CN110211126B - Image segmentation method based on intuitive fuzzy C-means clustering - Google Patents
Image segmentation method based on intuitive fuzzy C-means clustering Download PDFInfo
- Publication number
- CN110211126B CN110211126B CN201910507275.7A CN201910507275A CN110211126B CN 110211126 B CN110211126 B CN 110211126B CN 201910507275 A CN201910507275 A CN 201910507275A CN 110211126 B CN110211126 B CN 110211126B
- Authority
- CN
- China
- Prior art keywords
- pixel
- value
- image
- gray
- cluster center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 97
- 238000003709 image segmentation Methods 0.000 title claims abstract description 27
- 239000011159 matrix material Substances 0.000 claims abstract description 38
- 238000011156 evaluation Methods 0.000 claims abstract description 9
- 238000001514 detection method Methods 0.000 claims abstract description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000017105 transposition Effects 0.000 claims description 3
- 241001270131 Agaricus moelleri Species 0.000 claims description 2
- 238000007781 pre-processing Methods 0.000 abstract description 2
- 238000012216 screening Methods 0.000 abstract 2
- 230000011218 segmentation Effects 0.000 description 41
- 238000004422 calculation algorithm Methods 0.000 description 29
- 239000006002 Pepper Substances 0.000 description 19
- 235000002566 Capsicum Nutrition 0.000 description 13
- 241000722363 Piper Species 0.000 description 13
- 235000016761 Piper aduncum Nutrition 0.000 description 13
- 235000017804 Piper guineense Nutrition 0.000 description 13
- 235000008184 Piper nigrum Nutrition 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 238000004088 simulation Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Probability & Statistics with Applications (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明属于数字图像处理领域,具体涉及到一种图像分割方法,可用于图像识别和计算机视觉的预处理。The invention belongs to the field of digital image processing, in particular to an image segmentation method, which can be used for image recognition and computer vision preprocessing.
背景技术Background technique
从上个世纪七八十年代起,众多学者持续关注图像分割,图像分割技术已经成为众多领域的基础技术,只要关乎提取图像中内容的问题就不能缺少图像分割技术,图像分割工作的质量和效果将直接或者间接的影响后续的图像工程。现有的图像分割方法种类繁多,可以归纳为基于阈值的图像分割方法、基于边缘的图像分割方法、基于区域的图像分割方法、基于聚类的图像分割方法等,现有图像分割技术以基于阈值的图像分割方法和基于聚类的图像分割方法为主,基于阈值的图像分割是一种采用统计学信息分割的方法,通常提取合适的阈值,把图像中感兴趣的目标部分分离出来。但是其只适用于灰度差异明显的图像,此外,噪声等干扰元素也对图像的精确分割工作造成困难。到目前为止依然没有形成一种统一的理论体系来应用于不同的领域,图像分割依旧是一个热门研究领域。Since the 1970s and 1980s, many scholars have continued to pay attention to image segmentation. Image segmentation technology has become a basic technology in many fields. As long as it is related to extracting content from images, image segmentation technology cannot be lacking. The quality and effect of image segmentation work It will directly or indirectly affect subsequent image projects. There are many types of existing image segmentation methods, which can be summarized as threshold-based image segmentation methods, edge-based image segmentation methods, region-based image segmentation methods, and cluster-based image segmentation methods. The image segmentation method based on the image segmentation method and the image segmentation method based on the clustering method are mainly based on the image segmentation method based on the threshold value. However, it is only suitable for images with obvious differences in gray level. In addition, interfering elements such as noise also cause difficulties in the accurate segmentation of images. So far, there is still no unified theoretical system to apply to different fields, and image segmentation is still a hot research field.
基于聚类的图像分割方法根据图像内像素点之间的相似性把图像划分为多个类别,其具有分割效果好,耗时短,方法运行稳定等特点,近年来成为应用普遍的方法之一。常用的聚类分割方法有:K均值、模糊C-均值聚类、分层聚类和谱聚类)等等,其中模糊C-均值聚类是应用最为广泛的方法之一。模糊C均值方法最早由邓恩提出,参见:邓恩.一种和迭代自组织分析算法相关的模糊图像处理方法及其应用于检测紧凑易分离聚类.控制论学报.1973,3(3):32-57.(J.C.Dunn.A Fuzzy Relative of the ISODATA Process and ItsUse in Detecting Compact Well-Separated Clusters[J].Journal of Cybernetics,1973,3(3):32-57.),该方法由于没有考虑图像中的任何空间信息,对图像中的噪声敏感,使得分割含噪图像得不到理想的分割效果。后来许多学者发表了结合图像空间邻域信息改进方法。艾哈迈德等人将空间邻域信息项加入模糊C均值的目标函数中,提出了FCM_S算法,该算法虽然提高了对噪声的鲁棒性,但是计算复杂度较高,为了降低FCM_S算法的计算复杂度,陈松灿和张道强通过均值滤波和中值滤波的方式将邻域信息引入到算法的目标函数中,提出了FCM_S1和FCM_S2算法,参见:陈松灿,张道强.一种稳定的基于核函数的结合空间信息模糊C均值图像分割算法.美国电子电器工程师协会系统控制处理汇刊.卷34,1907–1916,2004.(S.Chen and D.Zhang,“Robust Image Segmentation Using FCM withSpatial Constraints Based on New Kernel-induced Distance Measure,”IEEETrans.Syst,Man,Cybern,vol.34,pp1907-1916,2004.);这两种算法中FCM_S1算法对高斯噪声处理效果较好,但对椒盐噪声鲁棒性差,二FCM_S2算法虽对椒盐噪声处理效果较好,但却对高斯噪声鲁棒性差,因而这两种算法不能做到对多种类型噪声的鲁棒普适性。蔡维玲等人结合图像的空间信息和灰度信息构造了线性加权和图像,提出了快速生成FCM算法,参见:蔡维玲,陈松灿,张道强.一种用于图像分割的引入局部信息的快速鲁棒的模糊C均值聚类算法.模式识别.卷40,825-838,2007.(W.Cai,S.Chen,and D.Zhang,“Fast and RobustFuzzy C-means Clustering Algorithms Incorporating Local Information for ImageSegmentation,”Pattern Recognit.,vol.40,no.3,pp.825-838,Mar.2007.),该方法在对高斯噪声有较强鲁棒性的同时对椒盐噪声也具有较好的鲁棒性;但是以上算法都没有考虑数据更多的模糊性,查尔热等人进一步发现了采用直觉模糊集理论可以考虑数据更多的模糊性,对数据的分类更加精确,提出了基于直觉模糊数据的模糊聚类方法,参见:一种新颖的直觉模糊C均值聚类算法及其在医学图像中的应用.应用软计算(T,Chaira.“A novelintuitionistic fuzzy C means clustering algorithm and its application tomedical images.”Appl.Soft Comput.11(2):1711-1717,2011.);由于基于直觉模糊数据的模糊聚类方法对噪声也比较敏感,韦尔马等人进一步将局部空间信息引入直觉模糊C均值算法中,参见:韦尔马,阿格拉沃尔,沙兰.针对脑部图像分割的结合局部空间信息的改进直觉模糊C均值算法.应用软计算.543-557,2016.(H.Verma,R.K.Agrawal,A.Sharan,“AnImproved Intuitionistic Fuzzy C-means Clustering Algorithm IncorporatingLocal Information for Brain Image Segmentation,”Appl.Soft Comput.,543–557,2016)。The image segmentation method based on clustering divides the image into multiple categories according to the similarity between the pixels in the image. It has the characteristics of good segmentation effect, short time consumption and stable operation of the method, and has become one of the most widely used methods in recent years. . Commonly used clustering segmentation methods are: K-means, fuzzy C-means clustering, hierarchical clustering and spectral clustering), etc. Among them, fuzzy C-means clustering is one of the most widely used methods. The fuzzy C-means method was first proposed by Dunn, see: Dunn. A fuzzy image processing method related to iterative self-organizing analysis algorithm and its application in detecting compact and easily separable clusters. Acta Cybernetics. 1973,3(3) :32-57.(J.C.Dunn.A Fuzzy Relative of the ISODATA Process and ItsUse in Detecting Compact Well-Separated Clusters[J].Journal of Cybernetics,1973,3(3):32-57.), this method has no Considering any spatial information in the image, it is sensitive to the noise in the image, so that the ideal segmentation effect cannot be obtained by segmenting the noisy image. Later, many scholars published improved methods combining image space neighborhood information. Ahmed et al. added the spatial neighborhood information item to the objective function of the fuzzy C-means, and proposed the FCM_S algorithm. Although this algorithm improves the robustness to noise, the computational complexity is high. In order to reduce the cost of the FCM_S algorithm Computational complexity, Chen Songcan and Zhang Daoqiang introduced the neighborhood information into the objective function of the algorithm by means of mean filtering and median filtering, and proposed FCM_S1 and FCM_S2 algorithms, see: Chen Songcan, Zhang Daoqiang. A stable combination based on kernel function Spatial Information Fuzzy C-Means Image Segmentation Algorithm. IEEE Transactions on System Control Processing. Volume 34, 1907–1916, 2004. (S.Chen and D.Zhang, “Robust Image Segmentation Using FCM with Spatial Constraints Based on New Kernel -induced Distance Measure,"IEEETrans.Syst,Man,Cybern,vol.34,pp1907-1916,2004.); Among the two algorithms, the FCM_S1 algorithm has a better effect on Gaussian noise, but has poor robustness to salt and pepper noise. Although the FCM_S2 algorithm has a good effect on salt and pepper noise, it has poor robustness to Gaussian noise, so these two algorithms cannot be robust and universal to various types of noise. Cai Weiling et al. combined the spatial information and grayscale information of the image to construct a linear weighted sum image, and proposed a fast generation FCM algorithm, see: Cai Weiling, Chen Songcan, Zhang Daoqiang. A fast and robust blur for image segmentation that introduces local information C-means Clustering Algorithm. Pattern Recognition. Vol. 40, 825-838, 2007. (W. Cai, S. Chen, and D. Zhang, “Fast and RobustFuzzy C-means Clustering Algorithms Incorporating Local Information for ImageSegmentation,” Pattern Recognit., vol.40, no.3, pp.825-838, Mar.2007.), this method has strong robustness to Gaussian noise and good robustness to salt and pepper noise; but the above algorithms are all Without considering more fuzziness of data, Charger et al. further found that using intuitionistic fuzzy set theory can consider more fuzziness of data and classify data more accurately, and proposed a fuzzy clustering method based on intuitionistic fuzzy data. See: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Applied Soft Computation (T, Chaira. "A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images." Appl.Soft Comput. 11(2):1711-1717, 2011.); since the fuzzy clustering method based on intuitionistic fuzzy data is also sensitive to noise, Verma et al. further introduced local spatial information into the intuitionistic fuzzy C-means algorithm, see: Wei. Verma, Agrawal, Sharan. An Improved Intuitionistic Fuzzy C-Means Algorithm Combining Local Spatial Information for Brain Image Segmentation. Applied Soft Computing. 543-557, 2016. (H.Verma, R.K.Agrawal, A.Sharan , "AnImproved Intuitionistic Fuzzy C-means Clustering Algorithm Incorporating Local Information for Brain Image Segmentation," Appl. Soft Comput., 543–557, 2016).
虽然上述改进方法一定程度上优化了模糊聚类算法在抗噪性能上的表现,但依然存在对噪声鲁棒性不够强,对聚类中心的初始值很敏感,不能自适应分析图像聚类数目等不足。Although the above improved methods have optimized the performance of the fuzzy clustering algorithm in anti-noise performance to a certain extent, there are still problems that the robustness to noise is not strong enough, the initial value of the cluster center is very sensitive, and the number of image clusters cannot be adaptively analyzed. Wait enough.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对上述现有技术的不足,提供一种基于直觉模糊C均值聚类的图像分割方法,以增强对噪声的鲁棒性,提高分割精确度,减小对聚类中心初始值的敏感性,自适应地确定图像聚类数目。The purpose of the present invention is to provide an image segmentation method based on intuitionistic fuzzy C-means clustering in view of the above-mentioned deficiencies of the prior art, so as to enhance the robustness to noise, improve the segmentation accuracy, and reduce the initial value of the cluster center. Sensitivity to adaptively determine the number of image clusters.
为实现上述目的,本发明的技术包括如下步骤:To achieve the above object, the technology of the present invention comprises the steps:
(1)输入待分割图像,若待分割图像为彩色图像,先将其转换为灰度图像;(1) Input the image to be divided, if the image to be divided is a color image, first convert it into a grayscale image;
(2)初始化参数:设最大迭代次数T=100,停止阈值ε=10-5,模糊加权指数m=2,邻域窗半径ω=3,初始迭代次数t=1,聚类数目默认初始值Y=2;(2) Initialization parameters: set the maximum number of iterations T = 100, the stop threshold ε = 10 -5 , the fuzzy weighting index m = 2, the radius of the neighborhood window ω = 3, the initial number of iterations t = 1, the default initial value of the number of clusters y = 2;
(3)使用基于开关均值策略构造对噪声鲁棒的直觉模糊集其中,1≤i≤n,n表示像素总数目;(3) Construct an intuitionistic fuzzy set robust to noise using a switch-mean-based strategy Among them, 1≤i≤n, n represents the total number of pixels;
(4)针对输入图像的灰度值分布,使用最小二乘法进行曲线拟合,选择拟合曲线的峰值点所对应的灰度级作为初始化的聚类中心值,并设估计聚类数的范围为{2,…,Ymax},聚类中心初始值范围集合C为其中,cY表示第Y个聚类中心的初始值,1≤Y≤Ymax,Ymax表示聚类数目的最大值,2≤Ymax≤n,T表示转置;(4) For the gray value distribution of the input image, use the least squares method to perform curve fitting, select the gray level corresponding to the peak point of the fitting curve as the initialized cluster center value, and set the range of the estimated number of clusters is {2,...,Y max }, and the initial value range set C of the cluster center is Among them, c Y represents the initial value of the Y-th cluster center, 1≤Y≤Y max , Y max represents the maximum number of clusters, 2≤Y max ≤n, T represents the transposition;
(5)迭代计算线性加权函数系数Hir、直觉模糊距离和直觉模糊目标函数J:(5) Iteratively calculate the linear weighting function coefficient H ir , the intuitionistic fuzzy distance and the intuitionistic fuzzy objective function J:
(5a)利用像素的位置信息和灰度信息构造线性加权函数系数Hir:(5a) Construct the linear weighting function coefficient H ir using the position information and grayscale information of the pixel:
其中,(ai,bi)和(ar,br)分别表示中心像素i和邻域像素r的空间坐标值,xi和xr分别表示中心像素i和邻域像素r的灰度值,uki表示xi对于第k个聚类中心ck的隶属度,1≤k≤Y,1≤r≤ω2;Among them, (a i , b i ) and (ar , b r ) represent the spatial coordinate values of the center pixel i and the neighborhood pixel r , respectively, and xi and x r represent the grayscale of the center pixel i and the neighborhood pixel r, respectively value, u ki represents the membership degree of xi to the k -th cluster center ck, 1≤k≤Y, 1≤r≤ω 2 ;
(5b)计算直觉模糊集下像素xi到聚类中心ck的直觉模糊距离其中,和分别表示像素xi与聚类中心ck的直觉模糊集;(5b) Calculate the intuitionistic fuzzy distance from the pixel x i to the cluster center ck under the intuitionistic fuzzy set in, and respectively represent the intuitionistic fuzzy sets of pixel xi and cluster center ck ;
(5c)结合(5a)得到的线性加权函数系数Hir与(5b)得到的直觉模糊距离计算直觉模糊目标函数J,并求解直觉模糊目标函数J中的隶属度函数uki和聚类中心ck的直觉模糊集 (5c) Combine the linear weighting function coefficient H ir obtained from (5a) with the intuitionistic fuzzy distance obtained from (5b) Calculate the intuitionistic fuzzy objective function J, and solve the intuitionistic fuzzy set of the membership function u ki and the cluster center ck in the intuitionistic fuzzy objective function J
(6)判断迭代停止条件||C(t+1)-C(t)||<ε或运算迭代次数t>T是否成立:(6) Determine whether the iteration stop condition ||C (t+1) -C (t) ||<ε or the number of operation iterations t>T holds:
如果不成立,则令t=t+1,返回(5);If it does not hold, set t=t+1 and return to (5);
如果成立,输出隶属度矩阵U并判断Y<Ymax是否成立,若成立,则令Y=Y+1,取聚类中心初始值范围集合C的前Y个数值,令聚类中心初始值集合为令初始迭代次数t=1,返回(5),若Y<Ymax不成立,执行(7),其中,为聚类中心数值集合,表示第Q个聚类中心迭代第t次的直觉模糊集,表示第P个聚类中心的初始值,1≤Q≤Y,1≤P≤Y,U={uki};If it is true, output the membership degree matrix U and judge whether Y<Y max is true. If it is true, let Y=Y+1, take the first Y values of the cluster center initial value range set C, and let the cluster center initial value set for Set the initial number of iterations t=1, return to (5), if Y< Ymax does not hold, execute (7), where, is the set of cluster center values, represents the intuitionistic fuzzy set of the t-th iteration of the Q-th cluster center, Represents the initial value of the Pth cluster center, 1≤Q≤Y, 1≤P≤Y, U={u ki };
(7)从(6)输出(Ymax-1)个隶属度矩阵U,并使用分级距离指数评价指标GD评价这些隶属度矩阵;设GD数值最大的隶属度矩阵为Umax,将Umax对应的聚类数目Yfin作为输入图像的最终聚类数目,其中,1≤Yfin≤Ymax;(7) Output (Y max -1) membership degree matrices U from (6), and use the hierarchical distance index evaluation index GD to evaluate these membership degree matrices; let the membership degree matrix with the largest GD value be U max , and U max corresponds to The number of clusters Y fin of the input image is taken as the final number of clusters of the input image, where 1≤Y fin ≤Y max ;
(8)对(7)输出的隶属度矩阵Umax做像素分类,并进行检错分类,输出分割图像:(8) Perform pixel classification on the membership matrix U max output in (7), and perform error detection and classification, and output the segmented image:
(8a)根据最大隶属度原则和最终聚类数目Yfin,对(7)输出的隶属度矩阵Umax的像素进行分类,输出标签矩阵UL,其中,UL内仅含类别数值{1,2,…,YW,…,Yfin},1≤YW≤Yfin;(8a) According to the maximum membership principle and the final number of clusters Y fin , classify the pixels of the membership matrix U max output from (7), and output the label matrix UL , where UL only contains the
(8b)设中心像素i的标签类别值为Li,在中心像素i的5乘5邻域内,判断标签类别值Li的像素数量nL是否满足nL≤25/(Yfin+1)的条件:(8b) Set the label type value of the central pixel i as Li, and in the 5×5 neighborhood of the central pixel i , determine whether the number of pixels n L of the label type value Li satisfies n L ≤ 25/(Y fin +1) conditions of:
如果满足,则判定中心像素i为错分像素,并将错分像素的标签类别值Li修正为邻域内同种标签类别值数量最多的标签类别值,执行(8c);If it is satisfied, then determine that the central pixel i is a misclassified pixel, and correct the label type value Li of the misclassified pixel to the label type value with the largest number of the same type of label type value in the neighborhood, and execute (8c);
如果不满足,则判定中心像素i为正确分配像素,执行(8c);If it is not satisfied, then determine that the center pixel i is a correctly allocated pixel, and execute (8c);
(8c)判断标签矩阵UL中的像素是否全部遍历,如果是,输出最终标签矩阵UF,执行(8d),如果不是,返回(8b)继续遍历;( 8c ) judge whether the pixels in the label matrix UL are all traversed, if so, output the final label matrix UF , and execute (8d), if not, return to (8b) to continue traversing;
(8d)对最终标签矩阵UF中标签类别值为YW的像素赋予不同对应的灰度值xW,并将赋予不同灰度值的矩阵作为分割图像输出。(8d) Assign different corresponding gray values x W to the pixels with the label category value Y W in the final label matrix UF , and output the matrices with different gray values as a segmented image.
与现有技术相比,本发明具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
第一,本发明使用基于开关均值策略构造对噪声鲁棒的直觉模糊集,利用像素的位置信息和灰度信息构造线性加权函数系数并引入到直觉模糊目标函数中,解决了聚类算法对噪声敏感的问题。First, the present invention constructs an intuitionistic fuzzy set that is robust to noise based on the switching mean strategy, uses the position information and grayscale information of the pixels to construct a linear weighting function coefficient and introduces it into the intuitionistic fuzzy objective function, and solves the problem of the clustering algorithm. sensitive issue.
第二,本发明使用最小二乘法对图像的灰度值分布进行曲线拟合,并选择拟合曲线所有的峰值点所对应的灰度级作为聚类中心初始值范围,根据分级距离指数评价指标评价隶属度矩阵,选择适合输入图像的聚类数目,实现图像聚类数目的自适应地确定,并克服了传统聚类算法容易陷入局部最优的缺点。Second, the present invention uses the least squares method to perform curve fitting on the gray value distribution of the image, and selects the gray levels corresponding to all the peak points of the fitting curve as the initial value range of the cluster center, and evaluates the index according to the hierarchical distance index. The membership matrix is evaluated, the number of clusters suitable for the input image is selected, the adaptive determination of the number of image clusters is realized, and the disadvantage that the traditional clustering algorithm is easy to fall into the local optimum is overcome.
第三,本发明使用检错策略筛选错分像素,并对错分元素进行正确分配,提高了分割精确度,使得分割效果更为理想。Third, the present invention uses an error detection strategy to screen the wrongly classified pixels, and correctly assigns the wrongly classified elements, which improves the segmentation accuracy and makes the segmentation effect more ideal.
附图说明Description of drawings
图1为本发明的实现流程图;Fig. 1 is the realization flow chart of the present invention;
图2为用本发明和现有方法对Berkeley图像数据库中的#3096图像进行仿真分割的结果对比图;Fig. 2 is the result comparison diagram that the #3096 image in the Berkeley image database is carried out simulation segmentation with the present invention and existing method;
图3为用本发明与现有方法对Berkeley图像数据库中的#238011图像进行仿真分割的结果对比图。FIG. 3 is a comparison diagram of the simulation segmentation results of the #238011 image in the Berkeley image database using the present invention and the existing method.
具体实施方式Detailed ways
以下结合附图对本发明的实施例及效果作进一步描述:Embodiments and effects of the present invention are further described below in conjunction with the accompanying drawings:
参见图1,本发明的实现步骤如下:Referring to Fig. 1, the implementation steps of the present invention are as follows:
步骤1:输入待分割图像。Step 1: Input the image to be segmented.
输入待分割图像,若待分割图像为彩色图像,先将其转换为灰度图像。Input the image to be divided. If the image to be divided is a color image, first convert it to a grayscale image.
步骤2:设置初始参数值。Step 2: Set initial parameter values.
设最大迭代次数T=100,停止阈值ε=10-5,模糊加权指数m=2,邻域窗半径ω=3,初始迭代次数t=1,聚类数目默认初始值Y=2。Set the maximum number of iterations T=100, the stop threshold ε=10 −5 , the fuzzy weighting index m=2, the radius of the neighborhood window ω=3, the initial iteration number t=1, and the default initial value of the number of clusters Y=2.
步骤3:构造对噪声鲁棒的直觉模糊集 Step 3: Construct an intuitionistic fuzzy set robust to noise
现有技术构造直觉模糊集的方法包括有IFCM算法和IIFCM算法,其均使用Yager算子来构造直觉模糊集。Methods for constructing intuitionistic fuzzy sets in the prior art include IFCM algorithm and IIFCM algorithm, both of which use Yager operators to construct intuitionistic fuzzy sets.
本实例使用基于开关均值策略修正输入图像的像素灰度值,并通过Yager算子来构造对噪声鲁棒的直觉模糊集,其中,开关均值策略是根据像素i邻域内的像素灰度值分布情况做灰度值修正,其实现如下:In this example, the pixel gray value of the input image is corrected based on the switching mean strategy, and the Yager operator is used to construct an intuitionistic fuzzy set robust to noise. The switching mean strategy is based on the distribution of pixel gray values in the neighborhood of pixel i. Do the gray value correction, which is implemented as follows:
3.1)首先判断在中心像素i的3乘3邻域内的像素灰度值是否不全为0或者255:3.1) First, determine whether the pixel gray values in the 3-by-3 neighborhood of the central pixel i are not all 0 or 255:
如果成立,则表示邻域内的像素灰度值除0或者255外还有别的灰度值,先将邻域内灰度值为0和255的像素取出,再取邻域内其余像素的灰度均值,并设为中心像素的修正数值,再执行3.2);If it is true, it means that the gray value of the pixel in the neighborhood has other gray values besides 0 or 255. First, take out the pixels with the gray value of 0 and 255 in the neighborhood, and then take the average gray value of the remaining pixels in the neighborhood. , and set it as the correction value of the center pixel, and then execute 3.2);
如果不成立,则不修改中心像素的灰度值,直接执行3.2);If not, do not modify the gray value of the center pixel, and directly execute 3.2);
3.2)判断输入图像中的像素是否全部遍历:如果是,输出灰度值修正后的图像,执行3.3),如果不是,返回3.1)继续遍历;3.2) Determine whether all the pixels in the input image are traversed: if so, output the image after gray value correction, and execute 3.3), if not, return to 3.1) to continue traversing;
3.3)将3.2)输出的修正图像的像素灰度值计算为直觉模糊集 3.3) Calculate the pixel gray value of the corrected image output in 3.2) as an intuitionistic fuzzy set
3.3.1)设μ(xi)表示像素灰度值xi的隶属度,v(xi)和π(xi)分别是xi使用Yager算子构造的非隶属度和犹豫度,μ(xi)、v(xi)和π(xi)的计算公式分别如下:3.3.1) Let μ( xi ) denote the membership degree of pixel gray value x i , v( xi ) and π( xi ) are the non-membership degree and hesitation degree of x i constructed by using Yager operator, μ ( xi ), v( xi ) and π( xi ) are calculated as follows:
π(xi)=1-μ(xi)-v(xi),π(x i )=1-μ(x i )-v(x i ),
其中,0≤μ(xi)≤1,0≤v(xi)≤1,0≤μ(xi)+v(xi)≤1,α=0.8表示Yager算子系数;Among them, 0≤μ(x i )≤1, 0≤v(x i )≤1, 0≤μ(x i )+v(x i )≤1, α=0.8 represents the Yager operator coefficient;
3.3.2)根据3.3.1)计算得到的μ(xi)、v(xi)和π(xi)构造直觉模糊集 3.3.2) Construct an intuitionistic fuzzy set according to μ( xi ), v( xi ) and π( xi ) calculated in 3.3.1)
步骤4:针对输入图像的灰度值分布,使用最小二乘法进行曲线拟合,选择拟合曲线的峰值点所对应的灰度级作为初始化的聚类中心值,估计最大聚类数目及聚类中心初始值范围。Step 4: According to the gray value distribution of the input image, use the least squares method to perform curve fitting, select the gray level corresponding to the peak point of the fitting curve as the initialized cluster center value, and estimate the maximum number of clusters and clusters. Center initial value range.
现有选取聚类中心初始值的技术有直接选取图像灰度直方图的峰值点作为初始聚类中心。The existing techniques for selecting the initial value of the cluster center include directly selecting the peak point of the grayscale histogram of the image as the initial cluster center.
本实例先对图像灰度值分布使用最小二乘法进行曲线拟合,然后在平滑的拟合曲线选择峰值点,其实现如下:This example first uses the least squares method to fit the image gray value distribution, and then selects the peak point in the smooth fitting curve. The implementation is as follows:
4.1)将灰度图像设为256个灰度级,灰度级范围为[0,255],并绘制灰度图像的灰度直方图;4.1) Set the grayscale image to 256 grayscales, the grayscale range is [0,255], and draw the grayscale histogram of the grayscale image;
4.2)统计灰度直方图上256个灰度级所对应的像素数目,设为灰度值分布频率f(l),并使用七阶最小二乘法对f(l)做曲线拟合,将灰度值数据点拟合为灰度值曲线,其中,0≤l≤255;4.2) Count the number of pixels corresponding to 256 gray levels on the gray histogram, set it as the gray value distribution frequency f(l), and use the seventh-order least squares method to perform curve fitting on f(l), The degree value data points are fitted to a gray value curve, where 0≤l≤255;
4.3)求f(l)的一阶导数f'(l),并比较f'(l)与f(l)前后灰度级的一阶导数f'(l-1)和f'(l+1);4.3) Find the first derivative f'(l) of f(l), and compare the first derivative f'(l-1) and f'(l+ of f'(l) and f(l) before and after the gray level 1);
4.4)判断灰度级l是否在l=0或者l=255的条件下:4.4) Determine whether the gray level l is under the condition of l=0 or l=255:
若在l=0或者l=255的条件下且l=0,则再判断f'(l)<0是否成立,如果成立,将灰度级l=0作为峰值点输出,再执行4.5);If under the condition of l=0 or l=255 and l=0, then judge whether f'(l)<0 is established, if so, output the gray level l=0 as the peak point, and then execute 4.5);
若在l=0或者l=255的条件下且l=255,则再判断f'(l)>0是否成立,如果成立,将灰度级l=255作为峰值点输出,再执行4.5);If under the condition of l=0 or l=255 and l=255, then judge whether f'(l)>0 is established, if so, output the gray level l=255 as the peak point, and then execute 4.5);
若不是在l=0或者l=255的条件下,即表示在0<l<255的条件下,则判断f'(l)=0且f'(l-1)>0和f'(l+1)<0是否成立,如果成立,将灰度级l作为峰值点输出,再执行4.5);If it is not under the condition of l=0 or l=255, that is, under the condition of 0<l<255, then it is judged that f'(l)=0 and f'(l-1)>0 and f'(l Whether +1)<0 is established, if so, output the gray level l as the peak point, and then execute 4.5);
4.5)判断256个灰度级是否全部遍历,如果是,输出峰值点,执行4.6),如果不是,返回4.4)继续遍历;4.5) Determine whether all 256 gray levels are traversed, if so, output the peak point and execute 4.6), if not, return to 4.4) to continue traversing;
4.6)对4.5)输出的峰值点按照灰度分布频率值从大到小的顺序排序,统计峰值点的数目为Ymax,设聚类数范围为2至Ymax个,并统计从大到小排序的峰值点对应的灰度级l,得到灰度级数值范围为将灰度级对应数值统计为聚类中心初始值,即设聚类中心初始值范围集合C为其中:4.6) Sort the peak points outputted in 4.5) in descending order of gray distribution frequency value, count the number of peak points as Y max , set the number of clusters to range from 2 to Y max , and count from large to small The gray level l corresponding to the sorted peak points is obtained, and the range of gray level values is The value corresponding to the gray level is counted as the initial value of the cluster center, that is, Let the initial value range set C of the cluster center be in:
lY表示在峰值点灰度分布频率值按照从大到小顺序中,第Y个峰值点灰度分布频率值所对应的灰度级,cY表示第Y个聚类中心的初始值,1≤Y≤Ymax,Ymax表示聚类数目的最大值,2≤Ymax≤n,T表示转置。l Y represents the gray level corresponding to the gray distribution frequency value of the Y th peak point in the order from largest to smallest in the gray distribution frequency value of the peak point, c Y represents the initial value of the Y th cluster center, 1 ≤Y≤Y max , Y max represents the maximum number of clusters, 2≤Y max ≤n, T represents transposition.
步骤5:迭代计算线性加权函数系数Hir、直觉模糊距离和直觉模糊目标函数J。Step 5: Iteratively calculate the linear weighting function coefficient H ir , the intuitionistic fuzzy distance and the intuitionistic fuzzy objective function J.
现有的FCM_S1算法和FCM_S2算法将图像的局部空间信息引入到其目标函数中,其中,FCM_S1算法考虑的是图像的均值滤波特征,FCM_S2算法考虑的是图像的中值滤波特征。The existing FCM_S1 algorithm and FCM_S2 algorithm introduce the local spatial information of the image into its objective function. The FCM_S1 algorithm considers the mean filtering feature of the image, and the FCM_S2 algorithm considers the median filtering feature of the image.
本实例先利用像素的位置信息和灰度信息构造线性加权函数系数Hir,然后将包含图像局部空间信息的Hir引入到直觉模糊目标函数J,其实现如下:In this example, the position information and grayscale information of pixels are used to construct the linear weighting function coefficient H ir , and then the H ir containing the local spatial information of the image is introduced into the intuitionistic fuzzy objective function J, which is realized as follows:
5.1)利用像素的位置信息和灰度信息构造线性加权函数系数Hir:5.1) Construct the linear weighting function coefficient H ir using the position information and grayscale information of the pixel:
其中,(ai,bi)和(ar,br)分别表示中心像素i和邻域像素r的空间坐标值,xi和xr分别表示中心像素i和邻域像素r的灰度值,uki表示xi对于第k个聚类中心ck的隶属度,1≤k≤Y,1≤r≤ω2;Among them, (a i , b i ) and (ar , b r ) represent the spatial coordinate values of the center pixel i and the neighborhood pixel r , respectively, and xi and x r represent the grayscale of the center pixel i and the neighborhood pixel r, respectively value, u ki represents the membership degree of xi to the k -th cluster center ck, 1≤k≤Y, 1≤r≤ω 2 ;
5.2)计算直觉模糊集下像素灰度值xi到聚类中心ck的直觉模糊距离 5.2) Calculate the intuitionistic fuzzy distance from the pixel gray value x i to the cluster center ck under the intuitionistic fuzzy set
5.2.1)设μ(ck)表示聚类中心ck的隶属度,v(ck)和π(ck)分别表示聚类中心ck使用Yager算子构造的非隶属度和犹豫度,μ(ck)、v(ck)和π(ck)的计算公式分别如下:5.2.1) Let μ( ck ) represent the membership degree of the cluster center ck , v( ck ) and π( ck ) represent the non-membership degree and hesitation degree of the cluster center ck constructed by the Yager operator, respectively , the calculation formulas of μ( ck ), v( ck ) and π( ck ) are as follows:
π(ck)=1-μ(ck)-v(ck),π(c k )=1-μ(c k )-v(c k ),
其中,0≤μ(ck)≤1,0≤v(ck)≤1,0≤μ(ck)+v(ck)≤1;Wherein, 0≤μ(c k )≤1, 0≤v(c k )≤1, 0≤μ(c k )+v(c k )≤1;
5.2.2)根据(5.2.1)得到的结果计算直觉模糊距离 5.2.2) Calculate the intuitionistic fuzzy distance according to the result obtained in (5.2.1)
其中,μ(xi)、v(xi)和π(xi)分别表示像素灰度值xi的隶属度、非隶属度和犹豫度;Among them, μ(x i ), v( xi ) and π( xi ) represent the membership degree, non-membership degree and hesitation degree of the pixel gray value x i , respectively;
5.3)结合(5.1)得到的线性加权函数系数Hir与(5.2)得到的直觉模糊距离计算直觉模糊目标函数J:5.3) Combine the linear weighting function coefficient H ir obtained from (5.1) with the intuitionistic fuzzy distance obtained from (5.2) Calculate the intuitionistic fuzzy objective function J:
其中,uki是像素xi对聚类中心ck的隶属度函数,m表示模糊加权指数;Among them, u ki is the membership function of the pixel xi to the cluster center ck , and m represents the fuzzy weighting index;
5.4)使用拉格朗日乘数法求解直觉模糊目标函数J,并得到隶属度函数uki和聚类中心ck的直觉模糊集 5.4) Use the Lagrange multiplier method to solve the intuitionistic fuzzy objective function J, and obtain the intuitionistic fuzzy set of the membership function u ki and the cluster center ck
5.4.1)在直觉模糊目标函数J中引入拉格朗日乘子λi,构建具有拉格朗日乘子的目标函数L:5.4.1) Introduce the Lagrangian multiplier λ i into the intuitionistic fuzzy objective function J, and construct the objective function L with the Lagrangian multiplier:
5.4.2)分别计算具有拉格朗日乘子的目标函数L对于隶属度函数uki、聚类中心ck的直觉模糊集和拉格朗日乘子λi的偏导数和 5.4.2) Calculate the intuitionistic fuzzy set of the objective function L with Lagrange multipliers for the membership function u ki and the cluster center ck respectively and the partial derivative of the Lagrange multiplier λ i and
5.4.3)在偏导数的条件下,通过如下求得隶属度函数uki与聚类中心ck的直觉模糊集 5.4.3) In partial derivatives Under the condition of , the intuitionistic fuzzy set of the membership function u ki and the cluster center ck is obtained by the following
其中,k=1,2,…,Y,i=1,2,…,n,r=1,2,…,ω2。Wherein, k=1,2,...,Y, i=1,2,...,n, r=1,2,...,ω 2 .
步骤6:判断是否满足迭代停止条件。Step 6: Determine whether the iteration stop condition is satisfied.
如果满足迭代停止条件||C(t+1)-C(t)||<ε或运算迭代次数t>T,则输出隶属度矩阵U,并执行7),其中,为聚类中心数值集合,表示第Q个聚类中心迭代第t次的直觉模糊集;If the iteration stop condition ||C (t+1) -C (t) ||<ε or the number of operation iterations t>T is satisfied, output the membership matrix U, and execute 7), where, is the set of cluster center values, represents the intuitionistic fuzzy set of the t-th iteration of the Q-th cluster center;
如果不满足迭代停止条件,则令t=t+1,返回5.1)。If the iteration stop condition is not satisfied, then let t=t+1, and return to 5.1).
步骤7:判断当前聚类数目Y是否满足条件。Step 7: Determine whether the current number of clusters Y satisfies the condition.
如果满足当前聚类数目Y小于最大聚类数目Ymax,即Y<Ymax,则令Y=Y+1,然后取聚类中心初始值范围集合C的前Y个数值,输出到聚类中心初始值集合,并令聚类中心初始值集合C(1)为令初始迭代次数t=1,返回5.1),其中,表示第P个聚类中心的初始值,1≤P≤Y;If it is satisfied that the current number of clusters Y is less than the maximum number of clusters Y max , that is, Y < Y max , then let Y=Y+1, then take the first Y values of the cluster center initial value range set C, and output to the cluster center Initial value set, and let the cluster center initial value set C (1) be Let the initial iteration number t=1, return to 5.1), where, Represents the initial value of the P-th cluster center, 1≤P≤Y;
如果不满足Y<Ymax,则执行(8)。If Y< Ymax is not satisfied, execute (8).
步骤8:使用分级距离指数评价指标GD评价隶属度矩阵。Step 8: Use the grading distance index evaluation index GD to evaluate the membership degree matrix.
现有对隶属度矩阵的评价指标有划分系数Vpc和划分熵Vpe,其均能反映隶属度矩阵的模糊程度,其中Vpc数值越大,隶属度矩阵的模糊性越小,Vpe数值越小,像素分类越准确。The existing evaluation indexes for the membership degree matrix include the partition coefficient V pc and the partition entropy V pe , both of which can reflect the fuzziness of the membership degree matrix . The smaller it is, the more accurate the pixel classification is.
本实例使用分级距离指数评价指标GD评价隶属度矩阵,即从7)中输入(Ymax-1)个隶属度矩阵U,使用分级距离指数评价指标GD评价这些隶属度矩阵,输出GD数值最大的隶属度矩阵,并设GD数值最大的隶属度矩阵为Umax,将Umax对应的聚类数目Yfin作为输入图像的最终聚类数目,其中:分级距离指数评价指标GD公式如下:This example uses the hierarchical distance index evaluation index GD to evaluate the membership degree matrix, that is, input (Y max -1) membership degree matrices U from 7), use the hierarchical distance index evaluation index GD to evaluate these membership degree matrices, and output the one with the largest GD value. The membership matrix, and the membership matrix with the largest GD value is U max , and the number of clusters Y fin corresponding to U max is taken as the final number of clusters of the input image, where: the hierarchical distance index evaluation index GD formula is as follows:
其中,ui1表示第i个像素最大的隶属度值,ui2表示第i个像素第二大的隶属度值,1≤Yfin≤Ymax。Among them, u i1 represents the maximum membership value of the i-th pixel, and u i2 represents the second-largest membership value of the i-th pixel, 1≤Y fin ≤Y max .
步骤9:对隶属度矩阵Umax进行像素分类。Step 9: Perform pixel classification on the membership matrix Umax .
根据最大隶属度原则和最终聚类数目Yfin,对8)输出的隶属度矩阵Umax的像素进行分类,输出标签矩阵UL,其中,最大隶属度原则是根据Vk=argk{max(uki)}将像素i划分到隶属度最大的类别Vk,UL内仅含类别数值{1,2,…,YW,…,Yfin},1≤YW≤Yfin。According to the maximum membership principle and the final number of clusters Y fin , classify the pixels of the membership matrix U max output in 8), and output the label matrix UL , where the maximum membership principle is based on V k = arg k {max( u ki )} divides the pixel i into the category V k with the largest membership degree, and U L only contains category values {1,2,…,Y W ,…,Y fin }, 1≤Y W ≤Y fin .
步骤10:对标签矩阵UL进行检错分类。Step 10: Perform error detection and classification on the label matrix UL.
10.1)设9)输出的标签矩阵UL的中心像素i的标签类别值为Li,在中心像素i的5乘5邻域内,判断标签类别值Li的像素数量nL是否满足nL≤25(Yfin+1)的条件:10.1) Suppose 9) The label class value of the central pixel i of the output label matrix UL is L i , in the 5×5 neighborhood of the central pixel i , determine whether the number of pixels n L of the label class value Li satisfies n L ≤ 25(Y fin +1) condition:
如果满足,则判定中心像素i为错分像素,并将错分像素的标签类别值Li修正为邻域内同种标签类别值数量最多的标签类别值,执行10.2);If it is satisfied, the central pixel i is determined to be a misclassified pixel, and the label category value Li of the misclassified pixel is corrected to the label category value with the largest number of the same type of label category value in the neighborhood, and execute 10.2);
如果不满足,则判定中心像素i为正确分配像素,执行10.2);If it is not satisfied, then determine that the center pixel i is a correctly allocated pixel, and execute 10.2);
10.2)判断标签矩阵UL中的像素是否全部遍历,如果是,输出最终标签矩阵UF,执行11),如果不是,返回10.1)继续遍历。10.2) Determine whether all the pixels in the label matrix UL are traversed. If so, output the final label matrix UF , and execute 11). If not, return to 10.1) to continue traversing.
步骤11:对最终标签矩阵UF赋值并输出图像。Step 11: Assign value to the final label matrix UF and output the image.
对10.2)输出的最终标签矩阵UF中标签类别值为YW的像素赋予不同对应的灰度值xW,并将赋予不同灰度值的矩阵作为分割图像输出,最终标签矩阵UF内仅含类别数值{1,2,…,YW,…,Yfin},赋值公式如下:10.2) The pixels with the label category value Y W in the final label matrix UF output in 10.2) are assigned different corresponding gray values x W , and the matrices with different gray values are output as the segmented image. In the final label matrix UF , only Contains category values {1,2,…,Y W ,…,Y fin }, the assignment formula is as follows:
xW=[255/YW],x W = [255/Y W ],
其中,[·]表示取内部的整数。Among them, [·] means to take an internal integer.
以下结合仿真实验,对本发明的技术效果作进一步说明;The technical effects of the present invention are further described below in conjunction with simulation experiments;
1.仿真条件:1. Simulation conditions:
仿真实验在计算机Inter(R)Core(TM)i5-3210M 2.50GHZ CPU,8G内存,MATLABR2014a软件环境下进行。The simulation experiment was carried out in the computer Inter(R)Core(TM)i5-3210M 2.50GHZ CPU, 8G memory, MATLABR2014a software environment.
2.仿真内容:2. Simulation content:
仿真1,选取Berkeley图像数据库中的编号为3096的图像,用本发明与现有FCM方法、FCM_S1方法、FCM_S2方法、FGFCM方法、IFCM方法和IIFCM方法分别对其进行分割,结果如图2所示,其中:
2(a)是3096图像的原图;2(a) is the original image of the 3096 image;
2(b)是3096图像的标准分割图;2(b) is the standard segmentation map of 3096 images;
2(c)是3096图像的高斯含噪图像,噪声强度为0.006;2(c) is a Gaussian noisy image of 3096 images, and the noise intensity is 0.006;
2(d)是用现有FCM方法对3096图像的高斯含噪图像的分割结果;2(d) is the segmentation result of the Gaussian noisy image of 3096 images using the existing FCM method;
2(e)是用现有FCM_S1方法对3096图像的高斯含噪图像的分割结果;2(e) is the segmentation result of the Gaussian noisy image of 3096 images using the existing FCM_S1 method;
2(f)是用现有FCM_S2方法对3096图像的高斯含噪图像的分割结果;2(f) is the segmentation result of the Gaussian noisy image of 3096 images using the existing FCM_S2 method;
2(g)是用现有FGFCM方法对3096图像的高斯含噪图像的分割结果;2(g) is the segmentation result of the Gaussian noisy image of 3096 images using the existing FGFCM method;
2(h)是用现有IFCM方法对3096图像的高斯含噪图像的分割结果;2(h) is the segmentation result of the Gaussian noisy image of 3096 images using the existing IFCM method;
2(i)是用现有IIFCM方法对3096图像的高斯含噪图像的分割结果;2(i) is the segmentation result of the Gaussian noisy image of 3096 images using the existing IIFCM method;
2(j)是用本发明对3096图像的高斯含噪图像的分割结果;2(j) is the segmentation result of the Gaussian noisy image of 3096 images by the present invention;
2(k)是3096图像的椒盐含噪图像,噪声强度为0.01;2(k) is the salt and pepper noise image of the 3096 image, and the noise intensity is 0.01;
2(l)是用现有FCM方法对3096图像的椒盐含噪图像的分割结果;2(1) is the segmentation result of the salt and pepper noise image of 3096 images using the existing FCM method;
2(m)是用现有FCM_S1方法对3096图像的椒盐含噪图像的分割结果;2(m) is the segmentation result of the salt and pepper noise image of 3096 images using the existing FCM_S1 method;
2(n)是用现有FCM_S2方法对3096图像的椒盐含噪图像的分割结果;2(n) is the segmentation result of the salt and pepper noise image of 3096 images using the existing FCM_S2 method;
2(o)是用现有FGFCM方法对3096图像的椒盐含噪图像的分割结果;2(o) is the segmentation result of the salt-and-pepper noise image of 3096 images using the existing FGFCM method;
2(p)是用现有IFCM方法对3096图像的椒盐含噪图像的分割结果;2(p) is the segmentation result of the salt and pepper noise image of 3096 images using the existing IFCM method;
2(q)是用现有IIFCM方法对3096图像的椒盐含噪图像的分割结果;2(q) is the segmentation result of the salt-and-pepper noisy image of 3096 images using the existing IIFCM method;
2(r)是用本发明对3096图像的椒盐含噪图像的分割结果;2(r) is the segmentation result of the salt and pepper noise image of the 3096 image by the present invention;
从图2可以看出,本发明在抑制噪声的基础上,可以将背景和目标分离开,图像聚类数目可以自适应确定,对聚类中心的初始值不敏感,所以本发明对含噪图像的分割效果优于现有FCM方法、FCM_S1方法、FCM_S2方法、FGFCM方法、IFCM方法和IIFCM方法。It can be seen from FIG. 2 that the present invention can separate the background and the target on the basis of suppressing noise, the number of image clusters can be determined adaptively, and is not sensitive to the initial value of the cluster center, so the present invention is suitable for noisy images. The segmentation effect is better than the existing FCM method, FCM_S1 method, FCM_S2 method, FGFCM method, IFCM method and IIFCM method.
仿真2,选取Berkeley图像数据库中的编号为238011的图像,用本发明与现有FCM方法、FCM_S1方法、FCM_S2方法、FGFCM方法、IFCM方法和IIFCM方法分别对其进行分割,结果如图3所示,其中:Simulation 2, select the image numbered 238011 in the Berkeley image database, and segment it with the present invention and the existing FCM method, FCM_S1 method, FCM_S2 method, FGFCM method, IFCM method and IIFCM method respectively, the results are shown in Figure 3 ,in:
3(a)是238011图像的原图;3(a) is the original image of the 238011 image;
3(b)是238011图像的标准分割图;3(b) is the standard segmentation map of the 238011 image;
3(c)是238011图像的高斯含噪图像,噪声强度为0.006;3(c) is a Gaussian noisy image of the 238011 image with a noise intensity of 0.006;
3(d)是用现有FCM方法对238011图像的高斯含噪图像的分割结果;3(d) is the segmentation result of the Gaussian noisy image of the 238011 image using the existing FCM method;
3(e)是用现有FCM_S1方法对238011图像的高斯含噪图像的分割结果;3(e) is the segmentation result of the Gaussian noisy image of the 238011 image using the existing FCM_S1 method;
3(f)是用现有FCM_S2方法对238011图像的高斯含噪图像的分割结果;3(f) is the segmentation result of the Gaussian noisy image of the 238011 image using the existing FCM_S2 method;
3(g)是用现有FGFCM方法对238011图像的高斯含噪图像的分割结果;3(g) is the segmentation result of the Gaussian noisy image of the 238011 image using the existing FGFCM method;
3(h)是用现有IFCM方法对238011图像的高斯含噪图像的分割结果;3(h) is the segmentation result of the Gaussian noisy image of the 238011 image using the existing IFCM method;
3(i)是用现有IIFCM方法对238011图像的高斯含噪图像的分割结果;3(i) is the segmentation result of the Gaussian noisy image of 238011 images using the existing IIFCM method;
3(j)是用本发明对238011图像的高斯含噪图像的分割结果;3(j) is the segmentation result of the Gaussian noisy image of the 238011 image by the present invention;
3(k)是238011图像的椒盐含噪图像,噪声强度为0.01;3(k) is the salt and pepper noise image of the 238011 image, and the noise intensity is 0.01;
3(l)是用现有FCM方法对238011图像的椒盐含噪图像的分割结果;3(1) is the segmentation result of the salt and pepper noise image of the 238011 image using the existing FCM method;
3(m)是用现有FCM_S1方法对238011图像的椒盐含噪图像的分割结果;3(m) is the segmentation result of the salt-and-pepper noise image of 238011 images using the existing FCM_S1 method;
3(n)是用现有FCM_S2方法对238011图像的椒盐含噪图像的分割结果;3(n) is the segmentation result of the salt and pepper noise image of 238011 images using the existing FCM_S2 method;
3(o)是用现有FGFCM方法对238011图像的椒盐含噪图像的分割结果;3(o) is the segmentation result of the salt-and-pepper noisy image of the 238011 image using the existing FGFCM method;
3(p)是用现有IFCM方法对238011图像的椒盐含噪图像的分割结果;3(p) is the segmentation result of the salt-and-pepper noisy image of 238011 images using the existing IFCM method;
3(q)是用现有IIFCM方法对238011图像的椒盐含噪图像的分割结果;3(q) is the segmentation result of the salt-and-pepper noise image of 238011 images using the existing IIFCM method;
3(r)是用本发明对238011图像的椒盐含噪图像的分割结果;3(r) is the segmentation result of the salt and pepper noise image of the 238011 image using the present invention;
从图3可以看出,本发明在抑制噪声的基础上,可以将背景和目标分离开,图像聚类数目可以自适应确定,对聚类中心的初始值不敏感,其对含噪图像的分割效果优于现有FCM方法、FCM_S1方法、FCM_S2方法、FGFCM方法、IFCM方法和IIFCM方法。As can be seen from Figure 3, the present invention can separate the background and the target on the basis of suppressing noise, the number of image clusters can be determined adaptively, and is insensitive to the initial value of the cluster center, which is not sensitive to the segmentation of noisy images. The effect is better than the existing FCM method, FCM_S1 method, FCM_S2 method, FGFCM method, IFCM method and IIFCM method.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910507275.7A CN110211126B (en) | 2019-06-12 | 2019-06-12 | Image segmentation method based on intuitive fuzzy C-means clustering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910507275.7A CN110211126B (en) | 2019-06-12 | 2019-06-12 | Image segmentation method based on intuitive fuzzy C-means clustering |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110211126A CN110211126A (en) | 2019-09-06 |
CN110211126B true CN110211126B (en) | 2022-06-03 |
Family
ID=67792371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910507275.7A Active CN110211126B (en) | 2019-06-12 | 2019-06-12 | Image segmentation method based on intuitive fuzzy C-means clustering |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110211126B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110634141B (en) * | 2019-09-19 | 2022-02-11 | 南京邮电大学 | Image segmentation method based on improved intuitionistic fuzzy c-means clustering and storage medium |
CN110956637B (en) * | 2019-12-02 | 2022-08-02 | 兰州交通大学 | Adaptive fuzzy C-means clustering noise image segmentation method and system |
CN111402272B (en) * | 2020-03-19 | 2023-09-29 | 西安石油大学 | Neighborhood weighted fuzzy clustering image segmentation method |
CN111476303A (en) * | 2020-04-09 | 2020-07-31 | 国网河北省电力有限公司电力科学研究院 | Line loss analysis method of fuzzy C-means clustering based on quantum optimization particle swarm |
CN111539966A (en) * | 2020-04-16 | 2020-08-14 | 华北电力大学 | Colorimetric sensor array image segmentation method based on fuzzy c-means clustering |
CN111932578B (en) * | 2020-08-12 | 2022-06-07 | 河北地质大学 | Pixel block clustering nondestructive testing image segmentation method integrating class index suppression factors |
CN112541528B (en) * | 2020-12-02 | 2024-12-20 | 国家电网有限公司 | A method for optimizing cost prediction indexes of power transmission and transformation projects based on fuzzy clustering |
CN112733825B (en) * | 2020-12-18 | 2024-07-05 | 北京城市排水集团有限责任公司 | Space extraction method for swing arm radar pipeline image diseases |
CN113269796B (en) * | 2021-06-10 | 2023-08-25 | 河北地质大学 | Image segmentation method and device and terminal equipment |
CN113409335B (en) * | 2021-06-22 | 2023-04-07 | 西安邮电大学 | Image segmentation method based on strong and weak joint semi-supervised intuitive fuzzy clustering |
CN114119503A (en) * | 2021-11-05 | 2022-03-01 | 华南师范大学 | A method and device for retinal blood vessel segmentation based on IFCM clustering |
CN115131588B (en) * | 2022-06-13 | 2024-02-23 | 西北工业大学 | Image robust clustering method based on fuzzy clustering |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108062757A (en) * | 2018-01-05 | 2018-05-22 | 北京航空航天大学 | It is a kind of to utilize the method for improving Intuitionistic Fuzzy Clustering algorithm extraction infrared target |
WO2018119808A1 (en) * | 2016-12-29 | 2018-07-05 | 浙江工商大学 | Stereo video generation method based on 3d convolutional neural network |
WO2019000455A1 (en) * | 2017-06-30 | 2019-01-03 | 上海联影医疗科技有限公司 | Method and system for segmenting image |
CN109145921A (en) * | 2018-08-29 | 2019-01-04 | 江南大学 | A kind of image partition method based on improved intuitionistic fuzzy C mean cluster |
CN109741330A (en) * | 2018-12-21 | 2019-05-10 | 东华大学 | A Medical Image Segmentation Method Using Hybrid Filtering Strategy and Fuzzy C-Means |
-
2019
- 2019-06-12 CN CN201910507275.7A patent/CN110211126B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018119808A1 (en) * | 2016-12-29 | 2018-07-05 | 浙江工商大学 | Stereo video generation method based on 3d convolutional neural network |
WO2019000455A1 (en) * | 2017-06-30 | 2019-01-03 | 上海联影医疗科技有限公司 | Method and system for segmenting image |
CN108062757A (en) * | 2018-01-05 | 2018-05-22 | 北京航空航天大学 | It is a kind of to utilize the method for improving Intuitionistic Fuzzy Clustering algorithm extraction infrared target |
CN109145921A (en) * | 2018-08-29 | 2019-01-04 | 江南大学 | A kind of image partition method based on improved intuitionistic fuzzy C mean cluster |
CN109741330A (en) * | 2018-12-21 | 2019-05-10 | 东华大学 | A Medical Image Segmentation Method Using Hybrid Filtering Strategy and Fuzzy C-Means |
Non-Patent Citations (2)
Title |
---|
"A Modified Intuitionistic Fuzzy Clustering Algorithm for Medical Image Segmentation";S.V. Aruna Kumar;《DE GRUYTER》;20190429;第1-15页 * |
"显著信息引导的直觉空间模糊聚类图像分割";赵凤;《西安邮电大学学报》;20180731;第1-7页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110211126A (en) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110211126B (en) | Image segmentation method based on intuitive fuzzy C-means clustering | |
WO2021228088A1 (en) | Method for recognizing haze concentration in haze image | |
CN110309781B (en) | House damage remote sensing identification method based on multi-scale spectrum texture self-adaptive fusion | |
CN104778457B (en) | Video face identification method based on multi-instance learning | |
CN109509196B (en) | A Fuzzy Clustering Method for Tongue Diagnosis Image Segmentation Based on Improved Ant Colony Algorithm | |
CN105741279A (en) | Rough set based image segmentation method for quickly inhibiting fuzzy clustering | |
CN109801305B (en) | SAR image change detection method based on deep capsule network | |
CN110147795A (en) | A kind of adaptive non local fuzzy C-means clustering SAR image partitioning algorithm | |
CN109829519B (en) | Remote sensing image classification method and system based on self-adaptive spatial information | |
CN110276764A (en) | Improved K-Means Underwater Image Background Segmentation Algorithm Based on K Value Estimation | |
CN112906550B (en) | A Static Gesture Recognition Method Based on Watershed Transform | |
CN109829494A (en) | A kind of clustering ensemble method based on weighting similarity measurement | |
CN113487578B (en) | SAR image change detection method based on bilateral weighted kernel graph cut | |
CN113378620A (en) | Cross-camera pedestrian re-identification method in surveillance video noise environment | |
Song et al. | A novel self-learning weighted fuzzy local information clustering algorithm integrating local and non-local spatial information for noise image segmentation | |
CN109544570B (en) | A brain MRI image segmentation method based on fuzzy multi-threshold and regional information | |
CN107564008A (en) | Rapid SAR image segmentation method based on crucial pixel fuzzy clustering | |
CN113111969B (en) | Hyperspectral image classification method based on mixed measurement | |
CN112419266B (en) | A method for detecting changes in remote sensing images with land cover class constraints | |
CN102930558A (en) | Real-time tracking method for infrared image target with multi-feature fusion | |
CN118552746A (en) | Image edge detection method based on Canny algorithm | |
CN117437234A (en) | Aerial photo ground object classification and change detection method based on graph neural network | |
CN110853030A (en) | Bioreactor virus infected cell quality evaluation method | |
CN110910392B (en) | Image segmentation method based on fuzzy clustering of multiple spatial information weighting | |
CN116993983A (en) | A method of segmenting Miao costume patterns |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |