为第一频率的非整数倍。例如被测量电压Vm频率为50Hz时,第二信号源40频率可选为432Hz。第二信号源40主要是由基准电压源、运算放大器、电流镜像管与反馈电阻组合产生的电流源。实际电流源内部电路可通过开关来控制此电流源的输出波形为交流信号。第一分压器 21、第二分压器22及第三分压器23均为由电阻、电感、电容中的至少一种组成的电路,其阻值分别为Rext1、Rint1、Rint2。
请参阅图1和图2,电压测量模块30包括模数转换单元(ADC)31和数字信号处理单元(器)32。具体地,直流信号源50的直流电Idc流过第一分压器21、第二分压器22及第三分压器23后,在ADC 31的输入端P/N两个端点产生直流电平,给ADC 31提供直流偏置。
ADC 31的输入端P/N产生的直流电平VP,dc/VN,dc分别如下:
VN,dc=Idc·Rint2
由于电压测量中,一般都是经过采样网络(分压电路20)将待测量电压衰减到ADC的输入电压安全范围以内,常用的第一分压器21的阻值Rext1为1M ohms,第二分压器22和第三分压器23的阻值Rinti/Rint2为1K ohms,因此ADC 31的输入端P/N的直流差为:
因此VP,dc/VN,dc两者的直流电压值接近,可以给ADC 31提供合适的直流偏置。
对于ADC 31的输入端P/N存在的直流差,因为数字信号处理单元31均会在DC部分做一个高通滤波器滤去直流分量ADC 31的输入端P/N存在的直流差不会影响故障检测电路的测量精度和电压测量电路的测量精度,同时能满足测量装置需要直流电位偏置的场景,提高电压测量的测量精度和故障检测信号的测量精度。
请参阅图3,在另一个实施例中,电压测量模块30包括缓冲器33、模数转换单元31、数字信号处理单元32。缓冲器33用于配置输入阻抗、共模抑制以及线性度的缓冲器33电压测量模块30在对故障检测信号(第一信号分量)进行测量的同时,也需要检测第二分压器22上的第一频率的第二信号分量(电压测量信号),还根据第一信号分量和第二信号分量校正分压电路20的电路参数,并根据第二信号分量和校正后的分压电路20的电路参数进行正常的电压测量。作为一实施例,缓冲器33的内阻R_in在100M ohms以上,比如在200M~300Mohms之间。电压测量模块30,加了一个高输入阻抗/高共模抑制/高线性度的缓冲器33,可以消除了检测信号随着检测电路内阻变化而剧烈变化的现象,同时可以抑制检测信号的共模部分,而且满足检测电路的线性度要求。即保证了检测信号的测量精度,又可以满足进行电压测量时的线性度要求。
结合图2和图3,假设第二信号源40频率为fi,假设待测电压信号Vm是交流信号且频率为fu,且fi≠fu,缓冲器33输入阻抗定义为Rin。
定义第二信号源40经过分压电路20在缓冲器33的输入端产生的电压信号为U0,fi_1。
单独计算第二信号源40经过分压电路20产生的差分电压信号U0,fi_1_dm:
由于电压测量中,一般都是经过采样网络(分压电路20)将待测量电压衰减到ADC31的输入电压安全范围以内,常用的第一分压器21的阻值Rext1为1M ohms,第二分压器22和第三分压器23的阻值Rint1、Rint2为1K ohms,如果缓冲器内阻Rin在200M~300M ohms之间变化(最恶劣的缓冲器内阻变化范围),则检测信号的差分电压部分U0,fi_1dm变化了大约为0.1%左右,因此检测信号的测量精度基本不受缓冲器内阻变化的影响。
单独计算第二信号源40经过分压电路20产生的共模电压信号U0,fi_1_cm:
根据常用的第一分压器21、第二分压器22及第三分压器23以及缓冲器33 的内阻Rin值,可以得到U0,fi_1的共模信号比差分信号高2000倍以上,因此缓冲器33要求本身的共模抑制能力很强,既可以消除检测信号的共模值,保证模数转换单元31输入端的检测信号只有差分部分,从而减轻模数转换单元31的共模抑制要求;同时缓冲器本身的不会把检测信号的共模部分转化为差分信号。缓冲器上述特征保证了检测信号的测量精度不受检测信号共模部分的影响。
同时缓冲器33要求本身的线性度高,因为被测量电压Vm是强输入信号,信号幅度很大,要求测量装置本身的线性度足够,才能满足被测量电压Vm的测量精度。
请参阅图4,作为另一实施例,电压测量模块30包括第一缓冲器301、第二缓冲器302、测量校正单元303以及电压测量单元304。
第一缓冲器301用于配置输入阻抗和共模抑制,第一缓冲器301与第二分压器并联,测量校正单元303与第一缓冲器301连接;可以理解的是,测量校正单元303包括模数转换器和数字信号处理器。测量校正单元303用于检测第二分压器上的第二频率的第一信号分量,根据第一信号分量确定分压电路的电路参数是否异常,当电路参数异常时校准分压电路参数。第二缓冲器302用于配置线性度,第二缓冲器302与第二分压器并联,电压测量单元304与第二缓冲器302连接;可以理解的是,电压测量单元304包括模数转换器和数字信号处理器。电压测量单元304用于检测第二分压器上的第一频率的第二信号分量,测量校正单元303是根据第一信号分量与第二信号分量校准所述分压电路参数。电压测量单元304根据第二信号分量以及校准后的分压电路参数进行电压测量。
本实施例中,电压测量信号和故障检测信号分别用不同的通道进行测量,在实现对故障检测信号进行校正的同时,不影响测量信号的正常测量;避免了在电压测量通道同时引入检测信号和测量信号,检测信号的校正会影响到电压测量装置的正常测量。
请参阅图5,电压测量模块30还包括误差校正开关305,误差校正开关305 与第二分压器22并联,误差校正开关305与第一缓冲器301串联,误差校正开关305用于将接入到测量校准单元304的模数转换器的信号进行正负翻转。请参阅图6,当带测量校正单元303开启校正功能时,误差校正开关305在T1时间段和T2时间端交换测量校正单元303的正负输入端,在测量校正单元303 的输入端的检测信号命名为Vedt,图6显示了测量校正单元303的Vedt波形和电压测量模块30的Vm波形,从图6可以看出,当测量校正单元303对Vedt信号进行校正时,电压测量模块30的Vm信号完全不受影响,可以正常工作,因此也不影响最终电能表的电能计量。
请参阅图7和图8,检测电路还包括具有第三频率的第三信号源60。第三信号源60在第一分压器21与第二分压器22的连接端输入;测量校正单元303 还用于检测第二分压器22上的第三频率的第三信号分量,根据第三信号分量确定分压电路的电路参数是否异常。作为另一种实施例,第三信号源60和第二信号源40为同一个信号源,通过另一支路在第一分压器21与第二分压器22的连接端输入。
作为一优选实施例,测量校正单元303具体用于对第一信号分量和第三信号分量进行处理,分别得到第一信号分量的幅度值、相位值和第三信号分量的幅度值、相位值,并根据第一信号分量的幅度值变化、第三信号的幅度值变化、第一信号分量的相位变化、第三信号分量的相位变化中的至少一种确定分压电路20的电路参数是否异常。
第三信号源60也为交流电流源,第二信号源40和第三信号源60频率可以相同,也可以不同,幅度可以相同,也可以不同。
第三信号源60/第二信号源40也可以通过第二开关(图未示)接入,测量校正单元303在仅第二开关接入的情况下检测第二信号分量。第三信号源60 为交流电流源,被测量电压Vm的频率与第三信号源60的频率不同,第三频率为第一频率的非整数倍。例如被测量电压Vm频率为50Hz时,第三信号源60频率可选为432Hz。第三信号源60主要是由基准电压源、运算放大器、电流镜像管与反馈电阻组合产生的电流源。实际电流源内部电路可通过开关来控制此电流源的输出波形为交流信号。
作为一实施例,第二信号源40、第三信号源60的信号源电路中使用的内阻反馈电阻与第一分压器21的温度系数相同。同时可借助反馈电阻的温度系数来抵消测量通道第一分压器21的温度系数。如此,第二信号源40、第三信号源60的反馈电阻可以放在片外,主要原因是通过选择任意温度系数的片外电阻可得到任意温度系数的交流电流源。
第二分压器22、第三分压器23以及电压测量模块30为集成电路的片内器件,第一分压器21、第二信号源40以及第三信号源60的产生电路中使用的反馈电阻为集成电路的片外器件。选择将第二信号源40、第三信号源60的反馈电阻放在片外的主要原因是通过选择任意温度系数的片外电阻可得到任意温度系数的电流源。同时可借助反馈电阻的温度系数来抵消测量通道第一电阻Rext1的温度系数。
分压电路20并不限定阻抗种类,如图1、2、7及8中的分压器21、22、 23可以是电阻、电容、电感等阻抗,也可以是它们的组合,例如电阻电容并联等阻抗。如果采样网络包含了电容、电感等元器件,可通过同时监测检测信号的幅度和相位改变量来定位故障源。
在常规电压测量通道中引入额外交流电流源,借助交流电流源的已知信息和一定的开关时序信息来定位片外组件是否发生故障,以达到精确定位故障源的功能。同时,通过此电压测量装置,合理选择具有相同温度系数的片外电阻,可使得测量电压系统带有温度补偿效果,可进一步提高电压测量精度,减小电压测量结果受温度漂移的影响。其中,施加的交流电流源信号,可以是各种周期性信号,例如,正弦波信号、方波信号、三角波信号等。
本申请实施例还提供了一种分压电路参数的检测方法,包括:
步骤一:
在分压电路的两端加载具有第一频率的第一信号源;其中,所述分压电路包括串联的第一分压器、第二分压器以及第三分压器;
步骤二:
在所述第二分压器的第一连接端接入具有第二频率的第二信号源,在所述第二分压器的第一连接端或第二连接端接入用于提供直流偏置的直流信号源;
步骤三:
检测所述第二分压器上的所述第二频率的第一信号分量,并根据所述第一信号分量确定所述分压电路的电路参数是否异常。
进一步的实施例中,进行步骤三时:在所述检测所述第二分压器上的所述第二频率的第一信号分量时,利用缓冲器对所述第一信号分量进行配置输入阻抗、共模抑制以及线性度配置。
进一步的实施例中,检测方法还包括:
检测所述第二分压器上的所述第一频率的第二信号分量;
根据所述第一信号分量与所述第二信号分量校准所述分压电路参数。
进一步的实施例中,检测方法还还包括:
在所述第二分压器的第二连接端接入具有第三频率的第三信号源;
检测所述第二分压器上的所述第三频率的第三信号分量,根据所述第三信号分量确定所述分压电路的电路参数是否异常。
本申请实施例还提供了一种电能计量芯片,该电能计量芯片包括了前述的检测电路。在本申请实施例中,分压电路设置于电能计量芯片外部。具体地,检测电路集成在芯片内部,此时,芯片内部的检测电路不受外部环境的影响,进一步地,第一开关和第二开关的开关状态可以预先在电压测量模块中设置为待启动后自行进行开关状态的切换。
本申请实施例还提出了了另一种电能计量芯片,该电能计量芯片包括分压电路以及如前述的检测电路。
上述分压电路参数的检测电的电压测量模块具有故障检测功能,在此的基础上增加直流信号源,通过直流信号源的电流流过分压电阻串,给带故障的电压测量模块提供一个直流偏置,满足测量装置需要直流电位偏置的场景,提高电压测量的测量精度和故障检测信号的测量精度。
另外,在输入侧增加了一个缓冲器,缓冲器能设置成具有高输入阻抗的特性,可以消除ADC内阻有限对故障检测信号精度的影响;缓冲器还能设置具有高共模抑制的特性,可以抑制检测信号的共模部分,保证了高共模缓冲器的输出(ADC的输入)处的故障检测信号不再具有高共模信号,从而减轻了ADC 的共模抑制压力,提高了故障检测信号的测量精度;同时缓冲器能设置具有高线性度的特性,可以保证电压测量装置在对强幅度的被测量电压信号进行测量时的线性度要求。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
Claims (14)
1.一种分压电路参数的检测电路,包括与具有第一频率的第一信号源耦合的分压电路,所述分压电路包括串联的第一分压器、第二分压器和第三分压器,所述第二分压器上并联有电压测量模块,其特征在于,所述检测电路还包括:
在所述第二分压器与所述第三分压器的连接端输入,具有第二频率的第二信号源;
在所述第二分压器的第一连接端或第二连接端接入的直流信号源,所述直流信号源用于给所述电压测量模块提供一个直流偏置;
所述电压测量模块用于检测所述第二分压器上的所述第二频率的第一信号分量,根据所述第一信号分量确定所述分压电路的电路参数是否异常。
2.如权利要求1所述的检测电路,其特征在于,所述电压测量模块输入端设置用于配置输入阻抗、共模抑制以及线性度的缓冲器。
3.如权利要求1所述的检测电路,其特征在于,所述电压测量模块包括第一缓冲器、第二缓冲器、电压测量单元以及测量校正单元,其中:
所述第一缓冲器用于配置输入阻抗和共模抑制,所述第一缓冲器与所述第二分压器并联,所述测量校正单元与所述第一缓冲器连接;所述测量校正单元用于检测所述第二分压器上的所述第二频率的第一信号分量,根据所述第一信号分量确定所述分压电路的电路参数是否异常,当电路参数异常时校准所述分压电路参数。
所述第二缓冲器用于配置线性度,所述第二缓冲器与所述第二分压器并联,所述电压测量单元与所述第二缓冲器连接;所述电压测量单元用于检测所述第二分压器上的所述第一频率的第二信号分量,根据所述第二信号分量以及校准后的所述分压电路参数进行电压测量。
4.如权利要求3所述的检测电路,其特征在于,所述电压测量模块还包括误差校正开关,所述误差校正开关与所述第二分压器并联,所述误差校正开关与所述第一缓冲器串联,所述误差校正开关用于将接入到所述测量校准单元的信号进行正负翻转。
5.如权利要求1至4任一项所述的检测电路,其特征在于,所述检测电路还包括:
在所述第一分压器与所述第二分压器的连接端输入的,具有第三频率的第三信号源;
所述电压测量模块还用于检测所述第二分压器上的所述第三频率的第三信号分量,根据所述第三信号分量确定所述分压电路的电路参数是否异常。
6.如权利要求5所述的检测电路,其特征在于,所述电压测量模块具体用于对所述第一信号分量和所述第三信号分量进行处理,分别得到第一信号分量的幅度值、相位值和第三信号分量的幅度值、相位值,并根据所述第一信号分量的幅度值变化、所述第三信号的幅度值变化、所述第一信号分量的相位变化、所述第三信号分量的相位变化中的至少一种确定所述分压电路的电路参数是否异常。
7.如权利要求5所述的检测电路,其特征在于,所述第二信号源和第三信号源为交流电流源,所述直流信号源为支路电流源;所述第二频率和第三频率相同或不相同,且均与所述第一频率为非整数倍关系。
8.如权利要求1所述的检测电路,其特征在于,所述第二分压器、第三分压器以及电压测量模块为集成电路的片内器件,所述第一分压器和所述第二信号源产生电路中使用的反馈电阻为集成电路的片外器件。
9.一种分压电路参数的检测方法,其特征在于,包括:
在分压电路的两端加载具有第一频率的第一信号源;其中,所述分压电路包括串联的第一分压器、第二分压器以及第三分压器;
在所述第二分压器的第一连接端接入具有第二频率的第二信号源,在所述第二分压器的第一连接端或第二连接端接入用于提供直流偏置的直流信号源;
检测所述第二分压器上的所述第二频率的第一信号分量,并根据所述第一信号分量确定所述分压电路的电路参数是否异常。
10.如权利要求9所述的检测方法,其特征在于,在所述检测所述第二分压器上的所述第二频率的第一信号分量时,利用缓冲器对所述第一信号分量进行配置输入阻抗、共模抑制以及线性度配置。
11.如权利要求9所述的检测方法,其特征在于,还包括:
检测所述第二分压器上的所述第一频率的第二信号分量;
根据所述第一信号分量与所述第二信号分量校准所述分压电路参数。
12.如权利要求9所述的检测方法,其特征在于,还包括:
在所述第二分压器的第二连接端接入具有第三频率的第三信号源;
检测所述第二分压器上的所述第三频率的第三信号分量,根据所述第三信号分量确定所述分压电路的电路参数是否异常。
13.一种电能计量芯片,其特征在于,所述电能计量芯片包括如权利要求1至8任一项所述的检测电路;所述分压电路设置于所述电能计量芯片外部。
14.一种电能计量芯片,包括分压电路,其特征在于,所述电能计量芯片还包括如权利要求1至8任一项所述的检测电路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910579837.9A CN110231587A (zh) | 2019-06-28 | 2019-06-28 | 分压电路参数的检测电路、方法及电能计量芯片 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910579837.9A CN110231587A (zh) | 2019-06-28 | 2019-06-28 | 分压电路参数的检测电路、方法及电能计量芯片 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110231587A true CN110231587A (zh) | 2019-09-13 |
Family
ID=67857470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910579837.9A Pending CN110231587A (zh) | 2019-06-28 | 2019-06-28 | 分压电路参数的检测电路、方法及电能计量芯片 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110231587A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI775479B (zh) * | 2021-06-08 | 2022-08-21 | 黑澤科技股份有限公司 | 電路感測裝置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105334487A (zh) * | 2015-11-20 | 2016-02-17 | 湖南省湘电试验研究院有限公司 | 一种直流电能表检定装置 |
CN107870298A (zh) * | 2017-11-29 | 2018-04-03 | 深圳市锐能微科技有限公司 | 一种分压电路的电路参数检测电路、方法及电能表 |
CN108089142A (zh) * | 2017-12-29 | 2018-05-29 | 深圳市锐能微科技有限公司 | 分压电路参数的检测电路、方法及电能计量芯片 |
CN109728818A (zh) * | 2017-10-27 | 2019-05-07 | 美国亚德诺半导体公司 | 用于高速和交错的adc的跟踪和保持电路 |
CN110221238A (zh) * | 2019-06-28 | 2019-09-10 | 深圳市锐能微科技有限公司 | 分压电路参数的检测电路、方法及电能计量芯片 |
CN210982710U (zh) * | 2019-06-28 | 2020-07-10 | 深圳市锐能微科技有限公司 | 分压电路参数的检测电路及电能计量芯片 |
-
2019
- 2019-06-28 CN CN201910579837.9A patent/CN110231587A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105334487A (zh) * | 2015-11-20 | 2016-02-17 | 湖南省湘电试验研究院有限公司 | 一种直流电能表检定装置 |
CN109728818A (zh) * | 2017-10-27 | 2019-05-07 | 美国亚德诺半导体公司 | 用于高速和交错的adc的跟踪和保持电路 |
CN107870298A (zh) * | 2017-11-29 | 2018-04-03 | 深圳市锐能微科技有限公司 | 一种分压电路的电路参数检测电路、方法及电能表 |
CN108089142A (zh) * | 2017-12-29 | 2018-05-29 | 深圳市锐能微科技有限公司 | 分压电路参数的检测电路、方法及电能计量芯片 |
CN110221238A (zh) * | 2019-06-28 | 2019-09-10 | 深圳市锐能微科技有限公司 | 分压电路参数的检测电路、方法及电能计量芯片 |
CN210982710U (zh) * | 2019-06-28 | 2020-07-10 | 深圳市锐能微科技有限公司 | 分压电路参数的检测电路及电能计量芯片 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI775479B (zh) * | 2021-06-08 | 2022-08-21 | 黑澤科技股份有限公司 | 電路感測裝置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108089142B (zh) | 分压电路参数的检测电路、方法及电能计量芯片 | |
US11150272B2 (en) | Method for measuring a current, and current-measuring device | |
US10955497B2 (en) | Phase compensation circuit, magnetic induction imaging device and phase compensation method | |
US20130082690A1 (en) | Measuring arrangement for detecting alternating currents | |
JP7070969B2 (ja) | マルチチャネルシステムのためのクロストーク較正 | |
CN104101785B (zh) | 一种四端法高值电容阻抗测量装置及其测量方法 | |
CN108089143B (zh) | 分压电路参数的检测电路、方法及电能计量芯片 | |
CN109683123A (zh) | 一种带自校准诊断功能的单相标准功率电能表 | |
CN207650384U (zh) | 分压电路参数的检测电路及电能计量芯片 | |
CN108957119B (zh) | 采样电路的双基准互检参数检测电路及电能计量芯片 | |
Masnicki | Some remarks on the accuracy of energy meters | |
CN110231587A (zh) | 分压电路参数的检测电路、方法及电能计量芯片 | |
CN210982709U (zh) | 分压电路参数的检测电路和电能计量芯片 | |
CN114156982B (zh) | Bms系统零点漂移补偿电路及方法 | |
CN110221240A (zh) | 分压电路参数的检测电路和电能计量芯片 | |
CN210982710U (zh) | 分压电路参数的检测电路及电能计量芯片 | |
CN207867017U (zh) | 分压电路参数的检测电路和电能计量芯片 | |
US20170288439A1 (en) | Signal processing circuit, coulomb counter circuit, and electronic device | |
CN101329215A (zh) | 电容式差压传感器的输出测量电路及测量方法 | |
CN110221238A (zh) | 分压电路参数的检测电路、方法及电能计量芯片 | |
CN111044963A (zh) | 采用同轴分流器的高频电流传感器校准方法及装置 | |
US20240102837A1 (en) | Pulse signal output circuit and flowmeter | |
CN110907875B (zh) | 一种霍尔电流传感器校准装置及方法 | |
CN115825546A (zh) | 一种直流暂态电流宽频数字标准器实现方法 | |
CN208969164U (zh) | 采样电路的双基准互检参数检测电路及电能计量芯片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |