CN110203935A - Tube wall is in the right-handed helix nano-tube material and preparation method for radiating hole arrangement - Google Patents
Tube wall is in the right-handed helix nano-tube material and preparation method for radiating hole arrangement Download PDFInfo
- Publication number
- CN110203935A CN110203935A CN201910472309.3A CN201910472309A CN110203935A CN 110203935 A CN110203935 A CN 110203935A CN 201910472309 A CN201910472309 A CN 201910472309A CN 110203935 A CN110203935 A CN 110203935A
- Authority
- CN
- China
- Prior art keywords
- nano
- preparation
- tube wall
- tube
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000463 material Substances 0.000 title claims abstract description 52
- 239000002071 nanotube Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 239000011148 porous material Substances 0.000 claims description 32
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 125000002091 cationic group Chemical group 0.000 claims description 16
- 230000005855 radiation Effects 0.000 claims description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 7
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 5
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 claims description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 241001502050 Acis Species 0.000 claims 3
- 150000002148 esters Chemical class 0.000 claims 3
- 150000001336 alkenes Chemical class 0.000 claims 1
- 239000000908 ammonium hydroxide Substances 0.000 claims 1
- 235000019441 ethanol Nutrition 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- PKDCQJMRWCHQOH-UHFFFAOYSA-N triethoxysilicon Chemical compound CCO[Si](OCC)OCC PKDCQJMRWCHQOH-UHFFFAOYSA-N 0.000 claims 1
- 239000002620 silicon nanotube Substances 0.000 abstract description 50
- 229910021430 silicon nanotube Inorganic materials 0.000 abstract description 50
- 239000002086 nanomaterial Substances 0.000 abstract description 17
- 238000006555 catalytic reaction Methods 0.000 abstract description 4
- 239000003814 drug Substances 0.000 abstract description 3
- 229940079593 drug Drugs 0.000 abstract description 3
- 238000001727 in vivo Methods 0.000 abstract description 3
- 239000002539 nanocarrier Substances 0.000 abstract description 3
- 108090000623 proteins and genes Proteins 0.000 abstract description 3
- 102000004169 proteins and genes Human genes 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 48
- 239000000377 silicon dioxide Substances 0.000 description 23
- 239000000084 colloidal system Substances 0.000 description 9
- 150000003384 small molecules Chemical class 0.000 description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 125000005233 alkylalcohol group Chemical group 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000004530 micro-emulsion Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002077 nanosphere Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 230000009435 amidation Effects 0.000 description 2
- 238000007112 amidation reaction Methods 0.000 description 2
- 150000003862 amino acid derivatives Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- YYJNCOSWWOMZHX-UHFFFAOYSA-N triethoxy-(4-triethoxysilylphenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=C([Si](OCC)(OCC)OCC)C=C1 YYJNCOSWWOMZHX-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical class [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- -1 hexafluorophosphate Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- BTLPDSCJUZOEJB-BUHFOSPRSA-N triethoxy-[(e)-2-triethoxysilylethenyl]silane Chemical group CCO[Si](OCC)(OCC)\C=C\[Si](OCC)(OCC)OCC BTLPDSCJUZOEJB-BUHFOSPRSA-N 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/06—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
- C07D213/16—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
- C07D213/20—Quaternary compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/13—Nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
本发明公开了一种管壁呈放射孔排列的右手螺旋硅纳米管材料及制备方法,属于纳米材料技术领域。该硅纳米管材料由一根以上的长度为100nm~20μm、直径为3nm~100nm之间的硅纳米管在空间中排列组成,每根硅纳米管为一端开口、另一端封闭设置的中空腔体,在中空腔体的侧壁上分布有一个以上的孔道,每个孔道均为从中心向边缘辐射的放射状孔道,其平均孔径为2nm~50nm。该手性硅纳米管的比表面积达到600~1400m2/g,其可作为药物、蛋白和基因的纳米载体用于体内治疗,同时,具备该结构的手性纳米管还可进一步组装亦可用于手性催化和拆分等领域。
The invention discloses a right-handed helical silicon nanotube material with a tube wall arranged in radial holes and a preparation method, and belongs to the technical field of nanomaterials. The silicon nanotube material is composed of more than one silicon nanotubes with a length of 100nm-20μm and a diameter of 3nm-100nm arranged in space, and each silicon nanotube is a hollow cavity with one end open and the other end closed. , there are more than one channel distributed on the side wall of the hollow cavity, each channel is a radial channel radiating from the center to the edge, and its average diameter is 2nm-50nm. The specific surface area of the chiral silicon nanotubes reaches 600-1400 m 2 /g, which can be used as nanocarriers for drugs, proteins and genes for in vivo treatment. At the same time, the chiral nanotubes with this structure can be further assembled and used in Chiral catalysis and resolution.
Description
技术领域technical field
本发明涉及介孔二氧化硅,属于纳米材料技术领域,具体地涉及一种管壁呈放射孔排列的右手螺旋硅纳米管材料及制备方法。The invention relates to mesoporous silica, belongs to the technical field of nanomaterials, and in particular relates to a right-handed helical silicon nanotube material whose tube walls are arranged in radial holes and a preparation method.
背景技术Background technique
自Mobile公司成功制备MCM-41系列介孔二氧化硅以来,介孔材料因其独特均一的孔道结构、较大比表面积和孔容、可控的孔径和易于修饰的表面结构被广泛应用于载体、吸附、分离和催化、半导体材料和光电子器件及传感器和调节器阵列等领域。然而,传统的无序介孔二氧化硅球面临吸附量少、催化活性低等一系列困难,故制备具有有序介孔孔道结构的二氧化硅材料拥有重要的研究价值和潜在的应用前景。目前,形貌、结构和孔径可控成为制备二氧化硅纳米材料的挑战之一,尤其是制备含径向放射状有序介孔孔道结构的二氧化硅材料成为很多研究者的一个研究热点。Since Mobile successfully prepared MCM-41 series mesoporous silica, mesoporous materials have been widely used in carriers due to their unique and uniform pore structure, large specific surface area and pore volume, controllable pore size and easy-to-modify surface structure. , adsorption, separation and catalysis, semiconductor materials and optoelectronic devices and sensor and regulator arrays and other fields. However, traditional disordered mesoporous silica spheres face a series of difficulties such as low adsorption capacity and low catalytic activity, so the preparation of silica materials with ordered mesoporous channel structure has important research value and potential application prospects. At present, controllable morphology, structure and pore size have become one of the challenges in the preparation of silica nanomaterials, especially the preparation of silica materials with radially ordered mesoporous channel structures has become a research hotspot for many researchers.
例如,Moon等以双连续微乳液体系为模板,成功制备了有序放射性孔道分布的介孔二氧化硅球(MoonD,LeeJ,Langmuir,2012,28,12341-12347)。Peng等利用CTAB-1,3,5-三甲基苯-乙醇-水组成的微乳液体系做模板,TEOS作为硅源,制备得到核壳结构的二氧化硅球,其核中心存在局部六方排列的蠕虫状介孔,壳上分布有放射状有序介孔孔道,但其孔径较小(3~7.3nm)。这种核壳结构的SiO2球具有较高的比表面积(745~912m2/g)和孔体积(0.98~1.34cm3/g),结果证明这种存在二级孔道结构的二氧化硅材料有望应用于生物催化、吸附等领域(PengJ,LiuJ,LiuJ,J.Mater.Chem.A,2014,2,8118-8125)。For example, Moon et al. successfully prepared mesoporous silica spheres with ordered radioactive channels distribution using a bicontinuous microemulsion system as a template (Moon D, Lee J, Langmuir, 2012, 28, 12341-12347). Peng et al. used a microemulsion system composed of CTAB-1,3,5-trimethylbenzene-ethanol-water as a template and TEOS as a silicon source to prepare silica spheres with a core-shell structure, with a local hexagonal arrangement in the core center. The worm-like mesopores have radially ordered mesoporous channels on the shell, but the pore size is small (3-7.3 nm). The core-shell SiO 2 spheres have high specific surface area (745-912 m 2 /g) and pore volume (0.98-1.34 cm 3 /g), and the results prove that this silica material has a secondary pore structure It is expected to be applied in the fields of biocatalysis and adsorption (PengJ, LiuJ, LiuJ, J.Mater.Chem.A, 2014, 2, 8118-8125).
中国发明专利申请(申请公布号CN102849750A,申请公布日2013-01-02)公开了一种放射状孔道介孔氧化硅及其制备方法。其特点在于,产物SiO2材料为球形形貌,表面光滑,粒径为700~1000nm,孔道为从中心向边缘辐射的放射状孔道,存在多级孔径,且孔径大小不均一,具有较高的比表面积和孔容。具体的制备方法是在室温下,以水-乙醇-乙醚作为共溶剂,十六烷基三甲基溴化铵(CTAB)或十六烷基三甲基氯化铵(CTAC)为模板剂,氨水为催化剂,促进硅源(TEOS)水解缩聚而得。本发明的合成体系中必须加入一定比例的硅烷偶联剂(N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷),对反应体系的物质组成要求严格。The Chinese invention patent application (application publication number CN102849750A, application publication date 2013-01-02) discloses a radial channel mesoporous silica and a preparation method thereof. It is characterized in that the product SiO 2 material has a spherical morphology, a smooth surface, a particle size of 700-1000 nm, and the channels are radial channels radiating from the center to the edge. surface area and pore volume. The specific preparation method is to use water-ethanol-diethyl ether as a co-solvent and cetyltrimethylammonium bromide (CTAB) or cetyltrimethylammonium chloride (CTAC) as a template at room temperature, Ammonia is used as a catalyst to promote the hydrolysis and polycondensation of silicon source (TEOS). A certain proportion of silane coupling agent (N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane) must be added to the synthesis system of the present invention, and the material composition of the reaction system is strictly required.
中国发明专利申请(申请公布号CN104129791A,申请公布日2014-11-05)公开了一种含径向介孔孔道结构球形二氧化硅材料及其制备方法。其特征在于,该发明利用CTAB,PVP-乙醇-环己烷-水形成的水包油型微乳液体系做模板,硅源TEOS在微乳液滴球表面水解、缩聚,自组装合成含径向介孔孔道结构球形介孔SiO2纳米材料。所述介孔二氧化硅为单分散球形,粒径范围为350~650nm,比表面积为975~1114m2/g,孔径为3.9~4.1nm,介孔孔道从球的中心辐射到球的边缘。Chinese invention patent application (application publication number CN104129791A, application publication date 2014-11-05) discloses a spherical silica material with radial mesoporous channel structure and a preparation method thereof. It is characterized in that the invention utilizes the oil-in-water microemulsion system formed by CTAB, PVP-ethanol-cyclohexane-water as a template, and the silicon source TEOS is hydrolyzed and polycondensed on the surface of the microemulsion drop sphere, and self-assembled to synthesize a radial medium. Pore-channel - structured spherical mesoporous SiO nanomaterials. The mesoporous silica is monodisperse spherical, with a particle size range of 350-650 nm, a specific surface area of 975-1114 m 2 /g, a pore size of 3.9-4.1 nm, and mesoporous channels radiating from the center of the sphere to the edge of the sphere.
然而,上述制得的介孔SiO2纳米材料均呈现球形。However, the mesoporous SiO2 nanomaterials prepared above all exhibit spherical shape.
与此同时,手性作为自然界的普遍现象,广泛存在于自然界较多物质当中,研究表明,生命活动与生物分子的手性有着密切的联系,但在有机化学研究领域中,手性小分子催化剂面临着价格昂贵,且难于回收和再利用的问题。At the same time, as a common phenomenon in nature, chirality exists widely in many substances in nature. Studies have shown that life activities are closely related to the chirality of biomolecules. However, in the field of organic chemistry research, chiral small molecule catalysts Faced with expensive, and difficult to recycle and reuse problems.
苏州大学杨永刚教授课题组已报道采用氨基酸的衍生物来控制二氧化硅的形貌、孔的结构及在分子尺度下实现有机无机杂化二氧化硅结构的手性控制。如采用氨基酸衍生物的自组装体为模板,制得了二氧化硅纳米球、内部具有弹簧状孔道的二氧化硅纳米管、表面为层状介孔内部为圆柱孔道的二氧化硅纳米颗粒及外部管道为螺旋结构内部孔道为手性排列的二氧化硅纳米管等。The research group of Prof. Yonggang Yang of Soochow University has reported the use of amino acid derivatives to control the morphology and pore structure of silica, and to realize the chirality control of the organic-inorganic hybrid silica structure at the molecular scale. For example, using the self-assembly of amino acid derivatives as a template, silica nanospheres, silica nanotubes with spring-like pores inside, silica nanoparticles with layered mesopores on the surface and cylindrical pores on the inside, and The pipes are silica nanotubes in which the internal pores of the helical structure are chiral arranged, and the like.
然而,目前并未有关于管壁呈现放射孔排列的右手螺旋硅纳米管的报道。However, there is no report on right-handed helical silicon nanotubes with radial pores arranged on the tube wall.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提供了一种管壁呈放射孔排列的右手螺旋硅纳米管材料,它由一根以上的长度为100nm~20μm、直径为3nm~100nm之间的硅纳米管在空间中排列组成,每根所述硅纳米管为一端开口、另一端封闭设置的中空腔体,在中空腔体的侧壁上分布有一个以上的孔道,每个所述孔道均为从中心向边缘辐射的放射状孔道,其平均孔径为2nm~50nm。In order to solve the above-mentioned technical problems, the present invention provides a right-handed helical silicon nanotube material whose tube wall is arranged with radial holes. Arranged in space, each of the silicon nanotubes is a hollow cavity with one end open and the other end closed, and more than one channel is distributed on the side wall of the hollow cavity, and each of the channels is from the center to the center. The radial channel with edge radiation has an average pore diameter of 2nm to 50nm.
具体的,硅纳米管在三维空间中无序排列,但其整体呈现右手螺旋结构。Specifically, the silicon nanotubes are arranged disorderly in three-dimensional space, but they have a right-handed helical structure as a whole.
优选的,硅纳米管的长度为500nm~600nm。Preferably, the length of the silicon nanotube is 500nm˜600nm.
优选的,硅纳米管的长度为600nm~700nm。Preferably, the length of the silicon nanotube is 600nm˜700nm.
优选的,硅纳米管的长度为700nm~800nm。Preferably, the length of the silicon nanotube is 700nm˜800nm.
优选的,硅纳米管的长度为800nm~900nm。Preferably, the length of the silicon nanotube is 800nm˜900nm.
优选的,硅纳米管的长度为900nm~1000nm。Preferably, the length of the silicon nanotube is 900 nm˜1000 nm.
优选的,硅纳米管的长度为900nm~1000nm。Preferably, the length of the silicon nanotube is 900 nm˜1000 nm.
优选的,硅纳米管的长度为1000nm~10000nm。Preferably, the length of the silicon nanotube is 1000 nm˜10000 nm.
优选的,硅纳米管的长度为10000nm~12000nm。Preferably, the length of the silicon nanotube is 10,000 nm to 12,000 nm.
优选的,硅纳米管的长度为12000nm~2000nm。Preferably, the length of the silicon nanotube is 12000nm˜2000nm.
优选的,硅纳米管的直径为5nm~90nm。Preferably, the diameter of the silicon nanotube is 5 nm˜90 nm.
优选的,硅纳米管的直径为10nm~70nm。Preferably, the diameter of the silicon nanotube is 10 nm˜70 nm.
优选的,硅纳米管的直径为30nm~60nm。Preferably, the diameter of the silicon nanotube is 30 nm˜60 nm.
优选的,硅纳米管的直径为40nm~50nm。Preferably, the diameter of the silicon nanotube is 40 nm˜50 nm.
优选的,放射状孔道的平均孔径为2nm~40nm。Preferably, the radial pores have an average pore diameter of 2 nm to 40 nm.
优选的,放射状孔道的平均孔径为5nm~30nm。Preferably, the radial pores have an average pore diameter of 5 nm to 30 nm.
最优的,放射状孔道的平均孔径为15nm。Optimally, the average pore diameter of the radial channels is 15 nm.
进一步地,所述硅纳米管材料的比表面积为600~1400m2/g。Further, the specific surface area of the silicon nanotube material is 600-1400 m 2 /g.
优选的,所述硅纳米管材料的比表面积为700~1200m2/g。Preferably, the specific surface area of the silicon nanotube material is 700-1200 m 2 /g.
最优的,所述硅纳米管材料的比表面积为800m2/g。Optimally, the specific surface area of the silicon nanotube material is 800 m 2 /g.
最优的,所述硅纳米管材料的比表面积为1000m2/g。Optimally, the specific surface area of the silicon nanotube material is 1000 m 2 /g.
为了更好的实现本发明的技术目的,本发明还公开了上述管壁呈放射孔排列的右手螺旋硅纳米管材料的制备方法,它包括采用阳离子胶体为模板剂,以硅酸酯为硅源,制备得到管壁孔道呈放射状排列的手性硅纳米管。进一步地,所述阳离子胶体包括具备如下结构式的化合物:In order to better achieve the technical purpose of the present invention, the present invention also discloses a preparation method of the above-mentioned right-handed helical silicon nanotube material whose tube wall is arranged with radial holes, which comprises using cationic colloid as template agent and silicate as silicon source , and the chiral silicon nanotubes with the channels in the tube wall arranged radially were prepared. Further, the cationic colloid includes a compound having the following structural formula:
其中,m=2~18,n=2~20;R为CH3-,(CH3)2CH-,(CH3)2CH2H-或Ph-CH2-。Wherein, m=2~18, n=2~20; R is CH 3 -, (CH 3 ) 2 CH-, (CH 3 ) 2 CH 2 H- or Ph-CH 2 -.
优选的,所述m=10,n=16,及R为CH3-,则阳离子胶体具备如下具体化学结构式,Preferably, if m=10, n=16, and R is CH 3 -, the cationic colloid has the following specific chemical structural formula,
具体的,具备上述化学结构式的阳离子胶体为采用L-丙氨酸为反应原料,依次经历BOC保护、酰胺化、脱BOC保护、酰胺化、上吡啶及六氟磷酸盐取代溴盐制得。Specifically, the cationic colloid with the above chemical structural formula is prepared by using L-alanine as a reaction raw material, and sequentially undergoing BOC protection, amidation, de-BOC protection, amidation, and substitution of pyridine and hexafluorophosphate for bromine salt.
具体的,合成路线如下:Specifically, the synthetic route is as follows:
进一步地,所述制备方法包括如下具体过程:Further, the preparation method includes the following specific processes:
1)将阳离子胶体加入去离子水中,配制得到阳离子水溶液;1) adding the cationic colloid into deionized water to prepare an aqueous cationic solution;
优选的,所述阳离子水溶液的浓度为10~50mg/mL。Preferably, the concentration of the cationic aqueous solution is 10-50 mg/mL.
优选的,控制步骤1)中搅拌速度为100~1500rpm,搅拌1s~100min。Preferably, the stirring speed in step 1) is controlled to be 100-1500 rpm, and the stirring is carried out for 1 s-100 min.
2)向步骤1)得到的阳离子水溶液中加入碱溶液和烷基醇,调整溶液pH值为7.5~14,搅拌1s~100min,得到混合溶液;2) adding an alkali solution and an alkyl alcohol to the cationic aqueous solution obtained in step 1), adjusting the pH of the solution to 7.5-14, and stirring for 1 s-100 min to obtain a mixed solution;
优选的,控制步骤2)中搅拌速度为100~1500rpm,搅拌1s~100min。Preferably, the stirring speed in step 2) is controlled to be 100-1500 rpm, and the stirring is carried out for 1 s-100 min.
3)向步骤2)制得的混合溶液中加入硅酸酯,反应产生白色胶体,再经洗涤及煅烧得到管壁呈放射孔排列的右手螺旋硅纳米管材料。3) Adding silicate to the mixed solution prepared in step 2), the reaction produces a white colloid, and then washing and calcining to obtain a right-handed helical silicon nanotube material whose tube wall is arranged with radial pores.
优选的,步骤2)中采用乙醇和盐酸分别洗涤至少一次。Preferably, in step 2), ethanol and hydrochloric acid are used for washing at least once respectively.
进一步地,步骤2)中所述碱溶液与烷基醇的体积比为9:1~8:2。Further, the volume ratio of the alkaline solution to the alkyl alcohol described in step 2) is 9:1 to 8:2.
进一步地,步骤2)中所述碱溶液包括四甲基氢氧化铵、氨水、氢氧化钠或氢氧化钾中的一种以上配置所得溶液。Further, in step 2), the alkaline solution includes one or more of tetramethylammonium hydroxide, ammonia water, sodium hydroxide or potassium hydroxide to configure the obtained solution.
优选的,所述浓氨水的质量百分浓度为20~25%。Preferably, the mass percentage concentration of the concentrated ammonia water is 20-25%.
优选的,所述氢氧化钠摩尔浓度为1~5M/L。Preferably, the molar concentration of the sodium hydroxide is 1-5M/L.
优选的,所述氢氧化钠摩尔浓度为1~5M/L。Preferably, the molar concentration of the sodium hydroxide is 1-5M/L.
优选的,所述四甲基氢氧化铵的质量百分浓度为1~25%。Preferably, the mass percentage concentration of the tetramethylammonium hydroxide is 1-25%.
进一步地,步骤2)中所述烷基醇包括乙醇、正丙醇、异丙醇、正丁醇或异丁醇中的至少一种。Further, the alkyl alcohol in step 2) includes at least one of ethanol, n-propanol, isopropanol, n-butanol or isobutanol.
优选的,所述烷基醇为异丙醇。Preferably, the alkyl alcohol is isopropanol.
优选的,步骤3)中控制反应温度为0~20℃,反应时间为1~10h。Preferably, in step 3), the reaction temperature is controlled to be 0-20° C., and the reaction time is 1-10 h.
进一步地,步骤3)中所述硅酸酯包括正硅酸四乙酯、正硅酸四甲酯、1,2-双(三乙氧基硅)乙烯、1,2-双(三乙氧基硅)苯或1,4-双(三乙氧基硅基)苯中的至少一种。Further, the silicates described in step 3) include tetraethyl orthosilicate, tetramethyl orthosilicate, 1,2-bis(triethoxysilyl)ethylene, 1,2-bis(triethoxysilane) at least one of silyl)benzene or 1,4-bis(triethoxysilyl)benzene.
优选的,所述硅酸酯占反应体系体积的0.5~5%。Preferably, the silicate accounts for 0.5-5% of the volume of the reaction system.
进一步地,步骤3)中所述煅烧条件为,控制温度500~600℃,煅烧4~8h。Further, the calcination conditions described in step 3) are, the temperature is controlled at 500-600° C., and the calcination is performed for 4-8 hours.
优选的,控制温度550℃,煅烧5h,得到目标材料的孔洞较为均匀。Preferably, the temperature is controlled at 550° C. and calcined for 5 hours, so that the pores of the target material are relatively uniform.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明提供了一种阳离子胶体为模板,成功制备得到管壁呈放射孔排列的右手螺旋硅纳米管材料,制备方法简单,且制得的纳米管材料的比表面积达到600~1400m2/g,其表面放射孔的孔径达2nm~50nm,该纳米管材料可作为药物、蛋白和基因的纳米载体用于体内治疗,同时,具备该结构的手性纳米管还可进一步组装亦可用于手性催化和拆分等领域。The invention provides a cationic colloid as a template, and the right-handed helical silicon nanotube material whose tube wall is arranged with radial holes is successfully prepared. The preparation method is simple, and the prepared nanotube material has a specific surface area of 600-1400 m 2 /g. The diameter of the radiation pores on the surface is 2nm to 50nm. The nanotube material can be used as a nanocarrier for drugs, proteins and genes for in vivo treatment. At the same time, the chiral nanotubes with this structure can be further assembled and used for chiral catalysis. and split areas.
附图说明Description of drawings
图1为本发明实施例2硅纳米材料在脱除模板前的透射电镜图;Fig. 1 is the transmission electron microscope picture of embodiment 2 of the present invention before removing template of silicon nanomaterial;
图2为本发明实施例2硅纳米管材料的透射电镜图;Fig. 2 is the transmission electron microscope picture of the silicon nanotube material of embodiment 2 of the present invention;
图3为图2的硅纳米管材料放大倍数后的透射电镜图;Fig. 3 is a transmission electron microscope image of the silicon nanotube material of Fig. 2 after magnification;
图4为图2的硅纳米管材料的扫描电镜图;Fig. 4 is the scanning electron microscope image of the silicon nanotube material of Fig. 2;
图5为本发明实施例3硅纳米管材料的扫描电镜图;5 is a scanning electron microscope image of a silicon nanotube material in Example 3 of the present invention;
图6为本发明实施例4硅纳米管材料的扫描电镜图;6 is a scanning electron microscope image of a silicon nanotube material in Example 4 of the present invention;
图7为本发明实施例4硅纳米管材料的扫描电镜图;7 is a scanning electron microscope image of a silicon nanotube material in Example 4 of the present invention;
图8为本发明实施例5硅纳米管材料的微观形貌结构示意图;8 is a schematic diagram of the microscopic topography of the silicon nanotube material in Example 5 of the present invention;
图9为本发明实施例5硅纳米管材料的微观形貌结构示意图;9 is a schematic diagram of the microscopic topography of the silicon nanotube material in Example 5 of the present invention;
图10为本发明实施2制得硅纳米材料表面孔道的径向分布图;Fig. 10 is the radial distribution diagram of the surface pore channel of silicon nanomaterial obtained in implementation 2 of the present invention;
图11为本发明实施2制得硅纳米材料对氮气的吸附-脱附测试图。FIG. 11 is a test diagram of the adsorption-desorption test of the silicon nanomaterial prepared in Example 2 of the present invention to nitrogen.
具体实施方式Detailed ways
为了更好地解释本发明,以下结合具体实施例进一步阐明本发明的主要内容,但本发明的内容不仅仅局限于以下实施例。In order to better explain the present invention, the main content of the present invention is further illustrated below in conjunction with specific embodiments, but the content of the present invention is not limited to the following embodiments.
实施例1Example 1
本实施例公开了阳离子胶体L-16Ala11PyPF6的制备,其采用本发明内容公布的合成路线进行,且中间产物L-16Ala11PyBr也为手性小分子模板,由其转变成L-16Ala11PyPF6,只需要将其置于磷酸盐中完成离子交换即可。This example discloses the preparation of cationic colloid L-16Ala11PyPF6, which is carried out by the synthetic route disclosed in the content of the present invention, and the intermediate product L-16Ala11PyBr is also a chiral small molecule template. Place in phosphate to complete ion exchange.
实施例2Example 2
本实施例进一步的公开了手性硅纳米管的制备过程,具体如下:This embodiment further discloses the preparation process of chiral silicon nanotubes, which is as follows:
取12mg/mL上述实施例1制得的L-16Ala11PyPF6手性小分子模板溶于体积比为8:2的浓氨水和正丙醇的混合溶液中,控制反应体系在20℃以下,缓慢加入20μL四乙氧基硅烷,添加完毕后继续反应得到的反应产物为带有模板的硅纳米管材料,其结构如图1所示,结合图1可知,该硅纳米管材料在脱除模板以前其表面并未形成孔道。Take 12 mg/mL of the L-16Ala11PyPF6 chiral small molecule template prepared in the above Example 1 and dissolve it in a mixed solution of concentrated ammonia water and n-propanol with a volume ratio of 8:2, control the reaction system below 20 ° C, and slowly add 20 μL of four Ethoxysilane, the reaction product obtained by continuing the reaction after the addition is a silicon nanotube material with a template. No pores were formed.
再分别采用乙醇和浓盐酸洗脱以除掉模板,后置于550℃马弗炉程序升温煅烧5h,得到具备图2、图3及图4所示结构的硅纳米管材料,结合图2可知,本发明实施例制得的硅纳米材料为硅纳米管材料,在其表面均匀形成若干个孔道,且该孔道为从中心向边缘辐射的放射状孔道,其平均孔径为3~5nm。进一步的测量硅纳米管材料的比表面积为950m2/g。进一步地结合图3和图4可知,本发明实施例制得的硅纳米管材料呈现右手螺旋结构。The template was then eluted with ethanol and concentrated hydrochloric acid, respectively, and then calcined in a muffle furnace at 550 °C for 5 h at a programmed temperature to obtain silicon nanotube materials with the structures shown in Figure 2, Figure 3 and Figure 4. It can be seen from Figure 2 that , the silicon nanomaterial prepared in the embodiment of the present invention is a silicon nanotube material, and several channels are uniformly formed on its surface, and the channels are radial channels radiating from the center to the edge, and the average pore diameter is 3-5nm. The specific surface area of the silicon nanotube material was further measured to be 950 m 2 /g. Further referring to FIG. 3 and FIG. 4 , it can be known that the silicon nanotube material prepared in the embodiment of the present invention exhibits a right-handed helical structure.
实施例3Example 3
在上述实施例2的基础上,其它反应条件保持不变,只将反应体系的温度控制在25℃以完成反应,得到了图5所示的二氧化硅纳米球,控制反应体系的温度为25℃~90℃之间,均不能得到管壁呈放射孔排列的右手螺旋硅纳米管材料。这说明反应温度对本发明硅纳米材料的结构影响较大。On the basis of the above-mentioned Example 2, other reaction conditions remained unchanged, and only the temperature of the reaction system was controlled at 25 ° C to complete the reaction, and the silica nanospheres shown in Figure 5 were obtained, and the temperature of the controlled reaction system was 25 °C Between ℃~90℃, the right-handed helical silicon nanotube material whose tube wall is arranged with radial pores cannot be obtained. This shows that the reaction temperature has a great influence on the structure of the silicon nanomaterial of the present invention.
实施例4Example 4
在上述实施例2的基础上,其它反应条件保持不变,将浓氨水与正丙醇的体积比调整为7:3,反应得到了图6所示的二氧化硅纳米球与纳米管的混合物。On the basis of the above Example 2, other reaction conditions remained unchanged, the volume ratio of concentrated ammonia water and n-propanol was adjusted to 7:3, and the reaction obtained the mixture of silica nanospheres and nanotubes shown in Figure 6 .
同理,在上述实施例2的基础上,其它反应条件保持不变,将浓氨水的质量百分浓度由25%稀释至2.5%并完成实验,得到了图7所示的具备无定型结构的二氧化硅纳米材料,而将浓氨水的浓度控制在20~25%之间,其结构不会发生变化。Similarly, on the basis of the above Example 2, other reaction conditions remained unchanged, the mass percentage concentration of concentrated ammonia water was diluted from 25% to 2.5% and the experiment was completed to obtain the amorphous structure shown in Figure 7. Silicon dioxide nanomaterials, and the concentration of concentrated ammonia water is controlled between 20 and 25%, and its structure will not change.
这说明反应溶剂的用量、反应溶剂的浓度等对本发明硅纳米材料的结构影响也比较大。This shows that the amount of the reaction solvent, the concentration of the reaction solvent, etc. also have a relatively large influence on the structure of the silicon nanomaterial of the present invention.
实施例5Example 5
在上述实施例2的基础上,其它反应条件保持不变,将手性小分子模板L-16Ala11PyPF6在混合溶液中浓度调整为8mg/mL,得到了图8所示的球形二氧化硅纳米材料。On the basis of the above Example 2, other reaction conditions remained unchanged, and the concentration of the chiral small molecule template L-16Ala11PyPF6 in the mixed solution was adjusted to 8 mg/mL, and the spherical silica nanomaterial shown in Figure 8 was obtained.
在上述实施例2的基础上,其它反应条件保持不变,将手性小分子模板L-16Ala11PyPF6在混合溶液中浓度变成6mg/mL,得到了图9所示的球形与无规则结构混合的二氧化硅纳米材料。On the basis of the above Example 2, other reaction conditions remained unchanged, and the concentration of the chiral small molecule template L-16Ala11PyPF6 in the mixed solution was changed to 6 mg/mL, and the mixture of spherical and random structures as shown in Figure 9 was obtained. Silica nanomaterials.
这说明手性小分子模板的浓度对本发明硅纳米材料的结构影响也比较大。This shows that the concentration of the chiral small molecule template has a great influence on the structure of the silicon nanomaterial of the present invention.
与此同时,如果将上述实施例2中的硅源四乙氧基硅烷替换成1,4-双(三乙氧基硅基)苯中的任意一种,得到的硅纳米材料的结构保持不变,这说明硅源对本发明硅纳米材料的结构影响不大。At the same time, if any one of 1,4-bis(triethoxysilyl)benzene was used to replace the silicon source tetraethoxysilane in the above Example 2, the structure of the obtained silicon nanomaterial remained unchanged. This shows that the silicon source has little effect on the structure of the silicon nanomaterial of the present invention.
此外,如果将本发明的小分子模板L-16Ala11PyPF6替换成L-16Ala11PyBr,也不会得到具备本发明结构的硅纳米管材料。In addition, if the small molecule template L-16Ala11PyPF6 of the present invention is replaced with L-16Ala11PyBr, the silicon nanotube material with the structure of the present invention will not be obtained.
对于本发明制得的管壁呈放射孔排列的右手螺旋硅纳米管材料,图10显示了本发明实施2所得硅纳米管材料的孔径分布在4nm左右,图11表明该曲线为典型的IV型吸附曲线,表明样品中有介孔结构。For the right-handed helical silicon nanotube material with radial holes arranged in the tube wall prepared by the present invention, Figure 10 shows that the pore size distribution of the silicon nanotube material obtained in Example 2 of the present invention is about 4 nm, and Figure 11 shows that the curve is a typical IV type The adsorption curve shows that there is a mesoporous structure in the sample.
因此,本发明提供了一种以阳离子胶体为模板,成功制备得到管壁呈放射孔排列的右手螺旋硅纳米管材料,不仅制备方法简单,且制得的纳米管材料的比表面积较好,其表面放射孔的孔径达2~50nm,该纳米管材料可作为药物、蛋白和基因的纳米载体用于体内治疗,同时,具备该结构的手性纳米管还可进一步组装亦可用于手性催化和拆分等领域。Therefore, the present invention provides a right-handed helical silicon nanotube material with cationic colloid as a template, and the tube wall is arranged with radial pores. The pore size of the surface radiation pores is 2-50 nm. The nanotube material can be used as a nanocarrier for drugs, proteins and genes for in vivo treatment. At the same time, the chiral nanotubes with this structure can be further assembled and used for chiral catalysis and Split, etc.
以上实施例仅为最佳举例,而并非是对本发明的实施方式的限定。除上述实施例外,本发明还有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。The above embodiments are only the best examples, and are not intended to limit the embodiments of the present invention. In addition to the above-described embodiments, the present invention has other embodiments. All technical solutions formed by equivalent replacement or equivalent transformation fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910472309.3A CN110203935A (en) | 2019-05-31 | 2019-05-31 | Tube wall is in the right-handed helix nano-tube material and preparation method for radiating hole arrangement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910472309.3A CN110203935A (en) | 2019-05-31 | 2019-05-31 | Tube wall is in the right-handed helix nano-tube material and preparation method for radiating hole arrangement |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110203935A true CN110203935A (en) | 2019-09-06 |
Family
ID=67790199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910472309.3A Withdrawn CN110203935A (en) | 2019-05-31 | 2019-05-31 | Tube wall is in the right-handed helix nano-tube material and preparation method for radiating hole arrangement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110203935A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113562737A (en) * | 2021-07-29 | 2021-10-29 | 沈阳药科大学 | Chiral structure-tunable mesoporous silica nanoparticles, preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102826557A (en) * | 2012-09-25 | 2012-12-19 | 复旦大学 | Method for preparing silicon oxide nanotube and two-dimensional ordered assembly body thereof |
CN102951647A (en) * | 2011-08-26 | 2013-03-06 | 重庆工商大学 | Silicon oxide nanotube bundle material and preparation method thereof |
CN103224239A (en) * | 2013-04-08 | 2013-07-31 | 天津大学 | Chiral mesoporous silica nano-rod and preparation method thereof |
CN103880020A (en) * | 2014-03-14 | 2014-06-25 | 吉林大学 | Chiral mesoporous organic silicon dioxide nanotube or nucleus-shell type nanorod and preparation method thereof |
CN109502594A (en) * | 2018-12-11 | 2019-03-22 | 复旦大学 | Asymmetric silicon oxide nanotube of surfaces externally and internally property and its preparation method and application |
-
2019
- 2019-05-31 CN CN201910472309.3A patent/CN110203935A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102951647A (en) * | 2011-08-26 | 2013-03-06 | 重庆工商大学 | Silicon oxide nanotube bundle material and preparation method thereof |
CN102826557A (en) * | 2012-09-25 | 2012-12-19 | 复旦大学 | Method for preparing silicon oxide nanotube and two-dimensional ordered assembly body thereof |
CN103224239A (en) * | 2013-04-08 | 2013-07-31 | 天津大学 | Chiral mesoporous silica nano-rod and preparation method thereof |
CN103880020A (en) * | 2014-03-14 | 2014-06-25 | 吉林大学 | Chiral mesoporous organic silicon dioxide nanotube or nucleus-shell type nanorod and preparation method thereof |
CN109502594A (en) * | 2018-12-11 | 2019-03-22 | 复旦大学 | Asymmetric silicon oxide nanotube of surfaces externally and internally property and its preparation method and application |
Non-Patent Citations (3)
Title |
---|
CHEN, YUANLI,ET AL.: "Preparation of Hierarchical Mesoporous Silica Nanoparticles through a Single-Templating Approach", 《CHINESE JOURNAL OF CHEMISTRY》 * |
YONGGANG YANG,ET AL.: "Control of Mesoporous Silica Nanostructures and Pore-Architectures Using a Thickener and a Gelator", 《J. AM. CHEM. SOC.》 * |
YUANLI CHEN,ET AL.: "Formation of silica nanotubes with spring-like pore channels in the walls", 《MATERIALS CHEMISTRY AND PHYSICS》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113562737A (en) * | 2021-07-29 | 2021-10-29 | 沈阳药科大学 | Chiral structure-tunable mesoporous silica nanoparticles, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9068084B2 (en) | Silica nanoparticles doped with dye having negative charge and preparing method thereof | |
CN101205420B (en) | Magnetic inorganic nano-particle/ordered meso-porous silica core-shell microspheres and preparation thereof | |
CN106782986B (en) | A kind of magnetic composite and preparation method thereof of mesoporous bivalve layer nucleocapsid | |
CN101890326B (en) | A kind of preparation method of TiO2/SiO2 composite microsphere | |
CN102350281A (en) | Preparation method of fluorescent mesoporous silica-based core-shell nanoscale capsule | |
CN104445215A (en) | Preparation method of hollow silicon dioxide nanomaterial | |
CN105312051A (en) | Nano gold-mesoporous silica composite nanotube, preparation and applications thereof | |
CN107416849A (en) | A kind of method for preparing monodisperse nano silicon dioxide particle | |
CN101003729A (en) | Nano incandescnet particles of composite organic dyestuff of silicon dioxide with dual structures, and preparation method | |
CN113548684A (en) | Mesoporous alumina-based core-shell composite material and single micelle guiding interface assembly method and application thereof | |
CN109950014A (en) | A method for preparing magnetic mesoporous silica composite microspheres by weak hydrolysis system | |
CN105600833B (en) | A kind of spherical mesoporous iron oxide and preparation method thereof | |
CN103449453A (en) | Method for preparing mesoporous silica by taking anionic surfactant as template | |
CN101704527B (en) | Shape-controllable monodisperse mesoporous silica nanoparticles and its synthesis method | |
CN102433113A (en) | Doping method of amino reactive dye in silicon dioxide nano particles | |
CN102432028A (en) | Method for preparing silicon dioxide mesoporous spheres with adjustable pore sizes and particle sizes | |
CN110203935A (en) | Tube wall is in the right-handed helix nano-tube material and preparation method for radiating hole arrangement | |
CN116282049A (en) | A preparation method of controllable ordered mesoporous silica microspheres | |
CN103833040A (en) | Preparation methods of hollow mesoporous silicon oxide spheres and hollow mesoporous organosilicone spheres | |
CN105236417A (en) | Spherical mesoporous silica with controllable particle size and preparation method of spherical mesoporous silica | |
CN105905912A (en) | High-yield mesoporous silica nano-particle and folic acid targeting modification method thereof | |
CN103071809B (en) | Preparation method for platinum nanowire | |
CN104609431A (en) | A kind of synthetic method of SiO2 nanoparticle below 50 nanometers and its particle size control synthetic method | |
CN102530972A (en) | Method for preparing silicon dioxide hollow sphere with grain size of 30 to 80 nm | |
CN101735667A (en) | Sol-gel modified organic montmorillonoid and organic silicon sol-gel for modification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20190906 |