[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110227458B - 一种铜掺杂介孔二氧化钛的复合材料及其应用 - Google Patents

一种铜掺杂介孔二氧化钛的复合材料及其应用 Download PDF

Info

Publication number
CN110227458B
CN110227458B CN201910661463.5A CN201910661463A CN110227458B CN 110227458 B CN110227458 B CN 110227458B CN 201910661463 A CN201910661463 A CN 201910661463A CN 110227458 B CN110227458 B CN 110227458B
Authority
CN
China
Prior art keywords
copper
titanium dioxide
solution
composite material
doped mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910661463.5A
Other languages
English (en)
Other versions
CN110227458A (zh
Inventor
李明田
姜欢
杜鹃
王红
龚仲富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University of Science and Engineering
Original Assignee
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University of Science and Engineering filed Critical Sichuan University of Science and Engineering
Priority to CN201910661463.5A priority Critical patent/CN110227458B/zh
Publication of CN110227458A publication Critical patent/CN110227458A/zh
Application granted granted Critical
Publication of CN110227458B publication Critical patent/CN110227458B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种铜掺杂介孔二氧化钛的复合材料及其应用,该复合材料首先通过液相法合成了酞菁铜,然后采用溶胶‑凝胶法将酞菁铜复合到二氧化钛凝胶中,在高温下煅烧得到铜掺杂介孔二氧化钛微球。该方法一步实现了二氧化钛中铜的掺杂和介孔的形成,制备方法简单。该铜掺杂介孔二氧化钛复合材料以纳米二氧化钛为主,原子级别掺杂少量铜,具有很高的稳定性,不仅降低了二氧化钛的禁带宽度,增强了电子的转移效率,增加了太阳光的利用效率,而且具有比表面积大,表面活性高,有效增加了二氧化钛与底物的接触面积和光能的吸收效率,提高了光催化效率。该复合材料对罗丹明B具有良好的光催化降解作用,在污水处理领域具有广泛的应用前景。

Description

一种铜掺杂介孔二氧化钛的复合材料及其应用
技术领域
本发明涉及二氧化钛光催化剂技术领域,特别的涉及一种铜掺杂介孔二氧化钛的复合材料及其应用。
背景技术
光催化降解是利用光辐射、催化剂在反应体系中产生自由基,再通过自由基与有机污染物之间的反应而将污染物全部降解为无机物的过程,其中二氧化钛(TiO2)作为光降解催化剂备受关注。多孔TiO2不仅制备简单成本较低,而且稳定性良好,由于比表面积大、吸附性能好而具有较高的光催化能力,被广泛用于日常饮用水等光催化降解有机污染物的处理。但由于TiO2带隙较宽,光生电子-空穴对复合率高,量子化效率低,宽禁带为3.2 eV,对太阳光的利用率很低,严重制约了其光催化性能。
改善TiO2在实际应用不足的措施,主要有两种:一是采用金属掺杂改性二氧化钛,二是多孔二氧化钛表面或孔径内负载光敏化剂。金属掺杂改性法主要是通过溶胶-凝胶法将铜、铁、钴、镧系稀土元素等过渡金属离子和氮、硼、碳、硫等非金属离子掺杂到TiO2中,研究表明掺杂能够显著改善TiO2禁带宽度大、量子产率低、光催化活性低等缺点,但也存在着不足,如太阳光利用率仍然较低、催化反应时间较长,而且掺杂后复合材料的稳定性降低;贵金属掺杂改性后红移效果不佳且分散不够均匀,非金属离子掺杂技术较为复杂。倪结文等采用光还原法制备了铜掺杂TiO2光催化剂,在紫外光条件下,该催化剂光催化还原硝酸盐氮,1小时后去除率达98%,氮气转化率达60%,催化效率低。专利ZL201110121610.3公开了一种铜掺杂二氧化钛纳米管催化剂的制备方法,通过恒压电沉积法使得低浓度的铜有效地掺杂到二氧化钛纳米管阵列中,铜以氧化铜形式存在,该催化剂在紫外光和太阳光下都具有良好的光催化活性,但其制备过程复杂,成本高,产业化困难。陈祖栩等将酞菁铜做作为光敏化剂封装于Y型分子筛中后与TiO2结合,并用于光催化降解水中甲基橙,但该催化剂结合力不牢固,稳定性不高。
发明内容
针对上述现有技术的不足,本发明的目的在于提供了一种铜掺杂介孔二氧化钛的复合材料及其应用,解决现有TiO2光催化剂存在光催化效率低、制备方法复杂和稳定性不高等问题。
为了解决上述技术问题,本发明采用了如下的技术方案:一种铜掺杂介孔二氧化钛的复合材料,采用以下方法制得:将钛源加入无水乙醇中得到溶液A,将酞菁铜加入掺杂剂中得到溶液B,再将溶液A缓慢滴加到溶液B中搅拌得到深蓝色凝胶,然后将其真空干燥并研磨成粉末,再经高温煅烧,即得到所述的铜掺杂介孔二氧化钛复合材料。
进一步,所述溶液A与溶液B的体积比5 : 3~5。该配比条件下,一方面酞菁铜能够完全地均匀分散于溶胶混合物中,且有利于形成孔径较为均匀的有序介孔结构;另一方面掺杂铜元素的含量较为合适,有利于提高催化剂的催化效率。
进一步,所述钛源为钛酸正丁酯或钛酸异丙酯。
进一步,所述掺杂剂包括无水乙醇、乙酸和去离子水,所述无水乙醇、乙酸和去离子水的体积比为30:3:10。
进一步,所述溶液A中钛源和无水乙醇的质量比为1:1~3;所述溶液B中酞菁铜的浓度为0.12~0.45g/mL。
进一步,所述煅烧温度为550~750℃,煅烧时间为2~8h。
进一步,所述酞菁铜采用以下方法制得:把邻苯二甲酸酐、尿素和硫酸铜混合得到混合固体,再将其溶于二甲苯中,然后加入钼酸铵混合均匀后置于反应釜中,搅拌、加热至130 ~ 150℃回流,至反应釜内壁有白色物质出现,继续反应3h后,将反应产物依次用HCl和NaOH溶液浸泡12h,过滤,得到的滤饼用丙酮、去离子水洗涤至中性,经固体干燥,即得酞菁铜。
进一步,所述邻苯二甲酸酐、尿素和硫酸铜的物质的量比为4:8:1。
进一步,所述二甲苯的用量为所述混合固体总质量的3倍;所述钼酸铵的用量为所述混合固体总质量的1%。
本发明还提供了上述复合材料在光催化降解罗丹明B方面的应用。
相比现有技术,本发明具有如下有益效果:
1、本发明首先通过液相法合成了酞菁铜,然后采用溶胶-凝胶法将酞菁铜复合到二氧化钛凝胶中,在高温下煅烧得到铜掺杂介孔二氧化钛微球。酞菁铜在充分煅烧后可以得到氧化铜及CO2和NO2等气体,可以同时作为掺杂剂和造孔剂,该方法一步实现了二氧化钛中铜的掺杂和介孔的形成,制备方法简单,制备方法简单,原料易得,无污染易回收,成本低,适用于工业化生产,具有良好的应用前景。
2、本发明制备的铜掺杂介孔二氧化钛的复合材料,以纳米二氧化钛为主体,原子级别掺杂少量的铜,具有很高的稳定性,同时降低了二氧化钛的禁带宽度,增强了电子的转移效率。其中,酞菁铜具有18π电子的刚性平面大环结构,能均匀地分散于溶胶中,酞菁铜充分煅烧后不仅有利于形成孔径较为均匀的有序介孔结构,同时煅烧后绝大部分铜元素以氧化铜的形式存在于孔道表面,使得孔道表面催化活性点较多,因此该催化剂具有比表面积大,表面活性高,有效增加了二氧化钛与底物的接触面积和光能的吸收效率,大大提高了光催化效率。
3、本发明铜掺杂介孔二氧化钛的复合材料对罗丹明B具有良好的光催化降解作用,对10mg/L的罗丹明B溶液在5min内降解率可以达到90.5%,降解速度快,大大提高了降解效率,且该催化剂具有很好的稳定性和可回收性,在污水处理领域具有广泛的应用前景。
附图说明
图1为实施例1~5制备的铜掺杂介孔二氧化钛复合材料的XRD图谱;
图2为实施例1~5制备的铜掺杂介孔二氧化钛复合材料光催化降解(紫外光照射5min)罗丹明B后的紫外可见吸收光谱图。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
一、一种铜掺杂介孔二氧化钛的复合材料
实施例1
1)酞菁铜的制备
将11.85 g邻苯二甲酸酐、9.61 g尿素和5.01g硫酸铜溶于95 mL二甲苯中,然后加入0.26g钼酸铵混合均匀后置于反应釜中,在搅拌条件下加热至130℃,保持回流状态,反应至反应釜内壁有白色物质出现,继续反应3h后,将反应固体产物依次用6.0 mol/L HCl溶液和6.0 mol/L NaOH溶液浸泡12h,过滤,得到的滤饼依次用丙酮和去离子水洗涤至中性,将固体于120℃干燥12 h,即得蓝色粉末酞菁铜。
2)铜掺杂介孔二氧化钛复合材料的制备
将钛酸正丁酯加入等质量的无水乙醇溶液中得到溶液A,将步骤1)制得的酞菁铜加入掺杂剂(无水乙醇、乙酸和去离子水的体积比为30:3:10)中得到酞菁铜的浓度为0.12g/mL的溶液B,再将溶液A缓慢滴加到溶液B中快速搅拌1.5h得到深蓝色凝胶,其中,溶液A与溶液B的体积比为5:4,然后将凝胶在80℃真空干燥20h并研磨成粉末,再置于550℃煅烧8h,即得到所述的铜掺杂介孔二氧化钛复合材料。
实施例2
1)酞菁铜的制备
将11.85 g邻苯二甲酸酐、9.61 g尿素和5.01g硫酸铜溶于95 mL二甲苯中,然后加入0.26g钼酸铵混合均匀后置于反应釜中,在搅拌条件下加热至140℃,保持回流状态,反应至反应釜内壁有白色物质出现,继续反应3h后,将反应固体产物依次用6.0 mol/L HCl溶液和6.0 mol/L NaOH溶液浸泡12h,过滤,得到的滤饼依次用丙酮和去离子水洗涤至中性,将固体于120℃干燥12 h,即得蓝色粉末酞菁铜。
2)铜掺杂介孔二氧化钛复合材料的制备
将钛酸正丁酯加入等2倍质量的无水乙醇中得到溶液A,将步骤1)制得的酞菁铜加入掺杂剂(无水乙醇、乙酸和去离子水的体积比为30:3:10)中得到酞菁铜的浓度为0.24g/mL的溶液B,再将溶液A缓慢滴加到溶液B中快速搅拌1.5h得到深蓝色凝胶,其中,溶液A与溶液B的体积比为5:3,然后将凝胶在80℃真空干燥20h并研磨成粉末,再置于600℃煅烧6h,即得到所述的铜掺杂介孔二氧化钛复合材料。
实施例3
1)酞菁铜的制备
将11.85 g邻苯二甲酸酐、9.61 g尿素和5.01g硫酸铜溶于95 mL二甲苯中,然后加入0.26g钼酸铵混合均匀后置于反应釜中,在搅拌条件下加热至150℃,保持回流状态,反应至反应釜内壁有白色物质出现,继续反应3h后,将反应固体产物依次用6.0 mol/L HCl溶液和6.0 mol/L NaOH溶液浸泡12h,过滤,得到的滤饼依次用丙酮和去离子水洗涤至中性,将固体于120℃干燥12 h,即得蓝色粉末酞菁铜。
2)铜掺杂介孔二氧化钛复合材料的制备
将钛酸正丁酯加入等3倍质量的无水乙醇溶液中得到溶液A,将步骤1)制得的酞菁铜加入掺杂剂(无水乙醇、乙酸和去离子水的体积比为30:3:10)中得到酞菁铜的浓度为0.36g/mL的溶液B,再将溶液A缓慢滴加到溶液B中快速搅拌1.5h得到深蓝色凝胶,其中,溶液A与溶液B的体积比为5:5,然后将凝胶在80℃真空干燥20h并研磨成粉末,再置于650℃煅烧4h,即得到所述的铜掺杂介孔二氧化钛复合材料。
实施例4
1)酞菁铜的制备
将11.85 g邻苯二甲酸酐、9.61 g尿素和5.01g硫酸铜溶于95 mL二甲苯中,然后加入0.26g钼酸铵混合均匀后置于反应釜中,在搅拌条件下加热至130℃,保持回流状态,反应至反应釜内壁有白色物质出现,继续反应3h后,将反应固体产物依次用6.0 mol/L HCl溶液和6.0 mol/L NaOH溶液浸泡12h,过滤,得到的滤饼依次用丙酮和去离子水洗涤至中性,将固体于120℃干燥12 h,即得蓝色粉末酞菁铜。
2)铜掺杂介孔二氧化钛复合材料的制备
将钛酸异丙酯加入等质量的无水乙醇溶液中得到溶液A,将步骤1)制得的酞菁铜加入掺杂剂(无水乙醇、乙酸和去离子水的体积比为30:3:10)中得到酞菁铜的浓度为0.45g/mL的溶液B,再将溶液A缓慢滴加到溶液B中快速搅拌1.5h得到深蓝色凝胶,其中,溶液A与溶液B的体积比为5:3,然后将凝胶在80℃真空干燥20h并研磨成粉末,再置于700℃煅烧2h,即得到所述的铜掺杂介孔二氧化钛复合材料。
实施例5
1)酞菁铜的制备
将11.85 g邻苯二甲酸酐、9.61 g尿素和5.01g硫酸铜溶于95 mL二甲苯中,然后加入0.26g钼酸铵混合均匀后置于反应釜中,在搅拌条件下加热至140℃,保持回流状态,反应至反应釜内壁有白色物质出现,继续反应3h后,将反应固体产物依次用6.0 mol/L HCl溶液和6.0 mol/L NaOH溶液浸泡12h,过滤,得到的滤饼依次用丙酮和去离子水洗涤至中性,将固体于120℃干燥12 h,即得蓝色粉末酞菁铜。
2)铜掺杂介孔二氧化钛复合材料的制备
将钛酸异丙酯加入等2.5倍质量的无水乙醇溶液中得到溶液A,将步骤1)制得的酞菁铜加入掺杂剂(无水乙醇、乙酸和去离子水的体积比为30:3:10)中得到酞菁铜的浓度为0.36g/mL的溶液B,再将溶液A缓慢滴加到溶液B中快速搅拌1.5h得到深蓝色凝胶,其中,溶液A与溶液B的体积比为5:4,然后将凝胶在80℃真空干燥20h并研磨成粉末,再置于750℃煅烧4h,即得到所述的铜掺杂介孔二氧化钛复合材料。
将实施例1~5制备的复合材料进行X射线衍射分析,结果如1所示。
从图1可以看出,在不同温度下煅烧,TiO2颗粒为均锐钛矿相和金红石相的混合晶粒,且随着温度的升高,2θ = 25.32°(锐钛矿相)衍射峰的半峰宽也逐渐增加,峰形也越来越尖锐,说明晶粒尺寸随着温度的增大越来越小,同时锐钛矿相的晶体结构也趋于完美。当温度在700℃以上时可以观察到在27.56°处明显出现一个杂峰,该峰为金红石(110)晶面,且该晶相的强度随着煅烧温度的升高,结晶性变好;同时在41.39°、44.16°处出现了金红石的(111)和(210)晶面,因此当温度高于700℃会有新峰的产生,且随着温度的升高,其强度增大,结晶度越好。可见,在550~750℃范围内,煅烧温度越高,二氧化钛的结晶性能约好,且金红石结构越明显。
二、铜掺杂介孔二氧化钛复合材料的应用
将实施例1~5制备的复合材料对罗丹明B进行光催化实验。光催化实验在光化学反应仪中进行,催化底物为罗丹明B,初始浓度为10 mg/L,紫外光光源为800 W氙灯。分别取0.1 g实施例1~5制备铜掺杂介孔二氧化钛加入到100 mL罗丹明B水溶液中,先进行暗处吸附1 h,然后开启光源进行光催化实验,5min后取上层清液,采用紫外可见分光光度计测定其吸收光谱。结果如图2所示。
从图2可以看出,在紫外光照射下实施例1~5制备的铜掺杂介孔二氧化钛复合材料都能够有效催化罗丹明B降解,且光催化降解效率均能达到80%以上。其中,相同条件下,实施例5所制备的复合材料对10mg/L的罗丹明B溶液在5min内降解率可以达到90.5%,在短时间内实现了高降解率。
以上所述仅为本发明的较佳实施例而已,并不以本发明为限制,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种铜掺杂介孔二氧化钛的复合材料,其特征在于,采用以下方法制得:将钛源加入无水乙醇中得到溶液A,将酞菁铜加入掺杂剂中得到溶液B,再将溶液A缓慢滴加到溶液B中搅拌得到深蓝色凝胶,然后将其真空干燥并研磨成粉末,再经高温煅烧,即得到所述的铜掺杂介孔二氧化钛复合材料;
所述溶液A与溶液B的体积比5 : 3~5;
所述煅烧温度为550~750℃,煅烧时间为2~8h;
所述钛源为钛酸正丁酯或钛酸异丙酯;
所述掺杂剂包括无水乙醇、乙酸和去离子水,所述无水乙醇、乙酸和去离子水的体积比为30 : 3 : 10;
所述酞菁铜采用以下方法制得:将邻苯二甲酸酐、尿素和硫酸铜混合得到混合固体,再将其溶于二甲苯中,然后加入钼酸铵混合均匀后置于反应釜中,搅拌、加热至130 ~ 150℃回流,至反应釜内壁有白色物质出现,继续反应3h后,将反应产物依次用HCl和NaOH溶液浸泡12h,过滤得到的滤饼洗涤至中性,经固体干燥,即得酞菁铜。
2.根据权利要求1所述铜掺杂介孔二氧化钛的复合材料,其特征在于,所述溶液A中钛源和无水乙醇的质量比为1 : 1~3;所述溶液B中酞菁铜的浓度为0.12~0.45g/mL。
3.根据权利要求1所述铜掺杂介孔二氧化钛的复合材料,其特征在于,所述邻苯二甲酸酐、尿素和硫酸铜的物质的量比为4:8:1。
4.根据权利要求1所述铜掺杂介孔二氧化钛的复合材料,其特征在于,所述二甲苯的用量为所述混合固体总质量的3倍;所述钼酸铵的用量为所述混合固体总质量的1%。
5.一种如权利要求1~4任一项所述复合材料在光催化降解罗丹明B方面的应用。
CN201910661463.5A 2019-07-22 2019-07-22 一种铜掺杂介孔二氧化钛的复合材料及其应用 Active CN110227458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910661463.5A CN110227458B (zh) 2019-07-22 2019-07-22 一种铜掺杂介孔二氧化钛的复合材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910661463.5A CN110227458B (zh) 2019-07-22 2019-07-22 一种铜掺杂介孔二氧化钛的复合材料及其应用

Publications (2)

Publication Number Publication Date
CN110227458A CN110227458A (zh) 2019-09-13
CN110227458B true CN110227458B (zh) 2022-04-22

Family

ID=67855822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910661463.5A Active CN110227458B (zh) 2019-07-22 2019-07-22 一种铜掺杂介孔二氧化钛的复合材料及其应用

Country Status (1)

Country Link
CN (1) CN110227458B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041523B (zh) * 2020-01-02 2021-09-07 东莞理工学院 一种铜掺杂二氧化钛光电极及其制备方法和在光电催化分解水中的应用
CN116539676B (zh) * 2023-06-14 2023-09-22 南京信息工程大学 基于具有多级介孔结构的金属酞菁MOFs纳米球阵列的传感器及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429346A (zh) * 2011-12-22 2013-12-04 昭和电工株式会社 含有铜和钛的组合物及其制造方法
CN105597805A (zh) * 2016-01-25 2016-05-25 滨州学院 铁、氮掺杂二氧化钛负载碳纤维复合光催化剂及其制备方法
CN107570194A (zh) * 2017-09-06 2018-01-12 河海大学 一种Fe/Co‑Nx/TiO2光催化剂及其制备方法和应用
CN109908899A (zh) * 2019-03-14 2019-06-21 浙江师范大学 一种TiO2负载单原子Co催化剂的制备方法及其应用
CN109999888A (zh) * 2019-05-06 2019-07-12 西北师范大学 铜和氮共掺杂修饰二氧化钛光催化剂的制备及降解甲苯的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429346A (zh) * 2011-12-22 2013-12-04 昭和电工株式会社 含有铜和钛的组合物及其制造方法
CN105597805A (zh) * 2016-01-25 2016-05-25 滨州学院 铁、氮掺杂二氧化钛负载碳纤维复合光催化剂及其制备方法
CN107570194A (zh) * 2017-09-06 2018-01-12 河海大学 一种Fe/Co‑Nx/TiO2光催化剂及其制备方法和应用
CN109908899A (zh) * 2019-03-14 2019-06-21 浙江师范大学 一种TiO2负载单原子Co催化剂的制备方法及其应用
CN109999888A (zh) * 2019-05-06 2019-07-12 西北师范大学 铜和氮共掺杂修饰二氧化钛光催化剂的制备及降解甲苯的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives;Zhou P et al;《SCIENCE ADVANCES》;20170228;第3卷(第2期);全文 *
新型酞菁高温热解沉积法制备燃料电池专用纳米碳球载铂催化剂;郭燕川等;《科学通报》;20031130;第48卷(第22期);全文 *

Also Published As

Publication number Publication date
CN110227458A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
Wang et al. SiO2@ TiO2 core@ shell nanoparticles deposited on 2D-layered ZnIn2S4 to form a ternary heterostructure for simultaneous photocatalytic hydrogen production and organic pollutant degradation
Zalfani et al. Novel 3DOM BiVO 4/TiO 2 nanocomposites for highly enhanced photocatalytic activity
Liu et al. NiFe2O4/g-C3N4 heterojunction composite with enhanced visible-light photocatalytic activity
Kang et al. Mesoporous SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst
CN101890344B (zh) 石墨烯/二氧化钛复合光催化剂的制备方法
Pany et al. Sulfate-anchored hierarchical meso–macroporous N-doped TiO2: a novel photocatalyst for visible light H2 evolution
CN105749893A (zh) 一种表面负载纳米二氧化钛的改性活性炭纤维丝的制备方法
Liu et al. Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction
CN113713823B (zh) 一种CoTiO3/BiVO4复合光催化剂的制备方法及应用
CN106492854A (zh) 利用两步法制备具有光催化性能的复合型纳米Ag3PO4/TiO2材料及方法和应用
CN104722302A (zh) 酸化混晶TiO2纳米线负载型光催化剂及其制备与应用
Baig et al. Catalytic activity and kinetic studies of Core@ Shell nanostructure NiFe2O4@ TiO2 for photocatalytic degradation of methyl orange dye
Hu et al. Facile synthesis of Z-scheme Bi2O3/Bi2WO6 composite for highly effective visible-light-driven photocatalytic degradation of nitrobenzene
CN104056619A (zh) 一种利用WO3和稀土金属元素La对光催化剂TiO2进行改性的方法
Heshmatpour et al. A probe into the effect of fixing the titanium dioxide by a conductive polymer and ceramic on the photocatalytic activity for degradation of organic pollutants
CN110227458B (zh) 一种铜掺杂介孔二氧化钛的复合材料及其应用
CN110465285B (zh) 一种BiVO4@碳纳米点复合光催化材料的制备方法与应用
Hou et al. In situ composite of Co-MOF on a Ti-based material for visible light multiphase catalysis: synthesis and the photocatalytic degradation mechanism
He et al. In situ synthesis of the mesoporous C–TiO2 microspheres derived from partial hydrolysis tetrabutyl titanate for enhanced photocatalytic degradation under visible light
Mehdizadeh et al. Visible light activity of nitrogen-doped TiO2 by sol-gel method using various nitrogen sources
Gadge et al. Enhanced sunlight-driven catalysis for hydrogen generation and dye remediation using synergistic p-Co 3 O 4/n-TiO 2 nanocomposites
CN113101980A (zh) 一种具有可见光催化活性的TiO2/UiO-66复合材料的制备方法和应用
CN113289646A (zh) 一种核壳结构的纳米花/纳米颗粒溴氧化铋/二氧化钛可见光催化剂及其制备方法和应用
CN109289887B (zh) 一种氮、钒共掺杂二氧化钛/钽酸铋z型异质结光催化剂的制备方法及应用
Wang et al. Fabrication of weak-room-light-driven TiO2-based catalysts through adsorbed-layer nanoreactor synthesis: enhancing catalytic performance by regulating catalyst structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant