CN110224819B - An On-Chip Decoder for Temporal BB84 Protocol - Google Patents
An On-Chip Decoder for Temporal BB84 Protocol Download PDFInfo
- Publication number
- CN110224819B CN110224819B CN201910483830.7A CN201910483830A CN110224819B CN 110224819 B CN110224819 B CN 110224819B CN 201910483830 A CN201910483830 A CN 201910483830A CN 110224819 B CN110224819 B CN 110224819B
- Authority
- CN
- China
- Prior art keywords
- signal light
- optical
- interference coupler
- beam splitter
- optical beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002123 temporal effect Effects 0.000 title description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 152
- 238000000034 method Methods 0.000 claims abstract description 19
- 230000003111 delayed effect Effects 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 claims description 7
- 238000004377 microelectronic Methods 0.000 claims description 4
- 239000002210 silicon-based material Substances 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 3
- 239000000835 fiber Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/671—Optical arrangements in the receiver for controlling the input optical signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/70—Photonic quantum communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0852—Quantum cryptography
- H04L9/0858—Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
一种用于时间BB84协议的片上解码器及解码方法,解码器包括:输入波导(100);1×2光分束器(200),用于将接收到的信号光分成等强度的两束信号光;光延时线(300),用于将信号光进行延时;可调光衰减器(400),用于使信号光的光强与光延时线(300)延时后的信号光的光强一致;相位偏置调制器(500),用于调节接收到的信号光的相位;2×2干涉耦合器(600),用于对接收到的信号光进行厄米运算;输出波导(700),用于将信号光输出。该解码器及解码方法可以对满足时间BB84协议的任意四种量子态信号光进行被动解调,且对于光纤信道和干涉环路中的相位漂移,该器件可通过片上调控实现精确补偿。
An on-chip decoder for time BB84 protocol and a decoding method, the decoder comprises: an input waveguide (100); a 1×2 optical beam splitter (200) for dividing received signal light into two beams of equal intensity signal light; the optical delay line (300) is used to delay the signal light; the adjustable optical attenuator (400) is used to make the light intensity of the signal light and the signal delayed by the optical delay line (300) The light intensity is consistent; the phase offset modulator (500) is used to adjust the phase of the received signal light; the 2×2 interference coupler (600) is used to perform Hermitian operation on the received signal light; output The waveguide (700) is used for outputting the signal light. The decoder and decoding method can passively demodulate any four quantum state signal light satisfying the time BB84 protocol, and for the phase drift in the fiber channel and interference loop, the device can achieve precise compensation through on-chip regulation.
Description
技术领域technical field
本发明涉及量子通信与集成光学技术领域,尤其涉及一种用于时间 BB84协议的片上解码器及解码方法。The invention relates to the technical field of quantum communication and integrated optics, in particular to an on-chip decoder and a decoding method for time BB84 protocol.
背景技术Background technique
目前公认的量子密钥分发装置主要是基于传统的分立光学棱镜或光纤器件,体积大,难以集成,成本高,不利于大规模的商业化。随着硅基光子学的发展,分立光学器件的功能逐渐可在片上实现,从而方便集成,同时利用成熟的硅器件加工平台,可以实现大规模低成本的量产。于是人们开始尝试将量子密钥分发装置所需的器件和子系统集成在片上。对于时间BB84协议量子密钥分发,其解调端的设置一般与发射端所制备的量子态所对应,即解调端的探测基与发射端的制备基一致,无法对不同制备基的BB84协议进行解调;同时,由于一般系统中的色散、温度抖动、干涉环不稳定等效应会不可避免的导致相位漂移,因此传统方案需要在量子密钥分发系统中加入恒温、减震措施并对系统参数做实时监控以减少相位漂移,这会导致额外成本以及码率牺牲。Currently recognized quantum key distribution devices are mainly based on traditional discrete optical prisms or optical fiber devices, which are bulky, difficult to integrate, and high cost, which is not conducive to large-scale commercialization. With the development of silicon-based photonics, the functions of discrete optical devices can gradually be realized on-chip, which facilitates integration. At the same time, large-scale and low-cost mass production can be achieved by using mature silicon device processing platforms. So people began to try to integrate the devices and subsystems required for quantum key distribution devices on a chip. For the quantum key distribution of the time BB84 protocol, the setting of the demodulation end generally corresponds to the quantum state prepared by the transmitter end, that is, the detection base of the demodulation end is consistent with the preparation base of the transmitter end, and the BB84 protocol with different preparation bases cannot be demodulated At the same time, due to the effects of dispersion, temperature jitter, and interference ring instability in the general system, phase drift will inevitably be caused. Therefore, the traditional scheme needs to add constant temperature and shock absorption measures to the quantum key distribution system and make real-time system parameters. Monitoring to reduce phase drift, which results in additional cost and rate sacrifice.
发明内容SUMMARY OF THE INVENTION
(一)要解决的技术问题(1) Technical problems to be solved
基于上述技术问题,本发明提供了一种用于时间BB84协议的片上解码器及解码方法,用于解决传统方案中分立元件体积大、成本高以及现有技术中无法对不同制备基下时间BB84协议进行解调、无法实现片上相位补偿等问题。Based on the above technical problems, the present invention provides an on-chip decoder and a decoding method for the time BB84 protocol, which are used to solve the problem of the large volume and high cost of discrete components in the traditional solution, and the inability of the existing technology to prepare time BB84 based on different bases. Protocol demodulation, unable to achieve on-chip phase compensation and other issues.
(二)技术方案(2) Technical solutions
第一方面,本发明提供了一种用于时间BB84协议的片上解码器,包括:输入波导100,用于输入待解码信号光;In a first aspect, the present invention provides an on-chip decoder for temporal BB84 protocol, including: an
1×2光分束器200,包括第一光分束器201、第二光分束器202以及第三光分束器203,其中,第一光分束器201将待解码信号光分成等强度的两束并分别发送至第二光分束器202以及第三光分束器203,之后第二光分束器202和第三光分束器203进一步将接收到的信号光分别分成等强度的两束信号光;The 1×2
光延时线300,设于第一光分束器201和第二光分束器202之间,用于将第一光分束器201发送至第二光分束器202信号光进行延时;The
可调光衰减器400,设于第一光分束器201和第三光分束器203之间,用于使第一光分束器201发送至第三光分束器203信号光的光强与光延时线300延时后的信号光的光强一致;The adjustable
相位偏置调制器500,包括第一相位偏置调制器501、第二相位偏置调制器502、第三相位偏置调制器503以及第四相位偏置调制器504,用于调节输入信号光的相位;The
2×2干涉耦合器600,包括第一干涉耦合器601、第二干涉耦合器602、第三干涉耦合器603以及第四干涉耦合器604,分别用于对接收到的信号光进行厄米运算,其中,第一干涉耦合器601和第二干涉耦合器602分别设于第二光分束器202和第三光分束器203后,第二光分束器202发出的两束信号光中其中一束通过第一相位偏置调制器501发送至第一干涉耦合器601,另一束发送至第二干涉耦合器602,第三光分束器203发出的两束信号光中其中一束通过第二相位偏置调制器502发送至第二干涉耦合器 602,另一束发送至第一干涉耦合器601;第三干涉耦合器603设于第一干涉耦合器601后,用于接收第一干涉耦合器601发送的两束信号光,其中一束信号光经第三相位偏置调制器503调制后发送至第三干涉耦合器603,第四干涉耦合器604设于第二干涉耦合器602后,用于接收第二干涉耦合器602发送的两束信号光,其中一束信号光经第四相位偏置调制器504调制后发送至第四干涉耦合器604;The 2×2
输出波导700,包括第一输出波导701、第二输出波导702、第三输出波导703及第四输出波导704,其中,第一输出波导701和第二输出波导 702用于输出第三干涉耦合器603厄米运算后的信号光,第三输出波导703 和第四输出波导704用于输出第四干涉耦合器604厄米运算后的信号光。The
可选地,输入波导100、1×2光分束器200、光延时线300、可调光衰减器400、相位偏置调制器500、2×2干涉耦合器600以及输出波导700 的材料为硅材料,采用与微电子工艺兼容的工艺加工而成。Optionally, the materials of the
可选地,输入波导100和输出波导700采用横电场模基模传输。Optionally, the
可选地,1×2光分束器200采用1×2多模干涉耦合器(1×2MMI); 2×2干涉耦合器600采用2×2多模干涉耦合器(2×2MMI)。Optionally, the 1×2
可选地,相位偏置调制器500采用热光调谐相位调制器。Optionally, the
可选地,光延时线300采用波导环绕结构,以通过延长波导长度使信号光产生延时。Optionally, the
可选地,光延时线300的时间延时与时间BB84协议的编码器所编码量子态中的两个脉冲的时间延时相同。Optionally, the time delay of the
可选地,可调光衰减器400采用热光调谐马赫-增德尔干涉结构。Optionally, the tunable
本发明另一方面提供一种解码方法,包括:Another aspect of the present invention provides a decoding method, comprising:
S1,通过输入波导100输入待解码信号光,其中待解码信号光为时间 BB84协议所编码的量子态信号光,其为具有一定时间间隔的双脉冲态;S1, input the signal light to be decoded through the
S2,第一光分束器201接收待解码信号光并分成等强度的两束信号光分别通过光延时线300和可调光衰减器400发送至第二光分束器202和第三光分束器203,光延时线300使得发送至第二光分束器202的信号光中的第一个脉冲和发送至第三光分束器203的另一束信号光中的第二个脉冲实现相干时间的重叠,可调光衰减器400使得两束信号光在到达第二光分束器202和第三光分束器203前的强度一致;S2, the first
S3,调节相位偏置调制器500的相位并利用2×2干涉耦合器600对接收到的信号光进行厄米运算以得到满足时间BB84协议解码要求的信号光,并通过输出波导700输出。S3 , adjust the phase of the
(三)有益效果(3) Beneficial effects
本发明提供了一种用于时间BB84协议的片上解码器及解码方法,整个器件采用与微电子工艺兼容的工艺加工而成,可以实现集成化、低成本的大规模量产。器件内部利用硅材料的的热光效应来实现大范围的片上相位偏置调控,在此基础上结合其它的逻辑器件,通过相位调试,实现了对不同制备基下的时间BB84量子密钥分发协议的解调功能;同时,对于量子态信号光在光纤信道和干涉环路中的相位漂移,该解码器可以通过相应调控进行片上补偿来实现精确被动解调,减少了片外补偿措施导致的额外成本和码率牺牲。The invention provides an on-chip decoder and a decoding method for the time BB84 protocol. The whole device is processed by a process compatible with the microelectronic process, which can realize integrated and low-cost mass production. The thermo-optic effect of silicon material is used inside the device to realize a wide range of on-chip phase bias regulation. On this basis, combined with other logic devices, through phase adjustment, the time BB84 quantum key distribution protocol under different preparation bases is realized. At the same time, for the phase shift of the quantum state signal light in the fiber channel and the interference loop, the decoder can perform on-chip compensation through corresponding regulation to achieve accurate passive demodulation, reducing the extra cost caused by off-chip compensation measures. Cost and bitrate sacrifice.
附图说明Description of drawings
图1示意性示出了本公开实施例的用于时间BB84协议的片上解码器结构以及外接探测器的示意图;FIG. 1 schematically shows a schematic diagram of an on-chip decoder structure and an external detector used for the temporal BB84 protocol according to an embodiment of the present disclosure;
图2示意性示出了本公开实施例的用于时间BB84协议的解码方法流程图;FIG. 2 schematically shows a flowchart of a decoding method for the temporal BB84 protocol according to an embodiment of the present disclosure;
图3示意性示出了本公开实施例的时间BB84协议的量子态的组成示意图以及其在二维希尔伯特空间中的方位示意图;3 schematically shows a schematic diagram of the composition of a quantum state of the time BB84 protocol according to an embodiment of the present disclosure and a schematic diagram of its orientation in a two-dimensional Hilbert space;
图4示意性示出了本公开实施例的满足BB84协议的四种量子态在二维希尔伯特空间中的方位示意图以及三种典型的BB84协议的量子态示意图;FIG. 4 schematically shows a schematic diagram of the orientation of four quantum states in the two-dimensional Hilbert space and three typical quantum state schematic diagrams of the BB84 protocol according to an embodiment of the present disclosure;
图5示意性示出了本公开实施例的用于时间BB84协议的片上解码器在工作状态下的量子态信号光演化图;FIG. 5 schematically shows a quantum state signal optical evolution diagram of the on-chip decoder for the time BB84 protocol in the working state according to an embodiment of the present disclosure;
图6示意性示出了本公开实施例的用于时间BB84协议的解码方法下输出波导处的解码信号光图。FIG. 6 schematically shows a decoded signal light diagram at the output waveguide under the decoding method for the temporal BB84 protocol according to the embodiment of the present disclosure.
【附图标记】[reference number]
100-输入波导100-input waveguide
200—1×2光分束器200—1×2 beam splitter
201-第一光分束器 202-第二光分束器201-first beam splitter 202-second beam splitter
203-第三光分束器203-Third beam splitter
300-光延时线300-optical delay line
400-可调光衰减器400 - Adjustable Optical Attenuator
500-相位偏置调制器500-Phase Offset Modulator
501-第一相位偏置调制器 502-第二相位偏置调制器501 - First Phase Offset Modulator 502 - Second Phase Offset Modulator
503-第三相位偏置调制器 504-第四相位偏置调制器503 - Third Phase Offset Modulator 504 - Fourth Phase Offset Modulator
600-2×2干涉耦合器600-2×2 Interference Coupler
601-第一干涉耦合器 602-第二干涉耦合器601-first interference coupler 602-second interference coupler
603-第三干涉耦合器 604-第四干涉耦合器603-third interference coupler 604-fourth interference coupler
700-输出波导700 - Output Waveguide
701-第一输出波导 702-第二输出波导701-First output waveguide 702-Second output waveguide
703-第三输出波导 704-第四输出波导703 - Third output waveguide 704 - Fourth output waveguide
800-探测器800-Detector
801-第一外部探测器 802-第二外部探测器801-First external detector 802-Second external detector
803-第三外部探测器 804-第四外部探测器803-Third external detector 804-Fourth external detector
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to specific embodiments and accompanying drawings.
第一方面,本发明提供了一种用于时间BB84协议的片上解码器,参见图1,包括:In a first aspect, the present invention provides an on-chip decoder for the temporal BB84 protocol, see FIG. 1 , including:
输入波导100,用于输入待解码信号光。The
具体的,输入波导100,用于输入待解码信号光,本发明实施例中,信号光是时间BB84协议所发送的量子态信号光。Specifically, the
1×2光分束器200,包括第一光分束器201、第二光分束器202以及第三光分束器203,用于将输入的信号光分束为两束等强度的信号光。The 1×2
具体的,本发明实施例的解码器中,第一光分束器201、第二光分束器202以及第三光分束器203采用1×2多模干涉耦合器(1×2MMI),第一光分束器201将待解码信号光分成等强度的两束并分别发送至第二光分束器202以及第三光分束器203,之后第二光分束器202和第三光分束器 203进一步将接收到的信号光分别分成等强度的两束信号光。Specifically, in the decoder of the embodiment of the present invention, the first
光延时线300,设于第一光分束器201和第二光分束器202之间,用于将第一光分束器201发送至第二光分束器202信号光进行延时。The
具体的,本发明实施例的解码器中,光延时线300采用波导环绕结构,通过延长波导长度使信号光产生延时,其时间延时与时间BB84协议的编码器所编码量子态中的两个脉冲的时间延时相同,使得发送至第二光分束器202的信号光中的第一个脉冲和发送至第三光分束器203的另一束信号光中的第二个脉冲实现相干时间的重叠。Specifically, in the decoder of the embodiment of the present invention, the
可调光衰减器400,用于衰减输入信号光的强度。The adjustable
具体的,本发明实施例的解码器中,可调光衰减器400采用热光调谐马赫-增德尔干涉结构,设于第一光分束器201和第三光分束器203之间,使得第一光分束器201发送至第三光分束器203信号光的光强与光延时线 300延时后的信号光的光强一致。Specifically, in the decoder of the embodiment of the present invention, the adjustable
相位偏置调制器500,包括第一相位偏置调制器501、第二相位偏置调制器502、第三相位偏置调制器503以及第四相位偏置调制器504,用于调节输入信号光的相位。The phase offset
具体的,本发明实施例的解码器中,第一相位偏置调制器501、第二相位偏置调制器502、第三相位偏置调制器503以及第四相位偏置调制器 504采用热光调谐相位调制器,第一相位偏置调制器501用于对第二光分束器202分束的两束信号光中的一束信号光进行相位调节,第二相位偏置调制器502对第二光分束器203分束的两束信号光中的一束信号光进行相位调节,第三相位偏置调制器503用于对2×2干涉耦合器601输出的两束信号光中的一束信号光进行相位调节,第四相位偏置调制器504对2×2 干涉耦合器602输出的两束信号光中的一束信号光进行相位调节。Specifically, in the decoder of the embodiment of the present invention, the first phase offset
2×2干涉耦合器600,包括第一干涉耦合器601、第二干涉耦合器602、第三干涉耦合器603以及第四干涉耦合器604,分别用于对接收到的信号光进行厄米运算。The 2×2
具体的,本发明实施例的解码器中,第一干涉耦合器601、第二干涉耦合器602、第三干涉耦合器603及第四干涉耦合器604采用2×2多模干涉耦合器(2×2MMI),第一干涉耦合器601和第二干涉耦合器602分别设于第二光分束器202和第三光分束器203后,第二光分束器202发出的两束信号光中其中一束通过第一相位偏置调制器501发送至第一干涉耦合器601,另一束发送至第二干涉耦合器602,第三光分束器203发出的两束信号光中其中一束通过第二相位偏置调制器502发送至第二干涉耦合器 602,另一束发送至第一干涉耦合器601;第三干涉耦合器603设于第一干涉耦合器601后,用于接收第一干涉耦合器601发送的两束信号光,其中一束信号光经第三相位偏置调制器503调制后发送至第三干涉耦合器603,第四干涉耦合器604设于第二干涉耦合器602后,用于接收第二干涉耦合器602发送的两束信号光,其中一束信号光经第四相位偏置调制器504调制后发送至第四干涉耦合器604。Specifically, in the decoder of the embodiment of the present invention, the first interference coupler 601 , the second interference coupler 602 , the third interference coupler 603 , and the fourth interference coupler 604 use 2×2 multi-mode interference couplers (2 ×2MMI), the first interference coupler 601 and the second interference coupler 602 are respectively arranged after the second optical beam splitter 202 and the third optical beam splitter 203, and the two beams of signal light emitted by the second optical beam splitter 202 One of the beams is sent to the first interference coupler 601 through the first phase offset modulator 501, the other beam is sent to the second interference coupler 602, and one of the two beams of signal light emitted by the third optical beam splitter 203 The beam is sent to the second interferometric coupler 602 through the second phase offset modulator 502, and the other beam is sent to the first interferometric coupler 601; the third interferometric coupler 603 is arranged behind the first interferometric coupler 601 for receiving The two beams of signal light sent by the first interferometric coupler 601, one of which is modulated by the third phase offset modulator 503 and sent to the third interferometric coupler 603, and the fourth interferometric coupler 604 is provided in the second interferometric coupling After the second interferometric coupler 602 , it is used to receive two beams of signal light sent by the second interference coupler 602 , wherein one beam of signal light is modulated by the fourth phase offset modulator 504 and then sent to the fourth interference coupler 604 .
输出波导700,包括第一输出波导701、第二输出波导702、第三输出波导703及第四输出波导704。The
具体的,第一输出波导701和第二输出波导702用于输出第三干涉耦合器603厄米运算后的信号光,第三输出波导703和第四输出波导704用于输出第四干涉耦合器604厄米运算后的信号光。Specifically, the
在本发明实施例的解码器中,输入波导100、1×2光分束器200、光延时线300、可调光衰减器400、相位偏置调制器500、2×2干涉耦合器 600及输出波导700材料为硅材料,即该解码器制作在硅衬底上采用与一般微电子工艺兼容的工艺加工而成。输入波导100和输出波导700均采用横电场模基模传输。In the decoder of the embodiment of the present invention, the
输出波导700后接外部探测器800,具体的第一输出波导701后接第一外部探测器801、第二输出波导702后接第二外部探测器802、第三输出波导703后接第三外部探测器803,第四输出波导704后接第四外部探测器804。The
第二方面,本发明实施例还提供一种用于时间BB84协议的解码方法,可对不同制备基下的时间BB84协议进行被动解调,下面以对不同制备基下的时间BB84协议进行被动解调为例,对该解调方法进行详细介绍。参见图2,该方法包括:In the second aspect, the embodiment of the present invention also provides a decoding method for the time BB84 protocol, which can passively demodulate the time BB84 protocol under different preparation bases. The following is to passively decode the time BB84 protocol under different preparation bases. The demodulation method is described in detail by taking the demodulation as an example. Referring to Figure 2, the method includes:
S1,将待解码信号光输入波导100,其中待解码信号光为时间BB84 协议所发送的量子态信号光;S1, input the signal light to be decoded into the
具体的,时间BB84协议所发送的量子态信号光由两个相邻脉冲组成,其基本结构和其在二维希尔伯特空间中的方位如图3所示,对于在二维希尔伯特空间中坐标为(θ,φ)的量子态其代表第一个脉冲强度为 cos2(θ/2)、第二个脉冲强度为sin2(θ/2),且第二个脉冲相对于第一个脉冲的相位差为φ,使用量子力学算符表示如下:Specifically, the quantum state signal light sent by the time BB84 protocol consists of two adjacent pulses, and its basic structure and its orientation in the two-dimensional Hilbert space are shown in Figure 3. For the two-dimensional Hilbert space A quantum state with coordinates (θ, φ) in special space It represents that the first pulse intensity is cos 2 (θ/2), the second pulse intensity is sin 2 (θ/2), and the phase difference of the second pulse relative to the first pulse is φ, using quantum mechanics The operator is represented as follows:
在二维希尔伯特空间中与(θ,φ)量子态正交的量子态是其关于球心的对称点(π-θ,φ+π),使用量子力学算符表示如下:The quantum state orthogonal to the (θ, φ) quantum state in a two-dimensional Hilbert space is its symmetry point (π-θ, φ+π) about the center of the sphere, using quantum mechanical operators It is expressed as follows:
对于时间BB84协议,其要求编码端制备两组不同的量子态信号光,如图4所示,每组内两个量子态相互正交,即与正交、与正交,两组量子态之间不正交。在二维希尔伯特空间中这四个量子态信号光显示为过球心圆上的四等分点,因此对应本发明实施例所公开的解码器,输入波导100的四种量子态信号光可以表示为:For the time BB84 protocol, it requires the encoding end to prepare two sets of different quantum state signal lights, as shown in Figure 4, the two quantum states in each set are orthogonal to each other, that is and orthogonal, and Orthogonal, the two sets of quantum states are not orthogonal. In the two-dimensional Hilbert space, the four quantum state signal lights are shown as passing through the quarter points on the central circle, so corresponding to the decoder disclosed in the embodiment of the present invention, the four quantum state signals input to the
S2,第一光分束器201接收待解码信号光并分成等强度的两束信号光分别通过光延时线300和可调光衰减器400发送至第二光分束器202和第三光分束器203,光延时线300使得发送至第二光分束器202的信号光中的第一个脉冲和发送至第三光分束器203的另一束信号光中的第二个脉冲实现相干时间的重叠,可调光衰减器400使得两束信号光在到达第二光分束器202和第三光分束器203前的强度一致;S2, the first
具体的,如图5所示,第一光分束器201接收输入波导100输入的量子态信号光,并将其分成两束等强度信号光分别通过光延时线300和可调光衰减器400发送至第二光分束器202和第三光分束器203。设置可调光衰减器400的衰减量和光延时线300所带来的衰减量一致,使得两束信号光在到达第二光分束器202以及第三光分束器203前的强度一致;设置光延时线300的时间延时与时间BB84协议的编码器所编码量子态中的两个脉冲的时间延时相同,使得发送至第二光分束器202的信号光中的第一个脉冲和发送至第三光分束器203的另一束信号光中的第二个脉冲实现相干时间的重叠。至此,在探测时间点上,输入波导100内量子态信号光第一个脉冲的信息转移至了光分束器202的输入端、第二个脉冲的信息转移至了光分束器203的输入端;Specifically, as shown in FIG. 5 , the first
S3,调节相位偏置调制器500的相位并利用2×2干涉耦合器600对接收到的信号光进行厄米运算以得到满足时间BB84协议解码要求的信号光,并通过输出波导700中输出。S3 , adjust the phase of the phase offset
对于时间BB84协议,其被动解码器需要实现两种等概率的不同解调,第一种解调可以对编码端制备的第一组量子态信号光作准确响应,而对第二组量子态信号光作随机响应;第二种解调可以对编码端制备的第二组量子态信号光作准确响应,而对第一组量子态信号光作随机响应。而本发明实施例所公开的解码器可对满足时间BB84协议的任意四种量子态信号光 (如步骤S1中所述)进行被动解调。For the time BB84 protocol, its passive decoder needs to realize two different demodulations with equal probability. The first demodulation can accurately respond to the first set of quantum state signals prepared by the encoder, and the second set of quantum state signals can respond accurately. The light responds randomly; the second kind of demodulation can respond accurately to the second group of quantum state signal light prepared by the coding end, and respond randomly to the first group of quantum state signal light. However, the decoder disclosed in the embodiment of the present invention can passively demodulate any four quantum state signal lights (as described in step S1) that satisfy the time BB84 protocol.
具体的,本发明实施例所公开的解码器中,第一光分束器201接收输入波导100输入的量子态信号光并将其分成两束等强度信号光,分别通过光延时线300和可调光衰减器400发送至第二光分束器202和第三光分束器203,进一步分成了四束等强度信号光(如图5所示)。第二光分束器 202和第三光分束器203均包括一上输出端和下输出端,第二光分束器202 的上输出端和第三光分束器203的上输出端的信号光共同进入第一组解调组件A(如图1中的实线框所示),第二光分束器202的下输出端和第三光分束器203的下输出端的信号光共同进入第二组解调组件B(如图1中的实线框所示),由于第二光分束器202和第三光分束器203均将输入信号光分为强度相等的两束信号光,因此两组不同解调组件的解调概率相同。其中,第一组解调组件A和第二组解调组件B均包括两相位偏置调制器 500以及两2×2干涉耦合器600。Specifically, in the decoder disclosed in the embodiment of the present invention, the first
对于第一组解调组件A,如图1和图5所示,在探测时间点上,量子态信号光第一个脉冲和第二个脉冲的信息分别转移至了第一耦合器601的两个输入端,设定第一调制器501和第三调制器503的相位分别为和其组件内各元件的等效厄米运算及联合厄米运算L1为:For the first group of demodulation components A, as shown in FIG. 1 and FIG. 5 , at the detection time point, the information of the first pulse and the second pulse of the quantum state signal light are respectively transferred to the two terminals of the
在L1的操作下得出:Under the operation of L1, it is obtained:
以上得出,输出波导701、702处的信号光如图6所示,即在探测时间点上,量子态会在如图1所示的第一外部探测器801处准确响应,量子态会在第二外部探测器802处准确响应,同时由于四种量子态 以及为过球心圆上的四等分点,因此第一外部探测器801以及第二外部探测器802对于量子态和的响应是随机的。From the above, the signal light at the
同理,对于第二组解调组件B,在探测时间点上,量子态信号光第一个脉冲和第二个脉冲的信息分别转移至了第一耦合器602的两个输入端,设定第二调制器502和第四调制器504的相位分别为和时,输出波导703、704处的信号光如图6所示,可使得在探测时间点上,量子态在第三外部探测器803处准确响应,量子态在第四外部探测器 804处准确响应,并且第三外部探测器803和第四外部探测器804对于量子态和的响应是随机的。Similarly, for the second group of demodulation components B, at the detection time point, the information of the first pulse and the second pulse of the quantum state signal light are respectively transferred to the two input ends of the
综上可知,以上设置下四个探测器的结果完全满足当前时间BB84协议的解码需要,即实现了对满足时间BB84协议的任意四种量子态进行被动解调的功能。To sum up, the results of the four detectors under the above settings fully meet the decoding needs of the current time BB84 protocol, that is, the function of passively demodulating any four quantum states that meet the time BB84 protocol is realized.
更一般的,三种典型的时间BB84协议的量子态如图4所示,其包括:More generally, the quantum states of three typical temporal BB84 protocols are shown in Fig. 4, which include:
时间BB84协议1:编码端制备|0>,|1>,|+>以及|->四种量子态;Time BB84 protocol 1: The encoding terminal prepares four quantum states |0>, |1>, |+> and |->;
时间BB84协议2:编码端制备|0>,|1>,|+i>以及|—i>四种量子态;Time BB84 protocol 2: The coding end prepares four quantum states |0>, |1>, |+i> and |—i>;
时间BB84协议3:编码端制备|+>,|->,|+i>以及|—i>四种量子态;Time BB84 protocol 3: The coding side prepares four quantum states |+>, |->, |+i> and |—i>;
本发明实施例公开的解码器对上述3种典型的时间BB84协议的解码设置见下表1:The decoding settings of the decoder disclosed in the embodiment of the present invention to the above-mentioned three typical time BB84 protocols are shown in Table 1 below:
表1Table 1
另外,当量子态信号由于信道传输或干涉环路偏差产生了相位漂移时 (即前后两个脉冲间的相位发生了变化时),本发明实施例所公开的解码器可以通过相应调控进行片上补偿来实现精确的被动解调。In addition, when the quantum state signal has a phase shift due to channel transmission or interference loop deviation (that is, when the phase between the two pulses before and after changes), the decoder disclosed in the embodiment of the present invention can perform on-chip compensation through corresponding regulation. to achieve accurate passive demodulation.
当量子态以及产生相位偏移时:when the quantum state as well as When a phase shift is generated:
只需要对第一调制器501和第二调制器502做相应调整:It is only necessary to make corresponding adjustments to the
便可对量子态进行片上相位补偿,重新实现精确被动解调,减少了片外补偿措施导致的额外成本和码率牺牲。On-chip phase compensation of the quantum state can be performed to re-implement accurate passive demodulation, reducing the additional cost and code rate sacrifice caused by off-chip compensation measures.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in further detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910483830.7A CN110224819B (en) | 2019-06-04 | 2019-06-04 | An On-Chip Decoder for Temporal BB84 Protocol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910483830.7A CN110224819B (en) | 2019-06-04 | 2019-06-04 | An On-Chip Decoder for Temporal BB84 Protocol |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110224819A CN110224819A (en) | 2019-09-10 |
CN110224819B true CN110224819B (en) | 2020-10-30 |
Family
ID=67819759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910483830.7A Active CN110224819B (en) | 2019-06-04 | 2019-06-04 | An On-Chip Decoder for Temporal BB84 Protocol |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110224819B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110617874B (en) * | 2019-10-16 | 2021-11-23 | 南京理工大学 | phi-OTDR system based on double-pulse phase-shifting interference and phase demodulation method |
CN114667710A (en) * | 2019-11-18 | 2022-06-24 | 瑞典爱立信有限公司 | Qubit decoding apparatus, systems, and methods |
CN111555871B (en) * | 2020-04-29 | 2021-03-26 | 中国科学院半导体研究所 | Reconfigurable receiver chip for quantum key distribution |
CN111585755B (en) * | 2020-04-29 | 2021-02-23 | 中国科学院半导体研究所 | Multi-protocol compatible quantum key distribution decoding integrated chip with configurable on-chip unit |
CN111934868B (en) * | 2020-08-17 | 2022-11-08 | 中国科学院半导体研究所 | Decoding chip and decoding method for quantum key distribution |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104737491A (en) * | 2012-10-15 | 2015-06-24 | 诺基亚技术有限公司 | Quantum key distribution |
CN106533676A (en) * | 2016-12-22 | 2017-03-22 | 浙江神州量子网络科技有限公司 | Quantum key distribution system based on reference system independent protocol |
CN108847936A (en) * | 2018-09-03 | 2018-11-20 | 浙江九州量子信息技术股份有限公司 | Hybrid integrated quantum phase coding and decoding system based on PLC and LiNbO3 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2326978A2 (en) * | 2008-08-19 | 2011-06-01 | Alcatel-Lucent USA Inc. | Monolithic coherent optical detectors |
US20130089204A1 (en) * | 2011-10-11 | 2013-04-11 | Nucrypt Llc | Quantum encrypted data transmission in optically-amplified wdm communications |
EP2856697A4 (en) * | 2012-05-31 | 2016-03-02 | Nokia Technologies Oy | SECURE WIRELESS COMMUNICATIONS |
CN103546280B (en) * | 2013-10-28 | 2016-07-06 | 中国科学技术大学 | Encoder for quantum cryptography communication |
CN106161009B (en) * | 2016-08-19 | 2023-05-05 | 浙江神州量子网络科技有限公司 | Quantum key distribution system based on time-phase encoding |
CN106375088B (en) * | 2016-10-11 | 2020-05-26 | 吉林大学 | Encoder and decoder chips for quantum cryptography communication |
CN107135068B (en) * | 2017-04-18 | 2020-08-04 | 中国科学院半导体研究所 | On-chip high-speed polarization control encoder for quantum key distribution |
GB2564446B (en) * | 2017-07-10 | 2020-01-22 | Toshiba Kk | A Quantum communication component, receiver and system |
CN108650091B (en) * | 2018-07-18 | 2024-04-19 | 中国电子科技集团公司电子科学研究院 | Phase decoding method, phase decoding receiving device and quantum key distribution system |
CN108809436B (en) * | 2018-09-06 | 2022-11-08 | 安徽问天量子科技股份有限公司 | Asymmetric structure quantum communication phase coding system codec |
CN208874580U (en) * | 2018-10-29 | 2019-05-17 | 中国电子科技集团公司电子科学研究院 | HVDC Modulation quantum key distribution phase decoding device and corresponding system |
-
2019
- 2019-06-04 CN CN201910483830.7A patent/CN110224819B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104737491A (en) * | 2012-10-15 | 2015-06-24 | 诺基亚技术有限公司 | Quantum key distribution |
CN106533676A (en) * | 2016-12-22 | 2017-03-22 | 浙江神州量子网络科技有限公司 | Quantum key distribution system based on reference system independent protocol |
CN108847936A (en) * | 2018-09-03 | 2018-11-20 | 浙江九州量子信息技术股份有限公司 | Hybrid integrated quantum phase coding and decoding system based on PLC and LiNbO3 |
Also Published As
Publication number | Publication date |
---|---|
CN110224819A (en) | 2019-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110224819B (en) | An On-Chip Decoder for Temporal BB84 Protocol | |
WO2020140851A1 (en) | Quantum communication and quantum time-frequency transmission fusion network system and method | |
US8538275B2 (en) | Multimode optical communication | |
WO2018214888A1 (en) | Polarization and phase entangled coding method and apparatus, and quantum key distribution system | |
CN107872314B (en) | Encoding device, light reflector and quantum key distribution equipment and system based on light reflector | |
CA2882288C (en) | Quantum communications system with integrated photonic devices | |
Cao et al. | Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems | |
CN107589415B (en) | Microwave photon wideband radar imager chip, system | |
CN106603158B (en) | High-precision distribution type fiber-optic Frequency Transfer method | |
Cai et al. | Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution | |
CN106375088A (en) | Encoder and decoder chips for quantum cryptography communications | |
CN104202090B (en) | The microwave signal long-distance optical fiber steady phase transmitting device of optically-based phase conjugation | |
CN109150314A (en) | Frequency conversion phase shift integration photon microwave mixer device | |
CN208797952U (en) | Polarization encoding device for optical communication | |
CN111800199B (en) | Microwave photonic multifunctional radar signal generating device and signal generating method thereof | |
Zhu et al. | Experimental quantum key distribution with integrated silicon photonics and electronics | |
EP2556606B1 (en) | Multimode optical communication | |
CN110224760B (en) | An on-chip decoder and decoding method for temporal BB84 protocol | |
CN107682087A (en) | A kind of steady phase transmission method of microwave optical fiber for eliminating local oscillator leakage in passive phase correction | |
Dolphin et al. | A hybrid integrated quantum key distribution transceiver chip | |
Zhang et al. | Polarization-based quantum key distribution encoder and decoder on silicon photonics | |
CN209517161U (en) | A kind of coalescing network system of quantum communications and the transmission of quantum time-frequency | |
CN110266397B (en) | An on-chip decoder and decoding method for polarized BB84 protocol | |
CN113794557B (en) | A multi-freedom subkey distribution silicon-based transmitter chip | |
CN109962772B (en) | Silicon-based integrated quantum key distribution chip based on coupling polarization beam splitter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |