[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110211126B - Image segmentation method based on intuitive fuzzy C-means clustering - Google Patents

Image segmentation method based on intuitive fuzzy C-means clustering Download PDF

Info

Publication number
CN110211126B
CN110211126B CN201910507275.7A CN201910507275A CN110211126B CN 110211126 B CN110211126 B CN 110211126B CN 201910507275 A CN201910507275 A CN 201910507275A CN 110211126 B CN110211126 B CN 110211126B
Authority
CN
China
Prior art keywords
pixel
value
image
gray
cluster center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910507275.7A
Other languages
Chinese (zh)
Other versions
CN110211126A (en
Inventor
赵凤
郝浩
刘汉强
范九伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Posts and Telecommunications
Original Assignee
Xian University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Posts and Telecommunications filed Critical Xian University of Posts and Telecommunications
Priority to CN201910507275.7A priority Critical patent/CN110211126B/en
Publication of CN110211126A publication Critical patent/CN110211126A/en
Application granted granted Critical
Publication of CN110211126B publication Critical patent/CN110211126B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Probability & Statistics with Applications (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

The invention discloses an image segmentation method based on intuitive fuzzy C-means clustering. The method mainly solves the problems that the image segmentation is sensitive to noise and easy to fall into local optimum, and the clustering number needs to be set, and has the scheme that: constructing an intuitive fuzzy set robust to noise using a switch mean based strategy
Figure DDA0002092240770000011
Performing curve fitting on the gray value distribution of the image, screening all peak points of a fitting curve as a cluster center initial value range set, and counting the number of the maximum cluster centers; in that
Figure DDA0002092240770000012
On the basis, the position information and the gray level information of the pixels are utilized to construct a linear weighting function coefficient in an intuitive fuzzy target function, and a membership degree matrix U is obtained; and evaluating the index evaluation U according to the grading distance index to obtain an optimal membership matrix, and screening the misclassified pixels by using an error detection strategy to carry out correct classification. The invention enhances the robustness to noise, can self-adaptively determine the image clustering number, and can be used for image recognition and computer vision preprocessing.

Description

基于直觉模糊C均值聚类的图像分割方法Image segmentation method based on intuitionistic fuzzy C-means clustering

技术领域technical field

本发明属于数字图像处理领域,具体涉及到一种图像分割方法,可用于图像识别和计算机视觉的预处理。The invention belongs to the field of digital image processing, in particular to an image segmentation method, which can be used for image recognition and computer vision preprocessing.

背景技术Background technique

从上个世纪七八十年代起,众多学者持续关注图像分割,图像分割技术已经成为众多领域的基础技术,只要关乎提取图像中内容的问题就不能缺少图像分割技术,图像分割工作的质量和效果将直接或者间接的影响后续的图像工程。现有的图像分割方法种类繁多,可以归纳为基于阈值的图像分割方法、基于边缘的图像分割方法、基于区域的图像分割方法、基于聚类的图像分割方法等,现有图像分割技术以基于阈值的图像分割方法和基于聚类的图像分割方法为主,基于阈值的图像分割是一种采用统计学信息分割的方法,通常提取合适的阈值,把图像中感兴趣的目标部分分离出来。但是其只适用于灰度差异明显的图像,此外,噪声等干扰元素也对图像的精确分割工作造成困难。到目前为止依然没有形成一种统一的理论体系来应用于不同的领域,图像分割依旧是一个热门研究领域。Since the 1970s and 1980s, many scholars have continued to pay attention to image segmentation. Image segmentation technology has become a basic technology in many fields. As long as it is related to extracting content from images, image segmentation technology cannot be lacking. The quality and effect of image segmentation work It will directly or indirectly affect subsequent image projects. There are many types of existing image segmentation methods, which can be summarized as threshold-based image segmentation methods, edge-based image segmentation methods, region-based image segmentation methods, and cluster-based image segmentation methods. The image segmentation method based on the image segmentation method and the image segmentation method based on the clustering method are mainly based on the image segmentation method based on the threshold value. However, it is only suitable for images with obvious differences in gray level. In addition, interfering elements such as noise also cause difficulties in the accurate segmentation of images. So far, there is still no unified theoretical system to apply to different fields, and image segmentation is still a hot research field.

基于聚类的图像分割方法根据图像内像素点之间的相似性把图像划分为多个类别,其具有分割效果好,耗时短,方法运行稳定等特点,近年来成为应用普遍的方法之一。常用的聚类分割方法有:K均值、模糊C-均值聚类、分层聚类和谱聚类)等等,其中模糊C-均值聚类是应用最为广泛的方法之一。模糊C均值方法最早由邓恩提出,参见:邓恩.一种和迭代自组织分析算法相关的模糊图像处理方法及其应用于检测紧凑易分离聚类.控制论学报.1973,3(3):32-57.(J.C.Dunn.A Fuzzy Relative of the ISODATA Process and ItsUse in Detecting Compact Well-Separated Clusters[J].Journal of Cybernetics,1973,3(3):32-57.),该方法由于没有考虑图像中的任何空间信息,对图像中的噪声敏感,使得分割含噪图像得不到理想的分割效果。后来许多学者发表了结合图像空间邻域信息改进方法。艾哈迈德等人将空间邻域信息项加入模糊C均值的目标函数中,提出了FCM_S算法,该算法虽然提高了对噪声的鲁棒性,但是计算复杂度较高,为了降低FCM_S算法的计算复杂度,陈松灿和张道强通过均值滤波和中值滤波的方式将邻域信息引入到算法的目标函数中,提出了FCM_S1和FCM_S2算法,参见:陈松灿,张道强.一种稳定的基于核函数的结合空间信息模糊C均值图像分割算法.美国电子电器工程师协会系统控制处理汇刊.卷34,1907–1916,2004.(S.Chen and D.Zhang,“Robust Image Segmentation Using FCM withSpatial Constraints Based on New Kernel-induced Distance Measure,”IEEETrans.Syst,Man,Cybern,vol.34,pp1907-1916,2004.);这两种算法中FCM_S1算法对高斯噪声处理效果较好,但对椒盐噪声鲁棒性差,二FCM_S2算法虽对椒盐噪声处理效果较好,但却对高斯噪声鲁棒性差,因而这两种算法不能做到对多种类型噪声的鲁棒普适性。蔡维玲等人结合图像的空间信息和灰度信息构造了线性加权和图像,提出了快速生成FCM算法,参见:蔡维玲,陈松灿,张道强.一种用于图像分割的引入局部信息的快速鲁棒的模糊C均值聚类算法.模式识别.卷40,825-838,2007.(W.Cai,S.Chen,and D.Zhang,“Fast and RobustFuzzy C-means Clustering Algorithms Incorporating Local Information for ImageSegmentation,”Pattern Recognit.,vol.40,no.3,pp.825-838,Mar.2007.),该方法在对高斯噪声有较强鲁棒性的同时对椒盐噪声也具有较好的鲁棒性;但是以上算法都没有考虑数据更多的模糊性,查尔热等人进一步发现了采用直觉模糊集理论可以考虑数据更多的模糊性,对数据的分类更加精确,提出了基于直觉模糊数据的模糊聚类方法,参见:一种新颖的直觉模糊C均值聚类算法及其在医学图像中的应用.应用软计算(T,Chaira.“A novelintuitionistic fuzzy C means clustering algorithm and its application tomedical images.”Appl.Soft Comput.11(2):1711-1717,2011.);由于基于直觉模糊数据的模糊聚类方法对噪声也比较敏感,韦尔马等人进一步将局部空间信息引入直觉模糊C均值算法中,参见:韦尔马,阿格拉沃尔,沙兰.针对脑部图像分割的结合局部空间信息的改进直觉模糊C均值算法.应用软计算.543-557,2016.(H.Verma,R.K.Agrawal,A.Sharan,“AnImproved Intuitionistic Fuzzy C-means Clustering Algorithm IncorporatingLocal Information for Brain Image Segmentation,”Appl.Soft Comput.,543–557,2016)。The image segmentation method based on clustering divides the image into multiple categories according to the similarity between the pixels in the image. It has the characteristics of good segmentation effect, short time consumption and stable operation of the method, and has become one of the most widely used methods in recent years. . Commonly used clustering segmentation methods are: K-means, fuzzy C-means clustering, hierarchical clustering and spectral clustering), etc. Among them, fuzzy C-means clustering is one of the most widely used methods. The fuzzy C-means method was first proposed by Dunn, see: Dunn. A fuzzy image processing method related to iterative self-organizing analysis algorithm and its application in detecting compact and easily separable clusters. Acta Cybernetics. 1973,3(3) :32-57.(J.C.Dunn.A Fuzzy Relative of the ISODATA Process and ItsUse in Detecting Compact Well-Separated Clusters[J].Journal of Cybernetics,1973,3(3):32-57.), this method has no Considering any spatial information in the image, it is sensitive to the noise in the image, so that the ideal segmentation effect cannot be obtained by segmenting the noisy image. Later, many scholars published improved methods combining image space neighborhood information. Ahmed et al. added the spatial neighborhood information item to the objective function of the fuzzy C-means, and proposed the FCM_S algorithm. Although this algorithm improves the robustness to noise, the computational complexity is high. In order to reduce the cost of the FCM_S algorithm Computational complexity, Chen Songcan and Zhang Daoqiang introduced the neighborhood information into the objective function of the algorithm by means of mean filtering and median filtering, and proposed FCM_S1 and FCM_S2 algorithms, see: Chen Songcan, Zhang Daoqiang. A stable combination based on kernel function Spatial Information Fuzzy C-Means Image Segmentation Algorithm. IEEE Transactions on System Control Processing. Volume 34, 1907–1916, 2004. (S.Chen and D.Zhang, “Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel -induced Distance Measure,"IEEETrans.Syst,Man,Cybern,vol.34,pp1907-1916,2004.); Among the two algorithms, the FCM_S1 algorithm has a better effect on Gaussian noise, but has poor robustness to salt and pepper noise. Although the FCM_S2 algorithm has a good effect on salt and pepper noise, it has poor robustness to Gaussian noise, so these two algorithms cannot be robust and universal to various types of noise. Cai Weiling et al. combined the spatial information and grayscale information of the image to construct a linear weighted sum image, and proposed a fast generation FCM algorithm, see: Cai Weiling, Chen Songcan, Zhang Daoqiang. A fast and robust blur for image segmentation that introduces local information C-means Clustering Algorithm. Pattern Recognition. Vol. 40, 825-838, 2007. (W. Cai, S. Chen, and D. Zhang, “Fast and RobustFuzzy C-means Clustering Algorithms Incorporating Local Information for ImageSegmentation,” Pattern Recognit., vol.40, no.3, pp.825-838, Mar.2007.), this method has strong robustness to Gaussian noise and good robustness to salt and pepper noise; but the above algorithms are all Without considering more fuzziness of data, Charger et al. further found that using intuitionistic fuzzy set theory can consider more fuzziness of data and classify data more accurately, and proposed a fuzzy clustering method based on intuitionistic fuzzy data. See: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Applied Soft Computation (T, Chaira. "A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images." Appl.Soft Comput. 11(2):1711-1717, 2011.); since the fuzzy clustering method based on intuitionistic fuzzy data is also sensitive to noise, Verma et al. further introduced local spatial information into the intuitionistic fuzzy C-means algorithm, see: Wei. Verma, Agrawal, Sharan. An Improved Intuitionistic Fuzzy C-Means Algorithm Combining Local Spatial Information for Brain Image Segmentation. Applied Soft Computing. 543-557, 2016. (H.Verma, R.K.Agrawal, A.Sharan , "AnImproved Intuitionistic Fuzzy C-means Clustering Algorithm Incorporating Local Information for Brain Image Segmentation," Appl. Soft Comput., 543–557, 2016).

虽然上述改进方法一定程度上优化了模糊聚类算法在抗噪性能上的表现,但依然存在对噪声鲁棒性不够强,对聚类中心的初始值很敏感,不能自适应分析图像聚类数目等不足。Although the above improved methods have optimized the performance of the fuzzy clustering algorithm in anti-noise performance to a certain extent, there are still problems that the robustness to noise is not strong enough, the initial value of the cluster center is very sensitive, and the number of image clusters cannot be adaptively analyzed. Wait enough.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于针对上述现有技术的不足,提供一种基于直觉模糊C均值聚类的图像分割方法,以增强对噪声的鲁棒性,提高分割精确度,减小对聚类中心初始值的敏感性,自适应地确定图像聚类数目。The purpose of the present invention is to provide an image segmentation method based on intuitionistic fuzzy C-means clustering in view of the above-mentioned deficiencies of the prior art, so as to enhance the robustness to noise, improve the segmentation accuracy, and reduce the initial value of the cluster center. Sensitivity to adaptively determine the number of image clusters.

为实现上述目的,本发明的技术包括如下步骤:To achieve the above object, the technology of the present invention comprises the steps:

(1)输入待分割图像,若待分割图像为彩色图像,先将其转换为灰度图像;(1) Input the image to be divided, if the image to be divided is a color image, first convert it into a grayscale image;

(2)初始化参数:设最大迭代次数T=100,停止阈值ε=10-5,模糊加权指数m=2,邻域窗半径ω=3,初始迭代次数t=1,聚类数目默认初始值Y=2;(2) Initialization parameters: set the maximum number of iterations T = 100, the stop threshold ε = 10 -5 , the fuzzy weighting index m = 2, the radius of the neighborhood window ω = 3, the initial number of iterations t = 1, the default initial value of the number of clusters y = 2;

(3)使用基于开关均值策略构造对噪声鲁棒的直觉模糊集

Figure GDA0003525548360000031
其中,1≤i≤n,n表示像素总数目;(3) Construct an intuitionistic fuzzy set robust to noise using a switch-mean-based strategy
Figure GDA0003525548360000031
Among them, 1≤i≤n, n represents the total number of pixels;

(4)针对输入图像的灰度值分布,使用最小二乘法进行曲线拟合,选择拟合曲线的峰值点所对应的灰度级作为初始化的聚类中心值,并设估计聚类数的范围为{2,…,Ymax},聚类中心初始值范围集合C为

Figure GDA0003525548360000032
其中,cY表示第Y个聚类中心的初始值,1≤Y≤Ymax,Ymax表示聚类数目的最大值,2≤Ymax≤n,T表示转置;(4) For the gray value distribution of the input image, use the least squares method to perform curve fitting, select the gray level corresponding to the peak point of the fitting curve as the initialized cluster center value, and set the range of the estimated number of clusters is {2,...,Y max }, and the initial value range set C of the cluster center is
Figure GDA0003525548360000032
Among them, c Y represents the initial value of the Y-th cluster center, 1≤Y≤Y max , Y max represents the maximum number of clusters, 2≤Y max ≤n, T represents the transposition;

(5)迭代计算线性加权函数系数Hir、直觉模糊距离

Figure GDA0003525548360000033
和直觉模糊目标函数J:(5) Iteratively calculate the linear weighting function coefficient H ir , the intuitionistic fuzzy distance
Figure GDA0003525548360000033
and the intuitionistic fuzzy objective function J:

(5a)利用像素的位置信息和灰度信息构造线性加权函数系数Hir(5a) Construct the linear weighting function coefficient H ir using the position information and grayscale information of the pixel:

Figure GDA0003525548360000034
Figure GDA0003525548360000034

其中,(ai,bi)和(ar,br)分别表示中心像素i和邻域像素r的空间坐标值,xi和xr分别表示中心像素i和邻域像素r的灰度值,uki表示xi对于第k个聚类中心ck的隶属度,1≤k≤Y,1≤r≤ω2Among them, (a i , b i ) and (ar , b r ) represent the spatial coordinate values of the center pixel i and the neighborhood pixel r , respectively, and xi and x r represent the grayscale of the center pixel i and the neighborhood pixel r, respectively value, u ki represents the membership degree of xi to the k -th cluster center ck, 1≤k≤Y, 1≤r≤ω 2 ;

(5b)计算直觉模糊集下像素xi到聚类中心ck的直觉模糊距离

Figure GDA0003525548360000035
其中,
Figure GDA0003525548360000036
Figure GDA0003525548360000037
分别表示像素xi与聚类中心ck的直觉模糊集;(5b) Calculate the intuitionistic fuzzy distance from the pixel x i to the cluster center ck under the intuitionistic fuzzy set
Figure GDA0003525548360000035
in,
Figure GDA0003525548360000036
and
Figure GDA0003525548360000037
respectively represent the intuitionistic fuzzy sets of pixel xi and cluster center ck ;

(5c)结合(5a)得到的线性加权函数系数Hir与(5b)得到的直觉模糊距离

Figure GDA0003525548360000038
计算直觉模糊目标函数J,并求解直觉模糊目标函数J中的隶属度函数uki和聚类中心ck的直觉模糊集
Figure GDA0003525548360000041
(5c) Combine the linear weighting function coefficient H ir obtained from (5a) with the intuitionistic fuzzy distance obtained from (5b)
Figure GDA0003525548360000038
Calculate the intuitionistic fuzzy objective function J, and solve the intuitionistic fuzzy set of the membership function u ki and the cluster center ck in the intuitionistic fuzzy objective function J
Figure GDA0003525548360000041

(6)判断迭代停止条件||C(t+1)-C(t)||<ε或运算迭代次数t>T是否成立:(6) Determine whether the iteration stop condition ||C (t+1) -C (t) ||<ε or the number of operation iterations t>T holds:

如果不成立,则令t=t+1,返回(5);If it does not hold, set t=t+1 and return to (5);

如果成立,输出隶属度矩阵U并判断Y<Ymax是否成立,若成立,则令Y=Y+1,取聚类中心初始值范围集合C的前Y个数值,令聚类中心初始值集合为

Figure GDA0003525548360000042
令初始迭代次数t=1,返回(5),若Y<Ymax不成立,执行(7),其中,
Figure GDA0003525548360000043
为聚类中心数值集合,
Figure GDA0003525548360000044
表示第Q个聚类中心迭代第t次的直觉模糊集,
Figure GDA0003525548360000045
表示第P个聚类中心的初始值,1≤Q≤Y,1≤P≤Y,U={uki};If it is true, output the membership degree matrix U and judge whether Y<Y max is true. If it is true, let Y=Y+1, take the first Y values of the cluster center initial value range set C, and let the cluster center initial value set for
Figure GDA0003525548360000042
Set the initial number of iterations t=1, return to (5), if Y< Ymax does not hold, execute (7), where,
Figure GDA0003525548360000043
is the set of cluster center values,
Figure GDA0003525548360000044
represents the intuitionistic fuzzy set of the t-th iteration of the Q-th cluster center,
Figure GDA0003525548360000045
Represents the initial value of the Pth cluster center, 1≤Q≤Y, 1≤P≤Y, U={u ki };

(7)从(6)输出(Ymax-1)个隶属度矩阵U,并使用分级距离指数评价指标GD评价这些隶属度矩阵;设GD数值最大的隶属度矩阵为Umax,将Umax对应的聚类数目Yfin作为输入图像的最终聚类数目,其中,1≤Yfin≤Ymax(7) Output (Y max -1) membership degree matrices U from (6), and use the hierarchical distance index evaluation index GD to evaluate these membership degree matrices; let the membership degree matrix with the largest GD value be U max , and U max corresponds to The number of clusters Y fin of the input image is taken as the final number of clusters of the input image, where 1≤Y fin ≤Y max ;

(8)对(7)输出的隶属度矩阵Umax做像素分类,并进行检错分类,输出分割图像:(8) Perform pixel classification on the membership matrix U max output in (7), and perform error detection and classification, and output the segmented image:

(8a)根据最大隶属度原则和最终聚类数目Yfin,对(7)输出的隶属度矩阵Umax的像素进行分类,输出标签矩阵UL,其中,UL内仅含类别数值{1,2,…,YW,…,Yfin},1≤YW≤Yfin(8a) According to the maximum membership principle and the final number of clusters Y fin , classify the pixels of the membership matrix U max output from (7), and output the label matrix UL , where UL only contains the category values { 1, 2,…,Y W ,…,Y fin }, 1≤Y W ≤Y fin ;

(8b)设中心像素i的标签类别值为Li,在中心像素i的5乘5邻域内,判断标签类别值Li的像素数量nL是否满足nL≤25/(Yfin+1)的条件:(8b) Set the label type value of the central pixel i as Li, and in the 5×5 neighborhood of the central pixel i , determine whether the number of pixels n L of the label type value Li satisfies n L ≤ 25/(Y fin +1) conditions of:

如果满足,则判定中心像素i为错分像素,并将错分像素的标签类别值Li修正为邻域内同种标签类别值数量最多的标签类别值,执行(8c);If it is satisfied, then determine that the central pixel i is a misclassified pixel, and correct the label type value Li of the misclassified pixel to the label type value with the largest number of the same type of label type value in the neighborhood, and execute (8c);

如果不满足,则判定中心像素i为正确分配像素,执行(8c);If it is not satisfied, then determine that the center pixel i is a correctly allocated pixel, and execute (8c);

(8c)判断标签矩阵UL中的像素是否全部遍历,如果是,输出最终标签矩阵UF,执行(8d),如果不是,返回(8b)继续遍历;( 8c ) judge whether the pixels in the label matrix UL are all traversed, if so, output the final label matrix UF , and execute (8d), if not, return to (8b) to continue traversing;

(8d)对最终标签矩阵UF中标签类别值为YW的像素赋予不同对应的灰度值xW,并将赋予不同灰度值的矩阵作为分割图像输出。(8d) Assign different corresponding gray values x W to the pixels with the label category value Y W in the final label matrix UF , and output the matrices with different gray values as a segmented image.

与现有技术相比,本发明具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:

第一,本发明使用基于开关均值策略构造对噪声鲁棒的直觉模糊集,利用像素的位置信息和灰度信息构造线性加权函数系数并引入到直觉模糊目标函数中,解决了聚类算法对噪声敏感的问题。First, the present invention constructs an intuitionistic fuzzy set that is robust to noise based on the switching mean strategy, uses the position information and grayscale information of the pixels to construct a linear weighting function coefficient and introduces it into the intuitionistic fuzzy objective function, and solves the problem of the clustering algorithm. sensitive issue.

第二,本发明使用最小二乘法对图像的灰度值分布进行曲线拟合,并选择拟合曲线所有的峰值点所对应的灰度级作为聚类中心初始值范围,根据分级距离指数评价指标评价隶属度矩阵,选择适合输入图像的聚类数目,实现图像聚类数目的自适应地确定,并克服了传统聚类算法容易陷入局部最优的缺点。Second, the present invention uses the least squares method to perform curve fitting on the gray value distribution of the image, and selects the gray levels corresponding to all the peak points of the fitting curve as the initial value range of the cluster center, and evaluates the index according to the hierarchical distance index. The membership matrix is evaluated, the number of clusters suitable for the input image is selected, the adaptive determination of the number of image clusters is realized, and the disadvantage that the traditional clustering algorithm is easy to fall into the local optimum is overcome.

第三,本发明使用检错策略筛选错分像素,并对错分元素进行正确分配,提高了分割精确度,使得分割效果更为理想。Third, the present invention uses an error detection strategy to screen the wrongly classified pixels, and correctly assigns the wrongly classified elements, which improves the segmentation accuracy and makes the segmentation effect more ideal.

附图说明Description of drawings

图1为本发明的实现流程图;Fig. 1 is the realization flow chart of the present invention;

图2为用本发明和现有方法对Berkeley图像数据库中的#3096图像进行仿真分割的结果对比图;Fig. 2 is the result comparison diagram that the #3096 image in the Berkeley image database is carried out simulation segmentation with the present invention and existing method;

图3为用本发明与现有方法对Berkeley图像数据库中的#238011图像进行仿真分割的结果对比图。FIG. 3 is a comparison diagram of the simulation segmentation results of the #238011 image in the Berkeley image database using the present invention and the existing method.

具体实施方式Detailed ways

以下结合附图对本发明的实施例及效果作进一步描述:Embodiments and effects of the present invention are further described below in conjunction with the accompanying drawings:

参见图1,本发明的实现步骤如下:Referring to Fig. 1, the implementation steps of the present invention are as follows:

步骤1:输入待分割图像。Step 1: Input the image to be segmented.

输入待分割图像,若待分割图像为彩色图像,先将其转换为灰度图像。Input the image to be divided. If the image to be divided is a color image, first convert it to a grayscale image.

步骤2:设置初始参数值。Step 2: Set initial parameter values.

设最大迭代次数T=100,停止阈值ε=10-5,模糊加权指数m=2,邻域窗半径ω=3,初始迭代次数t=1,聚类数目默认初始值Y=2。Set the maximum number of iterations T=100, the stop threshold ε=10 −5 , the fuzzy weighting index m=2, the radius of the neighborhood window ω=3, the initial iteration number t=1, and the default initial value of the number of clusters Y=2.

步骤3:构造对噪声鲁棒的直觉模糊集

Figure GDA0003525548360000051
Step 3: Construct an intuitionistic fuzzy set robust to noise
Figure GDA0003525548360000051

现有技术构造直觉模糊集的方法包括有IFCM算法和IIFCM算法,其均使用Yager算子来构造直觉模糊集。Methods for constructing intuitionistic fuzzy sets in the prior art include IFCM algorithm and IIFCM algorithm, both of which use Yager operators to construct intuitionistic fuzzy sets.

本实例使用基于开关均值策略修正输入图像的像素灰度值,并通过Yager算子来构造对噪声鲁棒的直觉模糊集,其中,开关均值策略是根据像素i邻域内的像素灰度值分布情况做灰度值修正,其实现如下:In this example, the pixel gray value of the input image is corrected based on the switching mean strategy, and the Yager operator is used to construct an intuitionistic fuzzy set robust to noise. The switching mean strategy is based on the distribution of pixel gray values in the neighborhood of pixel i. Do the gray value correction, which is implemented as follows:

3.1)首先判断在中心像素i的3乘3邻域内的像素灰度值是否不全为0或者255:3.1) First, determine whether the pixel gray values in the 3-by-3 neighborhood of the central pixel i are not all 0 or 255:

如果成立,则表示邻域内的像素灰度值除0或者255外还有别的灰度值,先将邻域内灰度值为0和255的像素取出,再取邻域内其余像素的灰度均值,并设为中心像素的修正数值,再执行3.2);If it is true, it means that the gray value of the pixel in the neighborhood has other gray values besides 0 or 255. First, take out the pixels with the gray value of 0 and 255 in the neighborhood, and then take the average gray value of the remaining pixels in the neighborhood. , and set it as the correction value of the center pixel, and then execute 3.2);

如果不成立,则不修改中心像素的灰度值,直接执行3.2);If not, do not modify the gray value of the center pixel, and directly execute 3.2);

3.2)判断输入图像中的像素是否全部遍历:如果是,输出灰度值修正后的图像,执行3.3),如果不是,返回3.1)继续遍历;3.2) Determine whether all the pixels in the input image are traversed: if so, output the image after gray value correction, and execute 3.3), if not, return to 3.1) to continue traversing;

3.3)将3.2)输出的修正图像的像素灰度值计算为直觉模糊集

Figure GDA0003525548360000061
3.3) Calculate the pixel gray value of the corrected image output in 3.2) as an intuitionistic fuzzy set
Figure GDA0003525548360000061

3.3.1)设μ(xi)表示像素灰度值xi的隶属度,v(xi)和π(xi)分别是xi使用Yager算子构造的非隶属度和犹豫度,μ(xi)、v(xi)和π(xi)的计算公式分别如下:3.3.1) Let μ( xi ) denote the membership degree of pixel gray value x i , v( xi ) and π( xi ) are the non-membership degree and hesitation degree of x i constructed by using Yager operator, μ ( xi ), v( xi ) and π( xi ) are calculated as follows:

Figure GDA0003525548360000062
Figure GDA0003525548360000062

Figure GDA0003525548360000063
Figure GDA0003525548360000063

π(xi)=1-μ(xi)-v(xi),π(x i )=1-μ(x i )-v(x i ),

其中,0≤μ(xi)≤1,0≤v(xi)≤1,0≤μ(xi)+v(xi)≤1,α=0.8表示Yager算子系数;Among them, 0≤μ(x i )≤1, 0≤v(x i )≤1, 0≤μ(x i )+v(x i )≤1, α=0.8 represents the Yager operator coefficient;

3.3.2)根据3.3.1)计算得到的μ(xi)、v(xi)和π(xi)构造直觉模糊集

Figure GDA0003525548360000064
3.3.2) Construct an intuitionistic fuzzy set according to μ( xi ), v( xi ) and π( xi ) calculated in 3.3.1)
Figure GDA0003525548360000064

Figure GDA0003525548360000065
Figure GDA0003525548360000065

步骤4:针对输入图像的灰度值分布,使用最小二乘法进行曲线拟合,选择拟合曲线的峰值点所对应的灰度级作为初始化的聚类中心值,估计最大聚类数目及聚类中心初始值范围。Step 4: According to the gray value distribution of the input image, use the least squares method to perform curve fitting, select the gray level corresponding to the peak point of the fitting curve as the initialized cluster center value, and estimate the maximum number of clusters and clusters. Center initial value range.

现有选取聚类中心初始值的技术有直接选取图像灰度直方图的峰值点作为初始聚类中心。The existing techniques for selecting the initial value of the cluster center include directly selecting the peak point of the grayscale histogram of the image as the initial cluster center.

本实例先对图像灰度值分布使用最小二乘法进行曲线拟合,然后在平滑的拟合曲线选择峰值点,其实现如下:This example first uses the least squares method to fit the image gray value distribution, and then selects the peak point in the smooth fitting curve. The implementation is as follows:

4.1)将灰度图像设为256个灰度级,灰度级范围为[0,255],并绘制灰度图像的灰度直方图;4.1) Set the grayscale image to 256 grayscales, the grayscale range is [0,255], and draw the grayscale histogram of the grayscale image;

4.2)统计灰度直方图上256个灰度级所对应的像素数目,设为灰度值分布频率f(l),并使用七阶最小二乘法对f(l)做曲线拟合,将灰度值数据点拟合为灰度值曲线,其中,0≤l≤255;4.2) Count the number of pixels corresponding to 256 gray levels on the gray histogram, set it as the gray value distribution frequency f(l), and use the seventh-order least squares method to perform curve fitting on f(l), The degree value data points are fitted to a gray value curve, where 0≤l≤255;

4.3)求f(l)的一阶导数f'(l),并比较f'(l)与f(l)前后灰度级的一阶导数f'(l-1)和f'(l+1);4.3) Find the first derivative f'(l) of f(l), and compare the first derivative f'(l-1) and f'(l+ of f'(l) and f(l) before and after the gray level 1);

4.4)判断灰度级l是否在l=0或者l=255的条件下:4.4) Determine whether the gray level l is under the condition of l=0 or l=255:

若在l=0或者l=255的条件下且l=0,则再判断f'(l)<0是否成立,如果成立,将灰度级l=0作为峰值点输出,再执行4.5);If under the condition of l=0 or l=255 and l=0, then judge whether f'(l)<0 is established, if so, output the gray level l=0 as the peak point, and then execute 4.5);

若在l=0或者l=255的条件下且l=255,则再判断f'(l)>0是否成立,如果成立,将灰度级l=255作为峰值点输出,再执行4.5);If under the condition of l=0 or l=255 and l=255, then judge whether f'(l)>0 is established, if so, output the gray level l=255 as the peak point, and then execute 4.5);

若不是在l=0或者l=255的条件下,即表示在0<l<255的条件下,则判断f'(l)=0且f'(l-1)>0和f'(l+1)<0是否成立,如果成立,将灰度级l作为峰值点输出,再执行4.5);If it is not under the condition of l=0 or l=255, that is, under the condition of 0<l<255, then it is judged that f'(l)=0 and f'(l-1)>0 and f'(l Whether +1)<0 is established, if so, output the gray level l as the peak point, and then execute 4.5);

4.5)判断256个灰度级是否全部遍历,如果是,输出峰值点,执行4.6),如果不是,返回4.4)继续遍历;4.5) Determine whether all 256 gray levels are traversed, if so, output the peak point and execute 4.6), if not, return to 4.4) to continue traversing;

4.6)对4.5)输出的峰值点按照灰度分布频率值从大到小的顺序排序,统计峰值点的数目为Ymax,设聚类数范围为2至Ymax个,并统计从大到小排序的峰值点对应的灰度级l,得到灰度级数值范围为

Figure GDA0003525548360000071
将灰度级对应数值统计为聚类中心初始值,即
Figure GDA0003525548360000072
设聚类中心初始值范围集合C为
Figure GDA0003525548360000073
其中:4.6) Sort the peak points outputted in 4.5) in descending order of gray distribution frequency value, count the number of peak points as Y max , set the number of clusters to range from 2 to Y max , and count from large to small The gray level l corresponding to the sorted peak points is obtained, and the range of gray level values is
Figure GDA0003525548360000071
The value corresponding to the gray level is counted as the initial value of the cluster center, that is,
Figure GDA0003525548360000072
Let the initial value range set C of the cluster center be
Figure GDA0003525548360000073
in:

lY表示在峰值点灰度分布频率值按照从大到小顺序中,第Y个峰值点灰度分布频率值所对应的灰度级,cY表示第Y个聚类中心的初始值,1≤Y≤Ymax,Ymax表示聚类数目的最大值,2≤Ymax≤n,T表示转置。l Y represents the gray level corresponding to the gray distribution frequency value of the Y th peak point in the order from largest to smallest in the gray distribution frequency value of the peak point, c Y represents the initial value of the Y th cluster center, 1 ≤Y≤Y max , Y max represents the maximum number of clusters, 2≤Y max ≤n, T represents transposition.

步骤5:迭代计算线性加权函数系数Hir、直觉模糊距离

Figure GDA0003525548360000074
和直觉模糊目标函数J。Step 5: Iteratively calculate the linear weighting function coefficient H ir , the intuitionistic fuzzy distance
Figure GDA0003525548360000074
and the intuitionistic fuzzy objective function J.

现有的FCM_S1算法和FCM_S2算法将图像的局部空间信息引入到其目标函数中,其中,FCM_S1算法考虑的是图像的均值滤波特征,FCM_S2算法考虑的是图像的中值滤波特征。The existing FCM_S1 algorithm and FCM_S2 algorithm introduce the local spatial information of the image into its objective function. The FCM_S1 algorithm considers the mean filtering feature of the image, and the FCM_S2 algorithm considers the median filtering feature of the image.

本实例先利用像素的位置信息和灰度信息构造线性加权函数系数Hir,然后将包含图像局部空间信息的Hir引入到直觉模糊目标函数J,其实现如下:In this example, the position information and grayscale information of pixels are used to construct the linear weighting function coefficient H ir , and then the H ir containing the local spatial information of the image is introduced into the intuitionistic fuzzy objective function J, which is realized as follows:

5.1)利用像素的位置信息和灰度信息构造线性加权函数系数Hir5.1) Construct the linear weighting function coefficient H ir using the position information and grayscale information of the pixel:

Figure GDA0003525548360000081
Figure GDA0003525548360000081

其中,(ai,bi)和(ar,br)分别表示中心像素i和邻域像素r的空间坐标值,xi和xr分别表示中心像素i和邻域像素r的灰度值,uki表示xi对于第k个聚类中心ck的隶属度,1≤k≤Y,1≤r≤ω2Among them, (a i , b i ) and (ar , b r ) represent the spatial coordinate values of the center pixel i and the neighborhood pixel r , respectively, and xi and x r represent the grayscale of the center pixel i and the neighborhood pixel r, respectively value, u ki represents the membership degree of xi to the k -th cluster center ck, 1≤k≤Y, 1≤r≤ω 2 ;

5.2)计算直觉模糊集下像素灰度值xi到聚类中心ck的直觉模糊距离

Figure GDA0003525548360000082
5.2) Calculate the intuitionistic fuzzy distance from the pixel gray value x i to the cluster center ck under the intuitionistic fuzzy set
Figure GDA0003525548360000082

5.2.1)设μ(ck)表示聚类中心ck的隶属度,v(ck)和π(ck)分别表示聚类中心ck使用Yager算子构造的非隶属度和犹豫度,μ(ck)、v(ck)和π(ck)的计算公式分别如下:5.2.1) Let μ( ck ) represent the membership degree of the cluster center ck , v( ck ) and π( ck ) represent the non-membership degree and hesitation degree of the cluster center ck constructed by the Yager operator, respectively , the calculation formulas of μ( ck ), v( ck ) and π( ck ) are as follows:

Figure GDA0003525548360000083
Figure GDA0003525548360000083

Figure GDA0003525548360000084
Figure GDA0003525548360000084

π(ck)=1-μ(ck)-v(ck),π(c k )=1-μ(c k )-v(c k ),

其中,0≤μ(ck)≤1,0≤v(ck)≤1,0≤μ(ck)+v(ck)≤1;Wherein, 0≤μ(c k )≤1, 0≤v(c k )≤1, 0≤μ(c k )+v(c k )≤1;

5.2.2)根据(5.2.1)得到的结果计算直觉模糊距离

Figure GDA0003525548360000085
5.2.2) Calculate the intuitionistic fuzzy distance according to the result obtained in (5.2.1)
Figure GDA0003525548360000085

Figure GDA0003525548360000086
Figure GDA0003525548360000086

其中,μ(xi)、v(xi)和π(xi)分别表示像素灰度值xi的隶属度、非隶属度和犹豫度;Among them, μ(x i ), v( xi ) and π( xi ) represent the membership degree, non-membership degree and hesitation degree of the pixel gray value x i , respectively;

5.3)结合(5.1)得到的线性加权函数系数Hir与(5.2)得到的直觉模糊距离

Figure GDA0003525548360000087
计算直觉模糊目标函数J:5.3) Combine the linear weighting function coefficient H ir obtained from (5.1) with the intuitionistic fuzzy distance obtained from (5.2)
Figure GDA0003525548360000087
Calculate the intuitionistic fuzzy objective function J:

Figure GDA0003525548360000091
Figure GDA0003525548360000091

其中,uki是像素xi对聚类中心ck的隶属度函数,m表示模糊加权指数;Among them, u ki is the membership function of the pixel xi to the cluster center ck , and m represents the fuzzy weighting index;

5.4)使用拉格朗日乘数法求解直觉模糊目标函数J,并得到隶属度函数uki和聚类中心ck的直觉模糊集

Figure GDA0003525548360000092
5.4) Use the Lagrange multiplier method to solve the intuitionistic fuzzy objective function J, and obtain the intuitionistic fuzzy set of the membership function u ki and the cluster center ck
Figure GDA0003525548360000092

5.4.1)在直觉模糊目标函数J中引入拉格朗日乘子λi,构建具有拉格朗日乘子的目标函数L:5.4.1) Introduce the Lagrangian multiplier λ i into the intuitionistic fuzzy objective function J, and construct the objective function L with the Lagrangian multiplier:

Figure GDA0003525548360000093
Figure GDA0003525548360000093

5.4.2)分别计算具有拉格朗日乘子的目标函数L对于隶属度函数uki、聚类中心ck的直觉模糊集

Figure GDA0003525548360000094
和拉格朗日乘子λi的偏导数
Figure GDA0003525548360000095
Figure GDA0003525548360000096
5.4.2) Calculate the intuitionistic fuzzy set of the objective function L with Lagrange multipliers for the membership function u ki and the cluster center ck respectively
Figure GDA0003525548360000094
and the partial derivative of the Lagrange multiplier λ i
Figure GDA0003525548360000095
and
Figure GDA0003525548360000096

5.4.3)在偏导数

Figure GDA0003525548360000097
的条件下,通过如下求得隶属度函数uki与聚类中心ck的直觉模糊集
Figure GDA0003525548360000098
5.4.3) In partial derivatives
Figure GDA0003525548360000097
Under the condition of , the intuitionistic fuzzy set of the membership function u ki and the cluster center ck is obtained by the following
Figure GDA0003525548360000098

Figure GDA0003525548360000099
Figure GDA0003525548360000099

Figure GDA00035255483600000910
Figure GDA00035255483600000910

其中,k=1,2,…,Y,i=1,2,…,n,r=1,2,…,ω2Wherein, k=1,2,...,Y, i=1,2,...,n, r=1,2,...,ω 2 .

步骤6:判断是否满足迭代停止条件。Step 6: Determine whether the iteration stop condition is satisfied.

如果满足迭代停止条件||C(t+1)-C(t)||<ε或运算迭代次数t>T,则输出隶属度矩阵U,并执行7),其中,

Figure GDA00035255483600000911
为聚类中心数值集合,
Figure GDA00035255483600000912
表示第Q个聚类中心迭代第t次的直觉模糊集;If the iteration stop condition ||C (t+1) -C (t) ||<ε or the number of operation iterations t>T is satisfied, output the membership matrix U, and execute 7), where,
Figure GDA00035255483600000911
is the set of cluster center values,
Figure GDA00035255483600000912
represents the intuitionistic fuzzy set of the t-th iteration of the Q-th cluster center;

如果不满足迭代停止条件,则令t=t+1,返回5.1)。If the iteration stop condition is not satisfied, then let t=t+1, and return to 5.1).

步骤7:判断当前聚类数目Y是否满足条件。Step 7: Determine whether the current number of clusters Y satisfies the condition.

如果满足当前聚类数目Y小于最大聚类数目Ymax,即Y<Ymax,则令Y=Y+1,然后取聚类中心初始值范围集合C的前Y个数值,输出到聚类中心初始值集合,并令聚类中心初始值集合C(1)

Figure GDA0003525548360000101
令初始迭代次数t=1,返回5.1),其中,
Figure GDA0003525548360000102
表示第P个聚类中心的初始值,1≤P≤Y;If it is satisfied that the current number of clusters Y is less than the maximum number of clusters Y max , that is, Y < Y max , then let Y=Y+1, then take the first Y values of the cluster center initial value range set C, and output to the cluster center Initial value set, and let the cluster center initial value set C (1) be
Figure GDA0003525548360000101
Let the initial iteration number t=1, return to 5.1), where,
Figure GDA0003525548360000102
Represents the initial value of the P-th cluster center, 1≤P≤Y;

如果不满足Y<Ymax,则执行(8)。If Y< Ymax is not satisfied, execute (8).

步骤8:使用分级距离指数评价指标GD评价隶属度矩阵。Step 8: Use the grading distance index evaluation index GD to evaluate the membership degree matrix.

现有对隶属度矩阵的评价指标有划分系数Vpc和划分熵Vpe,其均能反映隶属度矩阵的模糊程度,其中Vpc数值越大,隶属度矩阵的模糊性越小,Vpe数值越小,像素分类越准确。The existing evaluation indexes for the membership degree matrix include the partition coefficient V pc and the partition entropy V pe , both of which can reflect the fuzziness of the membership degree matrix . The smaller it is, the more accurate the pixel classification is.

本实例使用分级距离指数评价指标GD评价隶属度矩阵,即从7)中输入(Ymax-1)个隶属度矩阵U,使用分级距离指数评价指标GD评价这些隶属度矩阵,输出GD数值最大的隶属度矩阵,并设GD数值最大的隶属度矩阵为Umax,将Umax对应的聚类数目Yfin作为输入图像的最终聚类数目,其中:分级距离指数评价指标GD公式如下:This example uses the hierarchical distance index evaluation index GD to evaluate the membership degree matrix, that is, input (Y max -1) membership degree matrices U from 7), use the hierarchical distance index evaluation index GD to evaluate these membership degree matrices, and output the one with the largest GD value. The membership matrix, and the membership matrix with the largest GD value is U max , and the number of clusters Y fin corresponding to U max is taken as the final number of clusters of the input image, where: the hierarchical distance index evaluation index GD formula is as follows:

Figure GDA0003525548360000103
Figure GDA0003525548360000103

其中,ui1表示第i个像素最大的隶属度值,ui2表示第i个像素第二大的隶属度值,1≤Yfin≤YmaxAmong them, u i1 represents the maximum membership value of the i-th pixel, and u i2 represents the second-largest membership value of the i-th pixel, 1≤Y fin ≤Y max .

步骤9:对隶属度矩阵Umax进行像素分类。Step 9: Perform pixel classification on the membership matrix Umax .

根据最大隶属度原则和最终聚类数目Yfin,对8)输出的隶属度矩阵Umax的像素进行分类,输出标签矩阵UL,其中,最大隶属度原则是根据Vk=argk{max(uki)}将像素i划分到隶属度最大的类别Vk,UL内仅含类别数值{1,2,…,YW,…,Yfin},1≤YW≤YfinAccording to the maximum membership principle and the final number of clusters Y fin , classify the pixels of the membership matrix U max output in 8), and output the label matrix UL , where the maximum membership principle is based on V k = arg k {max( u ki )} divides the pixel i into the category V k with the largest membership degree, and U L only contains category values {1,2,…,Y W ,…,Y fin }, 1≤Y W ≤Y fin .

步骤10:对标签矩阵UL进行检错分类。Step 10: Perform error detection and classification on the label matrix UL.

10.1)设9)输出的标签矩阵UL的中心像素i的标签类别值为Li,在中心像素i的5乘5邻域内,判断标签类别值Li的像素数量nL是否满足nL≤25(Yfin+1)的条件:10.1) Suppose 9) The label class value of the central pixel i of the output label matrix UL is L i , in the 5×5 neighborhood of the central pixel i , determine whether the number of pixels n L of the label class value Li satisfies n L ≤ 25(Y fin +1) condition:

如果满足,则判定中心像素i为错分像素,并将错分像素的标签类别值Li修正为邻域内同种标签类别值数量最多的标签类别值,执行10.2);If it is satisfied, the central pixel i is determined to be a misclassified pixel, and the label category value Li of the misclassified pixel is corrected to the label category value with the largest number of the same type of label category value in the neighborhood, and execute 10.2);

如果不满足,则判定中心像素i为正确分配像素,执行10.2);If it is not satisfied, then determine that the center pixel i is a correctly allocated pixel, and execute 10.2);

10.2)判断标签矩阵UL中的像素是否全部遍历,如果是,输出最终标签矩阵UF,执行11),如果不是,返回10.1)继续遍历。10.2) Determine whether all the pixels in the label matrix UL are traversed. If so, output the final label matrix UF , and execute 11). If not, return to 10.1) to continue traversing.

步骤11:对最终标签矩阵UF赋值并输出图像。Step 11: Assign value to the final label matrix UF and output the image.

对10.2)输出的最终标签矩阵UF中标签类别值为YW的像素赋予不同对应的灰度值xW,并将赋予不同灰度值的矩阵作为分割图像输出,最终标签矩阵UF内仅含类别数值{1,2,…,YW,…,Yfin},赋值公式如下:10.2) The pixels with the label category value Y W in the final label matrix UF output in 10.2) are assigned different corresponding gray values x W , and the matrices with different gray values are output as the segmented image. In the final label matrix UF , only Contains category values {1,2,…,Y W ,…,Y fin }, the assignment formula is as follows:

xW=[255/YW],x W = [255/Y W ],

其中,[·]表示取内部的整数。Among them, [·] means to take an internal integer.

以下结合仿真实验,对本发明的技术效果作进一步说明;The technical effects of the present invention are further described below in conjunction with simulation experiments;

1.仿真条件:1. Simulation conditions:

仿真实验在计算机Inter(R)Core(TM)i5-3210M 2.50GHZ CPU,8G内存,MATLABR2014a软件环境下进行。The simulation experiment was carried out in the computer Inter(R)Core(TM)i5-3210M 2.50GHZ CPU, 8G memory, MATLABR2014a software environment.

2.仿真内容:2. Simulation content:

仿真1,选取Berkeley图像数据库中的编号为3096的图像,用本发明与现有FCM方法、FCM_S1方法、FCM_S2方法、FGFCM方法、IFCM方法和IIFCM方法分别对其进行分割,结果如图2所示,其中:Simulation 1, select the image numbered 3096 in the Berkeley image database, and segment it with the present invention and the existing FCM method, FCM_S1 method, FCM_S2 method, FGFCM method, IFCM method and IIFCM method respectively, the results are shown in Figure 2 ,in:

2(a)是3096图像的原图;2(a) is the original image of the 3096 image;

2(b)是3096图像的标准分割图;2(b) is the standard segmentation map of 3096 images;

2(c)是3096图像的高斯含噪图像,噪声强度为0.006;2(c) is a Gaussian noisy image of 3096 images, and the noise intensity is 0.006;

2(d)是用现有FCM方法对3096图像的高斯含噪图像的分割结果;2(d) is the segmentation result of the Gaussian noisy image of 3096 images using the existing FCM method;

2(e)是用现有FCM_S1方法对3096图像的高斯含噪图像的分割结果;2(e) is the segmentation result of the Gaussian noisy image of 3096 images using the existing FCM_S1 method;

2(f)是用现有FCM_S2方法对3096图像的高斯含噪图像的分割结果;2(f) is the segmentation result of the Gaussian noisy image of 3096 images using the existing FCM_S2 method;

2(g)是用现有FGFCM方法对3096图像的高斯含噪图像的分割结果;2(g) is the segmentation result of the Gaussian noisy image of 3096 images using the existing FGFCM method;

2(h)是用现有IFCM方法对3096图像的高斯含噪图像的分割结果;2(h) is the segmentation result of the Gaussian noisy image of 3096 images using the existing IFCM method;

2(i)是用现有IIFCM方法对3096图像的高斯含噪图像的分割结果;2(i) is the segmentation result of the Gaussian noisy image of 3096 images using the existing IIFCM method;

2(j)是用本发明对3096图像的高斯含噪图像的分割结果;2(j) is the segmentation result of the Gaussian noisy image of 3096 images by the present invention;

2(k)是3096图像的椒盐含噪图像,噪声强度为0.01;2(k) is the salt and pepper noise image of the 3096 image, and the noise intensity is 0.01;

2(l)是用现有FCM方法对3096图像的椒盐含噪图像的分割结果;2(1) is the segmentation result of the salt and pepper noise image of 3096 images using the existing FCM method;

2(m)是用现有FCM_S1方法对3096图像的椒盐含噪图像的分割结果;2(m) is the segmentation result of the salt and pepper noise image of 3096 images using the existing FCM_S1 method;

2(n)是用现有FCM_S2方法对3096图像的椒盐含噪图像的分割结果;2(n) is the segmentation result of the salt and pepper noise image of 3096 images using the existing FCM_S2 method;

2(o)是用现有FGFCM方法对3096图像的椒盐含噪图像的分割结果;2(o) is the segmentation result of the salt-and-pepper noise image of 3096 images using the existing FGFCM method;

2(p)是用现有IFCM方法对3096图像的椒盐含噪图像的分割结果;2(p) is the segmentation result of the salt and pepper noise image of 3096 images using the existing IFCM method;

2(q)是用现有IIFCM方法对3096图像的椒盐含噪图像的分割结果;2(q) is the segmentation result of the salt-and-pepper noisy image of 3096 images using the existing IIFCM method;

2(r)是用本发明对3096图像的椒盐含噪图像的分割结果;2(r) is the segmentation result of the salt and pepper noise image of the 3096 image by the present invention;

从图2可以看出,本发明在抑制噪声的基础上,可以将背景和目标分离开,图像聚类数目可以自适应确定,对聚类中心的初始值不敏感,所以本发明对含噪图像的分割效果优于现有FCM方法、FCM_S1方法、FCM_S2方法、FGFCM方法、IFCM方法和IIFCM方法。It can be seen from FIG. 2 that the present invention can separate the background and the target on the basis of suppressing noise, the number of image clusters can be determined adaptively, and is not sensitive to the initial value of the cluster center, so the present invention is suitable for noisy images. The segmentation effect is better than the existing FCM method, FCM_S1 method, FCM_S2 method, FGFCM method, IFCM method and IIFCM method.

仿真2,选取Berkeley图像数据库中的编号为238011的图像,用本发明与现有FCM方法、FCM_S1方法、FCM_S2方法、FGFCM方法、IFCM方法和IIFCM方法分别对其进行分割,结果如图3所示,其中:Simulation 2, select the image numbered 238011 in the Berkeley image database, and segment it with the present invention and the existing FCM method, FCM_S1 method, FCM_S2 method, FGFCM method, IFCM method and IIFCM method respectively, the results are shown in Figure 3 ,in:

3(a)是238011图像的原图;3(a) is the original image of the 238011 image;

3(b)是238011图像的标准分割图;3(b) is the standard segmentation map of the 238011 image;

3(c)是238011图像的高斯含噪图像,噪声强度为0.006;3(c) is a Gaussian noisy image of the 238011 image with a noise intensity of 0.006;

3(d)是用现有FCM方法对238011图像的高斯含噪图像的分割结果;3(d) is the segmentation result of the Gaussian noisy image of the 238011 image using the existing FCM method;

3(e)是用现有FCM_S1方法对238011图像的高斯含噪图像的分割结果;3(e) is the segmentation result of the Gaussian noisy image of the 238011 image using the existing FCM_S1 method;

3(f)是用现有FCM_S2方法对238011图像的高斯含噪图像的分割结果;3(f) is the segmentation result of the Gaussian noisy image of the 238011 image using the existing FCM_S2 method;

3(g)是用现有FGFCM方法对238011图像的高斯含噪图像的分割结果;3(g) is the segmentation result of the Gaussian noisy image of the 238011 image using the existing FGFCM method;

3(h)是用现有IFCM方法对238011图像的高斯含噪图像的分割结果;3(h) is the segmentation result of the Gaussian noisy image of the 238011 image using the existing IFCM method;

3(i)是用现有IIFCM方法对238011图像的高斯含噪图像的分割结果;3(i) is the segmentation result of the Gaussian noisy image of 238011 images using the existing IIFCM method;

3(j)是用本发明对238011图像的高斯含噪图像的分割结果;3(j) is the segmentation result of the Gaussian noisy image of the 238011 image by the present invention;

3(k)是238011图像的椒盐含噪图像,噪声强度为0.01;3(k) is the salt and pepper noise image of the 238011 image, and the noise intensity is 0.01;

3(l)是用现有FCM方法对238011图像的椒盐含噪图像的分割结果;3(1) is the segmentation result of the salt and pepper noise image of the 238011 image using the existing FCM method;

3(m)是用现有FCM_S1方法对238011图像的椒盐含噪图像的分割结果;3(m) is the segmentation result of the salt-and-pepper noise image of 238011 images using the existing FCM_S1 method;

3(n)是用现有FCM_S2方法对238011图像的椒盐含噪图像的分割结果;3(n) is the segmentation result of the salt and pepper noise image of 238011 images using the existing FCM_S2 method;

3(o)是用现有FGFCM方法对238011图像的椒盐含噪图像的分割结果;3(o) is the segmentation result of the salt-and-pepper noisy image of the 238011 image using the existing FGFCM method;

3(p)是用现有IFCM方法对238011图像的椒盐含噪图像的分割结果;3(p) is the segmentation result of the salt-and-pepper noisy image of 238011 images using the existing IFCM method;

3(q)是用现有IIFCM方法对238011图像的椒盐含噪图像的分割结果;3(q) is the segmentation result of the salt-and-pepper noise image of 238011 images using the existing IIFCM method;

3(r)是用本发明对238011图像的椒盐含噪图像的分割结果;3(r) is the segmentation result of the salt and pepper noise image of the 238011 image using the present invention;

从图3可以看出,本发明在抑制噪声的基础上,可以将背景和目标分离开,图像聚类数目可以自适应确定,对聚类中心的初始值不敏感,其对含噪图像的分割效果优于现有FCM方法、FCM_S1方法、FCM_S2方法、FGFCM方法、IFCM方法和IIFCM方法。As can be seen from Figure 3, the present invention can separate the background and the target on the basis of suppressing noise, the number of image clusters can be determined adaptively, and is insensitive to the initial value of the cluster center, which is not sensitive to the segmentation of noisy images. The effect is better than the existing FCM method, FCM_S1 method, FCM_S2 method, FGFCM method, IFCM method and IIFCM method.

Claims (7)

1.基于直觉模糊C均值聚类的图像分割方法,其特征在于,包括如下:1. An image segmentation method based on intuitionistic fuzzy C-means clustering, characterized in that it includes the following: (1)输入待分割图像,若待分割图像为彩色图像,先将其转换为灰度图像;(1) Input the image to be divided, if the image to be divided is a color image, first convert it into a grayscale image; (2)初始化参数:设最大迭代次数T=100,停止阈值ε=10-5,模糊加权指数m=2,邻域窗半径ω=3,初始迭代次数t=1,聚类数目默认初始值Y=2;(2) Initialization parameters: set the maximum number of iterations T = 100, the stop threshold ε = 10 -5 , the fuzzy weighting index m = 2, the radius of the neighborhood window ω = 3, the initial number of iterations t = 1, the default initial value of the number of clusters y = 2; (3)使用基于开关均值策略构造对噪声鲁棒的直觉模糊集
Figure FDA0003525548350000011
其中,1≤i≤n,n表示像素总数目;其实现如下:
(3) Construct an intuitionistic fuzzy set robust to noise using a switch-mean-based strategy
Figure FDA0003525548350000011
Among them, 1≤i≤n, n represents the total number of pixels; its implementation is as follows:
(3a)首先判断在第i个像素的3乘3邻域内的像素灰度值是否不全为0或者255:(3a) First, determine whether the pixel gray values in the 3-by-3 neighborhood of the i-th pixel are not all 0 or 255: 如果成立,则将灰度值为0和255的像素取出,再取其余像素灰度值的均值,并设为中心像素的修正数值,执行(3b);If it is true, take out the pixels with gray values of 0 and 255, then take the average value of the gray values of the remaining pixels, and set it as the corrected value of the center pixel, and execute (3b); 如果不成立,则不修改中心像素灰度值,执行(3b);If not, do not modify the gray value of the center pixel, and execute (3b); (3b)判断输入图像中的像素是否全部遍历:如果是,输出修正图像,执行(3c),如果不是,返回(3a)继续遍历;(3b) Determine whether all the pixels in the input image are traversed: if so, output the corrected image, and execute (3c), if not, return to (3a) to continue traversing; (3c)将修正图像的像素灰度值计算为直觉模糊集
Figure FDA0003525548350000012
(3c) Calculate the pixel gray value of the corrected image as an intuitionistic fuzzy set
Figure FDA0003525548350000012
(3c1)设μ(xi)表示像素灰度值xi的隶属度,v(xi)和π(xi)分别是xi使用Yager算子构造的非隶属度和犹豫度,计算公式分别如下:(3c1) Let μ(x i ) represent the membership degree of pixel gray value xi , v( xi ) and π( xi ) are the non-membership degree and hesitation degree of xi constructed by Yager operator, respectively, the calculation formula They are as follows:
Figure FDA0003525548350000013
Figure FDA0003525548350000013
Figure FDA0003525548350000014
Figure FDA0003525548350000014
π(xi)=1-μ(xi)-v(xi),π(x i )=1-μ(x i )-v(x i ), 其中,0≤μ(xi)≤1,0≤v(xi)≤1,0≤μ(xi)+v(xi)≤1,α=0.8表示Yager算子系数;Among them, 0≤μ(x i )≤1, 0≤v(x i )≤1, 0≤μ(x i )+v(x i )≤1, α=0.8 represents the Yager operator coefficient; (3c2)根据(3c1)得到的结果构造直觉模糊集
Figure FDA0003525548350000015
(3c2) Construct an intuitionistic fuzzy set according to the result obtained in (3c1)
Figure FDA0003525548350000015
Figure FDA0003525548350000016
Figure FDA0003525548350000016
(4)针对输入图像的灰度值分布,使用最小二乘法进行曲线拟合,选择拟合曲线的峰值点所对应的灰度级作为初始化的聚类中心值,并设估计聚类数的范围为{2,…,Ymax},聚类中心初始值范围集合C为
Figure FDA0003525548350000021
其中,cY表示第Y个聚类中心的初始值,1≤Y≤Ymax,Ymax表示聚类数目的最大值,2≤Ymax≤n,T表示转置;
(4) For the gray value distribution of the input image, use the least squares method to perform curve fitting, select the gray level corresponding to the peak point of the fitting curve as the initialized cluster center value, and set the range of the estimated number of clusters is {2,...,Y max }, and the initial value range set C of the cluster center is
Figure FDA0003525548350000021
Among them, c Y represents the initial value of the Y-th cluster center, 1≤Y≤Y max , Y max represents the maximum number of clusters, 2≤Y max ≤n, T represents the transposition;
(5)迭代计算线性加权函数系数Hir、直觉模糊距离
Figure FDA0003525548350000022
和直觉模糊目标函数J:
(5) Iteratively calculate the linear weighting function coefficient H ir , the intuitionistic fuzzy distance
Figure FDA0003525548350000022
and the intuitionistic fuzzy objective function J:
(5a)利用像素的位置信息和灰度信息构造线性加权函数系数Hir(5a) Construct the linear weighting function coefficient H ir using the position information and grayscale information of the pixel:
Figure FDA0003525548350000023
Figure FDA0003525548350000023
其中,(ai,bi)和(ar,br)分别表示中心像素i和邻域像素r的空间坐标值,xi和xr分别表示中心像素i和邻域像素r的灰度值,uki表示xi对于第k个聚类中心ck的隶属度,1≤k≤Y,1≤r≤ω2Among them, (a i , b i ) and (ar , b r ) represent the spatial coordinate values of the center pixel i and the neighborhood pixel r , respectively, and xi and x r represent the grayscale of the center pixel i and the neighborhood pixel r, respectively value, u ki represents the membership degree of xi to the k -th cluster center ck, 1≤k≤Y, 1≤r≤ω 2 ; (5b)计算直觉模糊集下像素xi到聚类中心ck的直觉模糊距离
Figure FDA0003525548350000024
其中,
Figure FDA0003525548350000025
Figure FDA0003525548350000026
分别表示像素xi与聚类中心ck的直觉模糊集;
(5b) Calculate the intuitionistic fuzzy distance from the pixel x i to the cluster center ck under the intuitionistic fuzzy set
Figure FDA0003525548350000024
in,
Figure FDA0003525548350000025
and
Figure FDA0003525548350000026
respectively represent the intuitionistic fuzzy sets of pixel xi and cluster center ck ;
(5c)结合(5a)得到的线性加权函数系数Hir与(5b)得到的直觉模糊距离
Figure FDA0003525548350000027
计算直觉模糊目标函数J,并求解直觉模糊目标函数J中的隶属度函数uki和聚类中心ck的直觉模糊集
Figure FDA0003525548350000028
(5c) Combine the linear weighting function coefficient H ir obtained from (5a) with the intuitionistic fuzzy distance obtained from (5b)
Figure FDA0003525548350000027
Calculate the intuitionistic fuzzy objective function J, and solve the intuitionistic fuzzy set of the membership function u ki and the cluster center ck in the intuitionistic fuzzy objective function J
Figure FDA0003525548350000028
(6)判断迭代停止条件||C(t+1)-C(t)||<ε或运算迭代次数t>T是否成立:(6) Determine whether the iteration stop condition ||C (t+1) -C (t) ||<ε or the number of operation iterations t>T holds: 如果不成立,则令t=t+1,返回(5);If it does not hold, set t=t+1 and return to (5); 如果成立,输出隶属度矩阵U并判断Y<Ymax是否成立,若成立,则令Y=Y+1,取聚类中心初始值范围集合C的前Y个数值,令聚类中心初始值集合为
Figure FDA0003525548350000029
令初始迭代次数t=1,返回(5),若Y<Ymax不成立,执行(7),其中,
Figure FDA00035255483500000210
为聚类中心数值集合,
Figure FDA00035255483500000211
表示第Q个聚类中心迭代第t次的直觉模糊集,
Figure FDA00035255483500000212
表示第P个聚类中心的初始值,1≤Q≤Y,1≤P≤Y,U={uki};
If it is true, output the membership degree matrix U and judge whether Y<Y max is true. If it is true, let Y=Y+1, take the first Y values of the cluster center initial value range set C, and let the cluster center initial value set for
Figure FDA0003525548350000029
Set the initial number of iterations t=1, return to (5), if Y< Ymax does not hold, execute (7), where,
Figure FDA00035255483500000210
is the set of cluster center values,
Figure FDA00035255483500000211
represents the intuitionistic fuzzy set of the t-th iteration of the Q-th cluster center,
Figure FDA00035255483500000212
Represents the initial value of the Pth cluster center, 1≤Q≤Y, 1≤P≤Y, U={u ki };
(7)从(6)输出(Ymax-1)个隶属度矩阵U,并使用分级距离指数评价指标GD评价这些隶属度矩阵;设GD数值最大的隶属度矩阵为Umax,将Umax对应的聚类数目Yfin作为输入图像的最终聚类数目,其中,1≤Yfin≤Ymax;分级距离指数评价指标GD的公式表达如下:(7) Output (Y max -1) membership degree matrices U from (6), and use the hierarchical distance index evaluation index GD to evaluate these membership degree matrices; let the membership degree matrix with the largest GD value be U max , and U max corresponds to The number of clusters Y fin of the input image is taken as the final number of clusters of the input image, where 1≤Y fin ≤Y max ; the formula of the hierarchical distance index evaluation index GD is expressed as follows:
Figure FDA0003525548350000031
Figure FDA0003525548350000031
其中,ui1表示第i个像素最大的隶属度值,ui2表示第i个像素第二大的隶属度值;Among them, u i1 represents the maximum membership value of the ith pixel, and u i2 represents the second largest membership value of the ith pixel; (8)对(7)输出的隶属度矩阵Umax做像素分类,并进行检错分类,输出分割图像:(8) Perform pixel classification on the membership matrix Umax output in (7), and perform error detection and classification, and output the segmented image: (8a)根据最大隶属度原则和最终聚类数目Yfin,对(7)输出的隶属度矩阵Umax的像素进行分类,输出标签矩阵UL,其中,UL内仅含类别数值{1,2,…,YW,…,Yfin},1≤YW≤Yfin(8a) According to the maximum membership principle and the final number of clusters Y fin , classify the pixels of the membership matrix U max output from (7), and output the label matrix UL , where UL only contains the category values { 1, 2,…,Y W ,…,Y fin }, 1≤Y W ≤Y fin ; (8b)设中心像素i的标签类别值为Li,在中心像素i的5乘5邻域内,判断标签类别值Li的像素数量nL是否满足nL≤25/(Yfin+1)的条件:(8b) Set the label type value of the central pixel i as Li, and in the 5×5 neighborhood of the central pixel i , determine whether the number of pixels n L of the label type value Li satisfies n L ≤ 25/(Y fin +1) conditions of: 如果满足,则判定中心像素i为错分像素,并将错分像素的标签类别值Li修正为邻域内同种标签类别值数量最多的标签类别值,执行(8c);If it is satisfied, then determine that the central pixel i is a misclassified pixel, and correct the label type value Li of the misclassified pixel to the label type value with the largest number of the same type of label type value in the neighborhood, and execute (8c); 如果不满足,则判定中心像素i为正确分配像素,执行(8c);If not satisfied, then determine that the center pixel i is a correctly allocated pixel, and execute (8c); (8c)判断标签矩阵UL中的像素是否全部遍历,如果是,输出最终标签矩阵UF,执行(8d),如果不是,返回(8b)继续遍历;( 8c ) judge whether the pixels in the label matrix UL are all traversed, if so, output the final label matrix UF , and execute (8d), if not, return to (8b) to continue traversing; (8d)对最终标签矩阵UF中标签类别值为YW的像素赋予不同对应的灰度值xW,并将赋予不同灰度值的矩阵作为分割图像输出。(8d) Assign different corresponding gray values x W to the pixels with the label category value Y W in the final label matrix UF , and output the matrices with different gray values as a segmented image.
2.根据权利要求1所述的方法,其特征在于,(4)中针对输入图像的灰度值分布,使用最小二乘法进行曲线拟合,并选择对应的灰度级作为初始化的聚类中心值,其实现如下:2. The method according to claim 1, wherein, in (4), for the gray value distribution of the input image, curve fitting is performed using the least squares method, and the corresponding gray level is selected as the initialized cluster center value, which is implemented as follows: (4a)将灰度图像设为256个灰度级,灰度级范围为[0,255],并绘制灰度图像的灰度直方图;(4a) Set the grayscale image to 256 grayscales, the grayscale range is [0, 255], and draw the grayscale histogram of the grayscale image; (4b)统计灰度直方图上的灰度级l的灰度值分布频率f(l),并做七阶最小二乘法曲线拟合,其中,0≤l≤255;(4b) Count the gray value distribution frequency f(l) of the gray level l on the grayscale histogram, and perform a seventh-order least squares curve fitting, where 0≤l≤255; (4c)求f(l)的一阶导数f'(l),比较f'(l)与f(l)前后灰度级的一阶导数f'(l-1)和f'(l+1),当l=0或者l=255时,仅判断f'(l)是否小于或者大于0:(4c) Find the first-order derivative f'(l) of f(l), and compare the first-order derivatives f'(l-1) and f'(l+ of the gray level before and after f'(l) and f(l). 1), when l=0 or l=255, only judge whether f'(l) is less than or greater than 0: 当l=0时,判断f'(l)<0是否成立,如果是,将灰度级l=0作为峰值点输出;When l=0, judge whether f'(l)<0 is established, if so, output the gray level l=0 as the peak point; 当0<l<255时,判断f'(l)=0且f'(l-1)>0和f'(l+1)<0是否成立,如果是,将灰度级l作为峰值点输出;When 0<l<255, judge whether f'(l)=0 and f'(l-1)>0 and f'(l+1)<0, if so, take the gray level l as the peak point output; 当l=255时,判断f'(l)>0是否成立,如果是,将灰度级l=255作为峰值点输出;When l=255, judge whether f'(l)>0 is established, if so, output the gray level l=255 as the peak point; (4d)判断256个灰度级是否全部遍历:(4d) Determine whether all 256 gray levels are traversed: 如果是,输出峰值点,执行(4e),如果不是,返回(4c)继续遍历;If it is, output the peak point and execute (4e), if not, return to (4c) to continue traversing; (4e)对(4d)输出的峰值点按照灰度分布频率值从大到小的顺序排序,统计峰值点的数目为Ymax,并统计从大到小排序的峰值点对应的灰度级l,得到灰度级数值范围为
Figure FDA0003525548350000041
将灰度级对应数值统计为聚类中心初始值,如
Figure FDA0003525548350000042
设聚类中心初始值范围集合C为
Figure FDA0003525548350000043
其中,lY表示在峰值点灰度分布频率值按照从大到小顺序中,第Y个峰值点灰度分布频率值所对应的灰度级。
(4e) Sort the peak points output from (4d) in descending order of gray distribution frequency value, count the number of peak points as Y max , and count the gray level l corresponding to the peak points sorted from large to small , the gray scale value range is
Figure FDA0003525548350000041
The corresponding value of the gray level is counted as the initial value of the cluster center, such as
Figure FDA0003525548350000042
Let the initial value range set C of the cluster center be
Figure FDA0003525548350000043
Among them, l Y represents the gray level corresponding to the Y-th peak point gray distribution frequency value in the order of the peak point gray distribution frequency value in descending order.
3.根据权利要求1所述的方法,其特征在于,(5b)中计算直觉模糊集下像素灰度值xi到聚类中心ck的直觉模糊距离
Figure FDA0003525548350000044
其实现如下:
3. method according to claim 1, is characterized in that, in (5b), calculate the intuitionistic fuzzy distance of pixel gray value x i to cluster center ck under intuitionistic fuzzy set
Figure FDA0003525548350000044
It is implemented as follows:
(5b1)设μ(ck)表示聚类中心ck的隶属度,v(ck)和π(ck)分别表示聚类中心ck使用Yager算子构造的非隶属度和犹豫度,计算公式分别如下:(5b1) Let μ( ck ) represent the membership degree of the cluster center ck , v( ck ) and π( ck ) represent the non-membership degree and hesitation degree of the cluster center ck constructed by the Yager operator, respectively, The calculation formulas are as follows:
Figure FDA0003525548350000045
Figure FDA0003525548350000045
Figure FDA0003525548350000046
Figure FDA0003525548350000046
π(ck)=1-μ(ck)-v(ck),π(c k )=1-μ(c k )-v(c k ), 其中,0≤μ(ck)≤1,0≤v(ck)≤1,0≤μ(ck)+v(ck)≤1;Wherein, 0≤μ(c k )≤1, 0≤v(c k )≤1, 0≤μ(c k )+v(c k )≤1; (5b2)根据(5b1)得到的结果计算直觉模糊距离
Figure FDA0003525548350000051
(5b2) Calculate the intuitionistic fuzzy distance based on the result obtained in (5b1)
Figure FDA0003525548350000051
Figure FDA0003525548350000052
Figure FDA0003525548350000052
其中,μ(xi)、v(xi)和π(xi)分别表示像素灰度值xi的隶属度、非隶属度和犹豫度。Among them, μ(x i ), v( xi ) and π( xi ) represent the membership degree, non-membership degree and hesitation degree of the pixel gray value xi , respectively.
4.根据权利要求1所述的方法,其特征在于,(5c)中利用像素的局部空间信息并结合(5a)得到的线性加权函数系数Hir与(5b)得到的直觉模糊距离
Figure FDA0003525548350000053
计算直觉模糊目标函数J,其公式如下:
4. method according to claim 1, is characterized in that, in (5c) utilizes the local spatial information of pixel and combines the linear weighting function coefficient H ir that (5a) obtains and the intuitive fuzzy distance that (5b) obtains
Figure FDA0003525548350000053
Calculate the intuitionistic fuzzy objective function J, and its formula is as follows:
Figure FDA0003525548350000054
Figure FDA0003525548350000054
其中,uki是像素xi对聚类中心ck的隶属度函数,m表示模糊加权指数。Among them, u ki is the membership function of the pixel xi to the cluster center ck , and m represents the fuzzy weighting index.
5.根据权利要求4所述的方法,其特征在于,使用拉格朗日乘数法从直觉模糊目标函数J中得到隶属度函数uki和聚类中心ck的直觉模糊集
Figure FDA0003525548350000055
其实现如下:
5. method according to claim 4 is characterized in that, obtains the intuitionistic fuzzy set of membership function u ki and cluster center ck from intuitionistic fuzzy objective function J using Lagrange multiplier method
Figure FDA0003525548350000055
It is implemented as follows:
(5c1)在直觉模糊目标函数J中引入拉格朗日乘子λi,构建具有拉格朗日乘子的目标函数L:(5c1) Introduce the Lagrangian multiplier λ i into the intuitionistic fuzzy objective function J, and construct the objective function L with the Lagrangian multiplier:
Figure FDA0003525548350000056
Figure FDA0003525548350000056
(5c2)分别计算L对于隶属度函数uki、聚类中心ck的直觉模糊集
Figure FDA0003525548350000057
和拉格朗日乘子λi的偏导数
Figure FDA0003525548350000058
Figure FDA0003525548350000059
并在偏导数
Figure FDA00035255483500000510
的条件下,通过如下求得uki
Figure FDA00035255483500000511
(5c2) Calculate the intuitionistic fuzzy set of L for the membership function u ki and the cluster center ck respectively
Figure FDA0003525548350000057
and the partial derivative of the Lagrange multiplier λ i
Figure FDA0003525548350000058
and
Figure FDA0003525548350000059
and in the partial derivative
Figure FDA00035255483500000510
Under the condition of , obtain u ki and
Figure FDA00035255483500000511
Figure FDA00035255483500000512
Figure FDA00035255483500000512
Figure FDA00035255483500000513
Figure FDA00035255483500000513
其中,k=1,2,…,Y,i=1,2,…,n,r=1,2,…,ω2Wherein, k=1,2,...,Y, i=1,2,...,n, r=1,2,...,ω 2 .
6.根据权利要求1所述的方法,其特征在于,(8a)中的最大隶属度原则,是根据Vk=argk{max(uki)}将像素i划分到隶属度最大的类别Vk6. The method according to claim 1, wherein the maximum membership degree principle in (8a) is to divide the pixel i into the category V with the largest membership degree according to V k =arg k {max(u ki )} k . 7.根据权利要求1所述的方法,其特征在于,(8d)中对最终标签矩阵UF中标签类别值为YW的像素赋予不同对应的灰度值xW,其公式如下:7. method according to claim 1 is characterized in that, in (8d), to the pixel whose label class value is Y W in the final label matrix UF is given different corresponding gray value x W , and its formula is as follows: xW=[255/YW] xW =[255/ YW ] 其中,[·]表示取内部的整数,最终标签矩阵UF内仅含类别数值{1,2,…,YW,…,Yfin}。Among them, [·] means to take an internal integer, and the final label matrix UF only contains the category values { 1,2,…,Y W ,…,Y fin }.
CN201910507275.7A 2019-06-12 2019-06-12 Image segmentation method based on intuitive fuzzy C-means clustering Active CN110211126B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910507275.7A CN110211126B (en) 2019-06-12 2019-06-12 Image segmentation method based on intuitive fuzzy C-means clustering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910507275.7A CN110211126B (en) 2019-06-12 2019-06-12 Image segmentation method based on intuitive fuzzy C-means clustering

Publications (2)

Publication Number Publication Date
CN110211126A CN110211126A (en) 2019-09-06
CN110211126B true CN110211126B (en) 2022-06-03

Family

ID=67792371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910507275.7A Active CN110211126B (en) 2019-06-12 2019-06-12 Image segmentation method based on intuitive fuzzy C-means clustering

Country Status (1)

Country Link
CN (1) CN110211126B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110634141B (en) * 2019-09-19 2022-02-11 南京邮电大学 Image segmentation method based on improved intuitionistic fuzzy c-means clustering and storage medium
CN110956637B (en) * 2019-12-02 2022-08-02 兰州交通大学 Adaptive fuzzy C-means clustering noise image segmentation method and system
CN111402272B (en) * 2020-03-19 2023-09-29 西安石油大学 Neighborhood weighted fuzzy clustering image segmentation method
CN111476303A (en) * 2020-04-09 2020-07-31 国网河北省电力有限公司电力科学研究院 Line loss analysis method of fuzzy C-means clustering based on quantum optimization particle swarm
CN111539966A (en) * 2020-04-16 2020-08-14 华北电力大学 Colorimetric sensor array image segmentation method based on fuzzy c-means clustering
CN111932578B (en) * 2020-08-12 2022-06-07 河北地质大学 Pixel block clustering nondestructive testing image segmentation method integrating class index suppression factors
CN112541528B (en) * 2020-12-02 2024-12-20 国家电网有限公司 A method for optimizing cost prediction indexes of power transmission and transformation projects based on fuzzy clustering
CN112733825B (en) * 2020-12-18 2024-07-05 北京城市排水集团有限责任公司 Space extraction method for swing arm radar pipeline image diseases
CN113269796B (en) * 2021-06-10 2023-08-25 河北地质大学 Image segmentation method and device and terminal equipment
CN113409335B (en) * 2021-06-22 2023-04-07 西安邮电大学 Image segmentation method based on strong and weak joint semi-supervised intuitive fuzzy clustering
CN114119503A (en) * 2021-11-05 2022-03-01 华南师范大学 A method and device for retinal blood vessel segmentation based on IFCM clustering
CN115131588B (en) * 2022-06-13 2024-02-23 西北工业大学 Image robust clustering method based on fuzzy clustering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108062757A (en) * 2018-01-05 2018-05-22 北京航空航天大学 It is a kind of to utilize the method for improving Intuitionistic Fuzzy Clustering algorithm extraction infrared target
WO2018119808A1 (en) * 2016-12-29 2018-07-05 浙江工商大学 Stereo video generation method based on 3d convolutional neural network
WO2019000455A1 (en) * 2017-06-30 2019-01-03 上海联影医疗科技有限公司 Method and system for segmenting image
CN109145921A (en) * 2018-08-29 2019-01-04 江南大学 A kind of image partition method based on improved intuitionistic fuzzy C mean cluster
CN109741330A (en) * 2018-12-21 2019-05-10 东华大学 A Medical Image Segmentation Method Using Hybrid Filtering Strategy and Fuzzy C-Means

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018119808A1 (en) * 2016-12-29 2018-07-05 浙江工商大学 Stereo video generation method based on 3d convolutional neural network
WO2019000455A1 (en) * 2017-06-30 2019-01-03 上海联影医疗科技有限公司 Method and system for segmenting image
CN108062757A (en) * 2018-01-05 2018-05-22 北京航空航天大学 It is a kind of to utilize the method for improving Intuitionistic Fuzzy Clustering algorithm extraction infrared target
CN109145921A (en) * 2018-08-29 2019-01-04 江南大学 A kind of image partition method based on improved intuitionistic fuzzy C mean cluster
CN109741330A (en) * 2018-12-21 2019-05-10 东华大学 A Medical Image Segmentation Method Using Hybrid Filtering Strategy and Fuzzy C-Means

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"A Modified Intuitionistic Fuzzy Clustering Algorithm for Medical Image Segmentation";S.V. Aruna Kumar;《DE GRUYTER》;20190429;第1-15页 *
"显著信息引导的直觉空间模糊聚类图像分割";赵凤;《西安邮电大学学报》;20180731;第1-7页 *

Also Published As

Publication number Publication date
CN110211126A (en) 2019-09-06

Similar Documents

Publication Publication Date Title
CN110211126B (en) Image segmentation method based on intuitive fuzzy C-means clustering
WO2021228088A1 (en) Method for recognizing haze concentration in haze image
CN110309781B (en) House damage remote sensing identification method based on multi-scale spectrum texture self-adaptive fusion
CN104778457B (en) Video face identification method based on multi-instance learning
CN109509196B (en) A Fuzzy Clustering Method for Tongue Diagnosis Image Segmentation Based on Improved Ant Colony Algorithm
CN105741279A (en) Rough set based image segmentation method for quickly inhibiting fuzzy clustering
CN109801305B (en) SAR image change detection method based on deep capsule network
CN110147795A (en) A kind of adaptive non local fuzzy C-means clustering SAR image partitioning algorithm
CN109829519B (en) Remote sensing image classification method and system based on self-adaptive spatial information
CN110276764A (en) Improved K-Means Underwater Image Background Segmentation Algorithm Based on K Value Estimation
CN112906550B (en) A Static Gesture Recognition Method Based on Watershed Transform
CN109829494A (en) A kind of clustering ensemble method based on weighting similarity measurement
CN113487578B (en) SAR image change detection method based on bilateral weighted kernel graph cut
CN113378620A (en) Cross-camera pedestrian re-identification method in surveillance video noise environment
Song et al. A novel self-learning weighted fuzzy local information clustering algorithm integrating local and non-local spatial information for noise image segmentation
CN109544570B (en) A brain MRI image segmentation method based on fuzzy multi-threshold and regional information
CN107564008A (en) Rapid SAR image segmentation method based on crucial pixel fuzzy clustering
CN113111969B (en) Hyperspectral image classification method based on mixed measurement
CN112419266B (en) A method for detecting changes in remote sensing images with land cover class constraints
CN102930558A (en) Real-time tracking method for infrared image target with multi-feature fusion
CN118552746A (en) Image edge detection method based on Canny algorithm
CN117437234A (en) Aerial photo ground object classification and change detection method based on graph neural network
CN110853030A (en) Bioreactor virus infected cell quality evaluation method
CN110910392B (en) Image segmentation method based on fuzzy clustering of multiple spatial information weighting
CN116993983A (en) A method of segmenting Miao costume patterns

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant